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Abstract

We study the Laha-Lukacs property of the free Meixner laws (processes). We prove
that some families of free Meixner distribution have the linear regression function.
We also show that this families have the property of quadratic conditional variances.
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1 Introduction

The original motivation for this paper comes from a desire to understand the results
on conditional expectation in the work of Bożejko and Bryc [7]. They proved, that if the
first conditional moment is a linear regression and conditional variances are quadratic
functions, then the corresponding variables have free Meixner type laws (theorem 3.2).
An open problem in this area is a converse of their theorem. We will show that free
Meixner variables satisfy the condition from theorem 3.2 of [7]. In particular, we will
apply this result to describe characterization of free Lévy processes. It is natural to
study relations between classical and free probability. We will present a theorem which
is the free non-commutative analog of the classical result by Wesolowski [15, 16]. Let us
mention that he followed the argument in [9]. Laha and Lukacs in [9] characterized all
the (classical) Meixner distributions using a quadratic regression property. Wesołowski
proved that in classical probability the quadratic conditional variance characterize a
subclass of Lévy processes. Similar results have been obtained in boolean probability by
Anshelevich [2]. He showed that in the boolean theory the Laha-Lukacs property char-
acterizes only the Bernoulli distributions. It is worthwhile to mention the work of Bryc
[8], where the Laha-Lukacs property for q-Gaussian processes was shown. Bryc proved
that classical processes corresponding to operators which satisfy a q-commutation rela-
tions have linear regressions and quadratic conditional variances. For q = 0 we have the
free case, so that his result is a special case of the free Wigner’s semicircle elements,
which we consider.
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2 Free Meixner laws, free cumulants and conditional expectation

Classical Meixner distributions first appeared in the theory of orthogonal polynomi-
als in the work of Meixner [10]. In free probability the Meixner systems of polynomi-
als were introduced by Anshelevich [1], Bożejko, Leinert, Speicher [6] and Saitoh and
Yoshida [12]. They showed that free Meixner system can be classified into six types of
laws: the Wigner semicircle, the free Poisson, the free Pascal (free negative binomial),
the free Gamma, a law that we will call pure free Meixner and the free binomial law.
We assume that our probability space is a von Neumann algebra A with a normal faith-
ful tracial state τ : A → C i.e., τ() is linear, weak*-continuous and τ(XY) = τ(YX),
τ(I) = 1, τ(XX∗) ≥ 0 and τ(XX∗) = 0 implies X = 0 for all X,Y ∈ A. A (noncommu-
tative) random variable X is a self-adjoint (X = X∗) element of A. We are interested
in the two-parameter family of compactly supported probability measures (so that their
moments grow at a geometric rate) {µa,b : a ∈ R, b ≥ −1} with the Cauchy-Stieltjes
transform given by the formula

Gµ(z) =

∫
R

1

z − y
µa,b(dy) =

(1 + 2b)z + a−
√

(z − a)2 − 4(1 + b)

2(bz2 + az + 1)
, (2.1)

where the branch of the analytic square root should be determined by the condition that
Im(z) > 0 ⇒ Im(Gµ(z)) 6 0 (see [12]). Cauchy-Stieltjes transform of µ is a function
Gµ defined on the upper half plane C+ = {s + ti|s, t ∈ R, t > 0} and takes values in the
lower half plane C− = {s+ ti|s, t ∈ R, t ≤ 0}.
Equation (2.1) describes the distribution with mean zero and variance one (see [12]).
The moment generating function, which corresponds to the equation (2.1), has the form

M(z) =
1

z
Gµ(

1

z
) =

1 + 2b+ az −
√

(1− za)2 − 4z2(1 + b)

2(z2 + az + b)
, (2.2)

for |z| small enough. TheR-transform of a random variableX isRX(z) =
∑∞
i=0Ri+1(X)zi,

where Ri(X) is a sequences defined by (2.4) (see [4] for more details). For reader’s con-
venience we recall that the R-transform corresponding to M(z) is equal to

Rµ(z) =
2z

1− za+
√

(1− za)2 − 4z2b
, (2.3)

where the analytic square root is chosen so that limz→0Rµ(z) = 0 (see [12]). If X has
the distribution µa,b, then sometimes we will write RX for the R-transform of X . For
particular values of a, b the law of X is:

• the Wigner’s semicircle law if a = b = 0;

• the free Poisson law if b = 0 and a 6= 0;

• the free Pascal (negative binomial) type law if b > 0 and a2 > 4b;

• the free Gamma law if b > 0 and a2 = 4b;

• the pure free Meixner law if b > 0 and a2 < 4b;

• the free binomial law −1 ≤ b < 0.

Given a seqence X1,X2, . . . let C〈X1, . . . ,Xn〉 denote the non-commutative ring of poly-
nomials in variables X1, . . . ,Xn. The free (non-crossing) cumulants are the k-linear
maps Rk : C〈X1, . . . ,Xk〉 → C defined by the recursive formula (connecting them with
mixed moments)

τ(X1X2 . . .Xn) =
∑

ν∈NC(n)

Rν(X1,X2, . . . ,Xn), (2.4)
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where

Rν(X1,X2, . . . ,Xn) := ΠB∈νR|B|(Xi : i ∈ B) (2.5)

and NC(n) is the set of all non-crossing partitions of {1, 2, . . . , n} ( see [11, 13]). Some-
times we will write Rk(X) = Rk(X, . . . ,X).

Random variables X1, . . . ,Xn are freely independent (free) if, for every n ≥ 1 and every
non-constant choice of Yi ∈ {X1, . . . ,Xn}, where i ∈ {1, . . . , k} (for some positive inte-
ger k) we get Rk(Y1, . . . ,Yk) = 0.

The following theorem shows connection between the Cauchy transform and the R-
transform. Part (B) describes additive free convolution. We shall apply this theorem
without further comment (it can be found in Nica, Speicher [11]).

Theorem 2.1. (A)The relation between the Cauchy transform Gµ(z) and the Rµ(z)-
transform of a probability measure µ is given by

Gµ(Rµ(z) + 1/z) = z. (2.6)

(B) The R-transform linearizes the free convolution, i.e. if µ and ν are (compactly
supported) probability measures on R, then we have

Rµ�ν = Rµ +Rν , (2.7)

where � denotes the free convolution (the free convolution � of measures µ, ν is the
law of X+Y where X,Y are free and have laws µ, ν respectively).

Below we introduce Lemma 4.1 of [7], which we will use in the main theorem to calcu-
late the moment generating function of free convolution.

Lemma 2.2. SupposeX,Y are free, self-adjoint andX/
√
α,Y/

√
β have the free Meixner

laws µa/√α,b/α and µa/
√
β,b/β respectively, where α, β > 0, α + β = 1 and a ∈ R, b ≥ −1.

Then the moment generating function M(z) for X+Y satisfies quadratic equation

(z2 + az + b)M2(z)− (1 + az + 2b)M(z) + 1 + b = 0. (2.8)

If B ⊂ A is a von Neumann subalgebra andA has a trace τ , then there exists a unique
conditional expectation from A to B with respect to τ , which we denote by τ(.|B). This
map is a weakly continuous, completely positive, identity preserving, contraction and
it is characterized by the property that, for any X ∈ A, τ(XY ) = τ(τ(X|B)Y ) for any
Y ∈ B (see [5, 14]). For fixed X ∈ A by τ(.|X) we denote the conditional expectation
corresponding to the von Neumann algebra B generated byX. The conditional variance
is defined as usual

V ar(X|B) = τ((X− τ(X|B))2|B). (2.9)

The following lemma has been proven in [7].

Lemma 2.3. Let W be a (self-adjoint) element of the von Neumann algebra A, gener-
ated by a self-adjoint V ∈ A. If, for all n ≥ 1 we have τ(UV n) = τ(WV n), then

τ(U |V ) = W. (2.10)

ECP 17 (2012), paper 13.
Page 3/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1865
http://ecp.ejpecp.org/


Laha-Lukacs properties of some free processes

Now we introduce the following notation:

• NC(n+ 2) is the set of all non-crossing partitions of {1, 2, . . . , n+ 2},
• NC ′(n+2) is the set of all non-crossing partitions of {1, 2, . . . , n+2} which separate

1 and 2,

• NC ′′(n+ 2) is the set of all non-crossing partitions of {1, 2, . . . , n+ 2} with the first
two elements in the same block.

Lemma 2.4. Let Z be a (self-adjoint) element of the von Neumann A. Then∑
ν∈NC′(n+2)

Rν(Z) =

n∑
i=1

mi

∑
ν∈NC′′(n+2−i)

Rν(Z) +m1mn+1 (2.11)

where mi := τ(Zi).

Proof. At first, we will consider partitions with singleton 1, i.e. π ∈ NC ′(n + 2) and
π = {V1, . . . , Vk} where V1 = {1}. It is clear that the sum over all non-crossing partitions
of this form corresponds to the term m1mn+1. On the other hand, for such partitions
ν ∈ NC ′(n + 2) let k = k(ν) ∈ {3, 4, . . . , n + 2} denote the most-left element of the
block containing 1. This decomposes NC ′(n + 2) into the n classes NC ′j(n + 2) = {ν ∈
NC ′(n+ 2) : k(ν) = j + 2}, j = 1, 2, . . . , n. The set NC ′j(n+ 2) can be identified with the
product NC(j)×NC ′′(n+ 2− j). Indeed, the blocks of ν ∈ NC ′j(n+ 2), which partition
the elements {2, 3, 4, ..., j + 1}, can be identified with an appropriate partition in NC(j),
and (under the additional constraint that the first two elements 1, j + 2 are in the same
block) the remaining blocks, which partition the set {1, j + 2, j + 3, ..., n + 2}, can be
uniquely identified with a partition in NC ′′(n+ 2− j). This gives the formula

∑
ν∈NC′(n+2)

Rν(Z) =

n∑
i=1

∑
ν∈NC(i)

Rν(Z)
∑

ν∈NC′′(n+2−i)

Rν(Z) +m1mn+1

=

n∑
i=1

mi

∑
ν∈NC′′(n+2−i)

Rν(Z) +m1mn+1, (2.12)

which proves the Lemma.

3 The main result

The following is our main results of the paper.

Theorem 3.1. SupposeX,Y are free, self-adjoint andX/
√
α,Y/

√
β have the free Meixner

laws µa/√α,b/α and µa/
√
β,b/β respectively, where α, β > 0 and a ∈ R, b ≥ −1. Then

τ(X|(X+Y)) =
α

α+ β
(X+Y) (3.1)

V ar(X|X+Y)

=
αβ

(b+ (α+ β))(α+ β)2
[(α+ β)2I+ (α+ β)a(X+Y) + b(X+Y)2]. (3.2)

Additionally, we assume that b ≥ max{−α,−β} if b < 0 (free binomial case).

Proof. First we compute the law of X+Y. It is well-known that the R-transform of the
dilatation Dλ(µ) is λrµ(λz) (Dλ(µ)(A) := µ(A/λ)). Multiplying variable X/

√
α by

√
α we

obtain

RX(z) = α
2z

1− za+
√

(1− za)2 − 4z2b
. (3.3)
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Similarly we compute R-transform of the variable Y. This allows us to find the R-
transform of X+Y (assuming b 6= 0)

RX+Y(z) = (α+ β)
2z

1− za+
√

(1− za)2 − 4z2b

= (α+ β)
1− za−

√
(1− za)2 − 4z2b

2zb
. (3.4)

From equations (3.3) and (3.4) it follows that

Rk(X) =
α

α+ β
Rk(X+Y). (3.5)

Analogously we get

Rk(Y) =
β

α+ β
Rk(X+Y). (3.6)

This gives

τ(X(X+Y)n) =
∑

ν∈NC(n+1)

Rν(X,X+Y, . . . ,X+Y)

=
α

α+ β

∑
ν∈NC(n+1)

Rν(X+Y,X+Y, . . . ,X+Y)

= τ(
α

α+ β
(X+Y)(X+Y)n) (3.7)

which, by Lemma 2.3, implies that τ(X|(X+Y)) = α
α+β (X+Y). Using Lemma 2.2 and

simple parameters normalization (replacing α by α
α+β , β by β

α+β , a by a√
α+β

, b by b
α+β

and putting z =
√
α+ β) we obtain the moment generating series for X+Y

M2(z)(b+ za(α+ β) + (α+ β)2z2) +M(z)(−2b− (α+ β)− za(α+ β))

+b+ (α+ β) = 0. (3.8)

Denote by cn+2 = τ((βX− αY)2(X+Y)n) (n ≥ 0) and mn = τ((X+Y)n) (n ≥ 0). From
equation (3.5),(3.6) we have Rk(βX− αY,X+Y,X+Y, . . . ,X+Y) = 0. From the last
equality we get

cn+2 =
∑

ν∈NC(n+2)

Rν(βX− αY, βX− αY,X+Y,X+Y, . . . ,X+Y︸ ︷︷ ︸
n-times

)

=
∑

ν∈NC′(n+2)

Rν(βX− αY, βX− αY,X+Y,X+Y, . . . ,X+Y)

+
∑

ν∈NC′′(n+2)

Rν(βX− αY, βX− αY,X+Y,X+Y, . . . ,X+Y)

=
∑

ν∈NC′′(n+2)

Rν(βX− αY, βX− αY,X+Y,X+Y, . . . ,X+Y). (3.9)

The fact that X and Y are freely independent implies that

Rk(βX− αY, βX− αY,X+Y, . . . ,X+Y)

β2Rk(X,X,X, . . . ,X) + α2Rk(Y,Y,Y, . . . ,Y)

(3.5),(3.6)
= αβRk(X+Y,X+Y,X+Y, . . . ,X+Y). (3.10)
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Using m1 = 0 and Lemma 2.4, we get

cn+2 =

αβ
∑

ν∈NC′′(n+2)

Rν(X+Y) = αβ
∑

ν∈NC(n+2)�NC′(n+2)

Rν(X+Y)

= αβmn+2 − αβ
∑

ν∈NC′(n+2)

Rν(X+Y)

= αβmn+2 − αβ
n∑
i=1

mi

∑
ν∈NC′′(n+2−i)

Rν(X+Y)

= αβmn+2 −
n∑
i=1

micn+2−i. (3.11)

We can thus compute the power series

∞∑
n=0

cn+2z
n+2 = αβM(z)− αβ − (M(z)− 1)(

∞∑
n=0

cn+2z
n+2). (3.12)

If we denote C(z) =
∑∞
n=0 cn+2z

n+2, then this can be rewritten as

αβ = (αβ − C(z))M(z). (3.13)

Thus C(z) is an analytic function for small |z|. If in (3.8) we multiply both sides by
(αβ − C(z)), we get

αβM(z)(b+ za(α+ β) + (α+ β)2z2)

+αβ(−2b− (α+ β)− za(α+ β)) + (b+ (α+ β))(αβ − C(z)) = 0. (3.14)

Expanding the above series M(z) = 1 +
∑∞
i=1 z

imi, we see that

∞∑
n=0

αβ(mn+2b+ (α+ β)amn+1 + (α+ β)2mn)zn+2 =

=

∞∑
n=0

(b+ (α+ β))cn+2z
n+2 (3.15)

because, by assumption, the coefficients at z and z0 are equal. Therefore we get from
equation (3.15) that

cn+2 = αβ(mn+2b+ (α+ β)amn+1 + (α+ β)2mn)/(b+ (α+ β)) (3.16)

for all n ≥ 0 (using b+ (α+ β) > 0). The equation (3.16) is equivalent to

τ((βX− αY)2(X+Y)n)

=
αβ

(b+ (α+ β))
τ([(α+ β)2I+ (α+ β)a(X+Y) + b(X+Y)2](X+Y)n) (3.17)

for all n ≥ 0. Now we use the Lemma 2.3 which essentially shows that

τ((βX− αY)2|X+Y)

=
αβ

(b+ (α+ β))
[(α+ β)2I+ (α+ β)a(X+Y) + b(X+Y)2] (3.18)
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The last equality implies, in particular, that

V ar(X|X+Y) = τ((X− τ(X|X+Y))2|X+Y)

= τ((βX− αY)2|X+Y)/(α+ β)2

=
αβ

(b+ (α+ β))(α+ β)2
[(α+ β)2I+ (α+ β)a(X+Y) + b(X+Y)2]. (3.19)

This proves the Theorem.

The following proposition is a free version of the classical result of Wesołowski [15]. A
non-commutative stochastic process (Xt) is a free Lévy process if it has free additive
and stationary increments. For a more detailed discussion of free Lévy processes we
refer to [3].

Proposition 3.2. Suppose (Xt≥0) is a free Lévy process such that the increments
(Xt+s −Xt)/

√
s (t, s > 0) have the free Meixner law µa/

√
s,b/s (for some a, b > 0). Then

for all t < s

τ(Xt|Xs) =
t

s
Xs (3.20)

and

V ar(Xt|Xs) =
t(s− t)

(b+ s)s2
[s2I+ saXs + bX2

s] (3.21)

Remark 3.3. The relation (3.20) is well-known from Bożejko, Bryc [7]. In the following
calculation, we present different proof of it.

Proof. Given s > t > 0, let X = Xt/
√
t and Y = (Xs −Xt)/

√
s− t be two random vari-

ables. Then X,Y are free, centered, and have distribution µa/
√
t,b/t and µa/

√
s−t,b/(s−t),

respectively. By Theorem 3.1, we obtain equations (3.20) and (3.21) (because we have
Xs = Xs −Xt +Xt). Thus the Proposition holds.

Corollary 3.4. Suppose (Xt≥0) is a free Lévy process such that τ(Xt) = 0 and τ(X2
t ) =

t. Then (Xt+s −Xt)/
√
s (t, s > 0) have the free Meixner law µa/

√
s,b/s (for some a, b > 0)

if and only if

V ar(Xt|Xs) =
t(s− t)

(b+ s)s2
[s2I+ saXs + bX2

s] (3.22)

for all t < s.

Proof. ⇒: If we assume that the (Xt+s − Xt)/
√
s (t, s > 0) have free Meixner law

µa/
√
s,b/s, then, using Proposition 3.2, (3.22) follows. ⇐: Assuming (3.22) and using

Proposition 3.4 of [7] one can see that (Xt+s −Xt)/
√
s (t, s > 0) have the free Meixner

law µa/
√
s,b/s.

Remark 3.5 (suggested by Marek Bożejko). In Proposition (and Theorem) of that paper
we assume that random variables are bounded Xt ∈ A. It will be interesting to show
that the assumption can be replaced by Xt ∈ L2(A, τ).
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