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Abstract

For 0 < α ≤ 2 and 0 < β ≤ 1 let X be the (d,α,β)-superprocess, i.e. the superprocess with
α-stable spatial movement in Rd and (1+β)-stable branching. Given that the initial measure X0 is
Lebesgue on Rd , Iscoe conjectured in [7] that the total occupational time

∫∞
0

X t(B)d t is a.s. finite
if and only if dβ < α, where B denotes any bounded Borel set in Rd with non-empty interior.
In this note we give a partial answer to Iscoe’s conjecture by showing that

∫∞
0

X t(B)d t <∞ a.s. if

2dβ < α and, on the other hand,
∫∞

0
X t(B)d t =∞ a.s. if dβ > α.

For 2dβ < α, our result can also imply the a.s. finiteness of the total occupation time (over any
bounded Borel set) and the a.s. local extinction for the empirical measure process of the (d,α,β)-
branching particle system with Lebesgue initial intensity measure.

1 Introduction

For 0 < α ≤ 2 and 0 < β ≤ 1 the (d,α,β)-superprocess is the superprocess with symmetric
α-stable spatial movement in Rd and spectrally positive (1+β)-stable branching. It is a measure-
valued process arising as the high density limit of empirical measure for the following critical
branching symmetric α-stable particle system. Independent of the others, each particle is assigned
a mass n−1 and it branches at rate γnβ for some constant γ > 0. The offspring distribution of each
particle is determined by the generating function

G(s) = s+ (1− s)1+β/(1+ β),

which is in the domain of attraction of one-sided (1+ β)-stable law; see Section 4.5 of [2] for
more details.
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Before specifying the (d,α,β)-superprocess using Laplace functional we first introduce some no-
tation. Let∆α =−(−∆)α/2 be the fractional Laplacian operator and (St) := (Sαt ) be the associated
transition semigroup for α-stable process.
For d/2< p < (d +α)/2 write

φp(x) := (1+ |x |2)−p, x ∈ Rd .

Let Cp(Rd) be the space of continuous functions on Rd satisfying

‖φ‖p := sup
x∈Rd
|φ(x)/φp(x)|<∞,

Write
Mp(Rd) := {µ ∈ M(Rd) : µ(φp)<∞},

where M(Rd) denotes the collection of σ-finite measures on Rd and µ(φp), as usual, denotes the
integral of φp with respect to measure µ. We equip Mp(Rd) with the p-vague topology, i.e. the
smallest topology such that µ 7→ µ(φ) is continuous for all φ ∈ Cp(Rd).
The (d,α,β)-superprocess X is then a càdlàg Mp(Rd)-valued Markov process and

∫ ·
0

Xsds is the
corresponding measure-valued (weighted) occupation time process. The joint Laplace functional
of X and its weighted occupation time process for any φ,ψ ∈ Cp(Rd) is determined by

Eexp

�

−X t(ψ)−
∫ t

0

Xs(φ)ds

�

= exp(−X0(ut)), (1)

where function u : [0,∞)×Rd 7→ R with ut := u(t, ·) ∈ Cp(Rd) is the unique mild solution to the
following pde

∂ u

∂ t
=∆αu−

γ

1+ β
u1+β +φ, u0 =ψ.

More precisely, u solves the associated integral equation

ut = Stψ+

∫ t

0

St−sφds−
γ

1+ β

∫ t

0

St−su
1+β
s ds.

It follows readily that
EX t(ψ) = X0(Stψ).

In addition, the extinction probability for X is given by the following estimate

P{X t(Rd) = 0}= exp

�

−
�

1+ β
γβ t

�1/β

X0(Rd)

�

, (2)

and for X0(Rd)<∞ the asymptotic survival probability as t →∞ is given by

P{X t(Rd) 6= 0} ∼
�

1+ β
γβ t

�1/β

X0(Rd). (3)

Let X be the (d,α,β)-superprocess with Lebesgue initial measure on Rd . For α = 2 and any
bounded set B with non-empty interior it was proved in [7] that

∫∞
0

Xs(B)ds <∞ a.s. if and only
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if dβ < 2. The proof was based on analyzing the asymptotic behavior of the solution ut(x) to
(1) (with ψ = 0) by first letting t → ∞ and then letting |x | → ∞. It was further conjectured
that

∫∞
0

Xs(B)ds <∞ a.s. if and only if dβ < α; see Theorem 4.3 and Remark 4.5 of [7]. To the
author’s best knowledge this problem is still open.
Related to the problem considered in this note, the space-time-mass scaling limit of the occupation
time process is considered in [3] for the (d,α,β)-superprocess X . Let (Y (k)) be the sequence of
scaled processes defined by

Y (k)t (B) :=
1

k1+β

∫ kβ t

0

Xs

�

k1/d B
�

ds

for any Borel set B. It is shown that for d < α/β , the process Y (k) converges in distribution
to a measure-valued (motionless) continuous state branching process whenever the sequence of
scaled initial measures (X (k)0 ) converges to some random measure as k → ∞, where X (k)0 (B) :=
k−1X0(k1/d B).
The fluctuation limits of the re-scaled occupation time processes have been studied extensively for
the empirical measure processes of the so called (d,α,β ,γ)-branching particle systems, which is
an (d,α,β)-branching systems with those particles’ initial locations described by a Poisson random
measure of intensity d x/(1+ |x |γ),γ≥ 0. For such a counting-measure-valued process denoted by
N , after centering and time-mass re-scaling the limiting distributions (as T →∞) of the following
occupation time fluctuation process

XT (t) :=
1

FT

∫ T t

0

(Ns −ENs)ds, t ≥ 0,

are found in [1] and in a series of papers by the same authors. Here FT denotes a norming function
of T which guarantees that the limit is nontrivial.
Depending on the different choices of values for d,α,β and γ the above-mentioned limiting
processes behave differently. In low dimensions the limiting process is typically a continuous
real-valued stable process with long-range dependence. In high dimensions either the limiting
process is distribution-valued with independent and non-stationary increments or it is identi-
cally a distribution-valued stable random variable for all t > 0. For the corresponding (d,α,β)-
superprocesses with initial measure d x/(1+ |x |γ), similar scaling limits are also obtained for their
occupation time processes, which generalize the previous results in [7]. See [1] for more details
in this respect. We also refer to [1] and the references therein for further asymptotic results on
re-scaled occupation time processes of the (d,α,β ,γ)-branching particle systems and for results
on more general branching particle systems.
A remarkable feature for the superprocess X with α < 2 is the propagation of support, i.e. almost
surely the support for X t is either ; or Rd for all t > 0; see e.g. [5] and [8]. Therefore, the integral
∫ t

0
Xs(B1)ds is strictly increasing in t when X0 is an infinite measure, and the almost sure local

extinction can never happen for X . But the empirical measure process N for the corresponding
branching particle system behaves differently. For the (d,α,β , 0)-branching particle system it is
shown in [6] that the process Nt becomes locally extinct in probability as t tends to infinity if and
only if d ≤ α/β . It is further conjectured in [1] that given α < 2 and d < α/β + γ, almost sure
local extinction occurs for N , i.e. for any bounded set A ∈ Rd , almost surely Nt(A) = 0 for all t
large enough.
In this note we are going to provide a partial answer to Iscoe’s conjecture on total occupation time
for the (d,α,β)-superprocess with Lebesgue initial measure. Our approaches are different from
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the original proof in [7] for the (d, 2,β)-superprocesses. For 0 < 2βd < α we exploit the local
extinction property, the scaling property for (Sαt ) and the branching property for superprocess. On
the other hand, for βd > α we take use of the Feynman-Kac formula and the time-space scaling
for α-stable process to obtain useful estimates on lower bounds of the occupation time measure
over finite time periods, and then prove the desired result via a Borel-Cantelli argument. These
two results are presented in Proposition 2.1 and Proposition 2.2, respectively.
As an application of Proposition 2.1, in Corollary 2.1 we also obtain two results on the total
occupation time and the almost sure local extinction of the empirical measure process for the
corresponding branching particle system. In particular, the result on almost sure local extinction
confirms that the previously mentioned conjecture of [1] on almost sure local extinction for the
branching particle system is true for α < 2,2dβ < α and γ= 0.

2 Main results

Throughout this section C and Ci denote positive constants whose values might vary from line to
line.
For the d-dimensional symmetric α-stable process ξ starting off at 0, let pt(x) be the density
function for ξt which is strictly positive, smooth, symmetric and nuimodal. It is known that for all
x ∈ Rd and t > 0

pt(x) = t−d/αp1(t
−1/αx) (4)

and
C1

1+ |x |α+d
≤ p1(x)≤

C2

1+ |x |α+d
,

where the lower bound holds for α < 2; see e.g. Lemma 2.2 of [7] and Section 3.2 of [1]. Then
we have

pt(x)≤
t−d/α

1+ |t−1/αx |α+d
≤ C

�

t|x |−α−d ∧ t−d/α
�

for all x ∈ Rd and t > 0. In addition, for α < 2 we have

pt(x)≥
C1 t−d/α

1+ |t−1/αx |α+d
≥ C t|x |−α−d (5)

for t1/α ≤ |x |.

Proposition 2.1. Let X be the (d,α,β)-superprocess with Lebesgue initial measure. Then for 2βd <
α and for any bounded Borel set B we have

∫ ∞

0

X t(B)d t <∞ a.s. (6)

Proof. Write Br = B(r) for the open ball in Rd with center 0 and radius r. We only need to prove
(6) for B = B1.
Choose λ > 0 such that

dβ < λ <
α

2
. (7)
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Write LA for the Lebesgue measure restricted to set A⊂ R. For any r > 1 and n = 1, 2, . . . by the
branching property we can find independent (α,β)-superprocesses (Yn+m)∞m=0 and Zn such that

X =
∞
∑

m=0

Yn+m + Zn

with respective initial measures

Yn+m(0) = Ln+m := LB(rn+m+1)−B(rn+m)

and
Zn(0) = LB(rn).

We first note from the extinction probability (3) that

P{An} := P{Zn(r
nλ)(R) 6= 0}

≤
�

1+ β

γβ rnλ

�1/β

C rdn

= C
�

1+ β
γβ

�1/β

r−n( λ
β
−d).

(8)

Then by (7)
lim
r→∞
P{∪∞n=1An}= 0. (9)

For the α-stable process ξ with “initial law” Ln and for any rnλ ≤ t < r(n+1)λ,

EYn(t)(B1) =

∫

Ln

P{ξx
t ∈ B1}d x

≤ C t (rn)−α−d rd(n+1)

= C trd−nα.

(10)

It follows that

E
∫ r(n+1)λ

rnλ

Yn+m(t)(B1)d t

≤ C r(n+1)λr(n+1)λrd−(n+m)α

= C r2λ+d−n(α−2λ)−mα.

(11)

Therefore,

E
�

1
�

(∪∞n=1An)
c
�

∫ ∞

rλ
X t(B1)d t

�

= E






1((∪∞n=1An)

c)
∞
∑

n=1

∫ r(n+1)λ

rnλ

∞
∑

m=0

Yn+m(t)(B1)d t







≤
∞
∑

n=1

∞
∑

m=0

E
∫ r(n+1)λ

rnλ

Yn+m(t)(B1)d t

<∞,

(12)
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where we needs (7) for the last inequality. Hence,

1
�

(∪∞n=1An)
c
�

∫ ∞

rλ
X t(B1)d t <∞, a.s..

The Lebesgue measure is invariant for the α-stable process. Clearly,

E





∫ rλ

0

X t(B1)d t



<∞,

which implies
∫ rλ

0

X t(B1)d t <∞ a.s..

The desired result follows from (9).

Proposition 2.1 together with Lemmas A and B of [1] immediately implies the following result on
the empirical measure process N for the branching particle system introduced in Section 1. Note
that the almost sure local extinction for N was proved in [1] for α= 2 and d < 2/β + γ.

Corollary 2.1. Given the empirical measure process N of the (d,α,β , 0)-branching particle system
with 2dβ < α, for any bounded Borel set B we have

∫ ∞

0

Nt(B)d t <∞ a.s.

In addition, almost surely Nt(B) = 0 for all t large enough.

If α = 2, the approach in Proposition 2.1 can be pushed further to give another proof for Iscoe’s
original result on superBrownian motion in [7] for dβ < α = 2. Since this approach requires the
property of exponential decay for normal tail distribution, it appears difficult to generalize such
an argument to the case α < 2 in a straightforward fashion.

Corollary 2.2. For the superprocess X in Proposition 2.1, inequality (6) holds a.s. given βd < α= 2.

Proof. Choose λ satisfying dβ < λ < 2 and define processes (Yn) and (Zn) in the the same way as
those in the proof for Proposition 2.1. For large time t the superBrownian motion support can not
propagate much faster that

p
t. By Lemma 2.2 of [11] we have for all n large enough satisfying

2n/(n+ 1)> λ,

lim
r→∞

rnP







∫ r(n+1)λ

rnλ

∞
∑

m=0

Yn+m(t)(B1)d t > 0







= 0.

Then for large r by the Borel-Cantelli lemma,

P







∫ r(n+1)λ

rnλ

∞
∑

m=0

Yn+m(t)(B1)d t > 0 i.o.







= 0. (13)

Note that
∫ t

0
Xs(B1)ds is almost surely finite for any finite t. The inequality (6) thus follows from

a combination of (9) and (13) together with the branching property.
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To prove the next result on infiniteness of total occupation time we need the following Feynman-
Kac formula for α-stable process; see Theorem 4.2 of [9] and Chapter III.19 of [10] for similar
results.

Lemma 2.1. Let v : [0,∞)×Rd 7→ R be the mild solution to

∂ v

∂ t
=∆αv− kv+ g, v0 =ψ, (14)

where k : [0,∞)×Rd 7→ [0,∞) is any nonnegative function, g : [0,∞)×Rd 7→ R is any bounded
function and ψ is any bounded continuous function on Rd . Then we have

vt(x) = Ex

�

ψ(ξt)e
−
∫ t

0
k(t−s,ξs)ds +

∫ t

0

g(t − θ ,ξθ )e
−
∫ θ

0
k(t−s,ξs)dsdθ

�

, (15)

where ξ is the d-dimensional α-stable process.

Proof. For λ > 0 put

ψ(λ) := λ

∫ ∞

0

e−λsSsψds.

Then ψ(λ) is in the domain of generator ∆α. Let v(λ) be the (strong) solution to pde (14) with ini-

tial condition v(λ)0 =ψ(λ). It follows from Itô formula (applied to process v(λ)t−θ (ξθ )e
−
∫ θ

0
k(t−s,ξs)ds, 0≤

θ ≤ t) and (14) that

Mθ := v(λ)t−θ (ξθ )e
−
∫ θ

0
k(t−s,ξs)ds − v(λ)t (ξ0)

−
∫ θ

0

�

−v̇(λ)t−θ ′(ξθ ′)e
−
∫ θ ′

0
k(t−s,ξs)ds +∆αv(λ)t−θ ′(ξθ ′)e

−
∫ θ ′

0
k(t−s,ξs)ds

−k(t − θ ′,ξθ ′)v
(λ)
t−θ ′(ξθ ′)e

−
∫ θ ′

0
k(t−s,ξs)ds

�

dθ ′

= v(λ)t−θ (ξθ )e
−
∫ θ

0
k(t−s,ξs)ds − v(λ)t (x) +

∫ θ

0

g(t − θ ′,ξθ ′)e
−
∫ θ ′

0
k(t−s,ξs)dsdθ ′

is a bounded Px martingale with M0 = 0 for all x and for 0 ≤ θ ≤ t. Taking expectations and by
v(λ)0 =ψ(λ) we have

− v(λ)t (x) +E
x

�

ψ(λ)(ξt)e
−
∫ t

0
k(t−s,ξs)ds +

∫ t

0

g(t − θ ,ξθ )e
−
∫ θ

0
k(t−s,ξs)dsdθ

�

= Ex Mt = 0.

(16)

Since

v(λ)t = Stψ
(λ) −

∫ t

0

St−s(ks v
(λ)
s )ds+

∫ t

0

St−s gsds, (17)

where ks(·) := k(s, ·) and gs(·) := g(s, ·), letting λ→∞ first in (16) and then in (17) we see that
the function v given by (15) is a mild solution to (14). We thus complete the proof since the mild
solution to (14) is unique.
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Proposition 2.2. Let X be the (d,α,β)-superprocess with Lebesgue initial measure. For βd > α and
for any bounded Borel set B with non-empty interior we have

∫ ∞

0

X t(B)d t =∞ a.s. (18)

Proof. Again, we only prove (18) for B = B1.
Let u be the mild solution to

∂ u

∂ t
=∆αu−

γ

1+ β
u1+β + 1B1

, u0 = 0.

We first notice that for all x , ut(x)> 0 for t > 0. Moreover, for all x we have that ut(x) increases
in t, which can be seen from the Laplace functional (1) with ψ := 0, φ := 1B1

and X0 := δx . Then
we can choose constants a > 0 and b > 0 small enough so that for t large enough ut(x) ≥ a for
all x ∈ [−2b, 2b]d ⊂ Rd . We further choose a continuous function ψ such that ψ has a compact
support contained in [−2b, 2b]d , ψ(x) = a for all x ∈ [−b, b]d and 0 ≤ ψ(x) ≤ a for all x . It
follows that ψ≤ ut for t large. Let ψ be such a function throughout the rest of the proof.
Let v be the mild solution to the following pde

∂ v

∂ t
=∆αv −

γ

1+ β
v1+β , v0 =ψ.

Let w be the mild solution to

∂ w

∂ t
=∆αwt −

γ

1+ β
(Stψ)

βwt , w0 =ψ.

By Lemma 2.1 we have

wt(x) = Ex
�

ψ(ξt)e
−
∫ t

0
γ

1+β
(St−sψ(ξs))β ds

�

, (19)

where ξ is the α-stable process. Moreover, put v∗ := v−w. Since 0< vt ≤ Stψ for t > 0 and v∗ is
the mild solution to

∂ v∗

∂ t
=∆αv∗t −

γ

1+ β
(Stψ)

β v∗t +
γ

1+ β

�

(Stψ)
β − vβt

�

vt , v∗0 = 0,

by Lemma 2.1 again we have

vt(x)−wt(x)
= v∗t (x)

= Ex

�
∫ t

0

γ

1+ β

�

(St−sψ(ξs))
β − vt−s(ξs)

β
�

vt−s(ξs)e
−
∫ s

0
γ

1+β
(St−s′ψ(ξs′ ))

β ds′ds

�

≥ 0.

For βd > α, we proceed to find a lower bound for an integral on wt . Since 0≤ψ≤ a and ψ has a
compact support, the time-space scaling (4) gives that uniformly for all t > 1 and for any function
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h : [0,∞) 7→ R,
∫ t

0

(St−sψ(hs))
βds =

∫ t

0

(Ssψ(ht−s))
βds

=

∫ 1

0

(Ssψ(ht−s))
βds+

∫ t

1

�
∫

ps(y − ht−s)ψ(y)d y

�β

ds

≤ aβ +

∫ t

1

s−
dβ
α

�
∫

p1(s
−1/α(y − ht−s))ψ(y)d y

�β

ds

≤ C .

(20)

Then for α < 2 and for t large enough we have from (19)
∫

B2t−Bt

wtα(x)d x ≥ Ex
h

ψ(ξtα)e
− γ

1+β
C
i

≥ C

∫

B2t−Bt

Stαψ(x)d x

≥ C

∫

B2t−Bt

d x

∫

[−b,b]d
ptα(y − x)ψ(y)d y

≥ a(2b)d C

∫

B2t−Bt

tα|x |−(α+d)d x

= C > 0,

(21)

where we have applied (20) for the first inequality, and we need ψ(y) = a for y ∈ [−b, b]d and
estimate (5) for the forth inequality. Note that the last constant C does not depend on t as long as
t is large.
For α= 2, we can verify directly that (21) still holds.
Now for (α,β)-superprocess X ∗ with initial measure LB2t−Bt

, applying the Markov property and
the previous estimates,

Ee−
∫ tα+t

tα
X ∗s (B1)ds = Ee−X ∗tα (ut )

≤ Ee−X ∗tα (ψ)

= e−
∫

B2t−Bt
vtα (x)d x

≤ e−
∫

B2t−Bt
wtα (x)d x

≤ e−C < 1

(22)

for all t large enough, where C is the constant from the last line of (21). It follows that for some
ε > 0

lim inf
t→∞
P

(

∫ tα+t

tα
X ∗s (B1)ds > ε

)

> ε. (23)

Choosing sequence (tn) := (2n t) and considering processes (X ∗n) with initial measures (LBtn+1
−Btn
),

the desired result follows from (23), the branching property and the Borel-Cantelli lemma.
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Remark 2.1. Edwin Perkins suggested an alternative proof for Proposition 2.2. The idea goes as
follows. Since X is persistent for βd > α and it converges to a non-degenerate weak limit X∞ in
Mp(Rd) as t →∞ (see Proposition 6.1 of [4]), using the Markov property and the above-mentioned
equilibrium result on (d,α,β)-superprocess, one can also obtain an inequality similar to (23). Then
one can derive the desired result by a Borel-Cantelli argument using the survival probability estimate
(3) and the branching property. We leave the details to the interested readers.

Acknowledgement The author is grateful to Luis Gorostiza and Edwin Perkins for very helpful
comments and suggestions. He also thanks an anonymous referee for careful checks and com-
ments.
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