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Abstract
For two-dimensional last-passage time models of weakly increasing paths, interesting scaling lim-
its have been proved for points close the axis (the hard edge). For strictly increasing paths of
Bernoulli(p) marked sites, the relevant boundary is the line y = px . We call this the soft edge to
contrast it with the hard edge. We prove laws of large numbers for the maximal cardinality of a
strictly increasing path in the rectangle [bp−1n− xnac]× [n] as the parameters a and x vary. The
results change qualitatively as a passes through the value 1/2.

1 Introduction

Basic model. Consider a collection of independent Bernoulli random variables {X v}v∈Z2 with
P(X v = 1) = p = 1−q and interpret the event that X v = 1 as the event of having site v as marked.
For any rectangle [m]×[n] = {1, 2, ..., m}×{1, 2, ..., n} we can define the random variable L(m, n)
that denotes the maximum possible number of marked sites that one can collect along a path from
(1, 1) to (m, n) that is strictly increasing in both coordinates. It is possible that there is more than
one optimal path, and any such path is called a ‘Bernoulli longest increasing path (BLIP).’ For
example in Figure 1 a longest increasing path is Π = {(1, 2), (2,3), (3, 4), (5, 5), (7, 8)}.
It is easy to see that the random variables −L(m, n) are subadditive. By Kingman’s Subadditive Er-
godic Theorem and some estimates to take care of integer parts, one can prove n−1 L(bnxc, bnyc)→
Ψ(x , y) a.s. and in L1. The function Ψ(x , y) was completely determined in [12], using the hydro-
dynamic limit of a certain particle process and it is given by

Ψ(x , y) =



















x , if x < p y

2
p

px y − p(x + y)
q

, if p y ≤ x ≤ p−1 y

y, if p−1 y < x

(1.1)
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Figure 1: Two possible Bernoulli Longest Increasing paths in the rectangle [7]× [8]. Bernoulli
markings are denoted by ×. With the notation introduced, we have that L(7,8) = 5.

for all (x , y) ∈ R2
+. There is a vast literature in statistical physics that studies this model as a

simplified alternative to the hard longest common subsequence (LCS) model (see for example
[8], [9]).

Connection with TASEP. In [9] the authors described a connection between L(m, n) and a discrete
totally asymmetric simple exclusion process (DTASEP). This connection converts L(m, n) into a last
passage problem of weakly increasing (up-right) paths. We explain this connection rigorously in
section 3.
To be more precise, we associate independent r.v.’s Yv to each point v of N2 and define the last
passage time

G(m, n) = max
π∈Π(m,n)

∑

v∈π
Yv , (m, n) ∈ N2 (1.2)

where Π(m, n) is the collection of all weakly increasing up-right paths in the rectangle [m]× [n]
that start from (1, 1) and go up to (m, n). If the start is not (1, 1) but a generic site (k, l) ∈ N2, k ≤
m, l ≤ n, we define

G ((k, l), (m, n)) = max
π∈Π((k,l),(m,n))

∑

v∈π
Yv , (1.3)

with the obvious generalization of Π((k, l), (m, n)) being the collection of all weakly increasing
up-right paths in the rectangle ([k, m]× [l, n])∩N2, that start from (k, l) and go up to (m, n).
In the case of i.i.d. random weights {Yv}v∈N2 , one can easily check that Kingman’s subadditive
ergodic theorem (e.g. [7] p.192) also applies for the double indexed r.v.

ξm,n(x , y) =−G(bnxc − bmxc, bnyc − bmyc) (1.4)

assuming that Eξ+0,1 < +∞. Hence, n−1G([nx], [ny]) −→ Φ(x , y). The function Φ has been
completely determined in the case of i.i.d. geometric weights in [3],[6] and i.i.d. exponential
weights in [11] (though the author did not use the last passage formulation), while proofs of both
results using the hydrodynamic limits can be found in [14]. Both of these cases give

Φ(x , y) = (x + y)EY(1,1) + 2
p

Var(Y(1,1))x y . (1.5)
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Edge results. Another interesting question is the behavior of the last passage time when one side
of the rectangle is significantly smaller (of different order of magnitude) than the other. For i.i.d.
weights with mean and variance 1 and exponential tails, the following is true:

THEOREM 1.1 ([5],[13]). Let 0< a < 1. Then,
G(n, bxnac)− n

n
1+a

2

→ 2
p

x in probability.

This was proved in two stages: First, [5] proved the law of large numbers, namely, for 0 < a < 1,
G(n, bxnac)− n

n
1+a

2

→ α
p

x in probability. That α= 2 was proved in [13].

Then, in [2] (a similar result is obtained in [1]) the authors prove a distributional limit for general
weights, close to the edge:

THEOREM 1.2 ([2]). Suppose that E|Yv |s < +∞, for some s > 2. Let µ = E(Yv) and σ2 = Var(Yv).
Then, for all a such that 0< a < 6

7
( 1

2
− s−1),

G(n, bnac)− nµ− 2σn
1+a

2

σn
3−a

6

⇒ FTW .

In particular, if the weight distribution Yv has finite moments of all orders, then the theorem holds for
all a ∈ (0, 3

7
).

FTW is the Tracy-Widom distribution of the limiting largest eigenvalue of the GUE.
We refer to these types of results as hard edge results. They are concerned with properties of the
model close to the axis, in a very elongated and thin rectangle and this has an effect on the result.
For example, in Theorem 1.1 the centering is exactly the expectation of a horizontal path.
On the other hand, the BLIP model behaves trivially close to the axes because of the law of
large numbers. See the explanation after the theorems in Section 2, that also indicates why
L(bxnc, bync) close to x = yp−1 is the interesting edge to consider. We call this type of edge as
the soft edge, since the behavior of the model is not dictated by a boundary (e.g. the x-axis), but
rather the model itself chose this edge as an appropriate one to change behavior. These soft edge
results are quite different from the hard edge in the sense that in order to prove them, one uses
central limit theorems. The proofs depend heavily on the fact that there are many independent
paths that can be optimal, with high probability, while if we are restricted close to the axes this is
no longer true. This becomes more obvious by using the connection between the BLIP model and
the DTASEP model.

Connections with some particle processes. Increasing sequences on the planar lattice were first
studied in [12] using an interacting particle system. The discrete time totally asymmetric exclusion
process (DTASEP) described in section 3 is connected to the particle system in [12]. In [12], at
time t = 0 labeled particles start from initial configurations {(zk(0), 0)}k∈Z ⊆ Z × Z+. At each
discrete time step t, the particles jump to the left to positions {(zk(t), t)}k∈Z, where zk−1(t − 1) <
zk(t)≤ zk(t − 1) so that there are no Bernoulli marked sites on the segment

Sk(t) = {(x , t) : x ∈ Z, zk−1(t − 1)< x < zk(t)}

and Sk(t) is maximal with that property. Notice that the cardinality

|Sk(t)|= ξ(k, t)∧ (zk(t − 1)− zk−1(t − 1)− 1)

, where P{ξ(k, t) = s}= pqs.
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Suppose now that we start from the same initial configuration of particles {(wk(0), 0)}k∈Z, wk(0) =
zk(0) for all k, but the particles now jump a geometrically distributed distance to the right and the
position of the particle k acts now as a block to particle k− 1 satisfying the rule

wk−1(t) =
�

wk−1(t − 1) + ξ̃(k, t)
�

∧
�

wk(t − 1)
�

, (1.6)

where ξ̃ are i.i.d. Geom(q), P{ξ̃(k, t) = s} = pqs−1. We can couple the processes on the same
lattice configuration. Then, at every time step, the site occupation is the same; if site (x , t) was
occupied by a particle in the first process, then the same site is occupied in this process and the
positions of individual particles satisfy wk−t(t) = zk(t). The particle process satisfying equation
(1.6) is exactly the ‘geometric jumps with blocking’ particle process (case C) that is described in
[4] (although in this case the geometric random variables are shifted). In the DTASEP process,
this is precicely the movement of the ‘holes’ that define a platoon.

Organization of this paper. In section 2 we describe the main results and in section 3 we present
the models used in the proofs that follow. In section 4 we also make the connection between the
BLIP model and DTASEP rigorous, in a way different than [9], that only involves induction. We
then prove the key lemma (Proposition 3.1) that we need for the theorems. In section 5 we prove
the main theorems for the BLIP model.

Further notation and conventions. We denote by N = {1,2, ...} the set of positive integers and
by Z+ = {0, 1, ...} the set of non-negative integers. Throughout, because of the discrete nature
of the jumps of the particle processes, we assume that the jump at time t is completed at time t,
while it has not yet occurred at time t−. We refer to the corner growth model with strictly positive
geometric weights as the standard corner growth model. We use the notation (a, b) ≤ (x , y) for
the partial order in R2 for which a ≤ x and b ≤ y. Finally, as always, C is a constant that changes
from line to line.

Acknowledgments. I would like to thank my advisor Timo Seppäläinen for many valuable dis-
cussions and suggestions, but most importantly for his patience throughout the preparation of
this paper. I also thank two anonymous referees for their useful and constructive comments, for
pointing out errors in the original version of this paper and for making the proofs of Proposition
3.1 and Theorem 2.2 shorter and more elegant.

2 Main results

We present here the main theorems and then comment on why [bp−1n− xnac]× [n] is the in-
teresting edge for the BLIP model. Recall that L(m, n) is the maximum cardinality of Bernoulli
marked sites one can collect from a strictly increasing path.

THEOREM 2.1. (a) Let x > 0, 0< a ≤ 1
2
, and dn > 0 any sequence such that dn→+∞ and dn = o(n).

Then
n− L(bp−1n− xnac, n)

dn
→ 0 in probability.

(b) Let x > 0, 0< a ≤ 1
2
, and dn > 0, dn = o(n), any sequence such that dn

log n
→+∞. Then

lim
n→∞

n− L(bp−1n− xnac, n)
dn

= 0 a.s.
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THEOREM 2.2. For 1
2
< a < 1 and x ∈ R+, we have the following convergence in probability:

n− L(bp−1n− xnac, n)
n2a−1 −→

(px)2

4q

where q = 1− p.

From (1.1) we see that Ψ(p−1, 1) = 1. This can be shown as follows. Create a maximal path by the
following patient strategy. Start checking the sites (1, 1), (2,1), (3, 1)... until the first marked site
(XS1

, 1). Then move up and start checking (XS1
+1, 2), ... up to the next marked site (XS2

, 2) and so
on. By the SLLN this strategy gives a path of n−o(n)marked sites in the rectangle [bp−1nc]×[n].
Thus the behavior of L(m, n) is trivial for m> bp−1nc and this suggests x = p−1 y as the interesting
edge to look at. Second, in [9] they show, through an asymptotic analysis, the following

THEOREM 2.3 ([9]). For p y < x < p−1 y, we have the following convergence in distribution:

q(x y)
1
6

p
1
6

L(bnxc, bnyc)−Ψ(nx , ny)

n
1
3
�p

x −pp y
�

2
3
�p

y −ppx
�

2
3

=⇒ FTW .

Notice that in our case x = p y; the denominator is 0 and so we need to treat the edge differently.
One can guess the correct scaling for the edge result by Taylor expanding the second branch of
(1.1) with x = p−1− xna−1 and y = 1. This also hints at the cut-off at a = 1/2. Theorems 2.1 and
2.2 demonstrate this, together with the rather surprising vanishing of the error for a ≤ 1/2.
Theorem 2.1 can be proved using the same idea as for the proof of Theorem 2.2 but we present a
more elementary proof.

3 Preliminaries

We begin by describing the DTASEP model. After that we define a new particle process R on the
initial lattice configuration of the BLIP model, and show how the DTASEP naturally arises from
the process R.

3.1 Discrete time totally asymmetric fragmentation process and discrete
TASEP with backward updating

Consider a one dimensional lattice, where each lattice point is occupied by at most one particle. A
string of n consecutive particles is called a platoon (also called a cluster in [10]) of size n, if it is
bounded by ‘holes’ (empty sites). The platoon to the left of hole j is the j−th platoon and its size
is denoted by n j .

At each time step, a piece of random size 0≤ M j ≤ n j breaks off from platoon j and moves to the
left by one lattice point.
Define

P(M j = k) =

(

pqk, if k < n j

qn j , if k = n j .

The DTASEP with backward update models the motion viewing the particles as individuals rather
than as fragments of platoons. To be precise, let wi(t) denote the position of particle i at time t.
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Start with an initial configuration of particles wi = wi(0), satisfying wi−1 < wi . At each time step
t, we update the process from left to right, in the sense that particle i moves one unit to the left at
time t with probability q if one of two things is true:

(i) wi(t − 1)> wi−1(t − 1) + 1

(ii) wi(t − 1) = wi−1(t − 1) + 1 and wi−1(t) = wi−1(t − 1)− 1

In any other case, the jump is suppressed with probability 1. Notice that (ii) implies that if a
particle made a jump at time t, then the particle immediately to its right has an opportunity to
jump, even if the position became available exactly at time t.

We would like to define DTASEP on the same lattice configuration on which we defined the BLIP
model. We need to define a new particle process which will turn out to be important in the proofs
that follow.

3.2 The process R

First, index each square of N2 by its lower-right corner, and then mark each square with × if the
upper-right corner is marked (i.e. the Bernoulli r.v. gets the value 1 there, which happens with
probability p). This shifts the lattice N2 to the lattice N×Z+. Fix a point (m′, n′) in the new lattice
and let L′(m′, n′) be the cardinality of BLIP if we start from (1,0) and end at (m′, n′). Then, since
we mark each square by the upper-right corner, we have the obvious relation

L′(m′, n′) = L(m′, n′ + 1). (3.1)

We define the R - process on the two dimensional space N×Z+, with time increasing in the vertical
direction.
Let rk(t) be the position of the k−th particle of the R-process at time t. Start with initial particle
configuration

rk(0) = k, k ≥ 1. (3.2)

Embed the particles in the lattice Z2
+ by defining

Rk(t) = (rk(t), t), k ≥ 1, t ∈ Z+. (3.3)

Evolution of the R process.

There exists (w.p. 1) an particle k∗ that lies on a marked space-time square, such that no particle
to its left lies on a marked square (k∗ = 5 in Figure 2).
At time t = 1, particle k∗ moves 1 unit to the right, pushing all other particles to its right with
it. In the 2-dimensional picture, the particle moves by the vector (1,1). Also notice that platoons
start to form.
In general, for t > 0, at time t − 1 we label the platoons from left to right. Each platoon behaves
independently. Let k∗m be the leftmost particle that lies on a marked space-time square in the
m− th platoon (i.e. the space-time square Rk∗m

(t−1) = (rk∗m
(t−1), t) is marked). Then, at time t,

particle k∗m jumps by the vector (1, 1) and moves all the particles to its right also, as long as they
are in the same platoon with it. The remaining particles of the platoon to the left of k∗m move by
the vector (0,1). It is possible that no particle of a platoon lies on a marked space-time square. If
this happens then that whole platoon moves by the vector (0, 1).(See Figure 2.)
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Figure 2: Evolution of the process R, in a 10 by 10 rectangle. Circles on any horizontal level j
denote particle locations rk( j) at time j. The Bernoulli(p) marks are denoted by ×.

To summarize: rk(t + 1) = rk(t) + 1 if there exists k∗ ≤ k such that rk∗(t) = rk(t) − (k − k∗)
(particles k, k∗ are in the same platoon) and Rk∗(t) is a marked space-time square. In any other
case, rk(t + 1) = rk(t).
To convert the process R(t) into DTASEP apply the lattice transformation (i, j) 7→ (i− j, j). Consider
the effect on jumps:
Case 1: If particle k in the R process moved by vector (0,1), then in the transformed picture it
moves by vector (−1, 1). So it takes a jump to the left with probability q, independently, as long
as there is room to move at that time step (i.e. particle k− 1 also jumps at the same time or is at
a distance greater than 1).
Case 2: If particle k in the R process moved by vector (1,1) with probability p, in the transformed
lattice it moves by (0,1). All particles in its platoon that it was pushing in the earlier picture are
now blocked and they too must move by (0,1) in the transformed picture.
Let r̃k(t) be the position of particle k at time t in DTASEP. By the description above we get

r̃k(t) = rk(t)− t, t ∈ Z+. (3.4)

Define

τ(i, k) = inf{t ≥ 0 : particle k jumped i times in the DTASEP process}
= inf{t ≥ 0 : r̃k(t) = k− i}
= inf{t ≥ 0 : rk(t) = k− i+ t}.
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with boundary conditions τ(0, k) = τ(k, 0) = 0 for all k. Note that the times τ(i, k) are strictly
increasing in i and non-decreasing in k.
Observe that

particle k jumped t − i times by time t in DTASEP
if and only if k jumped i times to the right in R.

(3.5)

For a fixed space-time square (s, t) ∈ N×Z+, the authors in [9] derive the following relation.

PROPOSITION 3.1. Let (s, t) ∈ N×Z+ . Then

L′(s, t) = L(s, t + 1) = s−max{k : s ≥ k ≥ (s− t − 1)∨ 1,τ(t + 1− s+ k, k)≤ t + 1}

with L′(s, t) = s if the above set is empty.

4 Proof of Proposition 3.1

We start with the proof of a preliminary lemma connecting the R-process with L′, directly followed
by the proof that it is in fact equivalent to Proposition 3.1.

LEMMA 4.1. For a space-time square (s, t) ∈ N×Z+, and s ≥ y ≥ 1, we have that L′(s, t) ≥ y if and
only if particle s− y + 1 jumps to the right (in the R-process) at least y times during the first t + 1
time-steps.

Proof. We will proceed by way of induction.
(⇐=) Define Pn,k = R(tn,k) = (r(tn,k), tn,k) to be the position of particle k (in the coordinates of
Figure 2) just before it makes its nth jump (e.g. in Figure 2, P2,3 = (4, 2)). Our aim is to prove that

for all n≥ 0, k ≥ 1 there is a path of weight n to the point Pn,k. (4.1)

Suppose that (4.1) holds; then if particle s − y + 1 makes y jumps to the right in the first t + 1
time-steps, we have Py,s−y+1 ≤ (s, t) and so there is in fact a path of weight at least y to (s, t) as
desired for the lemma.
Base Case: For k = 1 its easy to verify (4.1) for all n, since the first particle can only jump when it
lands on a marked site. For the n = 0 case and arbitrary k, first assume t1,k ≥ 1 and then observe
that if particle k did not jump in the first t1,k time steps, then the rectangle [1, k]× [0, t1,k − 1]
has no marked sites and all paths in it have weight 0. If t1,k = 0 then it does not make sense to
consider n = 0 since there exists a mark at (k′, 0) ≤ (k, 0) for some minimal k′ and P1,k = 1 for
k ≥ k′. In either case though, the induction base case is true.
Induction step: As explained in Section 3, the nth jump of particle k happens either because Pn,k
is marked (so the particle ‘decides’ to jump itself) or because it is pushed to the right by some
particle k′ < k which is itself performing its nth jump, in which case there is a mark at site Pn,k′ .
In either case there is a mark at site Pn,k′ for some k′ ≤ k. Now consider the point Pn−1,k′ . This
point is strictly south-west of Pn,k′ . By the induction hypothesis there is a path of weight n − 1
to this point. Adding the mark at point Pn,k′ gives a path of weight n to the point Pn,k′ and since
Pn,k′ ≤ Pn,k, this is also a path of weight n to the point Pn,k.
(=⇒) Suppose there is a path of weight y to the point (s, t). Let the marks on this be (i0, j0), (i1, j1), ..., (iy−1, jy−1).
By definition, 1≤ i0 < i1 < ...< iy−1 ≤ s and 0≤ j0 < j1 < ...< jy−1 ≤ t.
We aim to prove that particle ir − r has jumped at least r + 1 times during the first jr + 1 steps of
the R-process (hence also all particles to the right of ir − r have jumped at least r+1 times during
the first jr + 1 steps). Note that at time n, the nth time step is completed.



Soft edge results for BLIP 9

Base Case: For r = 0 we want to show that particle i0 jumped at least once in the first j0+1 time-
steps. We know that there is a mark at site (i0, j0) so, either particle i0 touches that site because it
did not jump earlier, or it has already jumped at an earlier time. In any case, the statement is true.
Induction step: Suppose it is true for r = r0 − 1 and we wish to show it for r = r0. Note that
ir0
− r0 ≥ ir0−1 − (r0 − 1). By the induction hypothesis, particle ir0

− r0 has jumped at least r0
times before time jr0

(because particle ir0
− r0 is the same particle as, or to the right of, particle

ir0−1 − (r0 − 1)).
If in fact particle ir0

− r0 has already jumped r0 + 1 times before time jr0
, then we are done.

Otherwise, it has jumped precisely r0 times before time jr0
. In this case, the particle is at position

ir0
at time jr0

− 1 and it will jump at time jr0
due to the mark at point (ir0

, jr0
). So indeed the

particle has jumped at least r0 + 1 when time-step jr0
+ 1 is completed.

In particular, putting r = y−1 shows that particle iy−1− y+1 has jumped y times during the first
jy−1 + 1 time-steps. Since iy−1 ≤ s and jy−1 ≤ t, this implies that particle s− y + 1 has jumped at
least y times during the first t + 1 time-steps, as required by the lemma.

Proof of Proposition 3.1. Let L′(s, t) = n for some n ∈ Z+, n ≤ min{s, t + 1}. Assume first that
C = {k : s ≥ k ≥ (s− t − 1)∨ 1,τ(t + 1− s+ k, k)≤ t + 1} 6=∅. For (s, t) ∈ N×Z+, define

k∗s,t =max{k : s ≥ k ≥ (s− t − 1)∨ 1,τ(t + 1− s+ k, k)≤ t + 1}. (4.2)

We are going to show that

n= s− k∗s,t . (4.3)

By Lemma 4.1 we know that particle s− n+ 1 jumped at least n times by time t + 1. By (3.5) we
have that it jumped at most t − n+ 1 times to the left in DTASEP, by time t + 1. Hence,

τ(t + 1− s+ (s− n+ 1), s− n+ 1) = τ((t − n+ 1) + 1, s− n+ 1)> t + 1. (4.4)

This implies that k∗s,t < s− n+ 1; equivalently

n≤ s− k∗s,t . (4.5)

For the other inequality, observe that particle s − n jumped to the right at most n times in the
R-process (in the opposite case Lemma 4.1 implies that L′(s, t) ≥ n + 1 which contradicts our
hypothesis). So particle s− n jumped at least t + 1− n times in DTASEP by time t + 1, therefore,

τ(t + 1− s+ (s− n), s− n) = τ(t + 1− n, s− n)≤ t + 1. (4.6)

This implies k∗s,t ≥ s− n; equivalently

s− k∗s,t ≤ n. (4.7)

To finish the proof, consider the case where C =∅. Let k0 = (s− t−1)∨1. Since τ(t+1−s+k, k)
is non decreasing in k, C =∅ if and only if s ≤ t+1 and τ(t+1− s+ k0, k0)≥ t+2. This implies
that k0 = 1 and that particle 1 jumped at least s times to the right by time t + 1, in the R process
(since τ(t − s+ 2,1) ≥ t + 2 implies that by time t + 1 the first particle jumped at most t − s+ 1
times in DTASEP). By Lemma 4.1, L′(s, t)≥ s.



10 Electronic Communications in Probability

5 Proof of results for the Longest Increasing Path model

To make the notation slightly simpler, we can convert back to L(m, n). Let (m, n) ∈ N2. Since
L(m, n) = L′(m, n− 1), by Proposition 3.1 we get the equivalent form

L(m, n) = m− (max{k : (m− n)∨ 1≤ k ≤ m,τ(n−m+ k, k)≤ n} ∨ 0) (5.1)

Set k∗ = max{(m− n)∨ 1 ≤ k ≤ m : τ(n−m+ k, k) ≤ n} ∨ 0. For (m− n)∨ 1 ≤ j ≤ m, we have
the equality of events

Bm,n, j =
�

L(m, n)≤ m− j
	

=
�

j ≤ k∗
	

=
�

τ(n−m+ j, j)≤ n
	

(5.2)

where the second equality comes from Proposition 3.1 and the last equality comes from the fact
that τ(n−m+ ·, ·) is non-decreasing. It is going to be notationally convenient for the proofs that
follow, to allow non-integer arguments in τ(n−m+ ·, ·). For j ≥ 1, j /∈ N, define

τ(n−m+ j, j) = τ(n−m+ b jc, b jc) (5.3)

and extend the definition ofBm,n, j in the obvious way.
A distributionally equivalent way of defining the process {τ(i, j)}i, j≥1 is by using the recursion

τ(i, j) =
�

τ(i− 1, j) + 1
�

∨τ(i, j− 1) + eYi j (5.4)

where P(eYi j = s) = qps, s ≥ 0 and {Ỹi j} are i.i.d. for i, j ≥ 1.
In words, the time that particle j performs its i-th jump cannot happen before two events occur.
First, particle j itself needs to jump i−1 times and is allowed to jump again starting from the next
time step. Second, particle j−1 needs to jump i times or else the exclusion rule forbids j to jump so
many times. The updating allows j to jump its ith jump exactly at time

�

τ(i− 1, j) + 1
�

∨τ(i, j−1)
with probability q. After these events occur, particle j waits a geometrically distributed time for
its next jump.
We can connect equation (5.4) with last passage times of the standard corner growth model with
geometric weights.

LEMMA 5.1. Let i ≥ 1, j ≥ 1 and let G(i, j) be defined by (1.2) with geometrically distributed random
weights Yv , P(Yv = s) = qps−1, for s ∈ N. Then,

τ(i, j) =D G(i, j)− j+ 1. (5.5)

Proof. Recall that Yv = eYv + 1. We begin by showing that

τ(i, j) = i+ max
π∈Π(i, j)

∑

v∈π

eYv . (5.6)

We induct on n= i+ j.
Base Case: If n= 2 then i = j = 1 and a comparison between (5.4) and (5.6) proves the base case
(recall that τ(i, 0) = τ(0, j) = 0).
Induction Step: Assume n ≥ 3 and that (5.6) is true for all i + j = n− 1. We are going to show it
for i+ j = n.

τ(i, j) =
�

τ(i− 1, j) + 1
�

∨τ(i, j− 1) + eYi j

=

�

i+ max
π∈Π(i−1, j)

∑

v∈π

eYv

�

∨
�

i+ max
π∈Π(i, j−1)

∑

v∈π

eYv

�

+ eYi j

= i+ max
π∈Π(i, j)

∑

v∈π

eYv .



Soft edge results for BLIP 11

Now observe that on any up-right path we have exactly i+ j−1 vertices. Then we can write (5.6)
as

τ(i, j) = max
π∈Π(i, j)

∑

v∈π

¦

eYv + 1
©

− j+ 1= max
π∈Π(i, j)

∑

v∈π
Yv − j+ 1= G(i, j)− j+ 1.

Now, to prove the main theorems.

Proof of Theorem 2.1. Proof of part (a). Let ε > 0 and let dn be a positive sequence such that
dn −→+∞, with dn = o(n). We want to show that for all ε > 0,

lim
n→+∞
P
¨

ε≤
n− L(bp−1n− xnac, n)

dn

«

= 0. (5.7)

Define m = m(n) = bp−1n− xnac and j = j(n) = m− n+ εdn. Notice that for n large enough,
(m− n) ∨ 1 ≤ j ≤ m. Therefore, we can rewrite equation (5.7) using equation (5.2), and so it is
equivalent to prove

lim
n→+∞
P
¦

Bm,n, j

©

= lim
n→+∞
P
�

τ(n−m+ j, j)≤ n
	

= 0. (5.8)

From the definition of j and equation (5.5), we get

P
�

τ(n−m+ j, j)≤ n
	

= P
�

G(εdn, m− n+ εdn)≤ m+ εdn − 1
	

. (5.9)

In order to prove (5.8), we are going to show that

lim
n→+∞
P
�

G(εdn, m− n+ εdn)≤ m+ εdn − 1
	

= 0. (5.10)

Consider the rectangle [bεdnc]× [b jc]. Define

πi = {(1,1), (2, 1), ..., (i, 1)} ∪ {(i, 2), (i, 3), ....., (i, b jc)} ∪ {(i+ 1, b jc), ...(bεdnc, b jc)}.

Also, set

Sπi
=
∑

v∈πi

Yv and S(i, j) =
b jc
∑

k=1

Yik.

For c ∈ R, we have the inclusion of events:

{G(εdn, j)≤ c} ⊆
⋂

i≤εdn

{Sπi
≤ c} ⊆

⋂

i≤εdn

{S(i, j) ≤ c− bεdnc+ 1} (5.11)

where the last inclusion follows from the fact that the geometric weights Yik start from 1. Recall
that EYik = q−1. Note that ES(i, j) = p−1n− xq−1na + εq−1dn + Cq−1, where C < 0 is the error
coming from the integer parts. Beeing a bit careful with the integer parts, we estimate

P
¦

Bm,n, j

©

≤
�

P
¦

S(i, j) ≤ bp−1n− xnac
©�bεdnc =

�

P
¦

S(i, j) ≤ p−1n− xna
©�bεdnc

=
�

P
¦

S(i, j) −ES(i, j) ≤ p−1n− xna −ES(i, j)
©�bεdnc . (5.12)

Since we are assuming that a ≤ 1/2 and dn > 0, there exist δ > 0 and n0 = n0(δ) < +∞, such
that for all n> n0 we have

P
�

S(i, j) −ES(i, j) ≤ x
p

q
na −

ε

q
dn

�

< 1−δ (5.13)
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by virtue of the CLT. Combining this with (5.12), we have proved equation (5.10) and thereby part
(a) of Theorem 2.1.
For part (b). Observe that in part (a) we actually proved that for ε > 0 and n large enough, we
have

P
¨

ε≤
n− L(bp−1n− xnac, n)

dn

«

≤ (1−δ)bεdnc . (5.14)

A Borel-Cantelli argument finishes the proof.

Before proceeding to the proof for the non-trivial edge, we need some preliminary comments. We
are going to use a modified version of Theorem 1.1 as shown in the next Lemma (for which we
omit the proof).

LEMMA 5.2. Let µ be the expectation and σ2 the variance of the weights Yik. Assume that j/n→ c1,
as n→∞, 0< c1 <+∞, 0< y <+∞ are constants and 0< β < 1. Then,

G( j, ynβ) = µ j+ n
1+β

2 (2σ
p

c1 y + o(1)) in probability, (5.15)

where o(1) is a quantity that goes to 0 in probability as n gets large.

We are going to apply (5.15) in the case of β = 2a− 1.

Proof of Theorem 2.2. Recall that now 1> a >
1

2
. Let c > 0 be a constant to be specified later and

set m = bnp−1 − xnac and j = m− n+ b(cn)2a−1c. Also let µ =
1

q
the mean and σ =

p
p

q
to be the

standard deviation of the geometric weights.
From equation (5.2) we have

Bm,n, j = {L(bp−1n− xnac, n)≤ n− b(cn)2a−1c}. (5.16)

Using (5.2) and (5.5), we evaluate

P
¦

Bm,n, j

©

= P
¦

G(b(cn)2a−1c, j)≤ m+ b(cn)2a−1c − 1
©

= P
¦

G( j, b(cn)2a−1c)≤ m+ b(cn)2a−1c − 1
©

(5.17)

where the second equality follows from the distributional equality G(x , y) =D G(y, x). Set β =
2a− 1 and y = c2a−1 = cβ . Then (5.17) becomes

P
¦

Bm,n, j

©

= P
n

G( j, bynβc)≤ bnp−1 − xn
1+β

2 c+ bynβc − 1
o

. (5.18)

Observe that j/n→ q/p. Substituting this in (5.15), we get the equality in probability

G( j, ynβ) = p−1n− n
1+β

2

�

1

q
(x − 2

p
q y) + o(1)

�

(5.19)

Now compare the expression in the probability of (5.18) with (5.19), keeping in mind that β <
1+β

2
. We conclude that

lim
n→+∞
P
¦

Bm,n, j

©

= 0 (5.20)

if x >
1

q
(x − 2

p
q y), which is equivalent to y > (px)2

4q
as desired. Similarly, if x <

1

q
(x − 2

p
q y)

lim
n→+∞
P
¦

Bm,n, j

©

= 1 (5.21)

and this gives the other direction.
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