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Abstract

We study the free energy of a particle in (arbitrary) high-dimensional Gaussian ran-
dom potentials with isotropic increments. We prove a computable saddle-point varia-
tional representation in terms of a Parisi-type functional for the free energy in the
infinite-dimensional limit. The proofs are based on the techniques developed in
the course of the rigorous analysis of the Sherrington-Kirkpatrick model with vec-
tor spins.
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1 Introduction

Recently, considerable (renewed) attention in the theoretical physics literature has
been devoted to Gaussian random fields with isotropic increments viewed as random
potentials, see, e.g, the works by Fyodorov and Sommers [8], Fyodorov and Bouchaud
[7], and references therein. In particular, it was heuristically argued in these works that
Parisi’s theory of hierarchical replica symmetry breaking (Parisi Ansatz, cf. [11]) is ap-
plicable in this context. In the probabilistic context, these results provide rather sharp
information about the extremes of the strongly correlated fields with high-dimensional
correlation structures, which is a challenging area of probability theory [14, 4, 1, 2, 17,
18].

In this note, we initiate the rigorous derivation of the results of [8, 7]. We con-
centrate on the computation of the free energy of a particle subjected to arbitrary
high-dimensional Gaussian random potentials with isotropic increments. In the high-
dimensional limit, we derive a computable saddle-point representation for the free en-
ergy, which is similar to the Parisi formula for the Sherrington-Kirkpatrick (SK) model
of a mean-field spin glass. Our proofs are based on the local comparison arguments for
Gaussian fields with non-constant variance developed in [5], which are, in turn, based
on the ideas of Guerra [9], Guerra and Toninelli [10], Talagrand [16] and Panchenko [12].
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Gaussian fields with isotropic increments seen through spin glasses

This note is organized as follows. We state our results in Section 2. The proofs
are given in Sections 3 and 4. In Section 5, we give an outlook and announce some
important consequences of the results of this note. In the Appendix, we provide some
complementary information for the reader’s convenience.

2 Setup and main results

Consider the Gaussian random field with isotropic increments X = XN = {XN (u) :

u ∈ RN}, N ∈ N. The adjective “isotropic” means here that the law of the increments
of the field X is invariant under rigid motions (= translations and rotations) in RN . We
are interested in the case N � 1 and in the case of strongly correlated fields with high-
dimensional correlation structure. Therefore, we assume that the field XN satisfies

E
[
(XN (u)−XN (v))2

]
= D

(
1

N
‖u− v‖22

)
=: DN (‖u− v‖22), u, v ∈ RN , (2.1)

where ‖ · ‖2 denotes the Euclidean norm on RN and the correlator D : R+ → R+ is any
admissible function. Complete characterization of all correlators D that are admissible
in (2.1), for all N , is known, see Theorem A.1. Note that the law of the field XN is
determined by (2.1) only up to an additive shift by a Gaussian random variable. In what
follows, without loss of generality, we assume that XN (0) = 0.

We are interested in the asymptotic behavior of the extremes of the random field
XN on the sequence of the particle state spaces SN ⊂ RN as N ↑ +∞. The state
spaces are assumed to be equipped with a sequence of a priori reference measures
{µN ∈Mfinite(SN ) | N ∈ N}. We now define the main quantities of interest in this work.
Consider the partition function

ZN (β) :=

∫
SN

µN (du) exp
(
β
√
NXN (u)

)
, β ∈ R. (2.2)

We view (2.2) as an exponential functional of the field XN , which is parametrized by the
inverse temperature β. Heuristically, for large β (i.e., β ↑ +∞), the maxima of the field
XN give substantial contribution to the integral (2.2). The N -scalings in (2.2), (2.1) and
the “size” of SN are tailored for studying the large-N limit of the random log-partition
function:

pN (β) :=
1

N
logZN (β), β ∈ R. (2.3)

For comparison with the theoretical physics literature, let us note that there one con-
ventionally substitutes β 7→ −β in (2.2) (this has no effect on the distribution of ZN due
to the symmetry of the centered Gaussian distribution of the field XN ), and considers
instead of (2.3) the free energy

fN (β) := − 1

β
pN (β), β ∈ R+. (2.4)

Assumptions. Informally, we require the particle state space SN to have an exponen-
tially growing in N volume (respectively, cardinality, if SN is discrete). In particular,
using physics parlance, this assures that the entropy competes with the energy (given
by the random field XN ) on the same scale. More formally, we assume

SN := SN , S ⊂ R. (2.5)

Let µ ∈ Mfinite(S) be such that the origin is contained in the interior of the convex
hull of the support of µ. Define µN := µ⊗N ∈ Mfinite(SN ). A canonical example is the
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Gaussian fields with isotropic increments seen through spin glasses

discrete hypercube SN := {−1; 1}N equipped with the uniform a priori measure, i.e.,
µ({u}) := 2−N , for all u ∈ SN .
Parisi-type functional. To formulate our results on the limiting log-partition function,
we need the following definitions. Given r ∈ R+, consider the space of the functional
order parameters

X (r) := {x : [0; r]→ [0; 1] | x is non-decreasing càdlàg, x(0) = 0, x(r) = 1}, (2.6)

It is convenient to work with the space of the discrete order parameters

X ′n(r) := {x ∈ X (r) | x is piece-wise constant with at most n jumps}. (2.7)

Let us denote the effective size of the particle state space by

d := sup
N

(
1

N
sup
u∈SN

‖u‖22
)
. (2.8)

For what follows, it is enough to assume that r ∈ [0; d] in (2.6). Note that, in case (2.5),
d = supu∈S u

2.
Now, let us define the non-linear functional that appears in the variational formula

of our main result. We do it in three steps:

1. Given large enough M ∈ R+, define the regularized derivative D′,M : R+ → R of
the correlator D as

D′,M (r) :=

{
D′(r), r ∈ [1/M ; +∞),

M, r ∈ [0; 1/M).
(2.9)

Given r,M ∈ R+, define the function θ(M)
r : [−r; r]→ R as

θ(M)
r (q) := qD′,M (2(r − q)) +

1

2
D(2(r − q)), q ∈ [−r; r]. (2.10)

2. Given r ∈ R+, x ∈ X (r) and the (sufficiently regular) boundary condition h : R→ R,
consider the semi-linear parabolic Parisi’s terminal value problem:{
∂qf(y, q) + 1

2D
′,M (2(r − q))

(
∂2
qqf(y, q) + x(q) (∂yf(y, q))

2
)

= 0, (y, q) ∈ R× (0, r),

f(y, 1) = h(y), y ∈ R.

(2.11)

Let f (M)
r,x,h : [0; 1] × R+ → R be the unique solution of (2.11). Solubility of the

Parisi terminal value problem (2.11), its relation to the Hamilton-Jacobi-Bellman
equations and stochastic control problems is discussed in a more general multidi-
mensional context in [5, Section 6].

3. Given the family of the (sufficiently regular for (2.11) to be solvable) boundary
conditions

g := {gλ : R→ R | λ ∈ R}, (2.12)

and given r ∈ [0; d], define the local Parisi functional P(β, r, g) : X (r)→ R as

P(β, r, g)[x] := lim
M↑+∞

(
inf
λ∈R

[
f (M)
r,x,gλ

(0, 0)− λr
]
− β2

2

∫ 1

0

x(q)dθ(M)
r (q)

)
, x ∈ X (r).

(2.13)

In (2.13), the integral with respect to θ(M)
r is understood in the Lebesgue-Stieltjes

sense.
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Gaussian fields with isotropic increments seen through spin glasses

Main results. Let us start by recording the basic convergence result for the log-
partition function.

Theorem 2.1 (Existence of the limiting free energy). For any β > 0, the large N -limit
of the log-partition function exists and is a.s. deterministic:

pN (β) −−−−−→
N↑+∞

p(β), almost surely and in L1. (2.14)

In addition, for any N ∈ N, the following concentration of measure inequality holds

P {|pN (β)− E [pN (β)] | > t} ≤ 2 exp

(
− Nt2

4D(d)

)
, t ∈ R+. (2.15)

The main result of this work is the following variational representation for the limit-
ing log-partition function in terms of the Parisi functional (2.13).

Theorem 2.2 (Free energy variational representation, comparison with cascades). As-
sume (2.5). Let the family of boundary conditions (2.12) be defined as

gλ(y) := log

∫
S

µ(du) exp
(
βuy + λu2

)
, y ∈ R. (2.16)

Then, for all β ∈ R,

p(β) := sup
r∈[0;d]

inf
x∈X (r)

(P(β, r, g)[x]−R(r)[x]) , almost surely and in L1, (2.17)

where the remainder termR(r) : X (r)→ R+ is a functional on X (r) taking non-negative
values (see (4.23) for the definition).

The sign-definiteness of the remainder term R(r) immediately implies the following
bound.

Corollary 2.3 (Log-partition function upper bound). For all β ∈ R,

p(β) ≤ sup
r∈[0;d]

inf
x∈X (r)

P(β, r, g)[x], almost surely. (2.18)

Remark 2.4. In the case (A.4), the field (2.20) has a feature, which is not within the
assumptions typically found in the literature [9, 10, 16, 15, 12]: the correlator D is not
of class C1, namely, D can have a singular derivative at 0. To deal with the singularity,
we need a regularization procedure, cf. (2.9) and (2.13).

Heuristics. It is natural to ask the following questions: Why is Parisi’s theory of hi-
erarchical replica symmetry breaking [11] (which is usually behind the functionals of
the type (2.13)) applicable to Gaussian fields with isotropic increments satisfying (2.1)?
Where are the “interacting spins” in the present context?

A hint is given by the following observation. Define

〈u, v〉N :=
1

N

N∑
i=1

uivi, u, v ∈ RN . (2.19)

Let us fix r ∈ [0; d]. By (A.6), the restriction of the field XN with isotropic increments
to a sphere with radius r centered at the origin, leads to the mixed p-spin spherical SK
model (cf. [15]) with the following covariance structure

E [XN (u)XN (v)] = D(r)− 1

2
D(2(r−〈u, v〉N )) =: Gr(〈u, v〉N ), ‖u‖22 = ‖v‖22 = rN, (2.20)
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where Gr : R+ → R is given by

Gr(q) := D(r)− 1

2
D(2(r − q)), q ∈ R+. (2.21)

Thus, (2.20) implies that, given r, each field of the type (2.1) induces a mixed p-spin
spherical SK model with the convex correlation function Gr (see Remark A.3). It is
this convexity that leads to the sign-definiteness of the remainder term in (4.24) and
allows for the proof (along the lines of [16]) of Theorems 5.1 and 5.2 for all admissible
correlators.

Our proof of Theorem 2.2 exploits the observation (2.20) and combines it with the
localization technique of [5]. By means of the large deviations principle, this technique
reduces the analysis of the full log-partition function (2.3) to the local one, where (2.20)
approximately holds true everywhere. The price to pay for this reduction is the saddle
point variational principle (2.17), which involves the Lagrange multipliers that enforce
the localization.

3 Existence of the limiting free energy

In this section, we prove Theorem 2.1.

Proof of Theorem 2.1. Proof of (2.15). By Remark A.2, we have

Var [XN (u)] = DN (‖u‖22) ≤ D(d), u ∈ RN . (3.1)

Therefore, the concentration of measure inequality (2.15) follows from [5, Proposi-
tion 2.2].

Proof of the convergence (2.14). The result can be proved along the lines of [10,
Theorem 1]. In [10, eq. (7)], it is assumed that the covariance structure of the random
potential depends on the scalar product (overlap) of the particle configurations in a
smooth way. Therefore, using the terminology of Remark A.2, only the short-range
case is covered by [10, Theorem 1]. Indeed, in that case, the covariance of the field
XN satisfies (A.1), where the function B is analytic and convex, which follows from
the representation (A.2). Therefore, [10, Theorem 1] is applicable with QN (u, v) :=

N−1‖u− v‖22, for u, v ∈ RN .
In the long-range case (A.6), the proof of the [10] requires some care, because the

covariance structure of the field XN (cf. (A.6)) does not depend on the scalar product
(2.19) only, and, moreover, the correlator D is not of class C1 (cf. Remark 2.4). For the
reader’s convenience, we now retrace the main parts of this argument. Given N ∈ N,
we prove the convergence of (2.14) along the subsequences {NK := NK}K∈N. Conver-
gence along other subsequences then readily follows. Consider N independent copies
{X(k)

NK−1
| k ∈ [N ]} of the field XNK−1

. Given an interval V ⊂ [0; d], define the localized
state space as

SN (V ) :=
{
u ∈ SN : ‖u‖22 ∈ N · V

}
. (3.2)

Given a random field C = {CN (u) | u ∈ RN}, denote the corresponding local partition
function by

ZN (β, V )[C] :=

∫
SN (V )

µN (du) exp
(
β
√
NCN (u)

)
. (3.3)

In what follows, for u ∈ RN , v ∈ RM , we denote by u q v the vector in RN+M obtained by
concatenation of u and v. Let us define the Gaussian field Y as

YN,K(u(1) q u(2) q . . . q u(N)) :=
1√
N

N∑
k=1

X
(k)
NK−1

(u), u(k) ∈ RNK−1 , k ∈ [N ]. (3.4)
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Due to independence,

Cov
[
YN,K(u(1) q u(2) q . . . q u(N)), YN,K(v(1) q v(2) q . . . q v(N))

]
=

N∑
k=1

Cov
[
X

(k)
NK−1

(u(k)), X
(k)
NK−1

(v(k))
]
, u(k), v(k) ∈ RNK−1 , k ∈ [N ].

(3.5)

Let us define

Z̃NK (β, V )[C] :=

∫
S̃NK (V )

µN (du) exp
(
β
√
NCN (u)

)
, (3.6)

where

S̃NK (V ) :=
{
u = u(1) q u(2) q . . . q u(N) ∈ SNK : ‖u(k)‖22 ∈ NK−1 · V, k ∈ [N ]

}
. (3.7)

Let us note that S̃NK (V ) ⊂ SNK (V ), and, therefore,

ZNK (β, V ) ≥ Z̃NK (β, V ). (3.8)

The product structure (3.7) and independence (3.4) imply

1

NK
E
[
log Z̃NK (β, V )[YN,K ]

]
=

1

NK
E

[
log

N∏
k=1

ZNK−1
(β, V )[X

(k)
NK−1

]

]

=
1

NK−1
E
[
logZNK−1

(β, V )[XNK−1
]
]
.

(3.9)

For ε > 0, set Vi := [iε; (i + 1)ε], i ∈ N. By the Gaussian comparison formula [5,
Proposition 2.5],

1

NK
E
[
log Z̃NK (β, Vi)[XNK ]

]
=

1

NK
E [logZ(β, Vi)[YN,K ]]

+
β2

2

∫ 1

0

dt

∫
S̃NK (Vi)

G̃NK (t)(du)

∫
S̃NK (Vi)

G̃NK (t)(dv)

[
VarXNK (u)− 1

N

N∑
k=1

VarXNK−1
(u(k))

−

(
Cov [XNK (u), XNK (v)]− 1

N

N∑
k=1

Cov
[
XNK−1

(u(k)), XNK−1
(v(k))

])]
,

(3.10)
where G̃NK (t) ∈M1(S̃NK ) is the interpolating Gibbs measure with the density

dG̃NK (t)

dµNK
(u) = exp

(
β
√
NK

(√
tXNK (u) +

√
1− tYN,K(u)

))
, u ∈ S̃NK (Vi). (3.11)

Using (A.6), the smoothness of the correlator D on (0; +∞), the fact that D is non-
decreasing, continuous at 0, and D(0) = 0, we get

sup
u∈S̃NK (Vi)

∣∣∣∣∣VarXNK (u)− 1

N

N∑
k=1

VarXNK−1
(u(k))

∣∣∣∣∣ ≤ D(ε), i ∈ N. (3.12)

As for the covariance terms in (3.10), the concavity of the correlator D (cf., Remark A.3)
and the explicit covariance representation (A.6) assure that

sup
u,v∈S̃NK (Vi)

(
Cov [XNK (u), XNK (v)]− 1

N

N∑
k=1

Cov
[
XNK−1

(u(k)), XNK−1
(v(k))

])
≤ D(ε).

(3.13)
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Therefore, combining (3.8), (3.9), (3.10), (3.12) and (3.13) we get

1

NK
E [logZNK (β, Vi)[XNK ]] ≥ 1

NK−1
E
[
logZNK−1

(β, Vi)[XNK−1
]
]
− CD(ε), i ∈ N.

(3.14)
The proof is finished by using the concentration inequality (2.15) to remove the local-
ization in (3.14), as in [10, Theorem 1].

4 Comparison with cascades

In this section, we prove Theorem 2.2. The proof follows the strategy that was
previously implemented in [5, Section 5]. The appearance of the auxiliary structures
below can be made more transparent by the “cavity” arguments, as is done in the
seminal work of Aizenman et al. [3].

4.1 Auxiliary structures

Consider the auxiliary index space A = An := Nn, n ∈ N. Let us define the projection
operator A 3 α 7→ [α]k := (α1, . . . , αk) ∈ Nk, for k ∈ [n]. It is useful to treat the elements
of A as the leaves of the tree of depth n. We use the convention that [α]0 = ∅, where ∅
denotes the root of the tree. Given a leaf α ∈ A, we think of {[αk] : k ∈ [n]} as of the
sequence of branches connecting the leaf α to the root ∅. We equip A with a random
measure called Ruelle’s probability cascade (RPC). Let us briefly recall the construction
of the RPC, see, e.g., [3] for more details. Note that each function x ∈ X ′n(r) can be
represented as

x(q) =

n∑
i=0

xi1[qi;qi+1)(r), (4.1)

where x̄ = {xk}n+1
k=0 and q̄ = {qk}n+1

k=0 satisfy

0 =: x0 < x1 < . . . < xn < xn+1 := 1,

0 =: q0 < q1 < . . . < qn < qn+1 := r.
(4.2)

To define the RPC, we need only the sequence x̄ as in (4.2). Consider the family of the
independent (inhomogeneous) Poisson point processes {ξk,[α]k−1

| α ∈ A, k ∈ [n]} on R+

with intensity

R+ 3 t 7→ xkt
−xk−1 ∈ R+, k ∈ [1;n] ∩ N. (4.3)

To each branch [α]k, α ∈ A, k ∈ [n] of the tree we associate the position of the αk-
th atom (e.g., according to the decreasing enumeration) of the Poisson point process
ξk,[α]k−1

. The RPC is the point process RPC = RPC(x1, . . . , xn) :=
∑
α∈A δRPC(α), where

RPC(α), α ∈ A is obtained by multiplying the random weights attached to the branches
along the path connecting the given leaf α ∈ A with the root of the tree:

RPC(α) :=

n∏
k=1

ξk,[α]k−1
(αk). (4.4)

Since
∑
α∈ARPC(α) <∞, the RPC can be thought of as a finite random measure on A

with (abusing the notation) RPC({α}) := RPC(α), for α ∈ A. To lighten the notation,
we keep the dependence of the RPC on x̄ implicit.
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Recall (3.2). Given the sequence x̄ as in (4.2) and any suitable Gaussian field C :=

{C(u, α) | u ∈ SN , α ∈ A}, let us define the extended log-partition functional ΦN (x̄, V )

as

ΦN (x̄, V )[C] :=
1

N
E

[
log

(∫
SN (V )

µ(du)

∫
A

RPC(dα) exp
(
β
√
NC(u, α)

))]
, (4.5)

where the RPC is induced by x̄.
Let us use the sequence q̄ = {qk}n+1

k=0 as in (4.2) to construct the Gaussian cavity
fields indexed by SN × A. To this end, define the lexicographic overlap between the
configurations α(1), α(2) ∈ A as

l(α(1), α(2)) :=

{
0, α

(1)
1 6= α

(2)
1 ,

max
{
k ∈ [N ] : [α(1)]k = [α(2)]k

}
, otherwise.

(4.6)

Let us define (slightly abusing the notation) the lexicographic overlap q : A2 → [0; 1] as

q(α(1), α(2)) := ql(α(1),α(1)). (4.7)

Given q̄ as in (4.2), the cavity field is the Gaussian field A = A
(M)
N = {AN (u, α) | u ∈

SN , α ∈ A} such that

Cov
[
A(M)(u, α(1)), A(M)(v, α(2))

]
= D′,M

(
2(r − q(α(1), α(2)))

)
〈u, v〉N , α(1), α(2) ∈ A, u, v ∈ SN .

(4.8)
The existence of the cavity field A is guaranteed by the following result.

Lemma 4.1 (Existence of the cavity field). For any sequence q as in (4.2) and large
enough M ∈ R+, there exists the unique (in distribution) Gaussian field satisfying (4.8).

Proof. Since the distribution of the Gaussian field is completely identified by the covari-
ance, the uniqueness follows once we prove the existence. For this purpose, we first
construct the Gaussian field a = {a(M)(α)}α∈A with

Cov
[
a(M)(α(1)), a(M)(α(2))

]
= D′,M

(
2(r − q(α(1), α(2)))

)
, α(1), α(2) ∈ A. (4.9)

To construct the field a(M) explicitly, we define

mk := D′,M (2(r − qk)), k ∈ [n+ 1]. (4.10)

The representations (A.3) and (A.4), guarantee that the sequence (4.10) is non-decreasing.
Therefore, we can set

a(M)(α) :=

n∑
k=1

(mk+1 −mk)
1/2

g
(k)
[α]k

, α ∈ A, (4.11)

where {g(k)
[α]k
| α ∈ A, k ∈ [n]} are i.i.d. standard normal random variables. A straight-

forward check shows that the covariance structure of (4.11) satisfies (4.9).
To finish the construction, for i ∈ [N ], let a(M)

i = {a(M)
i (α)}α∈A be the i.i.d. copies of

the field a(M) = {a(M)(α)}α∈A. Define

A
(M)
N (u, α) :=

1√
N

N∑
i=1

a
(M)
i (α)ui, u ∈ SN , α ∈ A. (4.12)

An inspection shows that the field (4.12) satisfies (4.8).
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4.2 Interpolation

In this section, we shall apply Guerra’s comparison scheme (cf. [9]) to the Gaussian
field with isotropic increments satisfying (2.1). To this end, we restrict the state space
of a particle to a thin spherical layer. This assures that the variance of the field XN does
not change much. We refer to this procedure as localization. Then, we interpolate be-
tween the field of interestXN and the cavity field (4.12) and compare the corresponding
local log-partition functions. We use the auxiliary structures from Section 4.1.

Given x ∈ X ′n(r) and large enough M ∈ R+, let us consider the following interpolat-
ing field on the extended configuration space SN ×A

H
(M)
t (u, α) :=

√
tXN (u) +

√
1− tA(M)

N (u, α), t ∈ [0; 1], u ∈ SN , α ∈ A, (4.13)

where A(M)
N is the cavity field with (4.8). In the usual way, the field (4.13) induces the

local log-partition function

ϕ
(M)
N (t, x, V ) := ΦN (x, V ) [Ht] , V ⊂ [0; d], x ∈ X ′n(r). (4.14)

At the end-points of the interpolation, we obtain

ϕ
(M)
N (0, x, V ) = ΦN (x̄, V )[A(M)] and ϕ

(M)
N (1, x, V ) = ΦN (x̄, V )[X] =: pN (β, V ). (4.15)

The idea is that ΦN (x̄, V )[A(M)] is computable due to the properties of the RPC and the
hierarchical structure of the cavity field. Let us now disintegrate the Gibbs measure on
V ×A induced by (4.13) into two Gibbs measures acting on V and A separately. To this
end, we define the correspondent (random) local free energy on V as follows

ψ
(M)
N (t, x, α, V ) := log

∫
SN (V )

exp
[
β
√
NH

(M)
t (u, α)

]
dµ⊗N (u), α ∈ A. (4.16)

For α ∈ A, let us define the (random) local Gibbs measure GN (t, x, α, V ) ∈ M1(SN ) by
specifying its density with respect to the a priori distribution as

dG(M)
N (t, x, α, V )

dµ⊗N
(u) := 1SN (V )(u) exp

[
β
√
NH

(M)
t (u, α)− ψ(M)

N (t, x, V, α)
]
, u ∈ SN .

(4.17)

Let us define the re-weighting of the RPC by means of the local free energy (4.16)

R̃PC(α) := RPC(α) exp
(
ψ

(M)
N (t, x, V, α)

)
, α ∈ A. (4.18)

Let us also define the normalization operation N :Mfinite(A)→M1(A) as

N (η) (α) :=
η(α)∑

α′∈A η(α′)
, α ∈ A, η = (ηα)α∈A ∈Mfinite(A). (4.19)

We introduce the local Gibbs measure G(M)
N (t, x, V ) ∈ M1(V × A) as follows. We equip

V × A with the product topology between the Borel topology on V and the discrete
topology on A. For any measurable U ⊂ V ×A, let us put

G(M)
N (t, x, V ) [U ] :=

∑
α∈A
N (R̃PC)(α)G(M)

N (t, x, α, V ){v ∈ V | (v, α) ∈ U}. (4.20)

Let us define the remainder term as

R(M)
N (t, V )[x] :=

β2

2
E
[ ∫
G(M)
N (t, x, V )(du,dα(1))

∫
G(M)
N (t, x, V )(dv,dα(2))(

1

2

(
D(2(r − q(α(1), α(2))))−D(2(r − 〈u, v〉N ))

)
−D′,M (2(r − q(α(1), α(2))))(q(α(1), α(2)))− 〈u, v〉N )

) ]
.

(4.21)
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Given r ∈ (0; d], let us denote
Vε := (r − ε; r + ε). (4.22)

Define the local remainder term as

R(M)(r)[x] := lim
ε↓+0

lim
N↑+∞

∫ 1

0

R(M)
N (t, Vε)dt, x ∈ X ′n(r). (4.23)

The main step in the proof of Theorem 2.2 is the following.

Lemma 4.2 (Comparison with cascades). Given r ∈ (0; d], for any x ∈ X ′n(r), as ε ↓ +0,
and M ↑ +∞,

∂

∂t
ϕ

(M)
N (t, x, Vε) =−R(M)(r)[x]− β2

2

n∑
k=1

xk

(
θ(M)
r (qk+1)− θ(M)

r (qk)
)

+O(ε) +O(1/M),

(4.24)

where
R(M)(r)[x] ≥ 0. (4.25)

Proof. Fix some r ∈ (0; d]. Using the notation (2.21) and smoothness of D on (0; +∞),
we have

VarX(u) = Gr(r) +O(ε), VarA(u, α) = rG′r(r) +O(ε), u ∈ Vε, α ∈ A. (4.26)

and
Cov [X(u), X(v)] = Gr(〈u, v〉N ),

Cov
[
A(u, α(1)), A(v, α(2))

]
= G′r(q(α

(1), α(2)))〈u, v〉N .
(4.27)

Applying the abstract Gaussian interpolation formula (see, e.g., [5, Proposition 2.5]) to
the field XN and the cavity field (4.12), we obtain

∂

∂t
ϕN (t, x, Vε(r)) =

β2

2
E

[∫
GN (t, x, V )(du,dα(1))

∫
GN (t, x, V )(dv,dα(2))(

VarX(u)−VarA(u, α)− Cov [X(u), X(v)] + Cov
[
A(u, α(1)), A(v, α(2))

])]
+O(ε).

(4.28)
Using (4.26) and (4.27), we get

VarX(u)−VarA(u, α)− Cov [X(u), X(v)] + Cov
[
A(u, α(1)), A(v, α(2))

]
= Gr(r)− rG′r(r)−

(
Gr(q(α

(1), α(2)))− q(α(1), α(2))G′r(q(α
(1), α(2)))

)
−
[
Gr(〈u, v〉N )−Gr(q(α(1), α(2)))−G′r(q(α(1), α(2)))

(
〈u, v〉N − q(α(1), α(2))

)]
.

(4.29)
Comparing (2.21) and (2.10), we note

Gr(q)− sG′r(q) = D(r) + θr(q), q ∈ R+. (4.30)

We have (cf. the proof of [5, Lemma 5.2])

E

[∫
G(M)
N (t, x, Vε)(du,dα

(1))

∫
G(M)
N (t, x, Vε)(dv,dα

(2))(θr(r)− θr(q(α(1), α(2))))

]
= E

[∫
N (R̃PC)(dα(1))

∫
N (R̃PC)(dα(2))(θ(M)

r (r)− θ(M)
r (q(α(1), α(2))))

]
=

n∑
k=1

xk(θ(M)
r (qk+1)− θ(M)

r (qk)).

(4.31)
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By (2.21),

Gr(〈u, v〉N )−Gr(q(α(1), α(2)))−G′r(q(α(1), α(2)))
(
〈u, v〉N − q(α(1), α(2))

)
=

1

2

(
D(2(r − q(α(1), α(2))))−D(2(r − 〈u, v〉N ))

)
−D′(2(r − q(α(1), α(2))))(q(α(1), α(2)))− 〈u, v〉N ).

(4.32)

Combining (4.31), (4.29), (4.32) and (4.28), we get (4.24). Due to Remark A.3, the
function G is convex. Therefore,

Gr(〈u, v〉N )−Gr(q(α(1), α(2)))−G′r(q(α(1), α(2)))
(
〈u, v〉N − q(α(1), α(2))

)
≥ 0. (4.33)

Inequality (4.25) follows from (4.33).

4.3 Regularization and localization

In this section, we finish the proof of Theorem 2.2.

Lemma 4.3 (Regularization, well-definiteness). For any x ∈ X ′n(r),

lim
M↑+∞

[
lim

xn↑1−0

(
lim
ε↓+0

ΦN (x̄, Vε)[Ã]− β2

2

n∑
k=1

xk

(
θ(M)
r (qk+1)− θ(M)

r (qk)
))]

<∞. (4.34)

Proof. Recall (4.11). Given x ∈ X ′n(r), large enough given M > 0, as ε ↓ +0 and
xn ↑ 1− 0, we have

ϕ
(M)
N (0, x, Vε) =

β2

2
(M −D′(2(r − qn))) r + ΦN (x̄, Vε)[Ã] +O(ε) +O(1− xn), (4.35)

where Ã(u, α) := 1√
N

∑N
i=1 ã

(M)
i (α)ui, and {ãi} are i.i.d. copies of

ã(M)(α) :=

n−1∑
k=1

(mk+1 −mk)
1/2

g
(k)
[α]k

, α ∈ A. (4.36)

Using the definition (2.10), for large enough given M > 0, as xn ↑ 1− 0, we get

xn

(
θ(M)
r (qk+1)− θ(M)

r (qk)
)

= (M −D′(2(r − qn))) r− 1

2
D(2(r− qn)) +O(1−xn). (4.37)

Combining (4.35) and (4.37), we note that the unbounded in M terms in (4.34) cancel
out and therefore (4.34) holds.

Lemma 4.4 (Localization, large deviations and cascades). For any x ∈ X ′n(r),

lim
ε↓+0

ϕ
(M)
N (0, x, Vε) = inf

λ∈R

[
f (M)
r,x,gλ

(0, 0)− λr
]
. (4.38)

Proof. This is a standard computation (cf., e.g., [3, Lemma 6.2]), using the well-known
averaging properties of the RPC (see, e.g., [5, (5.27)]) and the quenched large devia-
tions principle as is done in [5, Sections 3-5].

Proof of Theorem 2.2. Combining Lemmata 4.2, 4.4 and 4.3, we obtain Theorem 2.2.
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5 Outlook

It is plausible that combining the methods of Talagrand [16] with Theorem 2.2, one
can show that the remainder term in (2.17) vanishes at the saddle-point. This implies
that, in fact, the equality holds in (2.18). Summarizing, we conjecture that the following
holds.

Conjecture 5.1 (Parisi-type formula). In the case of the product state space (2.5), for
all β ∈ R,

p(β) = sup
r∈[0;d]

inf
x∈X (r)

P(β, r, g)[x], almost surely. (5.1)

Parallel to the product state space (2.5), one can consider the rotationally invariant
state space:

SN := {u ∈ RN : ‖u‖2 ≤ L
√
N}, L > 0. (5.2)

In this case, we assume that the a priori measure µN ∈Mfinite(SN ) has the density

dµN
dλN

(u) := exp

(
N∑
i=1

f(ui)

)
, u = (ui)

N
i=1 ∈ RN , f : R→ R (5.3)

with respect to the Lebesgue measure λ on RN . Let the function f be of the form
f(u) := h1u − h2u

2, where h1 ∈ R and h2 ∈ R+ are given constants. Let us note that in
case (5.2), d = L2.

In the case of the rotationally invariant state space (5.2), one can obtain a more
explicit representation for the Parisi functional (2.13), which does not require any regu-
larization. Given x ∈ X (r), define qmax := qmax(x) := sup

{
q ∈ [0; r] : x(q) < 1

}
. Consider

the Crisanti-Sommers type functional (cf. [6, (A2.4)] and [8, (47)])

CS(β, r)[x] :=
1

2

[
log(r − qmax) +

∫ qmax

0

dq∫ r
q
x(s)ds

+ h2
1

∫ r

0

x(q)dq − h2r

]

+
β2

2

(
D′(2(r − qmax)) +

∫ qmax

0

D′(2(r − q))x(q)dq

)
, x ∈ X (r).

(5.4)

It is plausible that by reducing the case of the rotationally invariant state space to the
product state space case using a large deviations argument (an idea exploited in [15])
one can obtain the following result.

Conjecture 5.2 (Fyodorov-Sommers formula). In the case of the rotationally invariant
state space (5.2), for all β ∈ R+, h1 ∈ R, h2 ∈ R+, there exists unique r∗ ∈ [0; d] and
unique x∗ ∈ X (r) such that

p(β) = max
r∈[0;d]

min
x∈X (r)

CS(β, r)[x] = CS(β, r∗)[x∗], almost surely. (5.5)

Resolution of Conjectures 5.1 and 5.2 is beyond the scope of this short communica-
tion and will be reported on elsewhere.

Remark 5.3. The Crisanti-Sommers type functional (5.4) corresponds to the a pri-
ori distribution (5.3), which represents the linear combination of linear and quadratic
external fields. Formula [8, (47)] was derived under the assumption of the quadratic ex-
ternal field, whereas formula [6, (A2.4)] was obtained for the spherical SK model with
the linear external field.

Remark 5.4. The explicit form of the functional (5.4) assures that it is strictly convex
with respect to x ∈ X (r). In contrast, convexity of the functional (2.13) is (to the
author’s best knowledge) open, see [13] and [5, Theorem 6.4] for partial results.
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A Characterization of the correlators

We recall some facts about high-dimensional Gaussian processes with isotropic in-
crements. The following result can be extracted from the work [20] of A.M. Yaglom (see
also [19]).

Theorem A.1. If X is a Gaussian random field with isotropic increments that satisfies
(2.1), then one of the following two cases holds:

1. Isotropic field. There exists the correlation function B : R+ → R such that

E [XN (u)XN (v)] = B

(
1

N
‖u− v‖22

)
, u, v ∈ ΣN , (A.1)

where the function B has the representation

B(r) = c0 +

∫ +∞

0

exp
(
−t2r

)
ν(dt), (A.2)

where c0 ∈ R+ is a constant and ν ∈ Mfinite(R+) is a non-negative finite mea-
sure. In this case, the function D in (2.1) is expressed in terms of the correlation
function B as

D(r) = 2(B(0)−B(r)). (A.3)

2. Non-isotropic field with isotropic increments. The function D in (2.1) has the
following representation

D(r) =

∫ +∞

0

[
1− exp

(
− t2r

)]
ν(dt) +A · r, r ∈ R+, (A.4)

where A ∈ R+ is a constant and ν ∈M((0; +∞)) is a σ-finite measure with∫ +∞

0

t2ν(dt)

t2 + 1
<∞. (A.5)

Remark A.2. In Theorem A.1, assuming c0 = 0, case 1 is sometimes referred to as
the short-range one which reflects the decay of correlations: B(r) ↓ +0, as r ↑ +∞.
This fact follows from the representation (A.2). Correspondingly, case 2 is called the
long-range one, since here, assuming X(0) = 0, the correlation structure is

E [XN (u)XN (v)] =
1

2

(
DN (‖u‖22) +DN (‖v‖22)−DN (‖u− v‖22)

)
, u, v ∈ RN . (A.6)

Equation (A.6) in combination with the representation (A.4) implies that the correla-
tions of the field XN do not decay, as ‖u− v‖ → +∞.

Remark A.3. Theorem A.1 implies that the function D appearing in (2.1) is necessarily
concave, infinitely differentiable, and non-decreasing on (0; +∞).
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