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Abstract
The purpose of this note is to prove a central limit theorem for the L2-modulus of continuity of the
Brownian local time obtained in [3], using techniques of stochastic analysis. The main ingredients
of the proof are an asymptotic version of Knight’s theorem and the Clark-Ocone formula for the
L2-modulus of the Brownian local time.

1 Introduction

Let B = {Bt , t ≥ 0} be a standard Brownian motion, and denote by {Lt(x), t ≥ 0, x ∈ R} its local
time. In [3] the authors have proved the following central limit theorem for the L2modulus of
continuity of the local time:

Theorem 1. For each fixed t > 0,

h−
3
2

�
∫

R
(Lt(x + h)− Lt(x))

2d x − 4th

�

L−→ 8

Ç

αt

3
η, (1.1)

as h tends to zero, where

αt =

∫

R
(Lt(x))

2d x , (1.2)

and η is a N(0, 1) random variable independent of B.
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We make use of the notation

Gt(h) =

∫

R
(Lt(x + h)− Lt(x))

2d x . (1.3)

It is proved in [3, Lemma 8.1] that E
�

Gt(h)
�

= 4th+O(h2). Therefore, we can replace the term
4th in (1.1) by E

�

Gt(h)
�

.
The proof of Theorem 1 is done in [3] by the method of moments. The purpose of this paper is
to provide a simple proof of this result. Our method is based on an asymptotic version of Knight’s
theorem (see Revuz and Yor [7], Theorem (2.3), page 524) combined with the techniques of
stochastic analysis and Malliavin calculus. The main idea is to apply the Clark-Ocone stochastic
integral representation formula to express Gt(h) − E

�

Gt(h)
�

as a stochastic integral. Then, by
means of simple estimates using Hölder’s inequality, it is proved that the leading term is a martin-
gale, to which we can apply an asymptotic version of Knight’ theorem. An important ingredient
is to show the convergence of the quadratic variation of this martingale, which will be derived by
using Tanaka’s formula and backward Itô stochastic integrals.
The paper is organized as follows. In the next section we recall some preliminaries on Malliavin
calculus and we establish a stochastic integral representation for the random variable Gt(h). Then,
Section 3 is devoted to the proof of Theorem 1.

2 Stochastic integral representation of the L2-modulus of con-
tinuity

Let us introduce some basic facts on the Malliavin calculus with respect the the Brownian motion
B = {Bt , t ≥ 0}. We refer to [4] for a complete presentation of these notions. We assume that B
is defined on a complete probability space (Ω,F , P) such that F is generated by B. Consider the
set S of smooth random variables of the form

F = f
�

Bt1
, . . . , Btn

�

, (2.4)

where t1, . . . , tn ≥ 0, f ∈ C∞b (R
n) (the space of bounded functions which have bounded deriva-

tives of all orders) and n ∈ N. The derivative operator D on a smooth random variable of the form
(2.4) is defined by

Dt F =
n
∑

i=1

∂ f

∂ x i

�

Bt1
, . . . , Btn

�

I[0,t i](t),

which is an element of L2 (Ω× [0,∞)). We denote by D1,2 the completion of S with respect to
the norm ‖F‖1,2 given by

‖F‖2
1,2 = E

�

F2
�

+ E
�
∫ ∞

0

�

Dt F
�2 d t

�

.

The classical Itô representation theorem asserts that any square integrable random variable can
be expressed as

F = E[F]+
∫ ∞

0

ut dBt ,
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where u = {ut , t ≥ 0} is a unique adapted process such that E
�

∫∞
0

u2
t d t
�

<∞. If F belongs to

D1,2, then ut = E[Dt F |Ft], where {Ft , t ≥ 0} is the filtration generated by B, and we obtain the
Clark-Ocone formula (see [5])

F = E[F]+
∫ ∞

0

E[Dt F |Ft]dBt . (2.5)

The random variable Gt(h) =
∫

R(Lt(x + h) − Lt(x))2d x can be expressed in terms of the self-
intersection local time of Brownian motion. In fact,

Gt(h) =

∫

R

�
∫ t

0

δ(Bu + x + h)du−
∫ t

0

δ(Bu + x)du

�2

d x

= −2

�
∫ t

0

∫ t

0

δ(Bv − Bu + h)dudv−
∫ t

0

∫ t

0

δ(Bv − Bu)dudv

�

= −2

∫ t

0

∫ v

0

�

δ(Bv − Bu + h) +δ(Bv − Bu − h)− 2δ(Bv − Bu)
�

dudv .

The rigorous justification of above argument can be made easily by approximating the Dirac delta
function by the heat kernel pε(x) =

1p
2πε

e−x2/2ε as ε tends to zero. That is, Gt(h) is the limit in
L2(Ω) as ε tends to zero of

Gεt (h) =−2

∫ t

0

∫ v

0

�

pε(Bv − Bu + h) + pε(Bv − Bu − h)− 2pε(Bv − Bu)
�

dudv. (2.6)

Applying Clark-Ocone formula we can derive the following stochastic integral representation for
Gt(h).

Proposition 2. The random variable Gt(h) defined in (1.3) can be expressed as

Gt(h) = E(Gt(h)) +

∫ t

0

ut,h(r)dBr ,

where

ut,h(r) = 4

∫ r

0

∫ h

0

�

pt−r(Br − Bu −η)− pt−r(Br − Bu +η)
�

dηdu

+4

∫ r

0

�

I[0,h](Bu − Br)− I[0,h](Br − Bu)
�

du. (2.7)

Proof For any u< v and any h ∈ R we can write

Dr pε(Bv − Bu + h) = p′ε(Bv − Bu + h)I[u,v](r),

and for any u< r < v

E
�

Dr p′ε(Bv − Bu + h)|Fr

�

= Ep′ε(
p

v− rη+ Br − Bu + h)

= p′v−r+ε(Br − Bu + h),
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where η denotes a N(0, 1) random variable independent of B. Therefore, from Clark-Ocone for-
mula (2.5) and Equation (2.6) we obtain

Gεt (h) = E(G
ε
t (h)) +

∫ t

0

uεt,h(r)dBr ,

where

uεt,h(r) = −2

∫ t

r

∫ r

0

�

p′v−r+ε(Br − Bu + h) + p′v−r+ε(Br − Bu − h)

+2p′v−r+ε(Br − Bu)

�

dudv.

This expression can be written as

uεt,h(r) =−2

∫ t

r

∫ r

0

∫ h

0

�

(p′′v−r+ε(Br − Bu +η)− p′′v−r+ε(Br − Bu −η)
�

dηdudv.

Using the fact that p′′t (x) = 2 ∂ pt

∂ t
(x) we obtain

uεt,h(r) = −4

 

∫ r

0

∫ h

0

�

(pt−r+ε(Br − Bu +η)− pt−r+ε(Br − Bu −η)
�

dηdu

−
∫ r

0

∫ h

0

�

(pε(Br − Bu +η)− pε(Br − Bu −η)
�

dηdu

!

.

Letting ε tend to zero we get that uεt,h(r) converges in L2(Ω× [0, t]) to ut,h(r) as h tends to zero,
which implies the desired result.

From Proposition 2 we can make the following decomposition

ut,h(r) = ût,h(r) + 4Ψh(r),

where

ût,h(r) = −4

∫ r

0

∫ h

0

�

pt−r(Br − Bu +η)− pt−r(Br − Bu −η)
�

dηdu

= −4

∫ r

0

∫ h

0

∫ η

−η
p′t−r(Br − Bu + ξ)dξdηdu (2.8)

and

Ψh(r) =−
∫ r

0

�

I[0,h](Br − Bu)− I[0,h](Bu − Br)
�

du. (2.9)

As a consequence, we finally obtain

Gt(h)−E(Gt(h)) =

∫ t

0

ût,h(r)dBr + 4

∫ t

0

Ψh(r)dBr . (2.10)



Brownian local time and a central limit theorem 533

3 Proof of Theorem 1

The proof will be done in several steps. Along the proof we will denote by C a generic constant,
which may be different form line to line.
Step 1 We claim that the stochastic integral

∫ t

0
ût,h(r)dBr makes no contribution to the limit (1.1).

That is,

h−3/2

∫ t

0

ût,h(r)dBr

converges in L2(Ω) to zero as h tends to zero. This is a consequence of the next proposition.

Proposition 3. There is a constant C > 0 such that

E
�
∫ t

0

|ût,h(r)|2dr

�

≤ Ch4 ,

for all h> 0.

Proof From (2.8) we can write

E
�

|ût,h(r)|2
�

=

∫ r

0

∫ r

0

∫ h

0

∫ h

0

∫ η1

−η1

∫ η2

−η2

E(p′t−r(Br − Bu1
+ ξ1)

×p′t−r(Br − Bu2
+ ξ2))dξ1dξ2dη1dη2du1du2.

By a symmetry argument, it suffices to integrate in the region 0< u1 < u2 < r. Set

Φ(u1, u2,ξ1,ξ2) = E
�

p′t−r(Br − Bu1
+ ξ1)p

′
t−r(Br − Bu2

+ ξ2)
�

.

Then,

Φ(u1, u2,ξ1,ξ2) = E
�

p′t−r(Br − Bu2
+ Bu2

− Bu1
+ ξ1)p

′
t−r(Br − Bu2

+ ξ2)
�

= E
�

p′t−r+u2−u1
(Br − Bu2

+ ξ1)p
′
t−r(Br − Bu2

+ ξ2)
�

=

∫

R
pr−u2

(z)p′t−r+u2−u1
(z+ ξ1)p

′
t−r(z+ ξ2)dz

≤ ‖pr−u2
‖p1
‖p′t−r+u2−u1

‖p2
‖p′t−r‖p3

,

where 1
p1
+ 1

p2
+ 1

p3
= 1. It is easy to see that

‖pr−u2
‖p1

≤ C(r − u2)
− 1

2
+ 1

2p1 ,

‖p′t−r+u2−u1
‖p2

≤ C(t − r + u2 − u1)
−1+ 1

2p2 ≤ C(u2 − u1)
−1+ 1

2p2 ,

‖p′t−r‖p3
≤ C(t − r)−1+ 1

2p3 ,

for some constant C > 0. Thus

E
�

|ût,h(r)|2
�

≤ C

∫ r

0

∫ u2

0

∫ h

0

∫ h

0

∫ η1

−η1

∫ η2

−η2

(r − u2)
− 1

2
+ 1

2p1

×(u2 − u1)
−1+ 1

2p2 (t − r)−1+ 1
2p3 dξ1dξ2dη1dη2du1du2

≤ C h4 .

This proves the proposition.
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Step 2 Taking into account Proposition 3 and Equation (2.10), in order to show Theorem 1 it
suffices to show the following convergence in law:

h−
3
2

∫ t

0

Ψh(r)dBr
L→ 2η

Ç

αt

3
,

where η is a standard normal random variable independent of B, αt has been defined in (1.2),
and Ψh(r) is given by (2.9). Notice that

Mh
t = h−

3
2

∫ t

0

Ψh(r)dBr

is a martingale with quadratic variation

¬

Mh
¶

t
= h−3

∫ t

0

Ψ2
h(r)dr.

From the asymptotic version of Knight’s theorem (see Revuz and Yor [7], Theorem (2.3) page.
524) it suffices to show the following convergences in probability.

h−3

∫ t

0

Ψ2
h(r)dr →

4

3
αt , (3.11)

and
¬

Mh, B
¶

t
= h−3/2

∫ t

0

Ψh(r)dr → 0, (3.12)

as h tends to zero, where the convergence (3.12) is uniform in compact sets. In fact, let Bh be
the Brownian motion such that Mh

t = Bh
〈Mh〉t

. Then, from Theorem (2.3) pag. 524 in [7], and

the convergences (3.11) and (3.12), we deduce that (B, Bh, 〈Mh〉t) converges in distribution to
(B,β , 4

3
αt), where β is a Brownian motion independent of B. This implies that Mh

t = Bh
〈Mh〉t

converges in distribution to β 4
3
αt

, which yields the desired result.

Before proving (3.11) and (3.12) we will express Ψh(r) using Tanaka’s formula. By the occupation
formula for the Brownian motion we can write

Ψh(r) = −
∫

R

�

I[0,h](Br − x)− I[0,h](x − Br)
�

Lr(x)d x

=

∫ h

0

�

Lr(Br + y)− Lr(Br − y)
�

d y.

We can express the difference Lr(Br − y) − Lr(Br + y) by means of Tanaka’s formula for the
Brownian motion {Br − Bs, 0≤ s ≤ r}:

Lr(Br + y)− Lr(Br − y) = y + (Br − y)+ − (Br + y)+

−
∫ r

0

�

IBr−Bs+y>0 − IBr−Bs−y>0

�

dbBs,
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where dbBs denote the backward stochastic Itô integral and y > 0. Integrating in the variable y
yields

Ψh(r) =
h2

2
−
∫ h

0

�

(Br + y)+ − (Br − y)+
�

d y

−
∫ h

0

�
∫ r

0

I y>|Br−Bs |dbBs

�

d y. (3.13)

By stochastic Fubini’s theorem
∫ h

0

�
∫ r

0

I y>|Br−Bs |dbBs

�

d y =

∫ r

0

(h− |Br − Bs|)+dbBs. (3.14)

Hence,

Ψh(r) =
h2

2
−
∫ h

0

�

(Br + y)+ − (Br − y)+
�

d y

−
∫ r

0

(h− |Br − Bs|)+dbBs. (3.15)

The convergences (3.11) and (3.12) will be proved in the next two steps.
Step 3 The convergence (3.12) follows from the following lemma.

Lemma 4. For any t ≥ 0,
¬

Mh, B
¶

t
converges to zero in L2(Ω) uniformly in compact sets as h tends

to zero.

Proof In view of (3.13) it suffices to show that

sup
0≤t≤t1

�

�

�

�

�

h−3/2

∫ t

0

�
∫ r

0

(h− |Br − Bs|)+dbBs

�

dr

�

�

�

�

�

converges to zero in L2(Ω) as h tends to zero, for any t1 > 0. For any p ≥ 2 and any 0 ≤ s < t we
can write by Fubini’s theorem and Burkholder’s inequality

E

 
�

�

�

�

�

∫ t

s

�
∫ r

0

(h− |Br − Bv |)+dbBv

�

dr

�

�

�

�

�

p!

≤ 2p−1

¨

E

 
�

�

�

�

�

∫ s

0

�
∫ t

s

(h− |Br − Bv |)+dr

�

dbBv

�

�

�

�

�

p!

+E

 
�

�

�

�

�

∫ t

s

�
∫ t

v

(h− |Br − Bv |)+dr

�

dbBv

�

�

�

�

�

p!«

≤ cp

¨

E







�

�

�

�

�

∫ s

0

�
∫ t

s

(h− |Br − Bv |)+dr

�2

dv

�

�

�

�

�

p/2






+E







�

�

�

�

�

∫ t

s

�
∫ t

v

(h− |Br − Bv |)+dr

�2

dv

�

�

�

�

�

p/2






«

= cp(I1 + I2).
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The term I1 can be expressed using occupation formula as follows

I1 = E







�

�

�

�

�

∫ s

0

�
∫

R
(h− |x − Bv |)+(Lt(x)− Ls(x))d x

�2

dv

�

�

�

�

�

p/2






≤ sp/2h2pE
�

sup
x
|Lt(x)− Ls(x)|p

�

.

By the inequalities for local time proved, for instance, in [1] we obtain

I1 ≤ cph2p|t − s|p/2.

Similarly,

I2 = E







�

�

�

�

�

∫ t

s

�
∫

R
(h− |x − Bv |)+(Lt(x)− Lv(x))d x

�2

dv

�

�

�

�

�

p/2






≤ h2p|t − s|p/2 sup
s≤v≤t
E
�

sup
x
|Lt(x)− Lv(x)|p

�

≤ cph2p|t − s|p.

Finally, a standard application of the Garsia-Rudemich-Rumsey lemma allows us to conclude.
Step 4 We are going to show that

h−3

∫ t

0

Ψh(r)
2dr

L2(Ω)
→

4

3
αt , (3.16)

as h tends to zero. Notice that

αt = 2

∫ t

0

∫ v

0

δ0(Bv − Bu)dudv

is the self-intersection local time of B, and Equation (3.16) provides an approximation for this
self-intersection local time which has its own interest.
Taking into account (3.13) and (3.14), the convergence (3.16) will follow from

h−3

∫ t

0

�
∫ r

0

(h− |Br − Bs|)+dbBs

�2

dr
L2(Ω)
→

4

3
αt , (3.17)

as h tends to zero. By Itô’s formula we can write

�
∫ r

0

(h− |Br − Bs|)+dbBs

�2

= 2

∫ r

0

�
∫ r

s

(h− |Br − Bu|)+dbBu

�

×(h− |Br − Bs|)+dbBs +

∫ r

0

�

(h− |Br − Bs|)+
�2 ds. (3.18)

Finally, (3.17) follows form (3.18) and the next two lemmas.
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Lemma 5. We have
∫ t

0

∫ r

0

�

(h− |Br − Bs|)+
�2

h3 dsdr
L2(Ω)
→

4

3
αt ,

as h tends to zero.

Proof Notice that

αt =

∫

R
Lt(x)

2d x =

∫ t

0

∫

R
Lr(x)Ldr(x)d x =

∫ t

0

Lr(Br)dr,

and
∫ t

0

∫ r

0

�

(h− |Br − Bs|)+
�2

h3 dsdr =

∫ t

0

∫

R

�

(h− |Br − x |)+
�2

h3 Lr(x)d x .

As a consequence, taking into account that

∫

R

�

(h− |Br − x |)+
�2

h3 d x =

∫

R

[(h− |x |)+]2

h3 d x =
4

3
,

we obtain
�

�

�

�

�

∫ t

0

∫ r

0

�

(h− |Br − Bs|)+
�2

h3 dsdr −
4

3
αt

�

�

�

�

�

≤
∫ t

0

∫

R

�

(h− |Br − x |)+
�2

h3

�

�Lr(x)− Lr(Br)
�

� d xdr

≤
4

3

∫ t

0

sup
|x−y|<h

�

�Lr(x)− Lr(y)
�

� dr,

which clearly converges to zero in L2 by the properties of the Brownian local time (see, for in-
stance, [2]).

Lemma 6. We have

1

h6E





�
∫ t

0

�
∫ r

0

�
∫ r

s

(h− |Br − Bu|)+dbBu

�

(h− |Br − Bs|)+dbBs

�

dr

�2

→ 0,

as h tends to zero.

Proof By the isometry property of the backward Itô integral we can write

Bh : =
1

h6E





�
∫ t

0

�
∫ r

0

�
∫ r

s

(h− |Br − Bu|)+dbBu

�

(h− |Br − Bs|)+dbBs

�

dr

�2



=
1

h6E





∫ t

0

�
∫ t

s

(h− |Br − Bs|)+
�
∫ r

s

(h− |Br − Bu|)+dbBu

�

dr

�2

ds





≤ E
�

B1
h B2

h

�

,
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where

B1
h =

∫ t

0

�
∫ t

s

(h− |Br − Bs|)+

h2 dr

�2

ds

and

B2
h = sup

0<s<r<t

�

�

�

�

�

∫ r

s

(h− |Br − Bu|)+

h
dbBu

�

�

�

�

�

2

.

As in Lemma 5, we can show that B1
h converges to 9

4

∫ t

0

�

Lt(Bs)− Ls(Bs)
�2 ds, and the convergence

holds in Lp(Ω) for any p ≥ 2. Here we use
∫

R

(h− |x |)+

h2 d x =
3

2
.

On the other hand,
∫ r

s
(h−|Br−Bu|)+

h
dbBu can be expressed using again Tanaka’s formula:

1

h

∫ r

s

(h− |Br − Bu|)+dbBu =

∫ h

0

�
∫ r

s

I y>|Br−Bu|dbBu

�

d y

=
1

h

∫ h

0

�

Lr(Br − y)− Lr(Br + y)
�

d y

−
1

h

∫ h

0

�

Ls(Br − y)− Ls(Br + y)
�

d y +
h

2

+
1

h

∫ h

0

�

(Br − Bs + y)+ − (Br − Bs − y)+
�

d y.

Therefore,
�

�

�

�

�

1

h

∫ r

s

(h− |Br − Bu|)+dbBu

�

�

�

�

�

≤ sup
s<r<t

sup
|x−y|≤2h

�

�Lr(x)− Lr(y)
�

�+O(h),

which also converges to zero in Lp(Ω) for any p ≥ 2.
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