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Abstract
The notion of half independence arises in random matrices and quantum groups. This notion is
available only for elements of a noncommutative probability space and assumes the existence of
all moments. We relate half independence to a certain class of partitions and use it to define an
appropriate cumulant generating function and a transform which is closely related to the charac-
teristic function. This leads to a definition of half independent convolution of arbitrary probability
measures which is compatible with the distribution of the sum of half independent elements of a
noncommutative probability space. We also establish the central limit theorem for half indepen-
dent convolution of measures with the limit being symmetrized Rayleigh. Cramer’s theorem is
also established in this set up.

1 Introduction

Along with classical independence, another well known notion of independence is free indepen-
dence in the noncommutative set up. A third notion of independence in the noncommutative set up
is half independence. This has been described in Banica, Curran and Speicher (2010)[2] and Bose,
Hazra and Saha (2010)[7]. In Section 2, we provide a quick description of these three notions
and two examples of half independence. The goal of this article is to study half independence in
details.
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To motivate our results, let us recall the results from classical and free independence that are rele-
vant to us. In classical independence, the two natural transforms, which are measure determining
and convergence determining, are the characteristic function φ(·) and the cumulant generating
function χ(·). For any probability measure µ on R, these are defined as

φµ(t) =

∫

R

ei t x dµ(x) and χµ(t) = logφµ(t) (for t in a neighbourhood of 0).

If µ and ν are two probability measures and µ ∗ ν is their independent (additive) convolution,
then

χµ∗ν(t) = χµ(t) +χν(t). (1)

Well known results for this convolution are the CLT and Cramer’s theorem.
Initially, free independence of noncommutative subalgebras or elements was defined via relations
between moments. It is well known that noncrossing partitions play a crucial role in free inde-
pendence. Later Cauchy transform and the R-transform (or Voiculescu transform) (see Nica and
Speicher (2006)[10], Anderson et al. (2009)[1]) were defined. This helped to define free convo-
lution of arbitrary probability measures. For instance the R-transform satisfies equation (1) when
classical convolution is replaced by the free convolution. The free CLT holds: the n fold free convo-
lution of identical laws with finite second moment, when scaled by

p
n and centered, converges

to the semicircle law. See Nica and Speicher (2006)[10]. However, Cramer’s theorem fails: free
convolution of two laws may be semicircular without the individual laws being semicircular. See
Bercovici and Voiculescu (1995)[5].
The existing notion of half independence makes sense only for elements of a noncommutative
probability space via the behavior of their moments. It is known that this definition does not
extend to half independence between subalgebras (see Speicher (1997)[11]) and no notion of
half independence for arbitrary random variables is available in the literature.
The above article as well as the work of Bose, Hazra and Saha (2010)[7] suggests that symmetric
partitions play a significant role in half independence. In Section 3 we use symmetric partitions to
develop notions of half cumulants and half cumulant generating function under suitable restrictions
on the growth of the moments. Then we relate the moments to the half cumulants via appropriate
generating functions. This relationship helps us to go beyond the set up of noncommutative alge-
bra and provides an analytical definition of half independent convolution of probability measures.
First, in Section 4 we develop the notion of an appropriate transform Tµ(·) for any symmetric
(about zero) probability measure µ. This transform plays the same role in half independence as do
the characteristic function in classical independence and Cauchy transform in free independence.
This transform T has a surprisingly simple description in terms of the characteristic function and
is similar to the radial characteristic function defined in Kingman (1963)[8]. Let þ denote the
product convolution. Then it turns out that

Tµ(t) = φµþρ(2t) for all t ∈R

where ρ is the arcsine law with density

2

π

1
p

1−α2
, 0< α < 1.

T is both measure determining and convergence determining (see Lemma 2 below).
We define the half cumulant generating function as,

H(t) = log T (t) (in an appropriate neighbourhood of 0).



Half independence 407

The half independent convolution µ� ν , of symmetric probability measures µ and ν is defined as
the (unique) probability measure which satisfies

Tµ�ν(t) = Tµ(t)Tν(t) for all t ∈R.

and hence the corresponding half cumulant generating functions satisfy

Hµ�ν(t) = Hµ(t) +Hν(t) (for t in a neighbourhood of 0).

This half convolution is quite similar to the convolution defined by Kingman (1963)[8] who ar-
rived at it in a completely different context.
This definition of convolution is compatible with addition of half independent variables in a non-
commutative probability space: if a and b are half independent in some C∗-probability space with
laws µ and ν , then the law of (a+ b) exists and is given by µ� ν .
In half independence Rayleigh law takes the place of Gaussian law in independence and the semi-
circular law in free independence. The symmetrized Rayleigh law Rσ has the density

f (x) =
|x |
σ2 exp(−x2/σ2), −∞< x <∞

with moments
β2k+1 = 0 and β2k = σ

2kk! for all k ≥ 0.

If σ = 1, then it is known as standard symmetrized Rayleigh law and is denoted by R.
In Section 5, we establish Cramer’s theorem: µ� ν is symmetrized Rayleigh, if and only if both
µ and ν are symmetrized Rayleigh. We also prove the half independent CLT: the n fold half in-
dependent convolution of symmetric laws satisfying suitable moment condition, when scaled byp

n, converges to the symmetrized Rayleigh distribution. An appropriate CLT in a C∗-algebra also
holds and is proved by computation of moments using symmetric partitions.

2 The three notions of independence

2.1 Preliminaries of noncommutative probability spaces

Let (A ,τ) be a noncommutative ∗-probability space where A is a ∗− unital complex algebra
(with unity 1) and τ :A → C is a linear functional satisfying τ(1) = 1. At times we shall assume
τ is a state, that is τ(a) ≥ 0 if a ≥ 0 (a ≥ 0 means a∗ = a and its spectrum sp(a) is nonnegative).
The elements of the algebra will be referred to as random variables and we shall concentrate only
on self adjoint random variables. By the law of self adjoint a ∈A , we mean the collection {mk(a)}
where

mk(a) = τ(a
k), k ≥ 1 (2)

are the moments of a. Suppose τ is a state and a is a self adjoint random variable. Then given any
n and any collection of complex numbers {ci , 0≤ i ≤ n}

n
∑

k=0

n
∑

l=0

ckτ(a
k+l)c̄l = τ

 

(
n
∑

k=0

ckak)(
n
∑

l=0

cl a
l)∗
!

≥ 0.

Then {mk(a), k ≥ 0} is a moment sequence, and there exists a measure µa on the real line such
that

mk(a) = τ(a
k) =

∫

x kdµa(x). (3)
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µa may not be unique. A sufficient condition for µa to be unique is Carleman’s condition
∑

[τ(a2k)]−1/(2k) =∞. (4)

In that case we also call µa to be the law of a.
When (A ,τ) is a C∗-algebra (that is, A is a ∗-algebra equipped with a norm ‖ · ‖ such that
‖ab‖ ≤ ‖a‖ ‖b‖ and ‖aa∗‖= ‖a‖2 for a, b ∈A ), the law µa of a exists and is compactly supported.
More generally, suppose that the algebra is not necessarily C∗ and τ is a state and for the self
adjoint random variable a, τ(a2k) ≤ C kk! for all k. Then {τ(a2k)} satisfies condition (4), and
hence µa is the law of a but it is not necessarily compactly supported.
For random variables {ai}i∈J , their joint moments are the collection {τ(ai1 ai2 . . . aik), k ≥ 1}, where
each ai j

∈ {ai}i∈J .
Random variables {ai,n}i∈J ∈ (An,τn) are said to converge in law to {ai}i∈J ∈ (A ′,τ′) if each joint
moment of {ai,n}i∈J converges to the corresponding joint moment of {ai}i∈J .

2.2 Independence: free, classical, and half

Unital subalgebras {Ai}i∈J ⊂A are called freely independent or simply free if

τ(a j) = 0, a j ∈Ai j
and i j 6= i j+1 for all j⇒ τ(a1 · · · an) = 0.

Random variables (or elements of an algebra) {a1, a2, · · · } are called free if the subalgebras gen-
erated by them are free.
Unital subalgebras {A j} j∈J ⊂A are said to be independent if they commute and

τ(a1 · · · an) = τ(a1) · · ·τ(an) for all a j ∈Ai j
where k 6= l ⇒ ik 6= il .

Two elements a and b of any algebra are said to be independent if the two unital algebras gener-
ated by them are independent.
Let {ai}i∈J be noncommutative elements of (A ,τ). We say that they half commute if

aia jak = aka jai ,

for all i, j, k ∈ J . Clearly, if {ai}i∈J half commute then a2
i commutes with a j and a2

j for all i, j ∈ J .
The random variable a = ai1 ai2 . . . ain where each ai j

∈ {ai}i∈J , is said to be balanced (with respect
to {ai}), if each random variable ai appears same number of times in odd and even positions of a.
If a is not balanced, we say it is unbalanced. So if n is odd then a is automatically unbalanced.

Definition 1. Half commuting elements {ai}i∈J are said to be half independent if the following hold:

1. The variables {a2
i }i∈J are independent.

2. If a = ai1 ai2 · · · ain is unbalanced with respect to {ai}i∈J , then τ(a) = 0.

This definition of half independent elements is equivalent to that given in Banica, Curran and
Speicher (2009)[2]. Note that, from the second condition the odd moments of half independent
elements are zero.
The three notions of independence are different from each other. See Bose, Hazra and Saha
(2010)[7] for details. Here are two examples of half independence.
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Example 1. (Banica, Curran and Speicher (2009) [2]) Let (Ω,B ,µ) be a probability space and let
{ψi} be a family of independent complex Gaussian random variables. Define ai ∈ (M2(L(µ)), E[tr(·)])
by

ai =

�

0 ψi

ψi 0

�

.

where tr(·) is normalized trace andψi is the complex conjugate ofψi . Then {ai} are half independent.
The law of each ai is a symmetrized Rayleigh distribution.

Example 2. (Bose, Hazra and Saha (2010)[7]) A reverse circulant matrix is an n× n symmetric
matrix whose (i, j)-th entry is given by x(i+ j) mod n. The sequence {x i} is called the input sequence.
Let {RCi,n}1≤i≤p be an independent (across i) sequence of n× n reverse circulant matrices each with
an independent input sequence with mean 0, variance 1 and for all k ≥ 1,

sup
n∈N

sup
1≤i≤p

sup
1≤m≤l≤n

E[|RCi,n(m, l)|k]≤ ck <∞.

Then {n−1/2RCi,n}1≤i≤p ∈ (Mn(L(µ)), E[tr(·)]), converges to half independent {a1, a2, . . . , ap} where
ai is as in Example 1 with E |ψi |2 = 1.

Incidentally, in Proposition 2.8 of Banica, Curran and Speicher (2010)[2] it was shown that if {x i}
are half independent elements in a C∗ probability space, then there exists independent complex
valued random variables {ψi} with E[ψn

iψ
m] = 0 for m 6= n and x i has the same distribution as

yi where

yi =

�

0 ψi

ψi 0

�

.

The above result reduces the study of half independence to the study of 2× 2 matrices. However,
we emphasize that this is true only in a C∗ probability space. There is no existing notion of half
independence of arbitrary random variables or probability measures.

Remark 1. As pointed out above, there is no existing notion of half independence for random vari-
ables affiliated to some von Neumann algebra. One may proceed along the lines of Bercovici and
Voilculescu (1993)[4] to define half independence for self adjoint affiliated random variables. Given
two symmetric measures µ and ν , it would be interesting to get hold of two self adjoint affiliated
random variables which are half independent and have laws µ and ν . We provide some lead to this
approach in Subsection 4.2.

In particular, given a sequence of measures with unbounded support, one does not know how to
find half independent random variables with these distributions. We shall address this issue in
Section 4.

3 Symmetric partitions and half independence

The proof of the above matricial limit (Example (2)) given in Bose, Hazra and Saha (2010)[7]
suggests that there is a suitable class of partitions which is tied to the notion of half independence
just as noncrossing partitions are tied to free independence. In this section, we show that symmet-
ric partitions may be used to develop a suitable notion of half cumulants. The corresponding half
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cumulant generating function captures the notion of half independence. This will serve as the pre-
cursor of the general notion of half cumulants and half cumulant generating function for arbitrary
symmetric probability measures to be developed in the next section.
Any set K of integers will be called symmetric if it has an equal number of odd and even integers.
Any partition π of K will be called symmetric if each partition block is symmetric. The set of all
symmetric partitions of {1,2, . . . , 2n} will be denoted by E(2n). Given a sequence {ln :A n → C}
of maps and partition π of {1, 2, . . . , n} define

lπ(a1, a2, . . . , an) =
∏

V∈π
l|V |(a j1 , . . . , a j|V |), (5)

where V = ( j1, j2, · · · , j|V |) is a block of the partition π.

Definition 2. Let (A ,τ) be a noncommutative probability space. Let {ai}i∈J be random variables in
A and suppose that τ(ai1 · · · aik) = 0 when k is odd and ii , · · · , ik ∈ J. Then define half cumulants
{rk} of {ai}i∈J , recursively by the following moment cumulant relation

τ(ai1 ai2 . . . aik) =
∑

π∈E(k)

rπ(ai1 , ai2 , . . . , aik). (6)

Observe that both sides of the moment cumulant relation above are equal to zero for odd values
of k and {rn} are multilinear maps.
For any self adjoint a ∈ (A ,τ), the half cumulants of a are denoted by

rn(a) = rn(a, a, . . . , a), n≥ 1. (7)

Note that r2n+1(a) = 0 for all n ≥ 0. The half cumulant generating function of a is defined as the
formal power series

Ha(t) =
∑

n≥1

(−1)n
r2n(a)
(n!)2

t2n. (8)

The reason for the extra n! in the denominator shall be clear as we proceed.

Example 3. If the law of a is the symmetrized Rayleigh law R, then it is easy to see that

r2(a) = 1, r2n(a) = 0 (for n> 1) and Ha(t) =−t2. (9)

Suppose {ai} are half independent. Using (6) recursively, it is easy to see that for any even k > 1,

rk(ai1 , ai2 , . . . , aik) = 0 if ai1 ai2 . . . aik is unbalanced. (10)

For example, let {a1, a2} ∈ (A ,τ), be half independent. Then

r2(a1, a2) = τ(a1a2) = 0 and r2(a2, a1) = τ(a2a1) = 0.

Again using (6),

r4(a1, a1, a1, a2) = τ(a1a1a1a2)− r2(a1, a1)r2(a1, a2)− r2(a1, a1)r2(a1, a2) = 0,

r4(a1, a2, a1, a2) = τ(a1a2a1a2)− r2(a1, a2)r2(a1, a2)− r2(a1, a2)r2(a1, a2) = 0.

Classical independence and freeness are characterized by classical cumulants and free cumulants
respectively (see Theorem 5.3.15 of Anderson et. al. (2009)[1] or Theorem 11.16 of Nica and
Speicher (2006)[10] for the free cumulant results). The corresponding characterization for half
independent random variables is the following:
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Theorem 1. Let {ai}1≤i≤l be a sequence of self adjoint half commuting random variables and suppose
for all 1≤ j ≤ l, a j occurs k j times in a = ai1 ai2 . . . ai2n

.
(i) Suppose {ai} are half independent and a is balanced with respect to {ai}1≤i≤l . If ki , k j ≥ 2 for
some 1≤ i, j ≤ l, then r2n(ai1 , ai2 , . . . , ai2n

) = 0.
(ii) If τ(ai1 ai2 . . . aik) = 0 whenever k is odd and r2n(ai1 , ai2 , . . . , ai2n

) = 0 whenever ki , k j ≥ 1 for
some 1≤ i, j ≤ l, then {ai}1≤i≤l are half independent.

Proof of the above theorem is a little long and we postpone it to Section 6.
An important consequence of Theorem 1 is the following corollary which is analogous to the
additivity of cumulant generating function and R-transform for classical independence and free
independence respectively.

Corollary 1. If a and b are self adjoint, half commuting and half independent then

r2n(a+ b) = r2n(a) + r2n(b) for all n≥ 1, and Ha+b(t) = Ha(t) +Hb(t),

where the second equality holds between formal power series.

Proof. Note that r2(a, b) = τ(ab) = 0. Hence the result is true for n= 2 since

r2(a+ b) = r2(a+ b, a+ b)
= r2(a, a+ b) + r2(b, a+ b)
= r2(a, a) + r2(a, b) + r2(b, a) + r2(b, b)
= r2(a) + r2(b).

For n> 2,

r2n(a+ b) = r2n(a+ b, .., a+ b)
= r2n(a, a+ b, ..., a+ b) + r2n(b, a+ b, ..., a+ b)

= r2n(a, a..., a) + r2n(b, b, ..., b) +
∑

(a1,a2,...a2n): ai∈{a,b}, ai 6=a∀i

r2n(a1, a2, . . . , a2n).

Now if (a1, a2, . . . , a2n) is unbalanced then by (10), r2n(a1, a2, . . . , a2n) = 0. If (a1, a2, . . . , a2n) is
balanced but a, b both appear in the tuple, then by Theorem 1 (i), r2n(a1, a2, . . . , a2n) = 0. So only
the first two terms survive in the last expression and hence r2n(a+ b) = r2n(a) + r2n(b).

We now proceed to express the relation between moments and half cumulants of a random vari-
able in terms of appropriate generating functions. This will leads us to the appropriate generating
functions for arbitrary probability measures in the next section. Recall that from Definition 2,

m2n(a) =
∑

π∈E(2n)

rπ(a).

Theorem 2.

m2n(a) =
n−1
∑

s=0

�

n

s

��

n− 1

s

�

r2(n−s)(a)m2s(a).

Proof. We adapt the proof of Proposition 7.7 of Banica, Curran and Speicher (2009)[3] for the
recursion formula for cardinality of E(2n). Fix any π ∈ E(2n). Then each partition block has same
number of odd and even members. Now place the sequence of odd numbers in one row and place
the even members in the next row. In this way, E(2n) is viewed as the set of partitions between
the upper and lower rows of n points such that each partition block has same number of upper
and lower members. Now to form any such partition, we perform the following steps:
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• First pick a number s ∈ {1,2, . . . , n}. This shall be the total number of odd elements in the
partition block containing 1.

• Connect 1 in the upper row to some other (s−1) points in the upper row. So we have chosen
all the odd members of the partition block that contains 1.

• Now choose s points in the lower row and connect them to the already connected s points
in the upper row, thus completing the symmetric partition block of size 2s containing 1.

• Now partition the remaining (n− s) odd points of the upper row and the remaining (n− s)
even points in the lower row in any symmetric way to essentially partition a set of size
2(n− s) in a symmetric way.

The number of such partitions is clearly
�n−1

s−1

��n
s

�

#E2(n−s). Now observe that for any fixed s, the
total contribution to m2n(a) from all these partitions equals r2s(a)m2(n−s)(a). Hence

m2n(a) =
n
∑

s=1

�

n− 1

s− 1

��

n

s

�

r2s(a)m2(n−s)(a)

=
n−1
∑

s=0

�

n− 1

s

��

n

s

�

r2(n−s)(a)m2s(a).

We now convert the above relation to a relation between appropriate generating functions of
{m2k} and {r2k}. We drop the argument a in these expressions for ease of notation. Consider the
following two formal power series:

T̃ (t) =
∞
∑

n=0

m2n t2n

(n!)2
and H̃(t) =

∞
∑

n=0

r2n t2n

(n!)2
. (11)

Their formal derivatives are:

T̃ ′(t) = 2
∞
∑

n=1

m2n t2n−1

n!(n− 1)!
and H̃ ′(t) = 2

∞
∑

n=1

r2n t2n−1

n!(n− 1)!
.

Corollary 2. The above formal power series are related by the following relation, T̃ ′(t) = T̃ (t)H̃ ′(t)
where T̃ (0) = 1 and H̃(0) = 1. When considered as appropriate functions, this differential equation
has a solution T̃ (t) = exp(H̃(t)− 1). Hence, formally H̃(t) = 1+ log T̃ (t).

Proof. Using Theorem 2,

T̃ ′(t) = 2
∞
∑

n=1

m2n t2n−1

n!(n− 1)!
= 2

∞
∑

n=1

n−1
∑

s=0

�n
s

��(n−1)
s

�

(n− s)!(n− s− 1)!
r2(n−s)m2s t

2n−1.

= 2
∞
∑

n=1

n−1
∑

s=0

1

(s!)2n!(n− 1)!
r2(n−s)m2s t

2n−1 = 2
∞
∑

s=0

∞
∑

n=s+1

r2(n−s) t
2(n−s)−1

(n− s)!(n− s− 1)!
m2s t

2s

(s!)2

= 2
∞
∑

s=0

∞
∑

l=1

r2l t
2l−1

l!(l − 1)!
m2s t

2s

(s!)2
= T̃ (t)H̃ ′(t).

Rest of the claims now follow easily.
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4 T -transform

In this section we introduce a new transform, which we call the T -transform, appropriate for
the study of half independence. We show that the T -transform is very closely related to the
characteristic function.

4.1 T -transform for general probability measures

The finiteness of the two power series in (11) impose growth conditions on the moments, thereby
restricting the class of variables (or measures) for which the transforms are defined. We now
remedy this.
When a ∈ (A ,τ) is a self adjoint random variable with a compactly supported law µa, using
Fubini’s theorem,

T̃ (t) =
∞
∑

n=0

m2n(a)t2n

(n!)2
=

∫

R

∞
∑

n=0

(x t)2n

(n!)2
dµa(x) =

∫

R

I0(2x t)dµa(x) (12)

where

I0(t) =
∞
∑

n=0

(t/2)2n

(n!)2
=

1

π

∫ π

0

cosh(t cosθ)dθ

is the modified Bessel function of order 0 (see Section 3.7 of Watson (1995)[12]).
Suppose µa is symmetric about 0. Let φµa

denote the characteristic function of µa. Then we know
that φµa

(t) is real. Using this and (12),

T̃ (i t) =
1

π

∫

R

∫ π

0

cosh(2x i t cosθ)dθdµa(x)

=
1

π

∫ π

0

∫

R

cos(2x t cosθ)dµa(x)dθ

=
1

π

∫ π

0

φµa
(2t cosθ)dθ (since µa is symmetric about 0).

We have thus arrived at the following definition:

Definition 3. For any law µ which is symmetric about zero (but does not necessarily have compact
support), define the transform,

Tµ(t) = T̃ (i t) =
1

π

∫ π

0

φµ(2t cosθ)dθ , t ∈R.

We shall also use Ta to denote the transform Tµa
. If µ is compactly supported or more generally if

m2n =
∫

R
x2ndµ(x)≤ Cnn! for all n, then it easily follows from the above discussions that

Tµ(t) =
∞
∑

n=0

m2n(−1)n t2n

(n!)2
for all t ∈R. (13)

Example 4. If µ is symmetrized Rayleigh Rσ, then m2n = σ2nn! for all n and hence

Tµ(t) =
∞
∑

n=0

m2n(−1)n t2n

(n!)2
=
∞
∑

n=0

(−1)n(σt)2n

n!
= exp(−σ2 t2), t ∈R.
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We now connect T and φ through product convolution. For probability measures µ on R and ρ
on (0,∞), we use the product convolution þ where

(µþρ)(B) =
∫ ∞

0

µ(x−1B)ρ(d x) = (µ⊗ρ) f −1(B) with f (x , y) = x y, (14)

for any Borel set B. This gives a probability measure on R since µ(x−1R) = 1 for every x 6= 0. We
skip the proof of the following Lemma.

Lemma 1. Let ρ be the arcsine law with density 2
π

1p
1−α2

for 0< α < 1. If µ is a probability measure

on R which is symmetric around 0, then

Tµ(t) = φµþρ(2t).

Remark 2. Motivated by random walks with spherical symmetry, Kingman (1963) [8] (see Section
4) defined the radial characteristic function nψX (t) (in n dimensions) of a nonnegative random
variable X with law µ. Interestingly the final expression for T-transform is related to this:

Tµ(t) =
nψX (2t) for n= 2.

Kingman showed that the radial characteristic function is measure determining and convergence de-
termining for nonnegative random variables. Although we are dealing with measures symmetric about
0, we can use Kingman’s result to derive similar properties for T-transform.

The next Lemma follows easily from Lemma 2 and Theorem 2 of Kingman (1963)[8] respectively
or it can be proved directly using the theory of Mellin transform and weak convergence.

Lemma 2. (i) Let µ and ν be two symmetric (about zero) probability measures. Then Tµ(t) = Tν(t)
for all t ∈R if and only if µ= ν .
(ii) Suppose {µn} and µ are symmetric probability measures. Then µn converges to µ weakly, if and
only if Tµn

(t) converges to Tµ(t) for all t ∈R.

Since Tµ(t) = φµþρ(t) and φ is continuous at 0, the logarithm of T is well defined in a neighbour-
hood of 0. This leads us to the following definition of half cumulant generating function which is
more general than the one given in (8).

Definition 4. The half cumulant generating function of any symmetric probability measure µ is
defined as

Hµ(t) = log Tµ(t) (in an appropriate neighborhood of zero).

The half cumulant generating function Ha of any a in (A ,τ) is Hµa
whenever µa exists and is

symmetric.

Example 5. If µ is symmetrized Rayleigh Rσ, (see Example 4), then Tµ(t) = exp(−σ2 t2) is non-zero
for all t ∈R. So

Hµ(t) =−σ2 t2 for all t ∈R.

Conversely, if Hµ(t) =−σ2 t2, then µ is the symmetrized Rayleigh law Rσ.
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4.2 Half convolution of two symmetric measures

As mentioned before, there is no existing notion of half independence for unbounded operators.
Here we do not give a definition for half independence for such operators but we define a suitable
notion of half convolution for arbitrary probability measures with the help of the above transforms.
We proceed as follows: suppose (A ,τ) is a C∗-probability space and a, b ∈ (A ,τ) are two self
adjoint, half independent random variables with compactly supported measures µa and µb on
R respectively. Then obviously, µa and µb are symmetric and in a neighbourhood of zero the
following relations hold.

Ha+b(t) = Ha(t) +Hb(t) and Ta+b(t) = Ta(t)Tb(t). (15)

In this case the measure µa+b is the measure corresponding to the random variable (a+b) ∈ (A ,τ)
and is compactly supported and symmetric. Note that from the second relation of (15) we have

φµa+bþρ(t) = φ(µaþρ)∗(µbþρ)(t)

in a neighbourhood of zero. As the measures above are compactly supported the relation holds
for all t ∈R and hence Ta+b(t) = Ta(t)Tb(t) for all t ∈R.
We now define the half convolution (notation: �) of two arbitrary symmetric measures µ and
ν . First assume that µ and ν are compactly supported measures. Now using similar argument
as given in Proposition 2.8 of Banica, Curran and Speicher (2010)[2], we can construct two half
independent random variables y1, y2 as follows:
Let X1, X2 be two independent random variables such that X1 and X2 have law µ and ν respectively.
Let U1, U2 be two independent Haar unitary random variables which are independent from X1, X2
and let ξi = UiX i . Then ξ1,ξ2 are independent and

E[ξn
i ξ̄

m
i ] = E[X n+m

i ]E[Un
i Ūm

i ] = δnm E[X n+m
i ]

=
�

E[X 2n
i ] if n= m

0 if n 6= m. (16)

Now define the variables y1, y2 as

yi =
�

0 ξi

ξ̄i 0

�

.

Then it is easy to check using (16) that y1, y2 are half independent and have laws µ, ν respectively.
Then from Lemma 1

Ty1
(t) = Tµ(t) = φµþρ(2t) and Ty2

(t) = Tν(t) = φνþρ(2t).

Consider the product Tµ(t)Tν(t). Then due to relation (15),

Tµ(t)Tν(t) = Ty1
(t)Ty2

(t) = Ty1+y2
(t) = Tβ(t) = φβþρ(2t),

where β is a symmetric measure corresponding to random variable (y1+ y2) and this is unique by
Lemma 2 (i). We define β as half convolution of µ and ν , that is,

µ� ν := β .

Now suppose µ and ν are two arbitrary symmetric measure. Define for n ∈ N, the two measures
µn and νn by

µn(B) = µ(B ∩ [−n, n]) and νn(B) = ν(B ∩ [−n, n]), for any Borel set B ⊆R.
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Then µn and νn are compactly supported symmetric measure on R and µn,νn converges weakly
to µ,ν respectively. Then as before we have measures βn such that

Tµn
(t)Tνn

(t) = φµnþρ(2t)φνnþρ(2t) = φβnþρ(2t).

Since µn,νn converges weakly to µ,ν respectively, φµnþρ(2t)φνnþρ(2t) converges and henceφβnþρ(2t)
converges for all t. Hence βn þρ converges weakly to some measure on R. It easily follows that
{βn} is tight and βn þρ converges weakly to β þρ for some unique measure β . Uniqueness of β
follows from Lemma 2(i) and we have Tµ(t)Tν(t) = Tβ(t) for all t ∈ R. Hence we arrive at the
following definition.

Definition 5. For any two symmetric probability measures µ and ν , their half independent convolu-
tion is defined as the unique measure β such that Tµ(t)Tν(t) = Tβ(t) for all t ∈R. We write

µ� ν := β .

Note that � is associative and commutative on the space of symmetric measures.

Remark 3. This convolution is quite similar to the notion of radial sum in n dimensions of two
independent nonnegative random variables X , Y defined in Section 3 of Kingman (1963)[8].

5 Some properties of half independent convolution

In this section, we establish the CLT and Cramer’s theorem for half independent convolutions. For
clarity, we present both, the algebraic version and the measure version in each case. First the
Cramer’s theorem.

Theorem 3. (i) Let a and b be self adjoint and half independent random variables of a ∗-probability
space (A ,τ) where τ is a state. Suppose µ a+bp

2
is Rσ. Then µa and µb exist, and are symmetrized

Rayleigh.
(ii) If µ and ν are symmetric probability measures such that µ�ν is symmetrized Rayleigh, then both
µ and ν are symmetrized Rayleigh.

Proof. (i) Without loss, assume that σ = 1. Then

τ(((a+ b)/
p

2)2k) = k!.

From this, and half independence, it is easy to see that

τ(a2k+1) = 0 and τ(a2k)≤ 2kk!. (17)

Thus there exists unique symmetric probability measures µa and µb such that

τ(ak) =

∫

x kdµa(x) and τ(bk) =

∫

x kdµb(x).

It easily follows that the characteristic functions of µa and µb are real and hence they are symmet-
ric about origin. Hence for all t,

�

T ap
2
(t)T bp

2
(t)
�

= exp(−t2) .
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So we have
�

φµaþρ(2t)
��

φµbþρ(2t)
�

= exp(−t2).

Hence, by the classical Cramer’s theorem it follows that each of the product on the left side must
be the characteristic function of a normal distribution. So T ap

2
(t) = exp(− t2

σ2 ) for some σ. As
a consequence, by the uniqueness Lemma 2, a is symmetrized Rayleigh Rp2/σ. Likewise, b is
symmetrized Rayleigh Rp2/σ′ .
The proof of the second part follows easily from the above arguments.

The next result is a CLT for half independent random variables in a noncommutative ∗-probability
space (A ,τ). It is relevant to recall that the notion of half independence holds in any such space.
However, the corresponding probability laws may not exist and hence the developments of the
previous section do not apply. As a consequence, the proof of this theorem is based solely on
Definition 1 and counting via symmetric partitions.

Theorem 4. Let {x i} be a sequence of self adjoint half independent random variables in (A ,τ) with
τ(x i) = 0 and τ(x2

i ) = 1 and supi τ(x
k
i ) <∞ for every k. If Sn = x1 + x2 + · · ·+ xn, then Sn/

p
n

converges in law to the standard symmetrized Rayleigh distribution R.

Proof. To show the required convergence it is enough to show that,

τ(S2k
n )

nk
→ k! and

τ(S2k+1
n )

nk+1/2
→ 0.

By applying half independence and unbalancedness of each term in the expansion of (x1 + · · ·+
xn)2k+1, it immediately follows that τ((x1 + · · ·+ xn)2k+1) = 0. It is thus enough to consider the
even moments.
Consider any q = x i1 · · · x i2k

in the expansion of (x1 + · · ·+ xn)2k which is unbalanced. Then by
half independence τ(q) = 0. Thus we are left with only balanced monomials q. We divide such
monomials into two sets:

M1 = {x i1 · · · x i2k
; i j ∈ {1, 2, · · · , n} balanced and every random variable appears exactly twice},

M2 = {x i1 · · · x i2k
; i j ∈ {1, 2, · · · , n} balanced and at least one random variable appears more than twice}.

Observe that M2 has at most (k− 1) many distinct random variables and hence

#M2 ≤ Ckn(n− 1) · · · (n− k+ 2),

for some constant Ck that depends only on k. Now since all moments are finite,

1

nk

∑

M2

τ(x i1 · · · x i2k
)≤ C ′k

n(n− 1) · · · (n− k+ 2)

nk
→ 0 as n→∞.

Now consider M1. Pick a fixed set of k variables from {x1, . . . , xn}. Then there are exactly k!
ways of forming a monomial of length 2k of these k variables where each of the variables appears
exactly once in an odd position and once in an even position. Hence

#M1 = k!× n(n− 1) · · · (n− k+ 1).

Therefore as n→∞
1

nk

∑

M1

τ(x i1 · · · x i2k
) =

#M1

nk
τ(x2

1 · · · x
2
k) =

k!× n(n− 1) · · · (n− k+ 1)

nk
→ k!.

Hence the result follows.
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The CLT for half independent convolution of measures is stated next. Its proof is easy and is in
spirit similar to the proof of Theorem 6 in Kingman (1963)[8].

Theorem 5. Let {µn} be a sequence of symmetric probability measures with variance 1. Suppose for
every ε > 0,

1

n

n
∑

k=1

∫

{x: |x |≥ε
p

n}
x2dµk(x)→ 0 as n→∞ (Lindeberg’s condition). (18)

Then
δn := D 1p

n
µ1
� D 1p

n
µ2
� · · · � D 1p

n
µn

converges weakly to R where Dcµi
(B) = µi(c−1B) for any Borel set B in R.

Proof. By definition of half convolution

Tδn
(t) = TD 1p

n
µ1
(t)TD 1p

n
µ2
(t) · · · TD 1p

n
µn
(t)

= φD 1p
n
µ1
þρ(2t)φD 1p

n
µ2
þρ(2t) · · ·φD 1p

n
µn
þρ(2t),

where ρ is as defined in Lemma 1. Note that for any ε > 0

1

n

n
∑

k=1

∫

{x: |x |≥ε
p

n}
x2d(µk þρ)(x) =

1

n

n
∑

k=1

2

π

∫ 1

0

∫

{x: |xα|≥ε
p

n}

x2α2

p

1−α2
µk(x)dα

=
2

π

∫ 1

0

α2

p

1−α2





1

n

n
∑

k=1

∫

{x: |xα|≥ε
p

n}
x2dµk(x)



 dα.(19)

Now as n→∞, last expression in (19) goes to 0 by dominated convergence theorem and condition
(18). Hence the sequence of measure {µn þρ} satisfies Lindeberg’s condition. Also

∫ 1

0

x2d(µk þρ)(x) =
2

π

∫ 1

0

1
p

1−α2

∫

R

x2α2dµk(x)dα=
1

2
.

Hence by classical central limit theorem (see Billingsley (1995)[6]) as n→∞,

Tδn
(t)→ φN

0, 1
2

(t) = exp(−t2)

where N0, 1
2

is the Gaussian measure with mean zero and variance 1/2. We know TR(t) = exp(−t2).
Hence δn converges weakly to the standard (symmetrized) Rayleigh measure R.

6 Proof of Theorem 1

Proof. (i) For convenience, denote the trivial partition of {1,2, . . . , 2n} with one single block by
I2n. We prove the first part of the theorem through induction on d (which equals the number of
distinct random variables in a = ai1 ai2 . . . ai2n

) and n. For each fixed values of d we use induction
on n. We use notation D1 for induction on d and D2 for induction on n.
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Now from relation (6),

τ(ai1 ai2 . . . ai2n
) =

∑

π∈E(2n)

rπ(ai1 , ai2 , . . . , ai2n
). (20)

If π ∈ E(2n) has a block V such that (a j1 a j2 . . . a j|V |) is unbalanced, then by observation (10)

rπ(ai1 , ai2 , . . . , ai2n
) = 0.

Therefore relation (20) reduces to

τ(ai1 ai2 . . . ai2n
) =

∑

π∈E′(2n)

rπ(ai1 , ai2 , . . . , ai2n
), (21)

where
E′(2n) = {π ∈ E2n : for each block V of π, a j1 a j2 . . . a j|V | is balanced}.

Note that E′(2n) depends on the considered tuple (ai1 , ai2 , . . . , ai2n
). We shall use relation (21)

repeatedly in the proof.
First assume d = 2. Consider (ai1 , ai2 , . . . , ai2n

)where ai j
∈ {a1, a2} and k1, k2 ≥ 2. So the minimum

possible value of n is 2. For n= 2, using (21), half commutativity and half independence,

r4(ai1 , ai2 , ai3 , ai4) = τ(ai1 ai2 ai3 ai4)−
∑

π∈E′(4)−I4

rπ(ai1 , ai2 , ai3 , ai4)

= τ(a2
1)τ(a

2
2)− r2(a1, a1)r2(a2, a2)

= τ(a2
1)τ(a

2
2)−τ(a

2
1)τ(a

2
2) = 0.

Now assuming that the result is true up to (n− 1), we prove it for any n (induction D2). Again by
(21) and half independence,

r2n(ai1 , ai2 , . . . , ai2n
) = τ(ai1 ai2 . . . ai2n

)−
∑

π∈E′(2n)−I2n

rπ(ai1 , ai2 , . . . , ai2n
)

= τ(a2k1
1 )τ(a

2k2
2 )−

∑

π∈E′(2n)−I2n

rπ(ai1 , ai2 , . . . , ai2n
).

Let
J j = { j1, j2, . . . , j2k j

}

be the positions of a j for j = 1, 2 in (ai1 , ai2 , . . . , ai2n
). Define

Π = {π ∈ E′(2n)− I2n : if V is a block in π then either V ⊂ J1 or V ⊂ J2}. (22)

Note that if π ∈ E′(2n)−Π, then using (2) and induction D2, rπ(ai1 , . . . , ai2n
) = 0. Hence

r2n(ai1 , ai2 , . . . , ai2n
) = τ(a2k1

1 )τ(a
2k2
2 )−

∑

π∈Π
rπ(ai1 , ai2 , . . . , ai2n

).

Since ai1 ai2 . . . ai2n
is balanced, J j , j = 1,2 are symmetric. Hence if Π j denotes all symmetric

partitions of { j1, . . . , j2k j
} then it is in bijection with E(2k j). That is

Π j := E{ j1, . . . , j2k j
} ' E(2k j) for j = 1, 2. (23)
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Now observe that for any π ∈ Π there exist unique σ = {V1, V2, . . . Vl} ∈ Π1 and unique η =
{U1, U2, . . . Us} ∈ Π2 where Vi , Ui are blocks such that π = {V1, V2, . . . Vl , U1, U2, . . . Us} := σ t η.
Thus there is a bijection between Π and Π1 ?Π2 := {σtη : σ ∈ Π1 and η ∈ Π2}. Therefore

r2n(ai1 , ai2 , . . . , ai2n
) = τ(a2k1

1 )τ(a
2k2
2 )−

∑

π∈Π
rπ(ai1 , ai2 , . . . , ai2n

)

= τ(a2k1
1 )τ(a

2k2
2 )−

∑

σ∈Π1, η∈Π2

rσtη(ai1 , ai2 , . . . , ai2n
)

= τ(a2k1
1 )τ(a

2k2
2 )−

∑

σ∈Π1, η∈Π2

rσ(a11
, a12

, . . . , a12k1
)rη(a21

, a22
, . . . , a22k2

)

= τ(a2k1
1 )τ(a

2k2
2 )−

∑

σ∈E(2k1), η∈E(2k2)

rσ(a1, a1, . . . , a1)rη(a2, a2, . . . , a2)

= τ(a2k1
1 )τ(a

2k2
2 )−

�

∑

σ∈E(2k1)

rσ(a1, a1, . . . , a1)
��

∑

η∈E(2k2)

rη(a2, a2, . . . , a2)
�

= τ(a2k1
1 )τ(a

2k2
2 )−τ(a

2k1
1 )τ(a

2k2
2 ) = 0 (using (6)).

Hence the result is true for d = 2.
Now assuming that the result is true for m many random variables where m ≤ d − 1, we shall
prove the result for m = d (induction D1). For m = d, the minimum possible value of n is d and
each k j = 2 for 1≤ j ≤ d. So for n= d,

r2d(ai1 , ai2 , . . . , ai2d
) = τ(ai1 ai2 . . . ai2d

)−
∑

π∈E′(2d)−I2d

rπ(ai1 , ai2 , . . . , ai2d
)

= τ(a2
1)τ(a

2
2) · · ·τ(a

2
d)−

∑

π∈E′(2d)−I2d

rπ(ai1 , ai2 , . . . , ai2d
). (24)

Now observe that if π ∈ E′(2d)− I2d then either π has a block V such that 4 ≤ #V ≤ 2(d − 1) or
each block of π has size 2. For the first case, by definition of cumulant (2) and induction D1,

rπ(ai1 , ai2 , . . . , ai2d
) = 0.

So in (24), we are left with partitions π ∈ E′(2d)− I2d whose each partition block is of size 2.
Hence

r2d(ai1 , ai2 , . . . , ai2d
) = τ(a2

1) · · ·τ(a
2
d)−

∑

π∈E′(2d)
π={V1,...,Vd},#Vi=2 ∀ i

rπ(ai1 , . . . , ai2d
)

= τ(a2
1) · · ·τ(a

2
d)− r2(a1, a1) · · · r2(ad , ad)

= τ(a2
1) · · ·τ(a

2
d)−τ(a

2
1) · · ·τ(a

2
d) = 0.

So we have established the result for n= d.
Still holding m = d and assuming that the result is true up to (n− 1), we now prove it for n. Let
ai1 ai2 . . . ai2n

be balanced. Since we have d distinct random variables, each k j ≥ 2 for 1≤ j ≤ d. As
before, let J j = { j1, j2, . . . , j2k j

} be the positions of a j in (ai1 , ai2 , . . . , ai2n
) for 1 ≤ j ≤ d. By similar

argument as given in d = 2 case, each J j is symmetric. Now

r2n(ai1 , ai2 , . . . , ai2n
) = τ(ai1 ai2 . . . ai2n

)−
∑

π∈E′(2n)−I2n

rπ(ai1 , ai2 , . . . , ai2n
)
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= τ(a2k1
1 )τ(a

2k2
2 ) · · ·τ(a

2kd
d )−

∑

π∈E′(2n)−I2n

rπ(ai1 , ai2 , . . . , ai2n
).

Suppose π ∈ E′(2n)− I2n has t (≥ 2) many blocks, V1, . . . , Vt . Suppose for some s, 1 ≤ s ≤ t;
Vs ∩ Jm 6= ; for at least two values of m, where 1≤ m≤ d. If number of such m is strictly less than
d, then by induction D1 and Definition (2), rπ(ai1 , ai2 , . . . , ai2n

) = 0. If number of such m is equal
to d, then by induction D2 (since, #V < 2(n− 1)) and (2), rπ(ai1 , ai2 , . . . , ai2n

) = 0. So we are left
with only π ∈ Π where Π is as defined below. Let

Π = {π ∈ E′(2n)− I2n : π= {V1, . . . , Vl} and for all i, Vi ⊂ Jr for some 1≤ r ≤ d},
Π j = E( j1, j2, . . . , j2k j

)' E(2k j), 1≤ j ≤ d.

Then following the argument given for d = 2 case, we have

r2n(ai1 , ai2 , . . . , ai2n
) = τ(a2k1

1 ) · · ·τ(a
2kd
d )−

∑

π∈Π
rπ(ai1 , ai2 , . . . , ai2n

)

= τ(a2k1
1 ) · · ·τ(a

2kd
d )−

∑

π1∈Π1,...,πd∈Πd

rπ1t···tπd
(ai1 , ai2 , . . . , ai2n

)

= τ(a2k1
1 ) · · ·τ(a

2kd
d )−

∑

π1∈Π1,...,πd∈Πd

d
∏

j=1

rπ j
(a j1 , a j2 , . . . , a j2k j

)

= τ(a2k1
1 ) · · ·τ(a

2kd
d )−

d
∏

j=1







∑

π j∈Π j

rπ j
(a j1 , a j2 , . . . , a j2k j

)







= τ(a2k1
1 ) · · ·τ(a

2kd
d )−

d
∏

j=1







∑

π∈E(2k j)

rπ(a j , a j , . . . , a j)







= τ(a2k1
1 ) · · ·τ(a

2kd
d )−τ(a

2k1
1 ) · · ·τ(a

2kd
d ) = 0.

Hence the first part of the Theorem is proved.
(ii) For the second part observe that the definition of half cumulant reduces to the definition of
half-liberated cumulant given in Banica, Curran and Speicher (2010)[2]. They showed in Theorem
2.11 that half-liberated cumulant characterizes half independence for half commuting random
variables {x i} ∈ (A ,τ). In particular if τ(x i1 · · · x ik) = 0 when k is odd and rπ(x i1 , · · · , x ik) = 0
whenever π ∈ E(2k) is not symmetric with respect to i = (i1, i2, · · · , ik) (that is, it is not the case
that s and t are in the same block of π and is = it) then {x i} are half independent. Now these two
conditions follow from our assumptions.

Remark 4. An anonymous Referee has pointed out that the proof of Theorem 1(i) maybe significantly
shortened by using the the machinery of Lehner (2004)[9]. In fact, it turns out that by using the
properties of Mobius function,

rk(ai1 , ai2 , ..., aik) =
∑

π∈E(k)

(−1)|π|−1(|π| − 1)!τπ(ai1 , ai2 , · · · , aik).

From this, the characterisation of the half independence via the half cumulants can also be derived.

Acknowledgement. We are grateful to the two anonymous Referees for their constructive and
insightful comments. We are also indebted to Steven Miller for his detailed comments.
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