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Abstract

The t-Martin boundary of a random walk on a half-space with reflected boundary conditions is

identified. It is shown in particular that the t-Martin boundary of such a random walk is not stable

in the following sense : for different values of t, the t-Martin compactifications are not equivalent.

1 Introduction

Before formulating our results we recall the definition and some properties of t-Martin compact-

ification. Let P = (p(x , x ′), x , x ′ ∈ E) be a transition kernel of a time-homogeneous, irreducible

Markov chains Z = (Z(t)) on a countable, discrete state spaces E. Then by irreducibility, for any

t > 0, the series

Gt(z, z′) =̇

∞
∑

n=0

t−n
Px(Z(n) = z′) (1.1)

either converge or diverge simultaneously for all z, z′ ∈ E (see Seneta [18]).

Definition 1.1. The infimum ρ(P) of the t > 0 for which the series (1.1) converge is equal to

ρ(P) = lim sup
n→∞

�

Px(Z(n) = x ′)
�1/n

, (1.2)

it is called the convergence norm of the transition kernel P.

Definition 1.2. For t > 0, a positive function f : E→ R+ is called t-harmonic (resp. t-superharmonic)

for P if it satisfies the equality P f = t f (resp. P f ≤ t f ). A t-harmonic function is therefore an eigen-

vectors of the transition operator P with respect to the eigenvalue t. For t = 1, the t-harmonic func-

tions are called harmonic. A t-harmonic function f > 0 is said to be minimal if for any t-harmonic

function f̃ > 0 the inequality f̃ ≤ f implies the equality f̃ = c f with some c > 0.

For t > 0, the set of t-superharmonic functions of an irreducible Markov kernel P on a countable

state space E is nonvoid only if t ≥ ρ(P), see Pruitt [16] or Seneta [18].
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Definition 1.3. The t-Martin kernel Kt(x , x ′) of the transition kernel P is defined by

Kt(x , x ′) = Gt(x , xn)/Gt(x0, xn) (1.3)

where x0 is a reference point in E.

A sequence of points xn ∈ E is said to converge to a point of the t-Martin boundary ∂t,M (E) of the set

E defined by the transition kernel P if for any finite subset V ⊂ E there is nV such that xn 6∈ V for all

n> nV and the sequence of functions Kt(·, xn) converges point-wise on E.

The t-Martin compactification Et,M is therefore the unique smallest compactification of the set E

for which the t-Martin kernels Kt(z, ·) extend continuously.

Definition 1.4. The t-Martin compactification is said to be stable if it does not depend on t for

t > ρ(P), i.e. if for any sequence of points xn ∈ E that leaves the finite subsets of E, the convergence

to a point of the t-Martin boundary for some t > ρ(P) implies the convergence to a point of the

t-Martin boundary for all t > ρ(P).

In the case t = 1 and with a transient transition kernel P, the t-Martin compactification is the clas-

sical Martin compactification, introduced first for Brownian motion by Martin [12]. For countable

Markov chains with discrete time, the abstract construction of the Martin compactification was

given by Doob [2] and Hunt [6]. The main general results in this domain are the following :

The minimal Martin boundary ∂1,m(E) is the set of all those γ ∈ ∂1,M (E) for which the func-

tion K1(·,γ) is minimal harmonic. By the Poisson-Martin representation theorem, for every non-

negative 1-harmonic function h there exists a unique positive Borel measure ν on ∂1,m(E) such

that

h(z) =

∫

∂t,m EM

K1(z,η) dν(η)

By Convergence theorem, the sequence (Z(n)) converges Pz almost surely for every initial state

z ∈ E to a ∂1,m(E) valued random variable. The Martin boundary provides therefore all non-

negative 1-harmonic functions and describes the asymptotic behavior of the transient Markov

chain (Z(n)). See Woess [19]).

In general it is a non-trivial problem to determine Martin boundary of a given class of Markov

chains. The t-Martin boundary plays an important role to determine the Martin boundary of

several products of transition kernels.

To identify the Martin boundary of the direct product of two independent transient Markov

chains (X (n)) and (Y (n)), i.e. the Martin boundary of Z(n) = (X (n), Y (n)), the determination

of the Martin boundary of each of the components (X (n)) and (Y (n)) is far from being suffi-

cient. Molchanov [13] has shown that for strongly aperiodic irreducible Markov chains (X (n))

and (Y (n)), every minimal harmonic function h of the couple Z(n) = (X (n), Y (n)) is of the form

h(x , y) = f (x)g(y) where f is a t-harmonic function of (X (n)) and g is a s-harmonic function of

(Y (n)) with some t > 0 and s > 0 satisfying the equality ts = 1.

In the case of Cartesian product of Markov chains, i.e. by considering a convex combination

Q = aP+(1−a)P ′, 0< a < 1, of the corresponding transition matrices, Picardello and Woess [14]

has shown that the minimal harmonic functions of the transition matrix Q have a similar product

form but with t > 0 and s > 0 satisfying the equality at + (1− a)s = 1. In this paper some of

the results on the topology of the Martin boundary are obtained under the assumption that the

t-Martin boundaries of the components (X (n)) and (Y (n)) are stable in the above sense.

This stability property is an important ingredient for the identification of the Martin boundary of

the product of Markov chains in general. The assumption on stability seems to be non-restrictive in
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the case of spatially homogeneous Markov processes, see Woess [19], Picardello and Woess [15].

These previous works suggest in particular the natural conjecture that the t-Martin compactifica-

tion should be stable in general. The purpose of our paper is to show that such a conjecture is not

true.

We consider a random walk on a half-space Zd−1 × {0} with reflected conditions on the boundary

Z
d−1 × {0}. For such a random walk, the t-Martin compactification was identified in [10] for

t = 1. In the present paper, we extend these results for an arbitrary t > ρ(P). The convergence

norm ρ(P) of the random walk is calculated explicitly and it is shown that under quite general

assumptions, the t-Martin compactification for a two-dimensional random walk is not stable.

2 Main results

Let Z(n) = (X (n), Y (n)) be a random walk on Zd−1 ×N with transition probabilities

p(z, z′) =

¨

µ(z′ − z) for z = (x , y), z′ ∈ Zd−1 ×N with y > 0,

µ0(z
′ − z) for z = (x , y), z′ ∈ Zd−1 ×N with y = 0

where µ and µ0 are two different positive measures on Zd with 0< µ(Zd)≤ 1 and 0< µ0(Z
d)≤ 1.

The random walk Z(n) = (X (n), Y (n)) can be therefore substochastic if either µ(Zd) < 1 or

µ0(Z
d)< 1.

Throughout this paper we denote by N the set of all non-negative integers : N = {0,1,2, . . .} and

we let N∗ = N \ {0}. The assumptions we need on the Markov process (Z(t)) are the following.

(H0) µ(z) = 0 for z = (x , y) ∈ Zd−1×Z with y <−1 and µ0(z) = 0 for z = (x , y) ∈ Zd−1×Z with

y < 0.

(H1) The Markov process Z(t) is irreducible on Zd−1 ×N.

(H2) The homogeneous random walk S(t) on Zd having transition probabilities pS(z, z′) = µ(z′−z)

is irreducible on Zd .

(H3) The jump generating functions

ϕ(a) =
∑

z∈Zd

µ(z)ea·z and ϕ0(a) =
∑

z∈Zd

µ0(z)e
a·z (2.1)

are finite everywhere on Rd .

(H4) The last coordinate of S(t) is an aperiodic random walk on Z .

Our first result identifies the convergence rate ρ(P) of the transition kernel P = (p(z, z′), z, z′ ∈

Z
d−1 ×N).

Proposition 2.1. Under the hypotheses (H0)-(H3),

ρ(P) = inf
a∈Rd

max{ϕ(a),ϕ0(a)}. (2.2)
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The proof of this proposition uses the large deviation results obtained in [3, 5, 7, 8] and is given

in Section 4.

Remark that under the assumptions (H0)-(H3), for any t > 0, the sets

Dt =̇ {a ∈ Rd : ϕ(a)≤ t} and Dt
0
=̇ {a ∈ Rd : ϕ0(a)≤ t} (2.3)

are convex and the set Dt is moreover compact. We denote by ∂ Dt the boundary of Dt we let

∂0Dt =̇ {a ∈ ∂ D: ∇ϕ(a) ∈ Rd−1 × {0}},

∂+Dt =̇ {a ∈ ∂ Dt : ∇ϕ(a) ∈ Rd−1 × [0,+∞[}

and

∂−Dt =̇ {a ∈ ∂ Dt : ∇ϕ(a) ∈ Rd−1×]−∞, 0]}.

For a ∈ Dt , the unique point on the boundary ∂−Dt which has the same first (d − 1) coordinates

as the point a is denoted by a
t
,

D̂t =̇ {a ∈ Dt : ϕ0(a
t
)≤ t} and Γt

+
=̇ ∂+Dt ∩ D̂t . (2.4)

Remark that ∂0Dt = ∂+Dt ∩ ∂−Dt and for a ∈ ∂+Dt , one has a = a
t

if and only if a ∈ ∂0Dt .

Moreover, under the hypotheses (H0)-(H1), ϕ0(a
t
) ≤ ϕ0(a) for any a ∈ Dt because the function

a → ϕ0(a) is increasing with respect to the last coordinate of a ∈ Rd . This inequality implies

another useful representation of the set D̂t : a = (α,β) ∈ D̂t if and only if a ∈ Dt and a′ =

(α,β ′) ∈ Dt ∩ Dt
0

for some β ′ ∈ R, or equivalently,

D̂t = (Θt ×R)∩ Dt (2.5)

where

Θt =̇ {α ∈ Rd−1 : inf
β∈R

max{ϕ(α,β),ϕ0(α,β)} ≤ t}. (2.6)

The set Θt × {0} is therefore the orthogonal projection of the set Dt ∩ Dt
0

onto the hyper-plane

R
d−1 × {0} and by Proposition 2.1,

ρ(P) = inf{t > 0 : Dt ∩ Dt
0
6= ;} = inf{t > 0 :Θt 6= ;}. (2.7)

For t > ρ(P) and a ∈ D̂t , we denote by Vt(a) the normal cone to the set D̂t at the point a and for

a ∈ Γt
+
=̇ D̂t ∩ ∂+Dt = (Θt ×R)∩ ∂+Dt we define the function ha,t on Zd−1 ×N by letting

ha,t(z) =



































exp(a · z)−
t −ϕ0(a)

t −ϕ0(a
t
)

exp(a
t
· z) if a 6∈ ∂0Dt and ϕ0(a

t
)< t,

y exp(a · z) +

∂

∂ β
ϕ0(a)

(t −ϕ0(a))
exp(a · z) if a = a

t
∈ ∂0Dt and ϕ0(a)< t,

exp(a
t
· z) if ϕ0(a

t
) = t

(2.8)

where ∂

∂ β
ϕ0(a) denotes the partial derivative of the function a → ϕ0(a) with respect to the last

coordinate β ∈ R of a = (α,β).

The following lemma gives an explicit representation of the normal cone Vt(a).
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Lemma 2.1. Under the hypotheses (H0)-(H3), for any t > ρ(P) and a ∈ Γt
+

,

Vt(a) =























�

c∇ϕ(a) : c ≥ 0
	

if either ϕ0(a
t
)< t

or a = a
t
∈ ∂0Dt ,

�

c1∇ϕ(a) + c2(∇ϕ0(a
t
) + κa∇ϕ(a

t
)) : ci ≥ 0
	

if ϕ0(a
t
) = t

and a 6∈ ∂0Dt

(2.9)

where

κa =−
∂ ϕ0(α,β)

∂ β

�

∂ ϕ(α,β)

∂ β

�−1
�

�

�

�

�

(α,β)=a
t

Proof. Recall that for any t > infa max{ϕ(a),ϕ0(a)}, the set Θt × {0} is the orthogonal projection

of the convex set Dt ∩ Dt
0

onto the hyperplane Rd−1 × {0}. This proves that the set Θt is convex

itself. Moreover, for any t > infa max{ϕ(a),ϕ0(a)}, the set Dt ∩Dt
0

has a non-empty interior. Since

Dt ∩ Dt
0
⊂ D̂t from this it follows that for any t > infa max{ϕ(a),ϕ0(a)}, set D̂t = (Θt ×R) ∩ Dt

has also a non-empty interior and consequently, by Corollary 23.8.1 of Rockafellar [17],

Vt(a) = VΘt×R(a) + VDt (a), ∀a ∈ D̂t , (2.10)

where VΘt×R(a) denotes the normal cone to the set Θt ×R at the point a and VDt (a) is the normal

cone to the set Dt at a. Since under the hypotheses of our lemma,

VDt (a) =
�

c∇ϕ(a) : c ≥ 0
	

, ∀a ∈ ∂ Dt (2.11)

from this it follows that

Vt(a) = VDt (a) =
�

c∇ϕ(a) : c ≥ 0
	

whenever the point a ∈ Γt
+

belongs to the interior of the set Θt×R, i.e. when ϕ0(a
t
)< t. The first

equality of (2.9) is therefore verified. Suppose now that the point a ∈ Γt
+

belongs to the boundary

of the set Θt ×R, i.e. either a = a
t
∈ ∂0Dt or ϕ0(a

t
) = t. Then

VΘt×R(a) = VDt∩Dt
0
(a

t
)∩ (Rd−1 × {0})

because the setΘt×{0} is the orthogonal projection of Dt∩Dt
0

onto Rd−1×{0}. VDt∩Dt
0
(a

t
) denotes

here the normal cone to the set Dt ∩ Dt
0

at the point a
t
. Using therefore again Corollary 23.8.1 of

Rockafellar [17], we obtain

VΘt×R(a) =
�

VDt (a
t
) + VDt

0
(a

t
)
�

∩ (Rd−1 × {0})

where

VDt
0
(a

t
) =

¨
�

c∇ϕ0(a
t
) : c ≥ 0
	

if ϕ0(a
t
) = t,

{0} if ϕ0(a
t
)< t,

is the normal cone to the set Dt
0

at the point a
t
. Since the function ϕ0 is increasing with respect

to the last variable, the last coordinate of ∇ϕ0(a
t
) is strictly positive and consequently, the last

relations combined with (2.10) and (2.11) prove the second equality of (2.9).

The following result identifies the t-Martin compactification of Zd−1 × N defined by the random

walk (Z(n)). As above, we denote by Kt(z, z′) the t-Martin kernel of the Markov process (Z(n))

with a reference point z0 ∈ Z
d−1 ×N.
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Proposition 2.2. Under the hypotheses (H0)-(H4), for any t > ρ(P), the following assertions hold :

(i) for any unit vector q ∈ Rd−1 × [0,+∞[ there exists a unique a = ât(q) ∈ Γ
t
+

such that

q ∈ Vt(ât(q)),

(ii) for any a ∈ D̂t ∩ ∂+Dt and any sequence of points zn ∈ Z
d−1 ×N,

lim
n→∞

Kt(z, zn) = ha,t(z)/ha,t(z0), ∀ z ∈ Zd−1 ×N (2.12)

whenever limn→∞ |zn|=∞ and limn→∞ dist(Vt(a), zn/|zn|) = 0.

Tor t = 1, this statement was proved in [10]. For an arbitrary t > ρ(P), we obtain this result as

a consequence of the results of the paper [10] by using the exponential change of the measure.

The proof of Proposition 2.2 is given in section 5.

Remark that the assertion (ii) of Proposition 2.2 proves that a sequence zn ∈ Z
d−1 × N with

limn→∞ |zn|=∞, converges to a point on the t-Martin boundary if and only if

lim
n→∞

dist
�

Vt(a), zn/|zn|
�

= 0

for some a ∈ D̂ ∩ ∂+D. The t-Martin compactification is therefore stable if and only if Vt(ât(q)) =

Vs(âs(q)) for any unit vector q ∈ Rd−1 × [0,+∞[ and all t > s > ρ(P).

Now we give an example where the t-Martin compactification is unstable. This is a subject of the

following section.

3 Example

Recall that under the hypotheses (H0)-(H3), by Proposition 2.1, the convergence norm of our

transition kernel P is given by (2.2). Here, we consider a particular case when d = 2 and

inf
a∈R2

max{ϕ(a),ϕ0(a)} > inf
a∈R2
ϕ(a). (3.1)

The minimum of the function max{ϕ(a),ϕ0(a)} over a ∈ R2 is then achieved at some point

a∗ = (α∗,β∗) where

∂

∂ β
ϕ(α,β)

�

�

�

�

(α,β)=a∗
≤ 0 and

∂

∂ β
ϕ0(α,β)

�

�

�

�

(α,β)=a∗
> 0.

The second inequality holds because the function ϕ0(α,β) is increasing with respect to the second

variable β . To prove the first inequality it is sufficient to notice that otherwise, there is a point

a = (α,β) with α = α∗ and β < β∗ for which max{ϕ(a),ϕ0(a)} < max{ϕ(a∗),ϕ0(a
∗)}. Finally,

we will assume that such a point a∗ is unique and that

∂

∂ β
ϕ(α,β)

�

�

�

�

(α,β)=a∗
< 0. (3.2)

Then clearly, ϕ(a∗) = ϕ0(a
∗) and by implicit function theorem, in a neighborhood the point a∗,

one can parametrize the intersection of the surfaces C = {(α,β , t) ∈ R3 : t = ϕ(α,β)} and
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C0 = {(α,β , t) ∈ R3 : t = ϕ0(α,β)} as follows : there are ǫ1 > 0, ǫ2 > 0 and a smooth function

α→ β(α) from [α∗ − ǫ1,α∗ + ǫ2] to R such that β(α∗) = β∗ and for any α∗ − ǫ1 ≤ α≤ α
∗ + ǫ1,

∂

∂ β
ϕ(α,β)

�

�

�

�

β=β(α)

< 0,
∂

∂ β
ϕ0(α,β)

�

�

�

�

β=β(α)

> 0, (3.3)

and

{(α,β , t) ∈ C ∩C0 : α∗ − ǫ1 ≤ α≤ α
∗ + ǫ2}

= {(α,β(α), t(α)), α∗ − ǫ1 ≤ α≤ α
∗ + ǫ2} (3.4)

with

t(α) = ϕ(α,β(α)) = ϕ0(α,β(α)) ≥ t(α∗). (3.5)

Moreover, since the point a∗, where the minimum of the function max{ϕ,ϕ0} is achieved, is

assumed to be unique, the last inequality holds with the equality if and only if α = α∗ and without

any restriction of generality we can assume that t(α∗ − ǫ1) = t(α∗ + ǫ2) > t(α∗). Then for any

t(α∗)< t ≤ t(α∗−ǫ1), there are exactly two points α∗−ǫ1 ≤ α1(t)< α
∗ and α∗ < α2(t)≤ α

∗+ǫ2
such that for ai(t) = (αi(t),β(αi(t))),

ϕ(ai(t)) = ϕ0(ai(t)) = t(αi(t)) = t, ∀ i ∈ {1,2},

Θt = [α1(t),α2(t)], D̂t = {(α,β) ∈ R2 : ϕ(α,β) ≤ t, α1(t)≤ α ≤ a2(t)},

and Γt
+
= {a = (α,β) ∈ ∂+Dt : α1(t) ≤ α ≤ α2(t)} is the arc on the boundary ∂+Dt with the end

points in ã1(t) and ã2(t) where ãi(t) = (α̃i(t), β̃i(t)) is a unique point on the boundary ∂+Dt with

α̃i(t) = αi(t) for i = 1,2, (see Figure 1).

Dt
0

ã2(t)

a2(t)

∇ϕ(ã2(t))

Γt
+

(α2(t), 0)(α1(t), 0)

ã1(t)

a1(t)

∇ϕ(ã1(t))

(0,0)

Dt

Figure 1:

Furthermore, by Lemma 2.1, for any t(α∗)< t ≤ t(α∗ − ǫ1) and a ∈ Γt
+

,

Vt(a) =







{c1e1 + c2∇ϕ(ã2(t)) : ci ≥ 0} if a = ã2(t),

{−c1e1 + c2∇ϕ(ã1(t)) : ci ≥ 0} if a = ã1(t),

{c∇ϕ(a) : c ≥ 0} otherwise.
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Hence, by Proposition 2.2 any sequence of points zn ∈ Z×N with limn |zn| =∞ converges in the

t-Martin compactification of Z×N if and only if one of the following conditions is satisfied :

– either limn→∞ arg(zn) = γ for some arg(∇ϕ(ã2(t))< γ < arg(∇ϕ(ã2(t)),

– or lim supn→∞ arg(zn) ≤ arg(∇ϕ(ã2(t)),

– or lim infn→∞ arg(zn) ≥ arg(∇ϕ(ã2(t)).

In particular, any sequence zn ∈ Z×Nwith limn |zn|=∞ and satisfying the inequality arg(zn) ≤ arg(∇ϕ(ã2(t)),

for all n ∈ N, converges to a point of the t-Martin boundary of Z×N.

Remark finally that ai(t)→ a∗ as t → t(α∗) for any i ∈ {1,2}. From this it follows that ãi(t)→ ã∗

as t → t(α∗) for any i ∈ {1,2} where ã∗ = (α̃∗, β̃∗) is the unique point on the boundary ∂+Dt with

α̃∗ = α∗, and consequently,

lim
t→t(a∗)

∇ϕ(ã1(t)) = lim
t→t(a∗)

∇ϕ(ã2(t)) = ∇ϕ(ã
∗).

Since clearly, ∇ϕ(ã1(t)) 6=∇ϕ(ã2(t)) for t(α∗) < t ≤ t(α∗ − ǫ1), we conclude that at least one of

the function t → ∇ϕ(ã1(t)) or t → ∇ϕ(ã2(t)) is not constant on the interval [t(α∗), t(α∗ − ǫ1)]

and hence, there are t, t ′ ∈]t(α∗), t(α∗−ǫ1)] such that t 6= t ′ and∇ϕ(ãi(t)) 6= ∇ϕ(ãi(t
′)) either

for i = 1 or for i = 2. Suppose that this relation holds for i = 2 (the case when i = 1 is quite

similar) and let

arg(∇ϕ(ãi(t))) < arg(∇ϕ(ãi(t
′))).

Then in the t ′-Martin compactification, any sequence of points zn ∈ Z×N with limn |zn|=∞ and

arg(∇ϕ(ãi(t))) ≤ arg(zn) ≤ arg(∇ϕ(ãi(t
′))), ∀n ∈ N,

converges to a point of the t ′-Martin boundary, while in the t-Martin compactification such a se-

quence converges to a point of the t-Martin boundary if and only if there exists a limit limn zn/|zn|.

The following proposition is therefore proved.

Proposition 3.1. Let the conditions (H0)-(H4) be satisfied. Suppose moreover that the minimum of

the function max{ϕ,ϕ0} is attained at a unique point a∗ and the inequalities (3.1) and (3.2) hold.

Then the t-Martin compactification of the transition kernel P is unstable.

4 Proof of Proposition 2.1

We prove this proposition by using large deviation principle of the sample paths of scaled processes

Zǫ(t) = ǫZ([t/ǫ]) with ǫ → 0. Before proving this proposition we recall the definition of the

sample path large deviation principle.

Throughout this section, for t ∈ [0,+∞[, we denote by [t] the integer part of t.

Definitions : 1) Let D([0, T],Rd) denote the set of all right continuous with left limits functions

from [0, T] to Rd endowed with Skorohod metric (see Billingsley [1]). Recall that a mapping

I[0,T] : D([0, T],Rd) → [0,+∞] is a good rate function on D([0, T],Rd) if for any c ≥ 0 and

any compact set V ⊂ Rd , the set

{ϕ ∈ D([0, T],Rd) : φ(0) ∈ V and I[0,T](ϕ)≤ c}

is compact in D([0, T],Rd). According to this definition, a good rate function is lower semi-continuous.
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2) For a Markov chain (Z(t)) on E ⊂ Rd the family of scaled processes (Zǫ(t) = ǫZ([t/ǫ]), t ∈

[0, T]), is said to satisfy sample path large deviation principle in D([0, T],Rd) with a rate function

I[0,T] if for any z ∈ Rd

lim
δ→0

lim inf
ǫ→0

inf
z′∈E:|ǫz′−z|<δ

ǫ logPz′ (Z
ǫ(·) ∈ O )≥− inf

φ∈O :φ(0)=z
I[0,T](φ), (4.1)

for every open set O ⊂ D([0, T],Rd), and

lim
δ→0

lim sup
ǫ→0

sup
z′∈E:|ǫz′−z|<δ

ǫ logPz′ (Z
ǫ(·) ∈ F)≤ − inf

φ∈F :φ(0)=z
I[0,T](φ). (4.2)

for every closed set F ⊂ D([0, T],Rd).

We refer to sample path large deviation principle as SPLD principle. Inequalities (4.1) and (4.2)

are referred as lower and upper SPLD bounds respectively.

Recall that the convex conjugate f ∗ of a function f : Rd → R is defined by

f ∗(v) = sup
a∈Rd

(a · v − f (a)), v ∈ Rd .

The following proposition provides the SPLD principle for the scaled processes Zǫ(t) = ǫZ([t/ǫ])

for our random walk (Z(n)) on Z×N.

Proposition 4.1. Under the hypotheses (H0)− (H4), for every T > 0, the family of scaled processes

(Zǫ(t), t ∈ [0, T]) satisfies SPLD principle in D([0, T],Rd) with a good rate function

I[0,T](φ) =







∫ T

0
L(φ(t), φ̇(t)) d t, if φ is absolutely continuous and

φ(t) ∈ Rd−1 ×R+ for all t ∈ [0, T],

+∞ otherwise.

where for any z = (x , y)Rd−1 × [0,+∞[ and v ∈ Rd , the local rate function L is given by

L(z, v) =

¨

(logϕ)∗(v) if y > 0,

(log max{ϕ,ϕ0})
∗(v) if y = 0.

This proposition is a consequence of the results obtained in [3, 5, 7, 8]. The results of Dupuis,

Ellis and Weiss [3] prove that I[0,T] is a good rate function on D([0, T],Rd) and provide the SPLD

upper bound. SPLD lower bound follows from the local estimates obtained in [7], the general

SPLD lower bound of Dupuis and Ellis [5] and the integral representation of the corresponding

rate function obtained in [8].

We are ready now to complete the proof of Proposition 2.1. The proof of the upper bound

ρ(P) ≤ inf
a∈Rd

max{ϕ(a),ϕ0(a)} (4.3)

is quite simple. Recall that ρ(P) is equal to the infimum of all those t > 0 for which the inequality

P f ≤ t f has a non-zero solution f > 0, see Seneta [18]. Since for any a ∈ Rd , this inequality

is satisfied with t = max{ϕ(a),ϕ0(a)} for an exponential function f (z) = exp(a · z), one gets

therefore ρ(P) ≤ max{ϕ(a),ϕ0(a)} for all a ∈ Rd , and consequently, (4.3) holds. To prove the

lower bound

ρ(P) ≥ inf
a∈Rd

max{ϕ(a),ϕ0(a)} (4.4)
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we use the results of the paper [9]. Theorem 1 of [9] proves that for a zero constant function

0(t) = 0, t ∈ [0, T],

logρ(P) = − I[0,T](0)/T

whenever the following conditions are satisfied :

(a1) for every T > 0, the family of rescaled processes (Zǫ(t), t ∈ [0, T]) satisfies sample path

large deviation principle in D([0, T],Rd−1 × [0,∞[) with a good rate functions I[0,T];

(a2) the rate function I[0,T] has an integral form : there is a local rate function L : (Rd−1 ×

[0,∞[)×Rd → R+ such that

I[0,T](φ) =

∫ T

0

L(φ(t), φ̇(t)) d t

if the function φ : [0,1] → Rd−1 × [0,∞[ is absolutely continuous, and I[0,1](φ) = +∞

otherwise.

(a3) there are two convex functions l1 and l2 on Rd such that

– 0≤ l1(v)≤ L(x , v)≤ l2(v) for all x ∈ Rd−1 × [0,∞[ and v ∈ Rd ,

– the function l2 is finite in a neighborhood of zero

– and

lim
n→∞

inf
|v|≥n

l1(v)/|v|> 0.

In our setting, the conditions (a1) and (a2) are satisfied by Proposition 4.1 and the condition (a3)

is satisfied with l1(v) = (log(ϕ,ϕ0))
∗(v) and l2(v) = (logϕ)∗(v) :

– Clearly, (log(ϕ,ϕ0))
∗(v) ≤ L(x , v) ≤ (logϕ)∗(v) for all x ∈ Rd−1 × [0,∞[ and v ∈ Rd .

– Under the hypotheses (H2) and (H3), there is δ > 0 such that

lim inf
|a|→∞

1

|a|
logϕ(a) > δ,

and consequently, for any v ∈ Rd with |v| ≤ δ one has

(logϕ)∗(v)≤ sup
a∈Rd

sup
v∈Rd :|v|≤δ

�

a · v − logϕ(a)
�

= sup
a∈Rd

�

δ|a| − logϕ(a)
�

< +∞.

– For any r > 0,

(log(ϕ,ϕ0))
∗(v) ≥ sup

a∈Rd : |a|≤r

�

a · v − log(ϕ,ϕ0)(a)
�

≥ sup
a∈Rd : |a|≤r

a · v − sup
a∈Rd : |a|≤r

log(ϕ,ϕ0)(a)

≥ r|v| − sup
a∈Rd : |a|≤r

log(ϕ,ϕ0)(a).

Since by (H3), the function log(ϕ,ϕ0) is finite everywhere on Rd , from this it follows that

lim
n→∞

inf
|v|≥n

1

|v|
(log(ϕ,ϕ0))

∗(v) ≥ r > 0.
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Using Theorem 1 of [9] and the explicit form of the local rate function L one gets

logρ(P) = − L(0,0) = −(log max{ϕ,ϕ0})
∗(0) = log inf

a∈Rd
max{ϕ(a),ϕ0(a)}.

Proposition 2.1 is therefore proved.

5 Proof of Proposition 2.2

For t = 1, this result was proved in [10] under the following conditions : in addition to the

hypotheses (H0)-(H4), the positive measures µ and µ0 were assumed to be probability measures

and the means

m =̇
∑

z∈Zd

µ(z) z and m0 =
∑

z∈Zd

µ0(z) z

were assumed to satisfy the following condition :

m/|m|+m0/|m0| 6= 0. (5.1)

Remark that under the above assumptions, the set ∂ D1 ∩ ∂ D1
0

contains the point zero and the set

D1 ∩ D1
0

has a non-empty interior. By Proposition 2.1 from this it follows that

ρ(P) = inf
a∈Rd

max{ϕ(a),ϕ0(a)} < 1. (5.2)

The above additional conditions can be replaced by a weaker one : for t = 1, with the same

arguments as in [10] one can get Proposition 2.2 when µ is a probability measure on Zd and µ0

is a positive measure on Zd satisfying the inequality (5.2) such that µ0(Z
d) ≤ 1. This result is

now combined with the exponential change of the measure in order to prove Proposition 2.2 for

t > ρ(P). For any t > ρ(P), there is a point ãt ∈ ∂ Dt ∩ Dt
0
. We consider a twisted random walk

(Z̃(t)) on Zd−1 ×N with transition probabilities

p̃(z, z′) =

¨

µ(z′ − z)exp(ãt · (z
′ − z))/t if z = (x , y) ∈ Zd−1 ×N with y > 0,

µ0(z
′ − z)exp(ãt · (z

′ − z))/t if z = (x , y) ∈ Zd−1 ×N with y = 0.

For such a random walk (Z̃(n)), the jump generating functions are given by

ϕ̃(a) = ϕ(a+ ãt)/t, and ϕ̃0(a) = ϕ0(a+ ãt)/t.

Hence,

D̃1 =̇ {a ∈ Rd : ϕ̃(a)≤ 1} = {a ∈ Rd : ϕ(a+ ãt)≤ t} = − ãt + Dt ,

and similarly,

D̃1
0
=̇ {a ∈ Rd : ϕ̃0(a)≤ 1} = − ãt + Dt

0
.

Moreover, with the same arguments one gets

Θ̃1 =̇
�

α ∈ Rd−1 : inf
β∈R

max{ϕ̃(a), ϕ̃0(a)} ≤ 1
	

= − α̃t +Θ
t

where αt denotes the vector of d − 1 first coordinates of ãt ,

ˆ̃D1 =̇ (Θ̃1 ×R)∩ D̃1 = − ãt + D̂t and Γ̃1
+
=̇ ˆ̃D1 ∩ ∂+ D̃1 = − ãt +Γ

t
+

.



160 Electronic Communications in Probability

For any a ∈ Γt
+

the normal cone Vt(a) to the set D̂t at the point a is therefore identical to the

normal cone Ṽ1(a− ãt) to the set ˆ̃D1 at the point a− ãt ∈ Γ̃
1
+

. Remark finally that for any a ∈ Γ̃1
+

the functions h̃a,1 defined by (2.8) with t = 1 and the functions ϕ̃ and ϕ̃0 instead of ϕ and ϕ0,

satisfy the equality

h̃a,1(z)(a) = ha+ã,t(z)exp(−ãt · z), ∀z ∈ Zd−1 ×N.

Since clearly, G̃1(z, z′) = Gt(z, z′)exp(ã · (z′ − z)), we conclude that

(i) for any unit vector q ∈ Rd−1 × [0,+∞[ there exists a unique point ât(q) ∈ Γ
t
+

such that

q ∈ Vt(ât(q)),

(ii) for any a ∈ D̂t ∩ ∂+Dt and any sequence of points zn ∈ Z
d−1 ×N,

lim
n→∞

Kt(z, zn) = exp(ã · (z − z0)) lim
n→∞

G̃1(z, zn)/G̃1(z0, zn)

= exp(ã · (z − z0)) h̃a−ãt ,t
(z)/h̃a−ãt ,t

(z0) = ha,t(z)/ha,t(z0),

whenever limn→∞ |zn|=∞ and limn→∞ dist(Vt(a), zn/|zn|) = 0.

Proposition 2.2 is therefore proved.
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