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Abstract
Let {ξ(t)}t∈[0,h] be a stationary Gaussian process with covariance function r such that r(t) =
1− C |t|α + o(|t|α) as t → 0. We give a new and direct proof of a result originally obtained by
Pickands, on the asymptotic behaviour as u→∞ of the probability P{supt∈[0,h] ξ(t) > u} that the
process ξ exceeds the level u. As a by-product, we obtain a new expression for Pickands constant
Hα.

1 Introduction and main result

Let {ξ(t)}t∈[0,h] be a continuous centered stationary Gaussian process with covariance function
r(t) = Cov{ξ(s),ξ(s+ t)} that satisfies

r(t)< 1 for t ∈ (0, h] and r(t) = 1− C |t|α + o(|t|α) as t → 0, (1)

where h> 0, α ∈ (0,2] and C > 0 are constants. Note that (1) includes, for example, cov- ariance
functions of the form e−|t|

α

, where the case when α = 1 corresponds to an Ornstein-Uhlenbeck
process. Further, the case when α= 2 in (1) corresponds to mean-square differentiable processes,
while processes with 0< α < 2 are non-differentiable.
The tail distribution of supt∈[0,h] ξ(t) was originally obtained in [6] by means of a long and com-
plicated proof involving so called ε-upcrossings, although his proof was not quite complete. The
Pickands result is as follows:

Theorem. If (1) holds, then we have

lim
u→∞

q(u)

Φ(u)
P
n

sup
t∈[0,h]

ξ(t)> u
o

= hC1/αHα. (2)
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Here Φ(u) =
∫∞

u
1p
2π

e−x2/2 d x is the standard Gaussian tail distribution function, q(u) = u−2/α, and
Hα is strictly positive and finite constant, the value of which depends on α only and that is given by

Hα = lim
T→∞

T−1

∫ ∞

0

es P
n

sup
t∈[0,T]

ζ(t)> s
o

ds, (3)

where {ζ(t)}t>0 is a nonstationary Gaussian process with mean and covariance function;

mζ(t) = E{ζ(t)}=−tα and rζ(s, t) = Cov{ζ(s),ζ(t)}= sα + tα − |s− t|α. (4)

Qualls and Watanabe [8], Leadbetter et al. [4] and others gave clarifications of Pickands’ original
proof. The proof as it stands today in the literature is long and complicated, but is also important,
for example, as a model proof in extreme value theory.
In this paper we give a new and direct proof of (2), that is in part inspired by [1, 2, 9, 10]. Given
a constant a > 0, a key step in our proof is to find the tail behaviour of the distribution of the
discretized maximum maxk∈{0,...,bh/(aq(u))c} ξ(aq(u)k). Knowing that tail in turn, we can move on to
find the tail behaviour of the continuous supremum supt∈[0,h] ξ(t) featuring in (2). The technical
details that we employ to this end are much simpler and more direct than those in the literature.
As a by-product, our new proof produces the following new formula for the constant Hα (cf. (3)):

Theorem 1. If (1) holds, then (2) holds with the constant Hα given by

Hα = lim
a↓0

1

a
P

�

max
k≥1

ζ(ak) +η≤ 0
�

,

where {ζ(t)}t>0 is the Gaussian process with means and covariances given in (4), and η is a unit
mean exponentially distributed random variable that is independent of the process ζ.

The exact values of Pickands constants Hα are known for α = 1,2, i.e. H1 = 1, H2 = 1/
p
π but

unknown for other values of α, although many efforts to find numerical approximations of Hα
have been made (see for example [3]). Possibly, our new formula for Hα given in Theorem 1
might be utilized in future work to compute that constant numerically.

2 New proof of (2)

Throughout the proof we use Φ and q as short-hand notation for Φ(u) and q(u), respectively.
A key step in the proof is to show that, given constants a, h> 0, we have

lim
u→∞

q

Φ
P
n

max
k∈{0,...,bh/(aq)c}

ξ(aqk)> u
o

=
h

a
P

� ∞
⋂

k=1
{ζ(C1/αak) +η≤ 0}

�

. (5)

Lemma 1. If (1) holds, then (5) holds.

The proof of Lemma 1 requires two preparatory results, Lemmas 2 and 3. In the first of these two
preparatory lemmas, with the notation ξu(t) = u(ξ(qt)− u), we establish weak convergence of
the finite dimensional distributions of the process {(ξu(t) |ξu(0)> 0}t>0 as u→∞:

Lemma 2. If (1) holds, then the finite dimensional distributions of the process {(ξu(t) |ξu(0) >
0)}t>0 converge weakly to those of the process {ζ(C1/α t) +η}t>0 as u→∞.
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Proof. As ξu(t) is the sum of the two independent Gaussian random variables ξu(t)− r(qt)ξu(0)
and r(qt)ξu(0), it is sufficient to show that (a) the finite dimensional distributions of {ξu(t) −
r(qt)ξu(0)}t>0 converge weakly to those of {ζ(C1/α t)}t>0, and that (b) the conditional distribu-
tion (r(qt)ξu(0) |ξu(0)> 0) converges weakly to η.
To establish (a), it is enough to observe that, by (1), for s, t > 0, we have

E{ξu(t)− r(qt)ξu(0)} = −u2(1− r(qt)) → mζ(C
1/α t)

Cov{ξu(s)− r(qs)ξu(0),ξu(t)− r(qt)ξu(0)}= u2(r(q(t − s))− r(qt)r(qs))→ rζ(C
1/αs, C1/α t)

as u→∞. Further, (b) follows from noting that, by elementary calculations, we have

P{ξu(0)> x |ξu(0)> 0}=
Φ(u+ x/u)

Φ(u)
→ e−x = P{η > x} as u→∞ for x > 0. � (6)

In the second preparatory lemma required to prove Lemma 1, we find the asymptotic behaviour
of the probability P{maxk∈{0,...,N} ξ(aqk)> u} as u→∞ and N →∞:

Lemma 3. If (1) holds, then given any constant a > 0, we have

lim
N→∞

lim
u→∞

1

NΦ
P
n

max
k∈{0,...,N}

ξ(aqk)> u
o

= P

� ∞
⋂

`=1
{ζ(C1/αa`) +η≤ 0}

�

.

Proof. By the inclusion exclusion formula together with stationarity of ξ and Lemma 2, we have

1

NΦ
P
n

max
k∈{0,...,N}

ξ(aqk)> u
o

=
P{ξ(aqN)> u}

NΦ
+

1

NΦ

N−1
∑

k=0

P

� N
⋂

`=k+1
{ξ(aq`)≤ u}, ξ(aqk)> u

�

=
1

N
+

1

N

N
∑

k=1

P

� k
⋂

`=1
{ξu(a`)≤ 0}

�

�

�

�

ξu(0)> 0
�

→
1

N
+

1

N

N
∑

k=1

P

� k
⋂

`=1
{ζ(C1/αa`) +η≤ 0}

�

as u→∞.

Sending N →∞ on the right-hand side, the lemma follows by an elementary argument. �

We are now prepared to prove Lemma 1:

Proof of Lemma 1. In order to find an upper estimate in (5) note that, by Boole’s inequality
together with stationarity and Lemma 3, we have

lim
u→∞

q

Φ
P
n

max
k∈{0,...,bh/(aq)c}

ξ(aqk)>u
o

≤ lim
N→∞

lim
u→∞

q

Φ

�

j h

aqN

k

+ 1
�

P
n

max
k∈{0,...,N−1}

ξ(aqk)> u
o

=
h

a
P

� ∞
⋂

`=1
{ζ(C1/αa`) +η≤ 0}

�

. (7)

To find a lower estimate in (5) we make two preparatory observations: Firstly, by stationarity and
Lemma 3, we have

1

NΦ
P

�

max
k∈{0,...,N−1}

ξ(aqk)> u, max
`∈{N ,...,2N−1}

ξ(aq`)> u
�

=
2

NΦ
P
n

max
k∈{0,...,N−1}

ξ(aqk)> u
o

−
2

2NΦ
P
n

max
k∈{0,...,2N−1}

ξ(aqk)> u
o

→ 0 as u→∞ and N →∞ (in that order).

(8)
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Secondly, by the elementary inequality 2/
p

2+ 2 x ≥ 1+ (1− x)/4 for x ∈ [0, 1], we have

P{ξ(0)>u,ξ(aqk)>u} ≤ P{ξ(0)+ξ(aqk)> 2u}= Φ
�

2u
p

2+2r(aqk)

�

≤ Φ
�

u+u
1−r(aqk)

4

�

.

Using the elementary inequality Φ(u+ x/u)/Φ(u) ≤ e−x for any u > 0 and x > 0, the right-hand
side of the above equation in turn does not exceed

max
�

Φ
�

u+
C(ak)α

8u

�

,Φ
�

u+u
1−δ(ε)

4

��

≤ Φ exp
�

−
C(ak)α

8

�

+ Φ exp
�

−u2 1−δ(ε)
4

�

for u sufficiently large, where ε ∈ (0, h] is chosen such that 1− r(t) ≥ C |t|α/2 for t ∈ [0,ε], and
where δ(ε) = supt∈[ε,h] r(t) [which is less that 1 by (1)]. It follows that

lim
u→∞

bh/(aq)c
∑

k=N

P{ξ(0)>u,ξ(aqk)>u}
Φ

≤ lim
u→∞

�bh/(aq)c
∑

k=N

exp
�

−
C(ak)α

8

�

+
h

aq
exp
�

−u2 1−δ(ε)
4

�

�

=
∞
∑

k=N

exp
�

−
C(ak)α

8

�

(9)

→ 0 as N →∞.

By Bonferroni’s inequality and stationarity, together with Lemma 3, (8) and (9), we have

q

Φ
P
n

max
k∈{0,...,bh/(aq)c}

ξ(aqk)> u
o

≥
q

Φ
P

�bh/(aqN)c
⋃

m=1

n

max
k∈{(m−1)N ,...,mN−1}

ξ(aqk)> u
o

�

≥
q

Φ

bh/(aqN)c
∑

m=1

P
n

max
k∈{(m−1)N ,...,mN−1}

ξ(aqk)> u
o

−
q

Φ

bh/(aqN)c−1
∑

m=1

bh/(aqN)c
∑

n=m+1

P

�

max
k∈{(m−1)N ,...,mN−1}

ξ(aqk)>u, max
`∈{(n−1)N ,...,nN−1}

ξ(aq`)> u
�

≥
q

Φ

j h

aqN

k

P
n

max
k∈{0,...,N−1}

ξ(aqk)> u
o

−
h

aNΦ
P

�

max
k∈{0,...,N−1}

ξ(aqk)> u, max
`∈{N ,...,2N−1}

ξ(aq`)> u
�

−
h

a

bh/(aq)c
∑

k=N

P{ξ(0)> u,ξ(aqk)> u}
Φ

→
h

a
P

� ∞
⋂

`=1
{ζ(C1/αa`) +η≤ 0}

�

− 0− 0 as u→∞ and N →∞ (in that order).

Putting this lower estimate together with the upper estimate (7), we arrive at (5). �

The next lemma relates the continuous supremum supt∈[0,h] ξ(t) to the previously studied dis-
cretized maximum maxk∈{0,...,bh/(aq)c} ξ(aqk):
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Lemma 4. If (1) holds, then we have

lim
u→∞

q

Φ
P

�

sup
t∈[0,h]

ξ(t)> u+
aα/4

u
, max

k∈{0,...,bh/(aq)c}
ξ(aqk)≤ u

�

→ 0 as a ↓ 0.

Proof. Put un = u+ aα/4(1−2−nα/4)/u and note that un > u0 = u, n= 1,2, ... By Boole’s inequality
and stationarity together with continuity of ξ, we have

P

�

sup
t∈[0,h]

ξ(t)> u+
aα/4

u
, max

k∈{0,...,bh/(aq)c}
ξ(aqk)≤ u

�

≤
�

j h

aq

k

+ 1
�

P

�

sup
t∈[0,aq]

ξ(t)> u+
aα/4

u
, ξ(0)≤ u

�

=
�

j h

aq

k

+ 1
�

P

� ∞
⋃

n=0

2n−1
⋃

k=0
{ξ(aqk2−n)> u+

aα/4

u
}, ξ(0)≤ u

�

≤
2h

aq
P

� ∞
⋃

n=0

2n−1
⋃

k=0
{ξ(aqk2−n)> un}, ξ(0)≤ u

�

=
2h

aq
P

� ∞
⋃

n=1

��2n−1
⋃

k=1
{ξ(aqk2−n)> un}

�

∩
�2n−1−1
⋂

`=0
{ξ(aq`2−n+1)≤ un−1}

��

, ξ(0)≤ u
�

≤
2h

aq
P

� ∞
⋃

n=1

��2n−1
⋃

k=1
{ξ(aqk2−n)> un}

�

∩
�2n−1−1
⋂

`=0
{ξ(aq`2−n+1)≤ un−1}

�

∩{ξ(0)≤ un−1}
��

=
2h

aq
P

� ∞
⋃

n=1

��2n−1
⋃

k=1
{ξ(aqk2−n)> un}

�

∩
�2n−1−1
⋂

`=0
{ξ(aq`2−n+1)≤ un−1}

���

≤
2h

aq

∞
∑

n=1

2n−1
∑

k=1

P

�

{ξ(aqk2−n)> un} ∩
2n−1−1
⋂

`=0
{ξ(aq`2−n+1)≤ un−1}

�

(10)

≤
2h

aq

∞
∑

n=1

2n−1 P
�

ξ(aq2−n)> un, ξ(0)≤ un−1
	

for u> 0 sufficiently large.

By (1), on the event {ξ(aq2−n)> un, ξ(0)≤ un−1}, we further have

r(aq2−n)ξ(aq2−n)− ξ(0)≥ aα/4(2α/4−1)2−nα/4/u−(1− r(aq2−n))(u+ aα/4(1−2−nα/4)/u)

≥ aα/4(2α/4−1)2−nα/4/u−2Caα2−nαu−1(1+ aα/4(1−2−nα/4)/u2)

≥ aα/4(2α/4 − 1)2−nα/4−1/u

for u > 0 sufficiently large and a > 0 sufficiently small. Putting this together with (10) and
using the fact that the random variables r(aq2−n)ξ(aq2−n)−ξ(0) and ξ(aq2−n) are independent
together with (1), it follows that the limit superior in Lemma 4 is at most

lim
u→∞

2h

aΦ

∞
∑

n=1

2n−1 P
¦

r(aq2−n)ξ(aq2−n)− ξ(0)> aα/4(2α/4 − 1)2−nα/4−1/u, ξ(aq2−n)> u
©

= lim
u→∞

2h

a

∞
∑

n=1

2n−1Φ
�

aα/4(2α/4 − 1)2−nα/4−1

u
p

1− r(aq2−n)2

�
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≤ lim
u→∞

2h

a

∞
∑

n=1

2n−1Φ
�

aα/4(2α/4 − 1)2−nα/4−1

u
p

2(1− r(aq2−n))

�

≤
2h

a

∞
∑

n=1

2n−1Φ
�

aα/4(2α/4 − 1)2−nα/4−1

2
p

C aα/22−nα/2

�

.

As the right-hand side goes to zero as a ↓ 0 by elementary arguments, the lemma is proved. �

We now have done all preparations required to prove (2). Finally, we prove Theorem 1, which
provides a new expression for Pickands constant Hα:

Proof of Theorem 1. By (6), given any constant a > 0, we have

lim
u→∞

q

Φ
P
n

sup
t∈[0,h]

ξ(t)>u
o

= lim
u→∞

q(u+aα/4/u)

Φ(u+aα/4/u)
P

�

sup
t∈[0,h]

ξ(t)> u+
aα/4

u

�

≤ lim
u→∞

q

e−aα/4Φ
P

�

sup
t∈[0,h]

ξ(t)> u+
aα/4

u
, max

k∈{0,...,bh/(aq)c}
ξ(aqk)≤ u

�

+ lim
u→∞

q

e−aα/4Φ
P
n

max
k∈{0,...,bh/(aq)c}

ξ(aqk)> u
o

. (11)

Sending a ↓ 0 in (11) and using Lemmas 1 and 4, we get

lim
u→∞

q

Φ
P
n

sup
t∈[0,h]

ξ(t)> u
o

≤ 0+ lim
a↓0

h

a
P

� ∞
⋂

k=1
{ζ(C1/αak) +η≤ 0}

�

= lim
a↓0

hC1/α

a
P

� ∞
⋂

k=1
{ζ(ak) +η≤ 0}

�

.

On the other hand, by Lemma 1 alone, we have

lim
u→∞

q

Φ
P
n

sup
t∈[0,h]

ξ(t)> u
o

≥ lim
a↓0

lim
u→∞

q

Φ
P
n

max
k∈{0,...,bh/(aq)c}

ξ(aqk)> u
o

= lim
a↓0

hC1/α

a
P

� ∞
⋂

k=1
{ζ(ak) +η≤ 0}

�

.

Combining the above two estimates upwards and downwards, it follows that the limit Hα and the
limit on the left-hand side in (2) both exist, and that the identity (2) holds.
To complete the proof, we must show that Hα is finite and strictly positive. To that end, note that,
by Lemmas 1 and 4, the right-hand side of (11) is finite for a > 0 sufficiently small. Hence the
left-hand side (that does not depend on a) is finite, so that Hα is finite by (2). On the other hand,
by Bonferroni’s inequality and stationarity together with (9), we have

lim
u→∞

q

Φ
P
n

sup
t∈[0,h]

ξ(t)> u
o

≥ lim
u→∞

q

Φ
P

�bh/(aqN)c
⋃

k=0
{ξ(aqNk)> u}

�

≥ lim
u→∞

h

aNΦ

�

Φ−
bh/(aq)c
∑

k=N
P{ξ(0)> u,ξ(aqk)> u}

�

≥
h

2aN
for N ∈ N sufficiently large.

Here the right-hand side is strictly positive, so that (2) shows that Hα is strictly positive. �
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3 Discussion

In [5] Michna has recently published a proof of the Pickands result. However, Michna’s proof
is not really a new proof but rather a version of a proof due to Piterbarg [7] of a more general
theorem on Gaussian extremes, which has been edited to address only the particular case of the
Pickands result as it is also stated by the author himself.
The proof of Michna and Piterbarg are very different from ours in that they make crucial use of
a technique to relate the original problem to prove the Pickands result to problems for extremes
of Gaussian random fields. Also, Michna and Piterbarg do their calculations directly on the con-
tinuous suprema which lead to more complicated arguments, while we all the time make use of
appropriate discrete approximations to continuous suprema. Virtually all calculations of Michna
and Piterbarg as well as their expression for Pickands constant are completely different from ours.
The one exception is the use of the elementary Bonferroni’s inequality for a lower bound, which
we also employ (and as did Pickands), but where again the technical details of that usage are quite
different from ours because they work with continuous suprema while we work with discrete ap-
proximations.
Also, our proof is entirely self-contained and only uses basic graduate probability theory. On
the other hand, the proof by Michna and Piterbarg make crucial use of additional sophisticated
Gaussian theory such as Borel’s inequality, Slepian’s lemma and weak convergence on space C .
This is again because they chose to work with continuous suprema.
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