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Abstract

This work provides exponential tail inequalities for sums of random matrices that de-
pend only on intrinsic dimensions rather than explicit matrix dimensions. These tail
inequalities are similar to the matrix versions of the Chernoff bound and Bernstein
inequality except with the explicit matrix dimensions replaced by a trace quantity
that can be small even when the explicit dimensions are large or infinite. Some ap-
plications to covariance estimation and approximate matrix multiplication are given
to illustrate the utility of the new bounds.
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1 Introduction

Sums of random matrices arise in many statistical and probabilistic applications,
and hence their concentration behavior is of significant interest. Surprisingly, the clas-
sical exponential moment method used to derive tail inequalities for scalar random
variables carries over to the matrix setting when augmented with certain matrix trace
inequalities. This fact was first discovered by Ahlswede and Winter [1], who proved
a matrix version of the Chernoff bound using the Golden-Thompson inequality [7, 23]:
tr exp(A + B) ≤ tr(exp(A) exp(B)) for all symmetric matrices A and B. Later, it was
demonstrated that the same technique could be adapted to yield analogues of other tail
bounds such as Azuma’s and Bernstein’s inequalities [3, 9, 19, 8, 16, 15]. Recently, a
theorem due to Lieb [12] was identified by Tropp [25, 24] to yield sharper versions of
this general class of tail bounds. Altogether, these results have proved invaluable in
constructing and simplifying many probabilistic arguments concerning sums of random
matrices.

One deficiency of many of these previous inequalities is their dependence on the
explicit matrix dimension (this is reviewed in Section 3.3), which prevents their ap-
plication to infinite dimensional spaces that arise in a variety of data analysis tasks
(e.g., [22, 18, 6, 2, 11]). In this work, we prove analogous results where the dimen-
sion is replaced with a trace quantity that can be small even when the explicit matrix
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Tail inequalities for sums of random matrices that depend on the intrinsic dimension

dimension is large or infinite. For instance, in our matrix generalization of Bernstein’s
inequality, the (scaled) trace of the second moment matrix appears instead of the matrix
dimension. Such trace quantities can often be regarded as notions of intrinsic dimen-
sion. The price for this improvement is that the more typical exponential tail e−t for
t > 0 is replaced with a slightly weaker tail t(et−t−1)−1 ≈ e−t+log t. As t becomes large,
the difference becomes negligible. For instance, if t ≥ 2.6, then t(et − t− 1)−1 ≤ e−t/2.

There are some previous works that also give tail inequalities for sums of random
matrices that do not depend on the explicit matrix dimension, at least in some spe-
cial cases. For instance, in the case where the summands all have rank one, then
Oliveira [16] gives a bound where the dimension is replaced by the number of sum-
mands. Rudelson and Vershynin [21] also prove similar exponential tail inequalities for
sums of rank-one matrices using non-commutative Khinchine moment inequalities by
way of a key inequality of Rudelson [20]; the extension to higher rank random matri-
ces is not explicitly worked out, but may be possible. Indeed, Magen and Zouzias [14]
pursue this direction, but their argument is complicated and falls short of giving an
exponential tail inequality—this point is discussed in Section 3.3.

To concretely compare the new technique to previous results based on the matrix ex-
ponential moment method, consider the sum

∑n
i=1 γiAi, where A1, A2, . . . , An are fixed

symmetric d × d matrices, and γ1, γ2, . . . , γn are independent standard normal random
variables. Tropp gives the following tail bound for the largest eigenvalue of the sum
(Theorem 4.1 in [25]):

Pr

[
λmax

(
n∑
i=1

γiAi

)
≥
√

2‖Σ‖2t

]
≤ d · e−t

where Σ :=
∑n
i=1A

2
i . Combining Theorem 3.2 with Lemma 4.3 in [25] gives the follow-

ing new tail bound:

Pr

[
λmax

(
n∑
i=1

γiAi

)
≥
√

2‖Σ‖2t

]
≤ tr(Σ)

λmax(Σ)
· t

et − t− 1
.

Note that tr(Σ)/λmax(Σ) ≤ d but t(et − t − 1)−1 > e−t for t > 0, so no bound al-
ways dominates the other. However, for moderately large values of t, and when d �
tr(Σ)/λmax(Σ), the new bound is a significant improvement.

2 Preliminaries

Let ξ1, ξ2, . . . , ξn be random variables, and for each i = 1, 2, . . . , n, let

Xi := Xi(ξ1, ξ2, . . . , ξi)

be a symmetric matrix-valued functional of ξ1, ξ2, . . . , ξi. Assume the Xi have the same
common range. We use Ei[ · ] as shorthand for E[ · | ξ1, ξ2, . . . , ξi−1]. For any symmetric
matrix H, let λmax(H) denote its largest eigenvalue, exp(H) := I +

∑∞
k=1H

k/k!, and
log(exp(H)) := H.

The following convex trace inequality of Lieb [12] was also used by Tropp [25, 24].

Theorem 2.1 ([12]). For any symmetric matrix H, the function M 7→ tr exp(H+log(M))

is concave in M for M � 0.

The following lemma due to Tropp [24] is a matrix generalization of a scalar result
due to Freedman [5] (see also [28]), where the key is the invocation of Theorem 2.1. We
give the proof for completeness.
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Tail inequalities for sums of random matrices that depend on the intrinsic dimension

Lemma 2.2 ([24]). Let I be the identity matrix for the range of the Xi. Then

E

[
tr

(
exp

(
n∑
i=1

Xi −
n∑
i=1

lnEi [exp(Xi)]

)
− I

)]
≤ 0. (2.1)

Proof. The proof is by induction on n. The claim holds trivially for n = 0. Now fix n ≥ 1,
and assume as the inductive hypothesis that (2.1) holds with n replaced by n−1. In this
case,

E

[
tr

(
exp

(
n∑
i=1

Xi −
n∑
i=1

logEi [exp(Xi)]

)
− I

)]

= E

[
En

[
tr

(
exp

(
n−1∑
i=1

Xi −
n∑
i=1

logEi [exp(Xi)] + log exp(Xn)

)
− I

)]]

≤ E

[
tr

(
exp

(
n−1∑
i=1

Xi −
n∑
i=1

logEi [exp(Xi)] + logEn [exp(Xn)]

)
− I

)]

= E

[
tr

(
exp

(
n−1∑
i=1

Xi −
n−1∑
i=1

logEi [exp(Xi)]

)
− I

)]
≤ 0

where the first inequality follows from Theorem 2.1 and Jensen’s inequality, and the
second inequality follows from the inductive hypothesis.

3 Exponential tail inequalities for sums of random matrices

3.1 A generic inequality

We first state a generic inequality based on Lemma 2.2. This differs from earlier ap-
proaches, which instead combine Markov’s inequality with a result similar to Lemma 2.2
(c.f. Theorem 3.6 in [25]).

Theorem 3.1. For any η ∈ R and any t > 0,

Pr

[
λmax

(
η

n∑
i=1

Xi −
n∑
i=1

logEi [exp(ηXi)]

)
> t

]

≤ tr

(
E

[
−η

n∑
i=1

Xi +

n∑
i=1

logEi [exp(ηXi)]

])
· (et − t− 1)−1.

Proof. Let A := η
∑n
i=1Xi −

∑n
i=1 logEi[exp(ηXi)]. Note that g(x) := ex − x − 1 is non-

negative for all x ∈ R and increasing for x ≥ 0. Letting {λi(A)} denote the eigenvalues
of A, we have

Pr [λmax(A) > t] (et − t− 1) = E
[
1{λmax(A)>t} · (et − t− 1)

]
≤ E

[
eλmax(A) − λmax(A)− 1

]
≤ E

[∑
i

(
eλi(A) − λi(A)− 1

)]
= E [tr(exp(A)−A− I)]

≤ tr(E[−A])

where the last inequality E[tr(exp(A)− I)] ≤ 0 follows from Lemma 2.2.
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When
∑n
i=1Xi has zero-mean, then the first sum in the right-hand side of the in-

equality from Theorem 3.1 vanishes, so the trace is only over a sum of matrix logarith-
mic moment generating functions

tr

(
E

[
n∑
i=1

logEi [exp(ηXi)]

])
.

For an appropriate choice of η, this trace quantity can be small even when the Xi have
large or infinite explicit dimension.

3.2 Some specific bounds

We now give some specific bounds as corollaries of Theorem 3.1. The proofs use The-
orem 3.1 together with some techniques from previous works (e.g., [1, 25]) to yield new
tail inequalities that depend on intrinsic notions of dimension rather than the explicit
matrix dimensions.

First, we give a bound under a subgaussian-type condition on the distribution.

Theorem 3.2 (Matrix subgaussian bound). If there exists σ̄ > 0 and k̄ > 0 such that for
all i = 1, . . . , n,

Ei[Xi] = 0, λmax

(
1

n

n∑
i=1

logEi
[
exp(ηXi)

])
≤ η2σ̄2

2
, and

E

[
tr

(
1

n

n∑
i=1

logEi
[
exp(ηXi)

])]
≤ η2σ̄2k̄

2

for all η > 0 almost surely; then for any t > 0,

Pr

[
λmax

(
1

n

n∑
i=1

Xi

)
>

√
2σ̄2t

n

]
≤ k̄ · t(et − t− 1)−1.

Proof. We fix η :=
√

2t/(σ̄2n). By Theorem 3.1, we obtain

Pr

[
λmax

(
1

n

n∑
i=1

Xi −
1

nη

n∑
i=1

logEi [exp(ηXi)]

)
>

t

nη

]

≤ tr

(
E

[
n∑
i=1

logEi [exp(ηXi)]

])
· (et − t− 1)−1

≤ nη2σ̄2k̄

2
· (et − t− 1)−1

= k̄ · t(et − t− 1)−1.

Now suppose

λmax

(
1

n

n∑
i=1

Xi −
1

nη

n∑
i=1

logEi [exp(ηXi)]

)
≤ t

nη
.

By the sub-additivity of the map M 7→ λmax(M)—i.e., λmax(A) ≤ λmax(B)+λmax(A−B)—
it follows that

λmax

(
1

n

n∑
i=1

Xi

)
≤ λmax

(
1

nη

n∑
i=1

logEi [exp(ηXi)]

)
+

t

nη
≤ ησ̄2

2
+

t

nη
=

√
2σ̄2t

n
.

We can also give a Bernstein-type bound based on moment conditions. For simplicity,
we just state the bound in the case that the λmax(Xi) are bounded almost surely.

ECP 17 (2012), paper 14.
Page 4/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1869
http://ecp.ejpecp.org/


Tail inequalities for sums of random matrices that depend on the intrinsic dimension

Theorem 3.3 (Matrix Bernstein bound). If there exists b̄ > 0, σ̄ > 0, and k̄ > 0 such
that for all i = 1, . . . , n,

Ei[Xi] = 0, λmax(Xi) ≤ b̄

λmax

(
1

n

n∑
i=1

Ei[X
2
i ]

)
≤ σ̄2, and E

[
tr

(
1

n

n∑
i=1

Ei[X
2
i ]

)]
≤ σ̄2k̄

almost surely; then for any t > 0,

Pr

[
λmax

(
1

n

n∑
i=1

Xi

)
>

√
2σ̄2t

n
+
b̄t

3n

]
≤ k̄ · t(et − t− 1)−1.

Proof. Let η > 0. For each i = 1, . . . , n,

exp(ηXi) � I + ηXi +
eηb̄ − ηb̄− 1

b̄2
·X2

i

and therefore, by the operator monotonicity of the matrix logarithm and the fact log(1+

x) ≤ x,

logEi
[
exp(ηXi)

]
� eηb̄ − ηb̄− 1

b̄2
· Ei
[
X2
i

]
.

Since ex − x − 1 ≤ x2/(2(1 − x/3)) for 0 ≤ x < 3, we have by Theorem 3.1 and the
subadditivity of the map M 7→ λmax(M),

Pr

[
λmax

(
1

n

n∑
i=1

Xi

)
>

ησ̄2

2(1− ηb̄/3)
+

t

ηn

]
≤ η2σ̄2k̄n

2(1− ηb̄/3)
· (et − t− 1)−1

provided that η < 3/b̄. Choosing

η :=
3

b̄
·

(
1−

√
2σ̄2t/n

2b̄t/(3n) +
√

2σ̄2t/n

)
gives the desired bound.

3.3 Discussion

The results of this paper can be viewed as another sharpening of the matrix expo-
nential moment method for deriving exponential tail inequalities for sums of random
matrices, which has its origins in the work of Ahlswede and Winter [1] and was sub-
sequently generalized and improved by many others [3, 9, 19, 8, 16, 15, 25, 24]. The
novel feature of our results when compared to previous results is the absence of ex-
plicit dependence on the matrix dimensions. Indeed, nearly all previous tail inequali-
ties using the exponential moment method (either via the Golden-Thompson inequality
or Lieb’s trace inequality) are roughly of the form d · e−t when the matrices in the sum
are d× d [1, 3, 9, 19, 8, 15, 25, 24]. For instance, a corollary of the “Master Tail Bound
for Independent Sums” of Tropp (Theorem 3.6 in [25]) can be written as

Pr

[
λmax

(
η

n∑
i=1

Xi

)
> λmax

(
n∑
i=1

logE[exp(ηXi)]

)
+ t

]
≤ d · e−t

for all t > 0 and η > 0 (see Corollary 3.7 in [25]). Of course, when the random matrices
are always confined to a single lower-dimensional space, then these previous results
clearly depend only on this lower dimension (i.e., d is replaced by this lower dimen-
sion). However, this situation is significantly less general than what is required in many
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applications that involve very high or infinite dimensional matrices, such as the analysis
of ridge regression [11], kernel methods [22, 6, 2], and Gaussian process methods [18].
Our results therefore widen the applicability of the matrix exponential moment method
to handle these cases.

Relative to the tail inequalities of Rudelson and Vershynin [21] and Oliveira [16],
we note that our inequalities apply to random matrices of any rank, rather than just
rank-one (or low-rank) random matrices. Although [21] and [16] only explicitly pro-
vides inequalities for the rank-one case, the work of Magen and Zouzias [14] gives an
extension that applies to higher rank random matrices. [14] considers the specific case
where X1, . . . , Xn are i.i.d. copies of a random matrix X which satisfies ‖E[X]‖2 ≤ 1,
‖X‖2 ≤ γ, and rank(X) ≤ r almost surely; their bound has the following form:

Pr

[∥∥∥∥∥ 1

n

n∑
i=1

Xi − E[X]

∥∥∥∥∥
2

>

√
c2γt log n

n

]
≤ r · n · exp (−(c1 log n) · (log t))

for some unspecified positive constants c1 and c2. It should be noted, however, that
the right-hand side decreases only polynomially in t rather than exponentially, which
is qualitatively weaker than the previous results of [21] and [16]; therefore, it is not a
strict improvement or generalization.

One disadvantage of our technique is that in finite dimensional settings, the relevant
trace quantity that replaces the dimension may turn out to be of the same order as the
dimension d (an example of such a case is discussed next). In such cases, the resulting
tail bound from Theorem 3.3 (say) of k̄ · t(et− t−1)−1 is looser than the d · e−t tail bound
provided by earlier techniques [25], and this can be significant for small values of t.

We note that the general matrix exponential moment method used here and in pre-
vious work leads to a significantly suboptimal tail inequality in some cases. This was
pointed out in [25], but we elaborate on it here further. Suppose x1, . . . , xn ∈ {±1}d are
i.i.d. random vectors with independent Rademacher entries: each coordinate of xi is +1

or −1 with equal probability. Let Xi = xix
>
i − I, so E[Xi] = 0, λmax(Xi) = λmax(E[X2

i ]) =

d− 1, and tr(E[X2
i ]) = d(d− 1). In this case, Theorem 3.3 implies the bound

Pr

[
λmax

(
1

n

n∑
i=1

xix
>
i − I

)
>

√
2(d− 1)t

n
+

(d− 1)t

3n

]
≤ d · t(et − t− 1)−1.

On the other hand, because the xi have subgaussian projections, it is known that

Pr

[
λmax

(
1

n

n∑
i=1

xix
>
i − I

)
> 2

√
71d+ 16t

n
+

10d+ 2t

n

]
≤ 2e−t/2

(see Lemma A.1 in Appendix A). First, this latter inequality removes the d factor on the
right-hand side. But more importantly, the deviation term t does not scale with d in
this inequality, whereas it does in the former. Thus this latter bound provides a much
stronger exponential tail: roughly put, Pr[λmax(

∑n
i=1 xix

>
i /n−I) > c·(

√
d/n+d/n)+τ ] ≤

exp(−Ω(nmin(τ, τ2))) for some constant c > 0 (note that the dimension d does not ap-
pear in the exponent); the probability bound from Theorem 3.3 is only of the form
exp(−Ω((n/d) min(τ, τ2))). The sub-optimality of Theorem 3.3 is shared by all other ex-
isting tail inequalities proved using this exponential moment method. The issue may be
related to the asymptotic freeness of the d×n random matrix [x1|x2| · · · |xn] [27, 10]—i.e.,
that nearly all high-order moments of random matrices with independent entries vanish
asymptotically—which is not exploited in the matrix exponential moment method. This
means that the proof technique in the exponential moment method overestimates the
contribution of high-order matrix moments that should have vanished. Formalizing this
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discrepancy would help clarify the limits of this technique, but the task is beyond the
scope of this paper. It is also worth mentioning that this phenomenon only appears
to hold when the xi have independent entries (and other similar cases). In cases with
correlated entries, our bound is close to best possible in the worst case.

4 Examples

For a matrix M , let ‖M‖F denote its Frobenius norm, and let ‖M‖2 denote its spec-
tral norm. If M is symmetric, then ‖M‖2 = max{λmax(M), −λmin(M)}, where λmax(M)

and λmin(M) are, respectively, the largest and smallest eigenvalues of M .

4.1 Supremum of a random process

The first example embeds a random process in a diagonal matrix to show that Theo-
rem 3.2 is tight in certain cases.

Example 4.1. Let (z1, z2, . . . ) be (possibly dependent) mean-zero subgaussian random
variables; i.e., each E[zi] = 0, and there exists positive constants σ1, σ2, . . . such that

E[exp(ηzi)] ≤ exp

(
η2σ2

i

2

)
∀η ∈ R.

We further assume that v := supi{σ2
i } <∞ and k := 1

v

∑
i σ

2
i <∞. Also, for convenience,

we assume log k ≥ 1.3 (to simplify the tail inequality).

Let X = diag(z1, z2, . . . ) be the random diagonal matrix with the zi on its diagonal.
We have E[X] = 0, and

logE[exp(ηX)] � diag

(
η2σ2

1

2
,
η2σ2

2

2
, . . .

)
by the operator monotonicity of the matrix logarithm, so

λmax (logE[exp(ηX)]) ≤ η2v

2
and tr (logE[exp(ηX)]) ≤ η2vk

2
.

By Theorem 3.2, we have

Pr
[
λmax(X) >

√
2vt
]
≤ k · t(et − t− 1)−1.

Therefore, letting t := 2(τ + log k) > 2.6 for τ > 0 and interpreting λmax(X) as supi{zi},

Pr

[
sup
i
{zi} > 2

√
sup
i
{σ2

i }
(

log

∑
i σ

2
i

supi{σ2
i }

+ τ

)]
≤ e−τ .

Suppose the zi ∼ N (0, 1) are just N i.i.d. standard Gaussian random variables. Then
the above inequality states that the largest of the zi is O(logN + τ) with probability at
least 1−e−τ ; this is known to be tight up to constants, so the logN term cannot generally
be removed. This fact has been noted by previous works on matrix tail inequalities [25],
which also use this example as an extreme case. We note, however, that these previous
works are not directly applicable to the case of a countably infinite number of mean-
zero Gaussian random variables zi ∼ N (0, σ2

i ) (or more generally, subgaussian random
variables), whereas the above inequality can be applied as long as the sum of the σ2

i is
finite.
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4.2 Covariance estimation

Our next example uses Theorem 3.3 to give a spectral norm error bound for estimat-
ing the second moment matrix of a random vector from i.i.d. copies. This is relevant
in the context of (kernel) principal component analysis of high (or infinite) dimensional
data [22].

Example 4.2. Let x1, x2, . . . , xn be i.i.d. random vectors with Σ := E[xix
>
i ], K :=

E[xix
>
i xix

>
i ], and ‖xi‖2 ≤ ` almost surely for some ` > 0. Let Xi := xix

>
i − Σ and

Σ̂n := n−1
∑n
i=1 xix

>
i . We have λmax(Xi) ≤ `2 − λmin(Σ). Also, λmax(n−1

∑n
i=1E[X2

i ]) =

λmax(K −Σ2) and E[tr(n−1
∑n
i=1E[X2

i ])] = tr(K −Σ2). By Theorem 3.3,

Pr

[
λmax

(
Σ̂n −Σ

)
>

√
2λmax(K −Σ2)t

n
+

(`2 − λmin(Σ))t

3n

]
≤ tr(K −Σ2)

λmax(K −Σ2)
· t

et − t− 1
.

Since λmax(−Xi) ≤ λmax(Σ), we also have

Pr

[
λmax

(
Σ − Σ̂n

)
>

√
2λmax(K −Σ2)t

n
+
λmax(Σ)t

3n

]
≤ tr(K −Σ2)

λmax(K −Σ2)
· t

et − t− 1
.

Therefore

Pr

[∥∥Σ̂n −Σ∥∥2
>

√
2λmax(K −Σ2)t

n
+

max{`2 − λmin(Σ), λmax(Σ)}t
3n

]

≤ tr(K −Σ2)

λmax(K −Σ2)
· 2t

et − t− 1
.

Above, the relevant notion of intrinsic dimension is tr(K − Σ2)/λmax(K − Σ2), which
can be finite even when the random vectors xi take on values in an infinite dimensional
Hilbert space. A related result was given in [29] for Frobenius norm error ‖Σ̂n − Σ‖F
rather than spectral norm error. This is generally incomparable to our result, although
spectral norm error may be more appropriate in cases where the spectrum is slow to
decay.

4.3 Approximate matrix multiplication

Finally, we give an example about approximating a matrix product AB> using non-
uniform sampling of the columns of A and B.

Example 4.3. Let A := [a1|a2| · · · |am] and B := [b1|b2| · · · |bm] be fixed matrices, each
with m columns. Assume ai 6= 0 and bi 6= 0 for all i = 1, 2, . . . ,m. If m is very large,
then the straightforward computation of the product AB> can be prohibitive. An alter-
native is to take a small (non-uniform) random sample of the columns of A and B, say
ai1 , bi1 , ai2 , bi2 , . . . , ain , bin , and then compute a weighted sum of outer products

1

n

n∑
j=1

aij b
>
ij

pij

where pij > 0 is the a priori probability of choosing the column index ij ∈ {1, 2, . . . ,m}
(the actual values of the probabilities pi for i = 1, 2, . . . ,m are given below). An analysis
of this randomized approximation scheme is given below. This scheme was originally
proposed and analyzed by Drineas, Kannan, and Mahoney [4], where the error measure
used was the Frobenius norm; here, we analyze the spectral norm error. The spectral
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norm error was also analyzed in [14], but the result had a worse dependence on the
allowed failure probability.

Let X1, X2, . . . , Xn be i.i.d. random matrices with the discrete distribution given by

Pr

[
Xj =

1

pi

[
0 aib

>
i

bia
>
i 0

]]
= pi ∝ ‖ai‖2‖bi‖2

for all i = 1, 2, . . . ,m, where pi := ‖ai‖2‖bi‖2/Z and Z :=
∑m
i=1 ‖ai‖2‖bi‖2. Let

M̂n :=
1

n

n∑
j=1

Xj and M :=

[
0 AB>

BA> 0

]
.

Note that ‖M̂n−M‖2 is the spectral norm error of approximating AB> using the average
of n outer products

∑n
j=1 aij b

>
ij
/pij , where the indices are such that ij = i ⇔ Xj =

aib
>
i /pi for j = 1, 2, . . . , n.
We have the following identities:

E[Xj ] =

m∑
i=1

pi

(
1

pi

[
0 aib

>
i

bia
>
i 0

])
=

[
0

∑m
i=1 aib

>
i∑m

i=1 bia
>
i 0

]
= M

tr(E[X2
j ]) = tr

(
m∑
i=1

pi

(
1

p2
i

[
aib

>
i bia

>
i 0

0 bia
>
i aib

>
i

]))
=

m∑
i=1

2‖ai‖22‖bi‖22
pi

= 2Z2

tr(E[Xj ]
2) = tr

([
AB>BA> 0

0 BA>AB>

])
= 2 tr(A>AB>B);

and the following inequalities:

‖Xj‖2 ≤ max
i=1,...,m

1

pi

∥∥∥∥[ 0 aib
>
i

bia
>
i 0

]∥∥∥∥
2

= max
i=1,...,m

‖aib>i ‖2
pi

= Z

‖E[Xj ]‖2 = ‖AB>‖2 ≤ ‖A‖2‖B‖2
‖E[X2

j ]‖2 ≤ ‖A‖2‖B‖2Z.

This means ‖Xj − M‖2 ≤ Z + ‖A‖2‖B‖2 and ‖E[(Xj − M)2]‖2 ≤ ‖E[X2
j ] − M2‖2 ≤

‖A‖2‖B‖2(Z + ‖A‖2‖B‖2), so Theorem 3.3 and a union bound imply

Pr

[∥∥M̂n −M
∥∥

2
>

√
2 (‖A‖2‖B‖2(Z + ‖A‖2‖B‖2)) t

n
+

(Z + ‖A‖2‖B‖2)t

3n

]

≤ 4

(
Z2 − tr(A>AB>B)

‖A‖2‖B‖2(Z + ‖A‖2‖B‖2)

)
· t

et − t− 1
.

Let rA := ‖A‖2F /‖A‖22 ∈ [1, rank(A)] and rB := ‖B‖2F /‖B‖22 ∈ [1, rank(B)] be the numeri-
cal (or stable) rank of A and B, respectively. Since

Z

‖A‖2‖B‖2
≤ ‖A‖F ‖B‖F
‖A‖2‖B‖2

=
√
rArB ,

we have the simplified (but slightly looser) bound (for t ≥ 2.6)

Pr

[∥∥M̂n −M
∥∥

2

‖A‖2‖B‖2
>

√
2(1 +

√
rArB)t

n
+

(1 +
√
rArB)t

3n

]
≤ 4
√
rArB · e−t/2.

Therefore, for any ε ∈ (0, 1) and δ ∈ (0, 1), if

n ≥

(
8

3
+ 2

√
5

3

)
(1 +

√
rArB) log(4

√
rArB/δ)

ε2
,
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then with probability at least 1−δ over the random choice of column indices i1, i2, . . . , in,∥∥∥∥ 1

n

n∑
j=1

aij b
>
ij

pij
−AB>

∥∥∥∥
2

≤ ε‖A‖2‖B‖2.

A Sums of random vector outer products

The following lemma is a tail inequality for the spectral norm error of the empirical
covariance matrix of subgaussian random vectors. This result (without explicit con-
stants) is due to Litvak, Pajor, Rudelson, and Tomczak-Jaegermann [13] (see also [26]).

Lemma A.1. Let x1, x2, . . . , xn be random vectors in Rd such that, for some γ ≥ 0,

E
[
xix

>
i

∣∣ x1, x2, . . . , xi−1

]
= I and

E
[
exp (α>xi)

∣∣ x1, x2, . . . , xi−1

]
≤ exp

(
‖α‖22γ/2

)
, ∀α ∈ Rd

for all i = 1, 2, . . . , n, almost surely. For all ε0 ∈ (0, 1/2) and t > 0,

Pr

[∥∥∥∥ 1

n

n∑
i=1

xix
>
i − I

∥∥∥∥
2

>
1

1− 2ε0
· εε0,t,n

]
≤ 2e−t

where

εε0,t,n := γ ·

(√
32 (d log(1 + 2/ε0) + t)

n
+

2 (d log(1 + 2/ε0) + t)

n

)
.

For completeness, we give a detailed proof of Lemma A.1 by applying the tail in-
equality in Lemma A.2 to Rayleigh quotients of the empirical covariance matrix, to-
gether with a covering argument based on the estimate in Lemma A.3 from [17].

Lemma A.2. Let ξ1, ξ2, . . . , ξn be independent random variables such that

Ei[exp(ηξi)] ≤ exp(γη2/2), ∀η ∈ R

for all i = 1, 2, . . . , n, almost surely. For any t > 0,

Pr

[
1

n

n∑
i=1

(ξ2
i −Ei[ξ2

i ]) > γ

√
32t

n
+

2γt

n

]
≤ e−t and Pr

[
1

n

n∑
i=1

(ξ2
i −Ei[ξ2

i ]) < γ

√
32t

n

]
≤ e−t.

Proof. Observe that Ei[exp(η|ξi|)] ≤ Ei[exp(ηξi)+exp(−ηξi)] ≤ 2 exp(γη2/2) for all η ∈ R.
By Chernoff’s bounding method, Ei[1{ξ2i>ε}] ≤ 2e−ε/(2γ) for all ε ≥ 0. Therefore, for all
η < 1/(2γ),

Ei[exp(ηξ2
i )] = 1 + ηEi[ξ

2
i ] + η

∫ ∞
0

(exp(ηε)− 1)Ei[1{ξ2i>ε}]dε

≤ 1 + ηEi[ξ
2
i ] + 2η

∫ ∞
0

(exp(ηε)− 1) exp(−ε/(2γ))dε

= 1 + ηEi[ξ
2
i ] +

8γ2η2

1− 2γη
≤ exp

(
ηEi[ξ

2
i ] +

8γ2η2

1− 2γη

)
where the first equation follows from integration-by-parts. Since the above holds almost
surely for all i = 1, 2, . . . , n,

E

[
exp

(
η

n∑
i=1

(ξ2
i − Ei[ξ2

i ])

)]
= E

[
exp

(
η

n−1∑
i=1

(ξ2
i − Ei[ξ2

i ])

)
En

[
exp
(
η(ξ2

n − En[ξ2
n])
)]]

≤ E

[
exp

(
η

n−1∑
i=1

(ξ2
i − Ei[ξ2

i ])

)
exp

(
8γ2η2

1− 2γη

)]
≤ · · · ≤ exp

(
8γ2nη

1− 2γη

)
.
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By Chernoff’s bounding method, for all 0 ≤ η < 1/(2γ) and ε ≥ 0,

Pr

[
1

n

n∑
i=1

(ξ2
i − Ei[ξ2

i ]) > ε

]
≤ exp

(
−ηnε+

8γ2nη2

1− 2γη

)
.

Setting η := 1
2γ

(
1−
√

4γ
4γ+ε

)
and ε := γ

√
32t/n+2γt/n gives the first claimed probability

bound. Similarly, for all η ≤ 0 and ε ≥ 0,

Pr

[
1

n

n∑
i=1

(ξ2
i − E[ξ2

i ]) < −ε

]
≤ exp

(
ηnε+

8γ2nη2

1− 2γη

)
≤ exp

(
ηnε+ 8γ2nη2

)
.

Setting η := − ε
16γ2 and ε := γ

√
32t/n gives the second claimed probability bound.

Lemma A.3 ([17]). For any ε0 > 0, there exists Q ⊆ Sd−1 := {α ∈ Rd : ‖α‖2 = 1} of
cardinality ≤ (1 + 2/ε0)d such that ∀α ∈ Sd−1∃q ∈ Q � ‖α− q‖2 ≤ ε0.

Proof of Lemma A.1. Let Σ̂ := (1/n)
∑n
i=1 xix

>
i , let Sd−1 := {α ∈ Rd : ‖α‖2 = 1} be the

unit sphere in Rd, and let Q ⊂ Sd−1 be an ε0-cover of Sd−1 with respect to ‖ · ‖2 of
minimum size. By Lemma A.3, the cardinality of Q is at most (1 + 2/ε0)d.

Let E be the event in which max
{
|q>(Σ̂ − I)q| : q ∈ Q

}
≤ εε0,t,n. Observe that for

all q ∈ Q, E[(q>xi)
2 | x1, x2, . . . , xi−1] = 1 = q>q, and E[exp(ηq>xi)|x1, x2, . . . , xi−1] ≤

exp(γη2/2) for all η ∈ R and i = 1, 2, . . . , n, almost surely. Therefore, by Lemma A.2 and
a union bound, Pr[E] ≥ 1− 2e−t. Now assume the event E holds. Let α0 ∈ Sd−1 be such
that |α>

0 (Σ̂ − I)α0| = max{|α>(Σ̂ − I)α| : α ∈ Sd−1} = ‖Σ̂ − I‖2. Using the triangle and
Cauchy-Schwarz inequalities, we have

‖Σ̂ − I‖2 = |α>
0 (Σ̂ − I)α0|

≤ min
q∈Q
|q>(Σ̂ − I)q|+ |α>

0 (Σ̂ − I)(α0 − q)|+ |(q − α0)>(Σ̂ − I)q|

≤ min
q∈Q
|q>(Σ̂ − I)q|+ ‖α0‖2‖Σ̂ − I‖2‖α0 − q‖2 + ‖q − α0‖2‖Σ̂ − I‖2‖q‖2

≤ εε0,t,n + 2ε0‖Σ̂ − I‖2

so ‖Σ̂ − I‖2 ≤ 1
1−2ε0

· εε0,t,n.
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