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Abstract
This note is motivated by results in [1, 8] about global relations between the invasion percolation
cluster (IPC) and the incipient infinite cluster (IIC) on regular trees and on two dimensional lat-
tices, respectively. Namely, that the laws of the two objects are mutually singular, and, in the case
of regular trees, that the IIC stochastically dominates the IPC. We prove that on two dimensional
lattices, the IIC does not stochastically dominate the IPC. This is the first example showing that
the relation between the IIC and IPC is significantly different on trees and in two dimensions.

In the classical mathematical theory of percolation, the edges (or vertices) of an infinite lattice
are deleted independently with probability 1− p, and the properties of the remaining components
are studied. There is a phase transition in the parameter: if p is bigger than some critical value
pc , there is an infinite component with probability 1 (in this case we say that percolation occurs),
and if p is below pc , the probability of the existence of an infinite component is 0. If p = pc , the
geometric properties of connected components are highly non-trivial. It is expected (and has been
proved for certain lattices, see, e.g., [17, 20]) that simple characteristics of connected components
(e.g., diameter, volume) obey power laws. In other words, at criticality, connected components
are self-similar random objects.

Invasion percolation is a stochastic growth model [4, 18] that mirrors aspects of the critical per-
colation picture without tuning any parameter. To define the model, let G = (V, E) be an infinite
connected graph in which a distinguished vertex, the origin, is chosen. The edges of G are assigned
independent uniform random variables τe on [0, 1], called weights. (The underlying probability
measure is denoted by P.) The invasion percolation cluster (IPC) of the origin on G is defined as
the limit of an increasing sequence (Gn) of connected sub-graphs of G as follows. Define G0 to be
the origin. Given Gn = (Vn, En), the edge set En+1 is obtained from En by adding to it the edge

1THE RESEARCH OF THE AUTHOR HAS BEEN SUPPORTED BY THE GRANT ERC-2009-ADG 245728-RWPERCRI.

775

DOI: 10.1214/ECP.v16-1684

1

http://dx.doi.org/10.1214/ECP.v16-1684


776 Electronic Communications in Probability

from the set {(x , y) ∈ E \ En : x ∈ Vn, y ∈ V} with the smallest weight. Let Gn+1 be the graph
induced by the edge set En+1.
Invasion percolation is closely related to independent bond percolation. For any p ∈ [0, 1] we
say that an edge e ∈ E is p-open if τe < p or p-closed if τe ≥ p. The resulting random graph
(V, {e ∈ E : τe < p}) of p-open edges has the same distribution as the one obtained from G by
deleting edges independently with probability 1−p. It was shown in [5] that for all p > pc the IPC
on Zd intersects the infinite p-open cluster with probability 1. This result was extended to a much
more general class of graphs in [11]. It is also easy to see that once a vertex in an infinite p-open
cluster is invaded, all further invaded edges are in the infinite p-open cluster that contains this
vertex. The above observations imply that lim supn→∞ τen

= pc , where en is an edge invaded at step
n. This indicates that invasion dynamics reproduce the critical percolation picture, a phenomenon
often referred to as self-organized criticality. A comprehensive analysis of invasion percolation and
its relation to critical independent percolation were obtained in [3, 5, 6, 7, 8, 13, 21] for two
dimensional lattices, and in [1, 9] for regular trees.

Results of [5] also indicate that a large proportion of the edges in the IPC belongs to big pc-open
clusters. Very large pc-open clusters are usually referred to as incipient infinite clusters (IIC). The
first mathematical definition of the IIC of the origin in two dimensions was given by Kesten in
[15]: (1) by conditioning on the pc-open cluster of the origin being connected to a vertex at
distance n from the origin and letting n→∞, or (2) by conditioning on the p-open cluster of the
origin being infinite and letting p ↓ pc . These are two different constructions of the same measure
on configurations of open and closed edges. Under this measure the open cluster of the origin is
almost surely infinite.
Relations between the IIC and the IPC in two dimensions were first observed in [13, 21]. The
scaling of the moments of the number of invaded sites in a box was obtained there, which turned
out to be the same as the scaling of the corresponding moments for the IIC. Similar analysis shows
that the k-point functions of the IIC and the IPC are comparable. Corresponding results about
local similarities of the IIC and IPC on a regular tree are obtained in [1].

The result of this note is motivated by global relations between the IIC and the IPC on regular
trees and in two dimensions, discovered respectively in [1] and [8]. In [1], it was shown that
on regular trees, the IIC stochastically dominates the IPC, and the laws of the IIC and IPC are
mutually singular. In [8], it was proved that in two dimensions, the laws of the IIC and the IPC are
also mutually singular. The proof in [8] also implies that the IPC does not stochastically dominate
the IIC. In fact, the proof in [8] strongly suggests that in two dimensions one should expect the
same behavior as on regular trees, namely, that the IIC should stochastically dominate the IPC.
The main result of this note is a disproof of the above belief. In Theorem 1 we prove that the IIC
does not stochastically dominate the IPC in two dimensions. The key idea behind the proof is that
finite connected components of large volume are more likely to be seen in supercritical percolation
than in the critical one.

In the remainder, we will formally define independent percolation, recall the definition of Kesten’s
IIC from [15], state and prove the main result of this note. For simplicity we restrict ourselves
here to the square lattice. The result of this note still holds for lattices which are invariant under
reflection in one of the coordinate axes and under rotation around the origin by some angle in
(0,π) (see, e.g., discussion on page 112 in [16]). In particular, this includes the triangular and
honeycomb lattices.

We consider the square lattice (Z2,E2), where E2 = {(x , y) ∈ Z2 ×Z2 : |x − y| = 1}, which we
simply denote by Z2. For p ∈ [0, 1], we consider a probability space (Ωp,Fp,Pp), where Ωp =
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{0,1}E
2
, Fp is the σ-field generated by the finite-dimensional cylinders of Ωp, and Pp is a product

measure on (Ωp,Fp), Pp =
∏

e∈E2 µe, where µe is given by µe(ωe = 1) = 1− µe(ωe = 0) = p,
for vectors (ωe)e∈E2 ∈ Ωp. We say that an edge e is open if ωe = 1, and e is closed if ωe = 0. The
event that two sets of sites S1, S2 ⊂ Z2 are connected by an open path is denoted by S1 ↔ S2,
and the complement of this event is denoted by S1= S2. If a set S is a singleton {x}, then we
simply write S = x . In particular, we write x ↔ y for the event that x and y are connected by
an open path. The percolation probability θ(p) is the probability under Pp that the open cluster
of the origin is infinite. There exists a critical probability pc ∈ (0, 1) such that θ(p)> 0 if and only
if p > pc . (In particular, θ(pc) = 0 in two dimensions, as proved by Kesten in [14]. This result
has also been proved for percolation on Zd , with d ≥ 19, by Barsky and Aizenman [2] and Hara
and Slade [12]. The question whether θ(pc) = 0 for d ∈ [3, 18] still remains open.) We refer the
reader to [10] for background on percolation.

Let B(n) = [−n, n]2 be the l∞-ball of radius n centered at the origin and ∂ B(n) = B(n) \ B(n− 1)
its internal boundary. It is shown by Kesten in [15] that the limit

ν [E] = lim
N→∞

Ppc
[E | 0↔ ∂ B(N)]

exists for any event E that depends on the state of finitely many edges in E2. The unique extension
of ν to a probability measure on configurations of open and closed edges exists. Under this
measure, the open cluster of the origin is almost surely infinite. It is called the incipient infinite
cluster (IIC).

The main result of this note is the following theorem.

Theorem 1. The IPC is not stochastically dominated by the IIC on Z2, i.e., there is no coupling such
that the IIC contains the IPC with probability 1.

Remark 1. In [1], it was proved that on a regular tree, the IIC stochastically dominates the IPC,
and the laws of the IIC and the IPC are mutually singular. The analysis in [1] is based on a
representation of the IPC as an infinite backbone rooted at the origin with finite branches attached
to it, which are distributed as subcritical percolation clusters with varying percolation parameter
described by the so-called forward maximal weight process along the backbone. Since the IIC on
a regular tree is described as an infinite backbone from the origin with critical percolation clusters
attached to it, the stochastic domination immediately follows from these representations. The
proof of mutual singularity is based on a deep analysis of the distribution of the finite branches of
the IPC.

Remark 2. In [8], it is shown that the laws of the IPC and the IIC are mutually singular. The main
ingredient of the proof of this result is [8, Theorem 7], which states the following. Let G = (V, E)
be an infinite connected subgraph of (Z2,E2) which contains the origin. We call an edge e ∈ E a
disconnecting edge for G if the graph (V, E \ {e}) has a finite component, and if the origin belongs
to this finite component. Let DIIC(m, n) be the event that the IIC does not contain a disconnecting
edge in the annulus B(n) \ B(m), and let DIPC(m, n) be the event that the IPC does not contain
a disconnecting edge in the annulus B(n) \ B(m). Then [8, Theorem 7] states that there exists a
sequence (nk) such that

P





∑

k

1(DIPC(nk, nk+1))<∞



= 1 and ν





∑

k

1(DIIC(nk, nk+1)) =∞



= 1.
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The above statement implies that the IIC is supported on clusters for which infinitely many of the
events DIIC(nk, nk+1) occur, and the IPC is supported on clusters for which only finitely many of
the events DIPC(nk, nk+1) occur. In particular, this immediately implies that there is no coupling
such that the IPC contains the IIC with probability 1.

Proof of Theorem 1. For integers m< n, let Ann(m, n) = B(n) \B(m). Let EIPC(n) be the event that
Ann(n, 2n) is a subgraph of the IPC (i.e., all the edges of Ann(n, 2n) are in the IPC), and let EIIC(n)
be the event that Ann(n, 2n) is a subgraph of the IIC. We will prove that there exists n such that

P[EIPC(n)]≥ 2 ν[EIIC(n)]> 0, (1)

which will complete the proof of Theorem 1.

For p > pc and ε > 0, let

L(p) =min{n : Pp[there exists an open left-right crossing of [0, n]2]≥ 1− ε}

be the finite-size scaling correlation length (see, e.g., [16, (1.21)]), and let pn = sup{p : L(p) >
n}. If ε is small enough, L(p) → ∞ as p → pc and L(p) = 1 for p close to 1. In particular, the
function pn is well-defined. From now on, we fix such ε. By the definition of L(p) and pn, for all
n and m≤ n, we have

Ppn
[there exists an open left-right crossing of [0, m]2]≤ 1− ε.

Therefore, it follows from the planar duality (see, e.g., [10, Section 11.2]) and the RSW theorem
(see, e.g., [10, Section 11.7]) that there exists c > 0 such that

Ppn
[B(2n)= ∂ B(4n)]≥ c > 0, for all n≥ 1. (2)

Let E (n) be the event that all the edges of Ann(n, 2n) are open. Note that for any p ∈ (0,1), by
the definition of invasion, the event EIPC(n) occurs if (a) all the edges of Ann(n, 2n) are p-open,
and (b) B(2n) is not connected to ∂ B(4n) by a p-open path. In particular, by taking p = pn,
independence and (2) give

P[EIPC(n)]≥ c Ppn
[E (n)] = c p|Ann(n,2n)|

n
. (3)

On the other hand, by the definition of the IIC measure and independence, we have

ν[EIIC(n)] = lim
N→∞

Ppc
[E (n), 0↔ ∂ B(N)]

Ppc
[0↔ ∂ B(N)]

= Ppc
[E (n)] lim

N→∞

Ppc
[0↔ ∂ B(n)]Ppc

[B(2n)↔ ∂ B(N)]

Ppc
[0↔ ∂ B(N)]

. (4)

By the RSW theorem and a standard gluing argument (see [10, Section 11.7] or [15, (29)]), there
exists C <∞ such that for all n≥ 1 and N ≥ 2n,

Ppc
[0↔ ∂ B(N)]≤ Ppc

[0↔ ∂ B(n)] Ppc
[B(2n)↔ ∂ B(N)]≤ C Ppc

[0↔ ∂ B(N)] .
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This property is usually referred to as quasi-multiplicativity of the one-arm probability. Plugging
in the above relations into (4) gives

Ppc
[E (n)]≤ ν[EIIC(n)]≤ C Ppc

[E (n)] = C p|Ann(n,2n)|
c . (5)

In particular, for any n, ν[EIIC(n)]> 0. We conclude from (3) and (5) that

P[EIPC(n)]≥ c′ (pn/pc)
|Ann(n,2n)| ν[EIIC(n)]≥ c′ ec′(pn−pc)n2

ν[EIIC(n)],

for some constant c′ > 0. It follows from [16, (4.5)] (see also [19, Proposition 3.2]) and the fact
that θ(pc) = 0 that

(pn − pc)n
2→∞ as n→∞.

In particular, there exists n such that (1) holds. This completes the proof of Theorem 1.

Remark 3. Instead of showing (1), it would be more natural to prove that there exists n such that
P[ eEIPC(n)] ≥ 2 ν[ eEIIC(n)] > 0, where eEIPC(n) is the event that B(n) is a subgraph of the IPC, and
eEIIC(n) is the event that B(n) is a subgraph of the IIC. This can be proved similarly to (1). However,
since the proof of (1) is slightly simpler, we decided to consider events EIPC(n) and EIIC(n) instead
of eEIPC(n) and eEIIC(n).
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draft.
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