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We consider continuous-time random interlacements on a transient weighted graph.
We prove an identity in law relating the field of occupation times of random inter-
lacements at level u to the Gaussian free field on the weighted graph. This identity is
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Keywords: random interlacements; Gaussian free field; isomorphism theorem; generalized
second Ray-Knight theorem.
AMS MSC 2010: 60K35, 60J27, 60G15, 60F05.
Submitted to ECP on 21 November 2011, final version accepted on February 7, 2012.
Supersedes arXiv:1111.4818v1.

0 Introduction

In this note we consider continuous-time random interlacements on a transient
weighted graph E. We prove an identity in law, which relates the field of occupation
times of random interlacements at level u to the Gaussian free field on E. The iden-
tity can be viewed as a kind of generalized second Ray-Knight theorem, see [2], [4],
and characterizes the law of the field of occupation times of random interlacements at
level u. We now describe our results and refer to Section 1 for details. We consider
a countable, locally finite, connected graph, with vertex set E, endowed with non-
negative symmetric weights cx,y = cy,x, x, y ∈ E, which are positive exactly when x, y

are distinct and {x, y} is an edge of the graph. We assume that the induced discrete-time
random walk on E is transient. Its transition probability is defined by

px,y =
cx,y
λx

, where λx =
∑
z∈E

cx,z, for x, y ∈ E. (0.1)

In essence, continuous-time random interlacements consist of a Poisson point process
on a certain space of doubly infinite E-valued trajectories marked by their duration at
each step, modulo time-shift. A non-negative parameter u plays the role of a multiplica-
tive factor of the intensity of this Poisson point process, which is defined on a suitable
canonical space (Ω,A,P). The field of occupation times of random interlacements at
level u is then defined for x ∈ E, u ≥ 0, ω ∈ Ω, by (see (1.8) for the precise expression)

Lx,u(ω) = λ−1
x × the total duration spent at x by the trajectories modulo

time-shift with label at most u in the cloud ω
(0.2)
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An isomorphism theorem for random interlacements

(informally, the durations of the successive steps of a trajectory are described by inde-
pendent exponential variables of parameter 1, but occupation times at x get rescaled by
a factor λ−1

x ). The Gaussian free field on E is the other ingredient of our isomorphism
theorem. Its canonical law PG on RE is such that

under PG, the canonical field ϕx, x ∈ E, is a centered Gaussian field with

covariance EP
G

[ϕxϕy] = g(x, y), for x, y ∈ E,
(0.3)

where g(·, ·) stands for the Green function attached to the walk on E, see (1.3). The
main result of this note is the next theorem:

Theorem 0.1. For each u ≥ 0,(
Lx,u +

1

2
ϕ2
x

)
x∈E

under P⊗ PG, has the same law as(1

2
(ϕx +

√
2u)2

)
x∈E

under PG.

(0.4)

This theorem provides for each u an identity in law very much in the spirit of the
so-called generalized second Ray-Knight theorems, see Theorem 1.1 of [2] or Theorem
8.2.2 of [4]. Remarkably, although we are in a transient set-up, (0.4) corresponds to the
recurrent case in the context of generalized Ray-Knight theorems. Let us underline that
(0.4) uniquely determines the law of (Lx,u)x∈E under P, as the consideration of Laplace
transforms readily shows. We also refer to Remark 3.1 for a variation of (0.4). The proof
of Theorem 0.1 involves an approximation argument of the law of (Lx,u)x∈E stated in
Theorem 2.1, which is of independent interest. This approximation has a similar flavor
to what appears at the end of Section 4.5 of [7], when giving a precise interpretation
of random interlacements as “loops going through infinity”, see also [3], p. 85. The
combination of Theorem 2.1 and the generalized second Ray-Knight theorem readily
yields Theorem 0.1. As an application of Theorem 0.1 we give a new proof of Theorem
5.1 of [6] concerning the large u behavior of (Lx,u)x∈E , see Theorem 4.1.

We now explain how this note is organized. In Section 1, we provide precise def-
initions and recall useful facts. Section 2 develops the approximation procedure for
(Lx,u)x∈E . We give two proofs of the main Theorem 2.1, and an extension appears in
Remark 2.2. The short Section 3 contains the proof of Theorem 0.1, and a variation of
(0.4) in Remark 3.1. In Section 4, we present an application to the study of the large u
behavior of (Lx,u)x∈E , see Theorem 4.1.

1 Notation and useful results

In this section we provide additional notation and recall some definitions and useful
facts related to random walks, potential theory, and continuous-time interlacements.
We consider the spaces Ŵ+ and Ŵ of infinite, and doubly infinite, E × (0,∞)-valued se-
quences, such that the E-valued sequences form an infinite, respectively doubly-infinite,
nearest-neighbor trajectory spending finite time in any finite subset of E, and such that
the (0,∞)-valued components have an infinite sum in the case of Ŵ+, and infinite “for-
ward” and “backward” sums, when restricted to positive and negative indices, in the
case of Ŵ . We write Zn, σn, with n ≥ 0, or n ∈ Z, for the respective E- and (0,∞)-valued
coordinates on Ŵ+ and Ŵ . We denote by Px, x ∈ E, the law on Ŵ+, endowed with its
canonical σ-algebra, under which Zn, n ≥ 0, is distributed as simple random walk start-
ing at x, and σn, n ≥ 0, are i.i.d. exponential variables with parameter 1, independent
from the Zn, n ≥ 0. We denote by Ex the corresponding expectation. Further, when ρ is
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a measure on E, we write Pρ for the measure
∑
x∈E ρ(x)Px, and Eρ for the correspond-

ing expectation. We denote by Xt, t ≥ 0, the continuous-time random walk on E, with
constant jump rate 1, defined for t ≥ 0, ŵ ∈ Ŵ+, by

Xt(ŵ) = Zk(ŵ), when σ0(ŵ) + · · ·+ σk−1(ŵ) ≤ t < σ0(ŵ) + · · ·+ σk(ŵ) (1.1)

(by convention the term bounding t from below vanishes when k = 0). Given U ⊆ E,

we write HU = inf{t ≥ 0;Xt ∈ U}, H̃U = inf{t > 0;Xt ∈ U , and for some s ∈ (0, t),
Xs 6= X0}, and TU = inf{t ≥ 0;Xt /∈ U}, for the entrance time in U , the hitting time of
U , and the exit time from U . We denote by gU (·, ·) the Green function of the walk killed
when exiting U

gU (x, y) =
1

λy
Ex

[ ∫ TU

0

1{Xs = y}ds
]
, for x, y ∈ E. (1.2)

The function gU (·, ·) is known to be symmetric and finite (due to the transience assump-
tion we have made). When U = E, no killing takes place (i.e. TU = ∞), and we simply
write

g(x, y) = gU=E(x, y), for x, y ∈ E, (1.3)

for the Green function. Given a finite subset K of U , the equilibrium measure and
capacity of K relative to U are defined by

eK,U (x) = Px[H̃K > TU ]λx 1K(x), for x ∈ E, (1.4)

capU (K) =
∑
x∈E

eK,U (x). (1.5)

When U = E, we simply drop U from the notation, and refer to eK and cap(K), as the
equilibrium measure and the capacity of K. Further, the probability to enter K before
exiting U can be expressed as

Px[HK < TU ] =
∑
y∈E

gU (x, y) eK,U (y), for x ∈ E. (1.6)

We now turn to the description of continuous-time random interlacements on the tran-
sient weighted graph E. We write Ŵ ∗ for the space Ŵ (introduced at the beginning of
this section), modulo time-shift, i.e. Ŵ ∗ = W/ ∼, where for ŵ, ŵ′ ∈ Ŵ , ŵ ∼ ŵ′ means
that ŵ(·) = ŵ′(·+ k) for some k ∈ Z. We denote by π∗: Ŵ → Ŵ ∗ the canonical map, and
endow Ŵ ∗ with the σ-algebra consisting of sets with inverse image under π∗ belong-
ing to the canonical σ-algebra of Ŵ . The continuous-time interlacement point process
is a Poisson point process on the space Ŵ ∗ × R+. Its intensity measure has the form
ν(dŵ∗)du, where ν̂ is the σ-finite measure on Ŵ ∗ such that for any finite subset K of E,
the restriction of ν̂ to the subset of Ŵ ∗ consisting of those ŵ∗ for which the E-valued
trajectory modulo time-shift enters K, is equal to π∗ ◦ Q̂K , the image of Q̂K under π∗,
where Q̂K is the finite measure on Ŵ specified by

i) Q̂K(Z0 = x) = eK(x), for x ∈ E,

ii) when eK(x) > 0, conditionally on Z0 = x, (Zn)n≥0, (Z−n)n≥0, (σn)n∈Z
are independent, respectively distributed as simple random walk starting
at x, as simple random walk starting at x conditioned never to return
to K, and as a doubly infinite sequence of i.i.d. exponential variables with
parameter 1.

(1.7)

ECP 17 (2012), paper 9.
Page 3/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1792
http://ecp.ejpecp.org/


An isomorphism theorem for random interlacements

As in [6], the canonical continuous-time random interlacement point process is then
constructed similarly to (1.16) of [5], or (2.10) of [8], on a space (Ω,A,P), with ω =∑
i≥0 δ(ŵ∗i ,ui) denoting a generic element of Ω. A central object of interest in this note is

the random field of occupation times of random interlacements at level u ≥ 0:

Lx,u(ω) =
1

λx

∑
i≥0

∑
n∈Z

σn(ŵi) 1{Zn(ŵi) = x, ui ≤ u}, for x ∈ E, ω ∈ Ω,

where ω =
∑
i≥0

δ(ŵ∗i ,ui) and π∗(ŵi) = ŵ∗i , for each i ≥ 0.
(1.8)

The Laplace transform of (Lx,u)x∈E has been computed in [6]. More precisely, given a
function f : E → R, such that

∑
y∈E g(x, y)|f(y)| <∞, for x ∈ E, one sets

Gf(x) =
∑
y∈E

g(x, y) f(y), for x ∈ E. (1.9)

One knows from Theorem 2.1 and Remark 2.4 4) of [6], that when V : E → R+ has finite
support and

sup
x∈E

GV (x) < 1, (1.10)

one has the identity

E
[

exp
{
−
∑
x∈E

V (x)Lx,u

}]
= exp{−u〈V, (I +GV )−1 1E〉}, for u ≥ 0, (1.11)

where the notation 〈f, g〉 stands for
∑
x∈E f(x) g(x), when f, g are functions on E such

that the previous sum converges absolutely, and 1E denotes the constant function iden-
tically equal to 1 on E.

2 An approximation scheme for random interlacements

In this section we develop an approximation scheme for (Lx,u)x∈E in terms of the
fields of local times of certain finite state space Markov chains. The main result is The-
orem 2.1, but Remark 2.2 states a by-product of the approximation scheme concerning
the random interlacement at level u. This has a similar flavor to Theorem 4.17 of [7],
where one gives one of several possible meanings to random interlacements viewed
as “Markovian loops going through infinity”, see also Le Jan [3], p. 85. We consider a
non-decreasing sequence Un, n ≥ 1, of finite connected subsets of E, increasing to E, as
well as x∗ some fixed point not belonging to E. We introduce the sets En = Un ∪ {x∗},
for n ≥ 1, and endow En with the weights cnx,y, x, y ∈ En, obtained by “collapsing U cn on
x∗”, that is, for any n ≥ 1, and x, y ∈ Un, we set

cnx,y = cx,y,

cnx∗,y = cny,x∗ =
∑

z∈E\Un
cz,y,

(2.1)

and otherwise set cnx,y = 0 (i.e. cnx∗,x∗ = 0). We also write

λnx =
∑
y∈En

cnx,y, for x ∈ En (in particular λnx = λx, when x ∈ Un). (2.2)

We tacitly view Un as a subset of both E and En. We consider the canonical simple
random walk in continuous time on En, attached to the weights cnx,y, x, y ∈ En, with
jump rate equal to 1. We write Xn

t , t ≥ 0, for its canonical process, Pnx for its canonical
law starting from x ∈ En, and Enx for the corresponding expectation. The local time of
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this Markov chain is defined by

`n,xt =
1

λnx

∫ t

0

1{Xn
s = x} ds, for x ∈ En and t ≥ 0. (2.3)

The function t ≥ 0 → `n,xt ≥ 0 is continuous, non-decreasings, starts at 0, and Pny -a.s.
tends to infinity, as t goes to infinity (the walk on En is irreducible and recurrent). By
convention, when x ∈ E\Un, we set `n,xt = 0, for all t ≥ 0. We introduce the right-
continuous inverse of `n,x∗.

τnu = inf{t ≥ 0; `n,x∗t > u}, for any u ≥ 0. (2.4)

We are now ready for the main result of this section. We tacitly endow RE with the
product topology, and convergence in distribution, as stated below (and in the sequel),
corresponds to convergence in law of all finite dimensional marginals.

Theorem 2.1. (u ≥ 0)

(`n,xτnu )x∈E under Pnx∗ converges in distribution to (Lx,u)x∈E under P. (2.5)

Proof. We give two proofs. First proof: We denote by T the set of piecewise-constant,
right-continuous, E ∪{x∗}-valued trajectories, which at a finite time reach x∗, and from
that time onwards remain equal to x∗. We endow T with its canonical σ-algebra. Under
Pnx∗ , one has almost surely two infinite sequences R`, ` ≥ 1 and D`, ` ≥ 1,

R1 = 0 < D1 < R2 < · · · < R` < D` < . . . (2.6)

of successive returns R` of Xn
. to x∗, and departures D` from x∗, which tend to infinity.

One introduces the random point measure on T

Γnu =
∑̀
≥1

1{D` < τnu } δ(XnD`+·)0≤·≤R`+1−D`
, u ≥ 0, (2.7)

which collects the successive excursions of Xn
. (out of x∗ until first return to x∗) that

start before τnu . By classical Markov chain excursion theory we know that

Γnu is a Poisson point measure on T with intensity measure
γnu (·) = uPnκn [(Xn

s∧TUn )s≥0 ∈ ·] on T , (2.8)

where TUn stands for the exit time of Xn
. from Un and κn for the measure on Un

κn(y) = λnx∗
cnx∗,y
λnx∗

= cnx∗,y
(2.1)
=

∑
x∈E\Un

cx,y, for y ∈ Un. (2.9)

When starting in Un, the Markov chains X on E, and Xn on En, have the same evolution
strictly before the exit time of Un. Denoting by (X.)0≤·<TUn the random element of T ,
which equals Xs, for 0 ≤ s < TUn , and x∗ for s ≥ TUn , we see that

γnu (·) = uPκn [(X.)0≤·<TUn ∈ ·], for all n ≥ 1, u ≥ 0. (2.10)

Let K be a finite subset of E, and assume n large enough so that K ⊆ Un. We introduce
the point measure on T obtained by selecting the excursions in the support of Γnu that
enter K, and only keeping track of their trajectory after they enter K, that is

µnK,u = θHK ◦ (1{HK <∞}Γnu), (2.11)
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where θt, t ≥ 0, stands for the canonical shift on T , and we use similar notation on T as
below (1.1). By (2.8), (2.10) it follows that

µnK,u is a Poisson point measure on T with intensity measure
γnK,u(·) = uPρnK [(X.)0≤·<TUn ∈ ·] on T , (2.12)

where ρnK is the measure supported by K such that

ρnK(x) = Pκn [HK < TUn , XHK = x] = eK,Un(x), for x ∈ K, (2.13)

where the last equality follows from (1.60) in Proposition 1.8 of [7]. Note that eK,Un and
eK are concentrated on K, and for x ∈ K,

eK,Un(x)
(1.4)
= Px[H̃K > TUn ]λx −→

n→∞
Px[H̃K =∞]λx = eK(x). (2.14)

Consider V : E → R+ supported in K, and Φ: T → R+, the map

Φ(w) =
∑
x∈E

V (x)
1

λx

∫ ∞
0

1{w(s) = x}ds, for w ∈ T .

The measure µnK,u contains in its support the pieces of the trajectory Xn
. up to time τnu ,

where Xn
. visits K, see (2.11), and we have

Enx∗

[
exp

{
−
∑
x∈E

V (x) `n,xτnu

}]
= Enx∗

[
exp

{
− 〈µnK,u,Φ〉

}]
(2.12)

=

exp
{∫
T

(e−Φ − 1) dγnK,u

}
(2.12),(2.13)

= exp
{
uEeK,Un

[
e−

∫ TUn
0

V
λ (Xs)ds − 1

]}
−→
n→∞

exp
{
uEeK

[
e−

∫∞
0

V
λ (Xs)ds − 1

]}
= E

[
exp

{
−
∑
x∈E

V (x)Lx,u

}]
,

(2.15)

where we used (2.14) and the fact that TUn ↑ ∞, Px-a.s., for x in E, for the limit in the
last line, and a similar calculation as in (2.5) of [6] for the last equality. Since K and the
function V : E → R+, supported in K, are arbitrary, the claim (2.5) follows.

Second Proof: We will now make direct use of (1.11). The argument is more com-
putational, but also of interest. We consider K and V as above, as well as a positive
number λ. We assume n large enough so that K ⊆ Un. We further make a smallness
assumption on the non-negative function V (supported in K):

sup
x∈E

(GV )(x) + λ−1 ∑
x∈K

V (x) < 1. (2.16)

We define the operator Gn on REn attached to the kernel gn(·, ·) in a similar fashion to
(1.9), where we use the notation

gn(x, y) = gUn(x, y) + λ−1, for x, y ∈ En, (2.17)

and we have set gUn(x∗, ·) = gUn(·, x∗) = 0, by convention, to define gUn(·, ·) on En ×En.
Since gUn(·, ·) ≤ g(·, ·) on E ×E, it follows from (2.16) that supx∈En(GnV )(x) < 1, where
we have set V (x∗) = 0, by convention, so that the operator I +GnV is invertible.

We introduce the positive number

an =

∫ ∞
0

λe−λuEnx∗

[
e
−

∑
x∈E

V (x)`n,x
τnu

]
du, (2.18)

where we recall that `n,xt = 0, when x ∈ E\Un. Using (2.93), (2.41), (2.71) of [7], or by
(8.44) and Remark 3.10.3 of Marcus-Rosen [4], we know that

an = (I +GnV )−11En(x∗). (2.19)

ECP 17 (2012), paper 9.
Page 6/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1792
http://ecp.ejpecp.org/


An isomorphism theorem for random interlacements

We then define the function hn on En and the real number bn:

hn = (I +GnV )−1 1En and bn =
∑
x∈K

V (x)hn(x). (2.20)

We let G∗Un be the operator on REn attached to the kernel gUn(·, ·) (on En × En), in a
similar fashion to (1.9). By (2.17) and (2.20), we have

hn +G∗UnV hn + λ−1bn 1En = 1En , so that (2.21)

hn =
(

1− bn

λ

)
(1 +G∗UnV )−11En ,

noting that the above inverse is well defined by the same argument used below (2.17).

By the second equality in (2.20) it follows that

bn =
(

1− bn

λ

) ∑
x∈K

V (x)(I +G∗UnV )−1(x) =
(
1− bn

λ

)
〈V, (I +GUnV )−11E〉, (2.22)

where we refer to below (1.11) for notation, GUn is the operator on RE attached to the
kernel gUn(·, ·) on E × E, and the last equality follows by writing the Neumann series
for (I +G∗UnV )−1 and (I +GUnV )−1 (note that V ≥ 0 and (2.16) straightforwardly imply
the convergence of these series in the respective operator norms induced by L∞(En)

and L∞(E)). We can now solve for bn. Noting that an = hn(x∗) = 1 − bn
λ , by (2.21), we

find
an = (1 + λ−1〈V, (I +GUnV )−11E〉)−1. (2.23)

Using the Neumann series for (I + GUnV )−1, and applying dominated convergence
together with the fact that gUn(·, ·) ↑ g(·, ·) on E × E, we see that

an −→
n→∞

(1 + λ−1〈V, (I +GV )−11E〉)−1. (2.24)

Taking the identity (1.11) into account, we have shown that under (2.16),

lim
n

∫ ∞
0

λe−λuEnx∗
[
e
−

∑
x∈E

V (x)`n,x
τnu
]
du =

∫ ∞
0

λe−λuE
[
e
−

∑
x∈E

V (x)Lx,u]
du. (2.25)

Note that when V : E → R+ is supported in K and supx∈E GV (x) < 1, then (2.16) holds
for λ large (depending on V ). The expectation under the integral in the left-hand side
of (2.25) is non-increasing in u, whereas the expectation under the integral in the right-
hand side of (2.25) is continuous in u by (1.11). It then follows from [1], p. 193-194, that
for V as above,

lim
n
Enx∗

[
e
−

∑
x∈E

V (x)`n,x
τnu
]

= E
[
e
−

∑
x∈E

V (x)Lx,u]
, for u ≥ 0. (2.26)

This readily implies the tightness of the laws of (`n,xτnu )x∈K under Pnx∗ , and uniquely de-
termines the Laplace transform of their possible limit points, see Theorem 6.6.5 of [1].
Letting K vary, the claim (2.5) follows.

Remark 2.2. The approximation scheme introduced in this section can also be used to
approximate the random interlacement at level u, as we now explain. We let Inu stand
for the trace left on Un by the walk on En up to time τnu :

Inu = {x ∈ Un; `n,xτnu > 0}. (2.27)

By (2.12), (2.14), it follows that for any finite subset K of E and u ≥ 0,

Pnx∗ [I
n
u ∩K = φ] = Pnx∗ [µ

n
K,u = 0] = e−u capUn (K) (1.4),(1.5)−→

n
e−u cap(K) = P[Iu ∩K = φ],

(2.28)
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where Iu stands for the random interlacement at level u, that is, the trace on E of
doubly infinite trajectories modulo time-shift in the Poisson cloud ω with label at most
u. By an inclusion-exclusion argument, see for instance Remark 4.15 of [7] or Remark
2.2 of [5], it follows that, as n→∞,

Inu under Pnx∗ , converges in distribution to Iu under P, for any u ≥ 0, (2.29)

where the above distributions are viewed as laws on {0, 1}E endowed with the product
topology. �

3 Proof of the isomorphism theorem

In this short section we combine Theorem 2.1 and the generalized second Ray-
Knight theorem of [2] to prove Theorem 0.1. We also state a variation of (0.4) in Re-
mark 3.1.

Proof of Theorem 0.1: For U ⊆ G we denote by PG,U the law on RE of the centered
Gaussian field with covariance EG,U [ϕxϕy] = gU (x, y), x, y ∈ E (in particular ϕx = 0,
PG,U -a.s., when x ∈ E\U ). It follows from the generalized second Ray-Knight theorem,
see Theorem 8.2.2 of [4], or Theorem 2.17 of [7], that for n ≥ 1, u ≥ 0, in the notation
of Section 2, (

`n,xτnu +
1

2
ϕ2
x

)
x∈Un

under Pnx∗ ⊗ P
G,Un , has the same law as(1

2
(ϕx +

√
2u)2

)
x∈Un

under PG,Un .
(3.1)

Since gUn(·, ·) ↑ g(·, ·), we see that PG,Un converges weakly to PG (looking for instance
at characteristic functions of finite dimensional marginals). Taking Theorem 2.1 into
account we thus see letting n tend to infinity that(

Lx,u +
1

2
ϕ2
x

)
x∈E under P⊗ PG, has the same law as(1

2
(ϕx +

√
2u)2

)
x∈E under PG,

(3.2)

and Theorem 0.1 is proved. �

Remark 3.1. Let us mention a variation on (0.4) of Theorem 0.1. By Theorem 1.1 of
[2], one knows that for u ≥ 0, a ∈ R, n ≥ 1,(

`n,xτnu +
1

2
(ϕx + a)2

)
x∈Un

under Pnx∗ ⊗ P
G,Un , has the same law as(1

2

(
ϕx +

√
2u+ a2

)2)
x∈Un

under PG,Un .
(3.3)

Letting n tend to infinity, the same argument as above shows that for u ≥ 0, and a ∈ R,(
Lx,u +

1

2
(ϕx + a)2

)
x∈E under P⊗ PG, has the same law as(1

2

(
ϕx +

√
2u+ a2

)2)
x∈E under PG.

(3.4)

�

4 An application

We illustrate the use of Theorem 0.1 and show how one can study the large u asymp-
totics of (Lx,u)x∈E and in particular recover Theorem 5.1 of [6], see also Remark 5.2 of
[6]. We denote by x0 some fixed point of E.
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An isomorphism theorem for random interlacements

Theorem 4.1. As u→∞,(
1

u
Lx,u

)
x∈E

converges in distribution to the constant field equal to 1, (4.1)(
Lx,u − u√

2u

)
x∈E

converges in distribution to (ϕx)x∈E under PG. (4.2)

In particular, as u→∞,(
Lx,u − Lx0,u√

2u

)
x∈E

converges in distribution to (ϕx − ϕx0)x∈E under PG. (4.3)

Proof. We first prove (4.1). To this end we note that PG-a.s., for x ∈ E,

1

2u
ϕ2
x → 0 and

1

2u
(ϕx +

√
2u)2 → 1, as u→∞. (4.4)

Thus Theorem 0.1 implies that 1
u Lx,u converges in distribution to the constant 1 as u

tends to infinity, and (4.1) follows. We then observe that (4.3) is a direct consequence
of (4.2), and turn to the proof of (4.3). Note that by Theorem 0.1(

Lx,u − u√
2u

+
1

2
√
2u

ϕ2
x

)
x∈E

under P⊗ PG, has the same law as(
1

2
√
2u

[(ϕx +
√

2u)2 − 2u]
)
x∈E

.
(4.5)

Note also that for each x ∈ E, PG-a.s., as u→∞,

1

2
√
2u

ϕ2
x → 0, and (4.6)

1

2
√
2u

[(ϕx +
√

2u)2 − 2u] =
1

2
√
2u

ϕ2
x + ϕx → ϕx. (4.7)

Looking at the characteristic function of finite dimensional marginals of the fields in the
first and second line of (4.5), we readily obtain (4.3).

Remark 4.2. In view of the above illustration of the use of Theorem 0.1, one can nat-
urally wonder about the nature of its scope as a transfer mechanism between random
interlacements and the Gaussian free field. �
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