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Abstract

We consider the following statistical problem: based on an i.i.d. sample of size n of
integer valued random variables with common law µ, is it possible to test whether
or not the support of µ is finite as n goes to infinity? This question is in particular
connected to a simple case of Tsirelson’s equation, for which it is natural to distin-
guish between two main configurations, the first one leading only to laws with finite
support, and the second one including laws with infinite support. We show that it
is in fact not possible to discriminate between the two situations, even using a very
weak notion of statistical test.
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1 Introduction

In this paper, we consider an i.i.d. sample of integer valued random variables with
common law µ and address the following problem: is it possible to build an asymptotic
test for the finiteness (or for the non finiteness) of the support of µ as the sample size
goes to infinity? This question is in fact motivated by Tsirelson’s equation in discrete
time, see [1, 2]. Let (νk)k∈−N be a sequence of probability laws on the torus T = R/Z. A
process (ηk)k∈−N taking values in T is a weak solution of Tsirelson’s equation associated
to (νk)k∈−N if for all k ∈ −N, the random variable ξk = ηk − ηk−1 has law νk and
is independent of Fηk−1 = σ(ηn, n ≤ k − 1). If moreover for all k ∈ −N, Fηk = Fξk ,
then the process (ηk)k∈−N is said to be a strong solution. It is proved by Yor in [6]
that there always exists a weak solution to the equation: if U and ζk, k ∈ −N, are
independent random variables taking values in T such that U is uniform and, for all k,
ζk has distribution νk, then the process (η∗k)k∈−N defined by

η∗0 = U, η∗−n = U − ζ0 − · · · − ζ−n+1 for all n ≥ 1, (1.1)

is a weak solution of Tsirelson’s equation associated to (νk)k∈−N.

In this work we consider only the simple case where νk = ν for all k. It can be shown that
in terms of existence and unicity of strong or weak solutions to the equation, depending
on the law ν, three very different situations have to be considered, see [6] for details:
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A statistical look at Tsirelson’s equation

- Case 1 : If ν is a Dirac measure: existence of a strong solution, no uniqueness in
law.

- Case 2 : If the support of ν contains at least two points and there exists an integer
p ≥ 2 and x ∈ T such that it is included in x + {k/p, k = 0, . . . , p − 1}: no strong
solution, no uniqueness in law.

- Case 3 : If ν is a law which does not satisfy the conditions of Case 1 or Case 2: no
strong solution, uniqueness in law.

In [4, 5], Tsirelson’s equation is seen as a cosmological caricature: ηk−1 represents the
state of the universe at time k − 1 and ξk the action of the evolution process at time k.
In particular, the authors raise the issue of the “initial magma" that is the description
of the σ-algebra

Fη−∞ =
⋂
n≥1

σ
(
ηk, k ≤ −n

)
.

It turns out that it is necessarily a trivial σ-algebra in Case 3.

Our goal here is to give a statistical look at this cosmological caricature. More precisely,
based on the historical observations of the state of the universe
η0, η−1, . . . , η−n, can we (at least partially) decide whether we are in Case 1, Case 2 or
Case 3 ? Of course we can already remark that under Case 1, the ξk are constant and
under Case 2 the ρk = ξk − ξk−1 are all rational. Therefore, if we observe two different
values for the ξk in the sample, we can conclude that we are not in Case 1 and if we
observe one irrational ρk, we can discard Case 2. Consequently, if there are at least
two different ξk and one irrational ρk, we can conclude that we are in Case 3. However,
in practice, we have only access to rounded values so it does not really make sense to
build a procedure based on the fact that some quantity is irrational or not.

In order to rigorously answer the question, we use the notion of statistical test. We first
consider an auxiliary problem, which is interesting on its own, namely the possibility of
building a consistent test for the finiteness (or for the non finiteness) of the support of
an integer valued distribution µ. based on an i.i.d. sample (X1, . . . , Xn) with law µ. We
prove that designing such a test procedure is in fact impossible, even using a very weak
notion of consistent test. Then we show that a corollary of this result is the impossibility
to build a consistent test in order to separate on the one hand the union of Case 1 and
Case 2 and on the other hand Case 3.

The paper is organized as follows. The framework we use in order to test for the finite-
ness (or for the non finiteness) of the support of a distribution based on i.i.d. data is
detailed in Section 2. In Section 3, we suggest an a priori natural functional in order
to build such a test. The impossibility of building a consistent test is stated in Section
4 together with the connection with Tsirelson’s equation. The proofs are relegated to
Section 5.

2 Testing framework

In this section we consider an i.i.d. sample (X1, . . . , Xn) of integer valued random vari-
ables with common law µ. Our goal is to investigate the possibility of testing for the
finiteness (or for the non finiteness) of the support of µ as n goes to infinity. We re-
fer to [3] for a detailed presentation of the notion of asymptotic statistical test. In the
following, we write Pµ for the probability measure on the canonical space NN

∗
under

which the canonical process (Xi)i≥1 is a family of i.i.d. random variables with law µ.
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A statistical look at Tsirelson’s equation

Moreover, we denote by Pf the set of laws on N with finite support and by P∞ the set
of laws on N with infinite support. To fix ideas, let us consider in this section the null
hypothesis of the finiteness of the support against the alternative of the non finiteness
of it (the following definitions can be adapted in an obvious way if the null and alterna-
tive hypotheses are switched).

2.1 Uniform test

In order to discriminate between the two situations, the first idea is to try to build
a consistent test with asymptotic uniform level α, with α given in [0, 1). This means
designing a rejection area Wn in Nn such that

lim sup
n

sup
µ∈Pf

Pµ
[
(X1, . . . , Xn) ∈Wn

]
≤ α (2.1)

and for all µ ∈ P∞,
lim
n
Pµ
[
(X1, . . . , Xn) ∈Wn

]
= 1.

This is clearly impossible. Indeed, for fixed n, any law µ⊗n1 with µ1 ∈ Pf can be ap-
proached with arbitrary accuracy (in total variation norm for example) by a law µ⊗n2

with µ2 ∈ P∞.

2.2 Pointwise test

We now consider a much weaker notion of test: we replace (2.1) by

sup
µ∈Pf

lim sup
n

Pµ
[
(X1, . . . , Xn) ∈Wn

]
≤ α.

The statistical meaning of this notion of test is of course very arguable but our point of
view is the following: we want to show that it is impossible to build a consistent test
with given level α even in this very weak setting.

Remark 2.1. If we do not consider all distributions with finite support but only distri-
butions with support in [0, N ] for some known N , a test statistics can of course be easily
designed. Indeed, it is then enough to consider the statistics max(X1, . . . , Xn)∧ (N +1):
when X1 follows µ1 ∈ Pf it converges to the right endpoint of µ1 which is smaller than
N , when X1 follows µ2 ∈ P∞ it converges to N + 1.

3 Candidate test statistics for pointwise test

We want to investigate potential test statistics for discriminating between our two situ-
ations. Since the laws in Pf and P∞ are different because they have different support,
a natural idea is to design a test statistics based on the empirical support. For example,
we can split the sample of size 2n, into two parts and compare the maximum over each
subsample, that is we consider

Sn = max
1≤i≤n

Xi, S̃n = max
n+1≤i≤2n

Xi, and T2n = 1{Sn = S̃n}
.

If µ has finite support, it is clear that for n large enough, the maxima of the two subsam-
ples coincide and in particular T2n converges in probability to 1. In the infinite support
case, one may expect an opposite behavior. In fact, we have the following result whose
proof is given in Section 5.
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Proposition 3.1. If µ has infinite support, then T2n does not converge in Pµ-probability
to 1.

Therefore for any µ1 with finite support and µ2 with infinite support the statistics T2n
shows different asymptotic behaviors under µ1 and µ2. However, this is not enough to
build a consistent test since we need to investigate the asymptotic probability that T2n
is different from 1. In fact, the first part of Theorem 4.1 in the next section implies
that there exist a distribution µ2 with infinite support and a subsequence of T2n which
converges to 1 in probability under Pµ2

.

4 Impossibility of testing

The following theorem shows that it is not possible to build a test for the finiteness (or
for the non finiteness) of the support. Indeed, it states that if one finds a set in which
an i.i.d. sample of size n from any law with finite support is very unlikely to be, there is
also one distribution with infinite support so that an i.i.d. sample of it is very unlikely to
be in this set, and conversely.

We write Eµ for the expectation with respect to Pµ. We have the following result.

Theorem 4.1. Let α ∈ [0, 1), let ϕ : N∗ → N∗ be an increasing map and let An : Nϕ(n) →
[0, 1], n ≥ 1, be a sequence of measurable functions.

1. Assume that for any distribution µ1 on N with finite support,

lim sup
n

Eµ1

[
An(X1, . . . , Xϕ(n))

]
≤ α.

Then, there exists a distribution µ2 on N with infinite support such that

lim inf
n

Eµ2

[
An(X1, . . . , Xϕ(n))

]
≤ α.

2. Assume that for any distribution µ2 on N with infinite support,

lim sup
n

Eµ2

[
An(X1, . . . , Xϕ(n))

]
≤ α.

Then, for all α′ ∈ (α, 1) there exists a distribution µ1 on N with finite support such
that

lim inf
n

Eµ1

[
An(X1, . . . , Xϕ(n))

]
≤ α′.

Remark 4.2. In Theorem 4.1, we do not only consider the usual testing framework
where the An are indicators of a set and ϕ(n) = n. Indeed, we allow for randomized
test procedures and subsequences in the sample size. This is slightly more general and
will be useful for the proof of Corollary 4.3.

We now come back to Tsirelson’s equation and state the result showing the impossibility
of testing the hypothesis that ν belongs to the union of Case 1 and Case 2 against the
one that ν belongs to Case 3, and conversely. Denote by P∗ν the law on T−N of the
“uniform solution" (η∗k)k∈−N, given by (1.1) (when νk = ν for all k) and by (ηk)k∈−N the
canonical process on T−N. We have the following corollary.

Corollary 4.3. Let α ∈ [0, 1), let ϕ : N→ N be an increasing map and let Bn ⊂ Tϕ(n)+1

be a sequence of measurable sets.
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1. Assume that for any distribution ν1 on T belonging to Case 1 or Case 2 of Section
1,

lim sup
n

P∗ν1
[
(η0, . . . , η−ϕ(n)) ∈ Bn

]
≤ α.

Then, there exists a distribution ν2 belonging to Case 3 such that

lim inf
n

P∗ν2
[
(η0, . . . , η−ϕ(n)) ∈ Bn

]
≤ α.

2. Assume that for any distribution ν2 on T belonging to Case 3 of Section 1,

lim sup
n

P∗ν2
[
(η0, . . . , η−ϕ(n)) ∈ Bn

]
≤ α.

Then, for all α′ ∈ (α, 1) there exists a distribution ν1 belonging to Case 1 or Case
2 of Section 1 such that

lim inf
n

P∗ν1
[
(η0, . . . , η−ϕ(n)) ∈ Bn

]
≤ α′.

5 Proofs

5.1 Proof of Proposition 3.1

Let µ be a probability measure on N and assume that Pµ[T2n = 1]→ 1. Since Sn and S̃n
are independent with the same law, it implies that there exists a sequence of integers
kn such that Pµ[Sn = kn]→ 1.

Let us show that kn is a bounded sequence, which will imply that the support of µ is
finite. If kn is not bounded, then there exist a subsequence n` such that k1+n`

> kn`
for

all ` and kn`
→∞. Therefore

Pµ[Sn`
= kn`

]→ 1

and
Pµ[S1+n`

= kn`
]→ 0

because P
(
S1+n`

= k1+n`

)
→ 1 and k1+n`

6= kn`
. Moreover, we have that

Pµ[S1+n`
= kn`

]− Pµ[Sn`
= kn`

]

is equal to

Pµ[Sn`
= kn`

]µ([0, kn`
]) + Pµ[Sn`

< kn`
]µ(kn`

)− Pµ[Sn`
= kn`

].

This absolute value of this last quantity is smaller than µ([kn`
,+∞)) which goes to zero

as n goes to infinity. This shows the contradiction.

5.2 Proof of Theorem 4.1

5.2.1 Proof of Part 1 in Theorem 4.1

We recursively define a sequence of distributions µn2 , n ≥ 1, and a sequence of integers
ψ(n), n ≥ 0.
− At rank n = 1, we consider µ1

2 the Dirac measure at point 0, ψ(0) = 1 and ψ(1) = 1.
− At rank n > 1, we define µn2 and ψ(n). The law µn2 is the distribution with discrete
support {0, . . . , n− 1} defined by

µn2 (k) =
cn

(ϕ ◦ ψ(k))2
, k ∈ {0, . . . , n− 1},
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with cn such that
n−1∑
k=0

cn
(ϕ ◦ ψ(k))2

= 1.

The integer ψ(n) is taken so that

ψ(n) > max(ψ(n− 1), n2) (5.1)

and for all m ≥ ψ(n),
Eµn

2

[
Am(X1, . . . , Xϕ(m))

]
≤ α+

1

n
.

Note that finding such a ψ(n) is always possible thanks to the assumption on the se-
quence (Am)m. In particular, from (5.1), we have that the sequence ψ(n) is increasing
and satisfies

+∞∑
k=0

1

(ϕ ◦ ψ(k))2
<∞.

Now define the distribution µ2 on N with infinite support by

µ2(k) =
c

(ϕ ◦ ψ(k))2
, k ∈ N,

with c such that
+∞∑
k=0

c

(ϕ ◦ ψ(k))2
= 1.

We have that
Eµ2

[
Aψ(n)(X1, . . . , Xϕ◦ψ(n))

]
is smaller than

Eµ2

[
Aψ(n)(X1, . . . , Xϕ◦ψ(n)) |

ϕ◦ψ(n)⋂
i=1

{Xi ≤ n− 1}
]
+ Pµ2

[ϕ◦ψ(n)⋃
i=1

{Xi ≥ n}
]

= Eµn
2

[
Aψ(n)(X1, . . . , Xϕ◦ψ(n))

]
+ Pµ2

[ϕ◦ψ(n)⋃
i=1

{Xi ≥ n}
]

≤ α+
1

n
+ ϕ ◦ ψ(n)

+∞∑
k=n

1

(ϕ ◦ ψ(k))2
.

Using the fact that ψ(n) is increasing and the inequality ψ(n) > n2, we obtain

α+
1

n
+ ϕ ◦ ψ(n)

+∞∑
k=n

1

(ϕ ◦ ψ(k))2
≤ α+

1

n
+

+∞∑
k=n

1

ϕ ◦ ψ(k)
≤ α+

1

n
+

+∞∑
k=n

1

k2
.

This quantity goes to α as n goes to infinity, which gives the result.

5.2.2 Proof of Part 2 in Theorem 4.1

Let α′ ∈ (α, 1). Assume that for any distribution µ1 on N with finite support

lim inf
n

Eµ1

[
An(X1, . . . , Xϕ(n))

]
> α′.

This last inequality is equivalent to

lim sup
n

Eµ1

[
1−An(X1, . . . , Xϕ(n))

]
< 1− α′.

ECP 17 (2012), paper 25.
Page 6/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1834
http://ecp.ejpecp.org/


A statistical look at Tsirelson’s equation

According to point 1. of Theorem 4.1, there exists a distribution µ2 on N with infinite
support such that

lim inf
n

Eµ2

[
1−An(X1, . . . , Xϕ(n))

]
≤ 1− α′,

that is
lim sup

n
Eµ2

[
An(X1, . . . , Xϕ(n))

]
≥ α′

which gives the contradiction since α′ > α.

5.3 Proof of Corollary 4.3

Let f be an injection from N into T ∩ Q/Z. If µ is a probability measure on N, denote
by f(µ) = µ ◦ f−1 the image of µ by f . On the one hand, one has:
- if µ has finite support, f(µ) belongs to Case 1 or Case 2.
- if µ has infinite support, f(µ) belongs to Case 3 since f(µ) has infinite support.
On the other hand, because of the definition of P∗ν , one has

P∗f(µ)
[
(η0, . . . , η−ϕ(n)) ∈ Bn

]
= Eµ

[
An(X1, . . . , Xϕ(n))

]
where An(X1, . . . , Xϕ(n)) is equal to∫ 1

0

1Bn

(
u, u− f(X1), u− f(X1)− f(X2), . . . , u− f(X1)− f(X2)− · · · − f(Xϕ(n))

)
du.

Using these two facts, together with Theorem 4.1, the proof of Corollary 4.3 is easily
completed.

Acknowledgments. We are very grateful to Kouji Yano and Marc Yor for introducing
us to the statistical question linked to Tsirelson’s equation.
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