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Abstract

We consider the first-passage percolation problem on effectively one-dimensional graphs with vertex
set {1 . . . ,n} × {0,1} and translation-invariant edge-structure. For three of six non-trivial cases we
obtain exact expressions for the asymptotic percolation rateχ by solving certain recursive distributional
equations and invoking results from ergodic theory to identify χ as the expected asymptotic one-step
growth of the first-passage time from (0,0) to (n,0).

1 Introduction

Let G = (V,E) be a graph with vertex setV = V(G) and unoriented edgesE = E(G) ⊂ G2. Two
verticesu, v ∈ V are said to be adjacent, for which we writeu ∼ v if (u, v) ∈ E and the edgee = (u, v)
is said to join the verticesu and v. Assume there is a weight-functionw : E → R. For any two
verticesu, v ∈ V a path p joining u and v in Gis a collection of vertices{u = p0, p1, . . . , pn−1, pn = v}
such thatpν and pν+1 are adjacent for 0≤ ν < n; a pathp is calledsimpleif each vertex occurs in
p at most once. To a given pathp we associate the set of its comprising edges ˆp = {(pν, pν+1) : 0 ≤
ν < n}. Theweight w(p) of a pathp is then defined as

∑

e∈p̂ w(e). We definedG : V × V → R by
dG(u, v) = inf {w(p) : p a path joiningu andv in G}, and calldG(u, v) thefirst-passage timebetweenu
andv. A path p joiningu andv in G, such thatw(p) = dG(u, v) is called ashortest path. Throughout
this work we assume thatG is finite and connected and we will be interested in the case that the weights
w(e), e ∈ E, are random variables; the goal is then to make probability statements about first-passage
times or related quantities. In general we note here that a shortest pathp = {u = p0, . . . , pn = v} is
always simple and that each sub-path{pk, . . . , pl}, 0 ≤ k < l ≤ n, is also a shortest path. Moreover,
for continuously distributed, independent edge weights the shortest path between any two vertices is
almost surely unique [7].
The typical first-passage percolation problem is based on two-dimensional regular infinite graphsG
with vertex setsV(G) = Z2. The edge weightsw(e), e ∈ E(G), are i.i.d random variables inL1 with
some common distributionP such thatP-almost surelyw(e) is positive. Letlm→n, 0 ≤ m≤ n, denote the
first-passage time from (m,0) to (n,0) subject to the condition that the contributing paths consist only
of vertices with first coordinateν, m ≤ ν ≤ n and writeln ≔ l0→n. By lemma 4.2,l0→n ≤ l0→m + lm→n
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and the theory of sub-additive processes (proposition 4.1)implies that limn→∞
1
n ln exists and is almost

surely constant. This number, which depends only on the graph G and the distributionP, is denoted by
χ(G,P) and called the(asymptotic) percolation rateor time constant. The explicit calculation of the
percolation rate even for the simplest regular infinite graphs and distributionsP is characterized in [5,
p. 1937] as a "hopelessly intractable" problem.

2 The model

In this work we first focus on the first-passage percolation problem as described in the last paragraph
for certain families of regular, effectively one-dimensional graphs with independent, randomedge-
weights. LetVn = {0,1, . . . ,n} × {0,1} and

Vn ={((i,0), (i + 1,1)) : 0 ≤ i < n}
Wn ={((i,1), (i + 1,0)) : 0 ≤ i < n}
Xn ={((i,0), (i + 1,0)) : 0 ≤ i < n}
Yn ={((i,1), (i + 1,1)) : 0 ≤ i < n}
Zn ={((i,0), (i,1)) : 0 ≤ i ≤ n}.

To each subsetE ⊂ {V ,W ,X ,Y ,Z } corresponds a family of graphs

G
E = {GEn }n∈N = {(Vn, En)}n∈N

with vertex setsVn and edgesEn =
⋃

L ∈E Ln. For each graph the edge weights are independent
exponentially distributed random variables which are labeled Vi ,Wi ,Xi ,Yi ,Zi in the obvious way. By
time-scaling it is no restriction of generality if we assumethe parameter of the edge weight distributions
to be unity. We denote the probability measure byP, that isdP(x) = e−xdx. We point out that by
construction, for any selection of edgesE , GEn is a subgraph ofGEn+1, an observation which forms
the basis for our inductive argument described below. The method is based upon [4] where it has
successfully been employed to compute the asymptotic percolation rate onG {X ,Y ,Z } where the edge
weights are taken to be independently one with probabilityp and zero with probability 1− p. They
also consider continuous edge-weight distributions and show that one can replace those by suitably
chosen discrete ones to obtain arbitrarily good, yet approximative values for the time constant. We do
not adopt this method here but rather work explicitly with the continuous distributions.

3 Results

It turns out that for only six families of graphsG E the first-passage percolation is non-trivial. For
three of these six, namely forG {X ,Y ,Z }, G {V ,W ,X ,Y } andG {W ,X ,Y ,Z } we derive expressions forχ which
seem not to have been known so far (see table 1). We are confident that our method works for the
three remaining families,G {V ,W ,X }, G {V ,W ,X ,Z } andG {V ,W ,X ,Y ,Z }, as well. Increased complexity in the
calculations involved, however, prevents us from obtaining analytic results; the numerical values ofχ
for theses cases, which are also recorded in table 1, were obtained by means of simulations.

4 Subadditivity and ergodic theorems

In this section we present some theoretical results about first-passage times. In particular we show
that the asymptotic percolation rate limn→∞

1
n ln on graphs with vertex setVn ≔ {0, . . . ,n} × {0,1}
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Table 1: Width-two stretchesG E : Non-trivial solved and unsolved cases
E Pictograph χ (E )

{X ,Y ,Z } 2
3
− J1(2)

2 J2(2)

{V ,W ,X ,Y } 3
4
− J0(

√
2)

2
√

2 J1(
√

2)

{W ,X ,Y ,Z } 2 tan 1− 2
2 tan 1− 1

{V ,W ,X } ≈ .51

{V ,W ,X ,Z } ≈ .45

{V ,W ,X ,Y ,Z } ≈ .35

and translation-invariant edge structure is, with probability one, equal to a deterministic number and
provide a formula for its computation (theorem 4.4).

Propositin 4.1. Let G be the graph GEn for someE ⊂ {V ,W ,X ,Y ,Z }. If the edge weights w(e), e ∈
En, are independent, identicallyP-distributed, positive and integrable random variables then almost
surelylimn→∞

1
n ln exists and is equal to a deterministic numberχ (G,P).

To prove this we need a lemma about a property of first-passagetimes, calledsubadditivity.

Lemma 4.2. For any weighted graph G, the function dG : V(G)2→ R is subadditive, that is dG(u,w) ≤
dG(u, v)+dG(v,w) for all u, v,w ∈ V(G). If in particular V(G) = Vn, this says l0→n ≤ l0→m+ lm→n holds
for any0 ≤ m≤ n.

Proof. Subadditivity ofdG is a consequence of the simple observation that the set of allpaths joining
u andw in G is a superset of the set of all paths joiningu andw in G and containingv and that one can
combine any two pathspu→v joining u andv andpv→w joining v andw to get a pathpu→w joining u and
w that satisfiesw

(

pu→w) = w
(

pu→v) + w
(

pv→w). The remark about the special caseG = GE
n is clear.

(Takeu = (0,0), v = (m,0), w = (n,0)) �

To conclude from this subadditivity property that the asymptotic percolation rate is almost surely a de-
terministic number we need the followingsubadditive ergodic theoremdue to Liggett, who generalized
a result of Kingman. (See [3, theorem 6.1] for a proof.)

Theorem 4.3 (Liggett). Suppose a family of random variables X= {Xm,n : 0 ≤ m≤ n} satisfies

(i) X0,n ≤ X0,m + Xm.n.

(ii) For each k∈ N, (Xnk,(n+1)k)n≥0 is a stationary sequence.

(iii) The distribution of(Xm,m+k)k≥0 does not depend on m.
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(iv) E
[

X+0,1
]

< ∞ and for each n∈ N, E
[

X0,n
]

≥ γ0 holds withγ0 > −∞.

Then X= limn→∞ X0,n/n exists almost surely.

In the formulation of(iv) we used, as we will often do in the following, the notationx+ as a short-hand
for max{0, x}. We can now give a proof of the assertion that the asymptotic percolation rate almost
surely equals a non-random number.

Proof of proposition 4.1.We will first argue that the family{Xm,n = lm→n : 0 ≤ m ≤ n} satisfies the
conditions of theorem 4.3. In lemma 4.2 we have seen that (i) holds. (ii) and (iii) follow from the
translational invariance of the graph and the fact that{w(e),e ∈ E} is i.i.d. The last condition, (iv),
holds by assumption and in particular for the exponential distribution. We can thus conclude that
ln/n→ χ almost surely asn→ ∞. To see thatχ is indeed constant, we enumerate the edges{e ∈ E}
in some way, saye1,e2, . . . . Sinceχ is defined as limn→∞ ln/n and eachln is a sum of only a finite
number of edge-weights, namely a of a subset of those contained inGEn , χ is measurable with respect
to

⋂

n≥1σ (w(en),w(en+1), . . .), the tail-σ-algebra of the i.i.d. sequencew(e1),w(e2), . . . . Kolmogorov’s
Zero-One law (see for example [2, Theorem 3.12]) then implies that for any Borel setB the probability
thatχ takes a value inB is either 0 or 1 which means thatχ is almost surely equal to a deterministic
number. �

In view of our next theorem, which provides an explicit formula for the percolation rateχ, we could
have done without proposition 4.1 and without invoking Kingman’s general subadditivity result. We
chose to include it, however, in order to distinguish this universal aspect of first-passage percolation
theory from properties specific to our model. The result is the following:

Theorem 4.4. LetΛn ≔ ln − ln−1 and assume there exists an S -valued ergodic Markov chain(Mn)n≥1

and a measurable function f: S → R satisfyingΛn = f (Mn) for all positive integers n. Then, almost
surely,

χ = lim
n→∞

ln
n
=

∫

S
f (s)π(s), (1)

whereπ is the unique invariant distribution of(Mn)n≥1. Put differently,χ = E [Λ], whereΛ is the weak

limit of the sequence(Λn)n≥1, i.e.Λn
D→ Λ.

Remark4.5. It will be established in lemma 5.6 that there indeed exists aMarkov chain (Mn)n≥1 and a
function f satisfying the conditions of the theorem.

Proof. As an instantaneous function of the ergodic Markov chain (Mn)n≥1 the sequence (Λn)n≥1 is
ergodic as well. It follows that the time average1

n

∑n
ν=1Λν converges toE [Λ]. Since clearlyln =

∑n
ν=1Λn the claim follows. �

5 Calculations for G {X ,Y ,Z }

In this section we prove our results about the time constantsfor first-passage percolation on width-two
stretches (table 1) in the case ofE = {X ,Y ,Z }. The calculations for the other two cases mentioned
are completely analogous and can be found in [8]. We denote the length of the shortest path from (0,0)
to (n,0) by ln, the length of the shortest path from (0,0) to (n,1) by l′n and we let∆n = l′n − ln. Our first
goal is to find a recurrence relation between the distributions of∆n and∆n−1.
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Propositin 5.1. The sequence of random variables(∆n)n≥0 is a real-valued Markov chain with initial
distributionP (∆0 ≤ d) = 1− e−d and transition kernel

K(δ,d) = e−|d|



















































1 d < 0∧ δ ≤ d,

e−(δ−d) d < 0∧ δ > d,

e−|δ| d = 0,

e−(d−δ) d > 0∧ δ ≤ d,

1 d > 0∧ δ > d.

(2)

Proof. It is clear that we must try to expressρn, the probability density function of∆n, in terms ofρn−1,
the density function of∆n−1. To achieve this we define events on which∆n is a deterministic function
of Xn, Yn, Zn and∆n−1, which amounts to separately taking into account the different possible behaviors
of the last step of the shortest path. Consider first the shortest pathp0→1 from (0,0) to (n,1), the last
edge of which must be eitherYn or Zn. Similarly, the last edge ofp0→0, the shortest path from (0,0)
to (n,0), must be eitherXn or Zn. We note that almost surely, the edgeZn is not part of bothp0→1 and
p0→0 because this would contradict the uniqueness property mentioned in the introduction, so that we
have to consider three cases:

=
{

Yn + l′n−1 ≤ Zn + Xn + ln−1 ∧ Xn + ln−1 ≤ Zn + Yn + l′n−1

}

(3a)

= {Zn ≥ |Xn − Yn − ∆n−1|}

=
{

Zn + Xn + ln−1 ≤ Yn + l′n−1 ∧ Xn + ln−1 ≤ Zn + Yn + l′n−1

}

(3b)

= {Yn ≥ Xn + Zn − ∆n−1}

=
{

Yn + l′n−1 ≤ Zn + Xn + ln−1 ∧ Zn + Yn + l′n−1 ≤ Xn + ln−1

}

(3c)

= {Xn ≥ Yn + Zn + ∆n−1}

In particular we have the relation

∆n = min{∆n−1 + Yn,Xn + Zn} −min{Xn,∆n−1 + Yn + Zn}. (4)

The reason why the pictographs above have been chosen to represent the different events is the fol-
lowing: solid lines correspond to edges being used by the shortest path to either (n,0) or (n,1), double
solid lines represent edges being part of both these paths, while dashed lines stand for unused edges.
Using these events we now compute the cumulative distribution function of∆n as

P (∆n ≤ d) = P
(

{∆n ≤ d} ∩
)

+ P
(

{∆n ≤ d} ∩
)

+ P
(

{∆n ≤ d} ∩
)

. (5)

On the event , ∆n is equal to∆n−1 + Yn − Xn, so the first term is

P

(

∆n ≤ d∩
)

=

∫

R

dδ ρn−1(δ)
∫

R3
dP3(x, y, z) I{z≥|x−y−δ|}I{δ+y−x≤d}.

Rewriting the indicator functions as integration bounds weobtain
∫

R

dδ ρn−1(δ)
∫ ∞

0
dP(y)

∫ ∞

(δ+y−d)+
dP(x)

∫ ∞

|x−y−δ|
dP(z)
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and after doing the tedious but easyx-, y- andz-integrals we arrive at

P

(

∆n ≤ d∩
)

=

∫

R

dδ ρn−1(δ)G1(δ,d)

with

G1(δ,d) =
1
4


























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





















eδ(1+ 2(d − δ)) d < 0∧ δ ≤ d,

e2(d−δ) d < 0∧ δ > d,

eδ(2− 2δ − e−2d) d ≥ 0∧ δ ≤ 0,

e−δ(2+ 2δ − e−2(d−δ)) d ≥ 0∧ 0 < δ ≤ d,

e−δ(1+ 2δ) d ≥ 0∧ δ > d.

One can also confirm this computation and similar ones which follow by use of a computer algebra
system. In fact, we used Mathematica to verify our results. On the event , ∆n is given byZn, so for
the second term in equation (5) we obtain:

P

(

∆n ≤ d∩
)

=

∫

R

dδρn−1(δ)
∫

R3
dP3(x, y, z) I{y≥x+z−δ}I{z≤d}

=

∫

R

dδ ρn−1(δ)
∫ ∞

0
dP(x)

∫ d+

0
dP(z)

∫ ∞

(x+z−δ)+
dP(y)

≕

∫

R

dδ ρn−1(δ)G2(δ,d),

where the functionG2 is given by

G2(δ,d) =
1
4
I{d≥0}



























eδ(1− e−2d) δ ≤ 0,

4− e−δ
(

3+ e−2(d−δ) + 2δ
)

0 < δ ≤ d,

4− 4e−d − 2de−δ δ > d.

Finally, on the event , ∆n is equal to−Zn, so we compute for the third term in equation (5)

P

(

∆n ≤ d∩
)

=

∫

R

dδρn−1(δ)
∫

R3
dP3(x, y, z) I{x≥y+z+δ}I{z≤−d}

=

∫

R

dδ ρ−1n(δ)
∫ ∞

0
dP(y)

∫ ∞

(−d)+
dP(z)

∫ ∞

(y+z+δ)+
dP(x)

≕

∫

R

dδ ρn−1(δ)G3(δ,d)

and

G3(δ,d) =
1
4







































4eδ + eδ(−2(d − δ) − 3) d < 0∧ δ ≤ d,

e−2(δ−d) d < 0∧ δ > d,

4+ eδ(2δ − 3) d ≥ 0∧ δ ≤ 0,

e−δ d ≥ 0∧ δ > 0.

It is interesting to note that, due to the symmetry of the events (3b) and (3c), the sum ofG2(δ,d) and
G3(−δ,−d) does not depend ond; explicitly it holds that

G2(δ,d) +G3(−δ,−d) =
1
4

e−|δ|














1 δ ≤ 0

4eδ − 2δ − 3 δ > 0
.
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Putting everything together it follows that

P (∆n ≤ d) =
∫

R

dδ ρn−1(δ) [G1(δ,d) +G2(δ,d) +G3(δ,d)].

Differentiating this equation with respect tod and interchanging differentiation and integration on the
right hand side we obtain

ρn(δ) =
∫

R

dδ ρn−1(δ)∂d [G1[δ,d] +G2(δ,d) +G3(δ,d)],

so the transition kernelK : R → R is given byK(δ,d) = ∂d [G1[δ,d] +G2(δ,d) +G3(δ,d)] and the
claim follows from basic computations. �

From the explicit description of the transition kernelK(δ,d) we can deduce useful properties of (∆n)n≥0:

Lemma 5.2. The Markov chain(∆n)n≥0 is ergodic. In particular, as n→ ∞, (∆n)n≥0 converges in
distribution to a non-degenerate limiting random variable∆ with probability density functionρ∞ =
limn→∞ ρn.

Proof. It is enough to note that the kernel functionK from proposition 5.1 is strictly positive and con-
tinuous. The claim therefore follows from an extension of the Perron-Frobenius theorem to continuous
transfer operators (see [6]). �

Corollary 5.3. Letρ∞ = limn→∞ ρn. Then

(i) The densityρ∞ of the stationary distribution of(∆n)n≥0 satisfies the integral equation

ρ∞(d) =ed
∫ d

−∞
dδ ρ∞(δ) + e2d

∫ ∞

d
dδ ρ∞(δ)e−δ d < 0 (6a)

ρ∞(d) =e−2d
∫ d

−∞
dδ ρ∞(δ)eδ + e−d

∫ ∞

d
dδ ρ∞(δ) d ≥ 0. (6b)

(ii) The densityρ∞ is an even function, that isρ∞(d) = ρ∞(−d) for all d ∈ R.

Proof. For the first claim we observe thatρ∞ satisfies the integral equationρ∞(d) =
∫

R
dδ ρ∞(δ)K(δ,d)

with the kernelK given in (2). The second assertion follows from the symmetryK(δ,d) = K(−δ,−d).
�

In order to solve this integral equation we transform it intoa differential equation.

Lemma 5.4. The densityρ∞ of the stationary distribution of(∆n)n≥0 satisfies the differential equation

ρ′′∞(d) = −
[

2+ ed
]

ρ∞(d) + 3ρ′∞(d) d < 0, (7a)

ρ′′∞(d) = −
[

2+ e−d
]

ρ∞(d) − 3ρ′∞(d) d ≥ 0. (7b)
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Proof. We only prove the claim ford < 0. The cased ≥ 0 can be shown in the same way or one uses
(ii) of corollary 5.3. In the cased < 0 we know thatρ∞ is a solution to the integral equation (6a).
Differentiating this equation with respect tod and using (6a) again we obtain

ρ′∞(d) =edρ∞(d) + ed
∫ d

−∞
dδ ρ∞(δ)

− edρ∞(d) + 2e2d
∫ ∞

d
dδ ρ∞(δ)e−δ (8)

=2ρ∞(d) − ed
∫ d

−∞
dδ ρ∞(δ).

Differentiating again and eliminating the remaining integral via (8) yields

ρ′′∞(d) =2ρ′∞(d) − edρ∞(d) − ed
∫ d

−∞
dδ ρ∞(δ)

=3ρ′∞(d) −
[

2+ ed
]

ρ∞(d). �

Propositin 5.5. The densityρ∞ of the stationary distribution of the Markov chain(∆n)n≥0 is

ρ∞(d) =
1

2 J2(2)
e−

3
2 |d| J1

(

2e−
1
2 |d|

)

, (9)

whereJν are Bessel functions of the first kind.

Proof. Ford < 0, we writeρ∞ asρ∞(d) = e
3
2 dρ̃∞

(

2e
1
2 d

)

with a functionρ̃∞ which is to be determined.

If this ansatz is inserted into equation (7a) and if we replaced by 2 log z
2 we obtainz2 d2ρ̃∞

dz2 (z)+zdρ̃∞
dz (z)+

(z2 − 1)ρ̃∞(z) = 0. This is the differential equation the solution to which are by definition theBessel
functions of the first and second kind, denoted by Jν and Yν, respectively [see 1, equation 9.1.1]. In this
particular caseν = 1. One can apply an analogous method for the cased > 0 to find that the general
solution of equation (7) is given by

ρ∞(d) = e−
3
2 |d|

[

c1 J1

(

2e−
1
2 |d|

)

+ c2 Y1

(

2e−
1
2 |d|

)]

. (10)

In order to determine the two constantsc1 and c2 we insert this general solution into the integral
equation (6) and take the limitd→ 0 (it does not make a difference whether we taked < 0 or d ≥ 0).
We choosed < 0 and obtain

ρ∞(0) =
∫ 0

−∞
dδρ∞(δ) +

∫ ∞

0
dδρ∞(δ)e−δ,

in which we replaceρ∞(δ) by the expression given in (10) to get

c1 J1 (2) + c2 Y1 (2) =c1













∫ 0

−∞
dδe

3
2 d J1

(

2e
1
2 d

)

+

∫ ∞

0
dδe−

3
2 d J1

(

2e−
1
2 d

)

e−δ












+ c2













∫ 0

−∞
dδe

3
2 d Y1

(

2e
1
2 d

)

+

∫ ∞

0
dδe−

3
2 d Y1

(

2e−
1
2 d

)

e−δ












=c1 [J2 (2) + J0 (2)] + c2

[(

1
π
+ Y2 (2)

)

+

(

−2
π
+ Y0 (2)

)]

,
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Since J1 (2) = J0 (2) + J2 (2), Y1 (2) = Y0 (2) + Y2 (2) and−1/π , 0 it follows thatc2 = 0. The
requirement thatρ∞ integrate to one implies

c−1
1 =

∫

R

dδe−
3
2 |δ| J1

(

2e−
1
2 |δ|

)

=
1
2

∫ 2

0
dy y2 J1(y) = 2 J2 (2) . �

Lemma 5.6. There exists anR×R3
+-valued ergodic Markov chain(Mn)n≥1 and a function f: R×R3

+ →
R such thatΛn = f (Mn) for all n ≥ 1.

Proof. SetMn = (∆n−1,Xn,Yn,Zn) and f (δ, x, y, z) = min{x, δ + y+ z}. It is then clear thatf (Mn) = Λn

(see (12)) and (Mn)n≥1 is Markov because∆n−1 can be written as min{∆n−2 + Yn−1,Xn−1 + Zn−1} −
min{Xn−1,∆n−2 + Yn−1 + Zn−1}. (cf. equation (4) in the proof of theorem 5.1.) Ergodicity is a direct
consequence of lemma 5.2. �

We will now use this result to compute the distribution ofΛ ≔ limn→∞ Λn = limn→∞ [ln − ln−1], the
expected value of which is, by theorem 4.4, the percolation rate we are looking for.

Lemma 5.7. For each n∈ N, the densityηn of the distribution ofΛn is ηn(l) =
∫

R
dδ ρn−1(δ)Q(δ, l) with

Q : R2→ R given by

Q(δ, l) = e−l







































eδ(l − δ) l < 0∧ δ ≤ l,

e−(l−δ) (1+ 2(l − δ)) l ≥ 0∧ δ ≤ l,

1 l ≥ 0∧ δ > l,

0 otherwise.

(11)

In particular, η∞(l) =
∫

R
dδ ρ∞(δ)Q(δ, l).

Proof. As before we define events for each possible behavior of the last step of the shortest path from
(0,0) to (0,n):

=
{

Xn + ln−1 ≤ Zn + Yn + l′n−1

}

= {Xn ≤ ∆n−1 + Yn + Zn}

=
{

Xn + ln−1 ≥ Zn + Yn + l′n−1

}

= {Xn ≥ ∆n−1 + Yn + Zn} .

Clearly,
Λn = min{Xn,∆n−1 + Yn + Zn}, (12)

i.e. on the first of the two events,Λn is given byXn while on the second it equalsYn + Zn + ∆n−1.
Now the procedure continues very similar to the proof of proposition 5.1. We compute the cumulative
distribution function ofΛ as

P (Λn ≤ l) = P
(

{Λn ≤ l} ∩
)

+ P
(

{Λn ≤ l} ∩
)

, (13)

because on each of these two events we have an explicit expression forΛn. The first term leads to

P

(

{Λn ≤ l} ∩
)

=

∫

R

dδ ρn−1(δ)
∫

R3
dP3(x, y, z) I{x≤δ+y+z}I{x≤l}

=

∫

R

dδ ρn−1(δ)
∫ ∞

0
dP(z)

∫ ∞

0
dP(y)

∫ min {δ+y+z,l}+

0
dP(x)

≕

∫

R

dδ ρn−1(δ)P1(δ, l),
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where the functionP1 is the result of thex-, y- andz-integration and given explicitly by

P1(δ, l) = I{l≥0}



























1
4e−2l+δ

[

e2l(3− 2δ) − 3− 2(l − δ)
]

δ ≤ 0,
1
4

[

4− e−δ − e−2l+δ(2(l − δ) + 3)
]

0 < δ ≤ l,

1− e−l δ > l.

Very similarly we obtain for the second term in equation (13)

P

(

{Λn ≤ l} ∩
)

=

∫

R

dδ ρn−1(δ)
∫

R3
dP3(x, y, z) I{x≥δ+y+z}I{δ+y+z≤l}

=

∫

R

dδ ρn−1(δ)
∫ ∞

0
dP(z)

∫ (l−z−δ)+

0
dP(y)

∫ ∞

(δ+y+z)+
dP(x)

≕

∫

R

dδ ρn−1(δ)P2(δ, l),

with P2 given by

P2(δ, l) =







































1− el−δ(1− δ + l) l < 0∧ δ ≤ l,

1− 1
4eδ

[

3− 2δ + e−2l(1+ 2(l − δ))
]

l ≥ 0∧ δ ≤ 0,
1
4e−2l−δ

[

e2l − e2δ(1+ 2(l − δ))
]

l ≥ 0∧ 0 ≤ δ ≤ l,

0 otherwise.

Putting things together, it follows thatP (Λn ≤ l) =
∫

R
dδ ρn1(δ) [P1(δ, l) + P2(δ, l)]. Taking the deriva-

tive with respect tol and interchanging differentiation and integration on the right hand side we obtain
Q(δ, l) = ∂l [P1(δ, l) + P2(δ, l)]. The statement about the relation between the stationary densitiesη∞
andρ∞ is clear. �

Theorem 5.8. The percolation rateχ onG {X ,Y ,Z } is
[

3
2 −

J1(2)
2 J2(2)

]

≈ 0.68. . . .

Proof. We have already argued that the time constant is the expectation ofΛ, that isχ =
∫

R
dl l η∞(l).

From lemma 5.7 we know the explicit form ofη∞ so we obtainχ =
∫

R
dδ ρ∞(δ)

∫

R
dl lQ(δ, l), where the

change of the order of integration is easily justified using Fubini’s theorem. A direct calculation shows

∫

R

dl lQ(δ, l) =
1
4















8+ 4δ − eδ(5− 2δ) δ < 0

4− e−δ δ ≥ 0
,

and the percolation rate is

χ =
1

2 J2(2)

[∫

R−

dδe
3
2δ J1

(

2e
1
2δ
)

[

8+ 4δ − eδ(5− 2δ)
]

+

∫

R+

dδe−
3
2δd J1

(

2e−
1
2δ
)

[

4− e−δ
]

]

=
1

2 J2(2)

[

4 J1(2)− 7 J0(2)
4

+
4 J2(2)− J0(2)

4

]

=
3
2
− J1(2)

2 J2(2)
. �
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6 Discussion

The differences between the omitted computations for the cases{V ,W ,X ,Y } and{W ,X ,Y ,Z } and
the ones presented are only a matter of degree, not of kind; for instance, there are not only three different
cases to consider when proving the analogs of proposition 5.1, but rather eight and six, respectively.
Moreover, for the case{W ,X ,Y ,Z } the stationary densityρ∞ of (∆n)n≥1 (cf. proposition 5.5) is not
symmetric. It is also the determination of this stationary distribution where things get more difficult
with the unsolved cases: the characterizing differential equation (cf. lemma 5.4) then becomes non-
local, more specifically it involves bothρ∞(d) andρ∞(−d), as well as their derivatives, at the same time
and so one can not solve it separately ford > 0 andd < 0 as we did. It might be possible to remedy
this by computingρ∞ not as an eigen function to the transition kernelK itself but rather as an eigen
function to its second convolution powerK(2)(δ,d) =

∫

R
dσK(δ, σ)K(σ,d). As the method used in this

paper is very similar to that in its antecedent [4] its range of applicability is also essentially the same.
It would be a natural generalization to consider graphs withvertex sets{1, . . . ,n} × {0, . . . , k} for some
integerk ≥ 1 and for the directed first-passage percolation problem, similar techniques as used here
apply equally well to this more general setup. However, the combinatorial difficulties arising from the
need to explicitly keep track of the shortest paths onGn+1\Gn seem very hard to overcome and for
undirected percolation a similarly easy recursive argument as in the casek = 2 is not an option.
Many thanks go to Bálint Virág for very helpful advice.
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