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Abstract

We consider the first-passage percolation problemftectvely one-dimensional graphs with vertex
set{l...,n} x {0,1} and translation-invariant edge-structure. For three wfngin-trivial cases we
obtain exact expressions for the asymptotic percolatitayrhy solving certain recursive distributional
equations and invoking results from ergodic theory to ifent as the expected asymptotic one-step
growth of the first-passage time from (@ to (n, 0).

1 Introduction

Let G = (V,E) be a graph with vertex s&t = V(G) and unoriented edgds = E(G) c G2 Two
verticesuy, v € V are said to be adjacent, for which we write- v if (u,v) € E and the edge = (u, V)

is said to join the vertices andv. Assume there is a weight-functiom : E — R. For any two
verticesu, Vv € V apath p joining u and v in Gs a collection of verticegu = po, P1,. .., Pn-1, Pn = V}
such thatp, and p,,1 are adjacent for & v < n; a pathp is calledsimpleif each vertex occurs in
p at most once. To a given pathwe associate the set of its comprising edges {(p,, py+1) : 0 <

v < n}. Theweight wp) of a pathp is then defined ag .., w(€). We defineds : V xV — R by
ds(u,v) = inf {w(p) : p a path joiningu andv in G}, and callds(u, v) thefirst-passage timbetweeru
andv. A path p joiningu andv in G, such thaw(p) = dg(u, V) is called ashortest path Throughout
this work we assume th&t is finite and connected and we will be interested in the ceamtetie weights
w(e), e € E, are random variables; the goal is then to make probabititiesents about first-passage
times or related quantities. In general we note here thabeest pathp = {u = po,...,pn = V} iS
always simple and that each sub-péth,..., p}, 0 < k < | < n, is also a shortest path. Moreover,
for continuously distributed, independent edge weightésdihortest path between any two vertices is
almost surely unique [7].

The typical first-passage percolation problem is based oadiwensional regular infinite grapi®
with vertex sets/(G) = Z2. The edge weights/(e), e € E(G), are i.i.d random variables in' with
some common distributia”h such thaiP-almost surelyv(e) is positive. Let,,n, 0 < m < n, denote the
first-passage time fronm{, 0) to (n, 0) subject to the condition that the contributing paths &iraly

of vertices with first coordinate, m < v < n and writel,, := lo_n. By lemma 4.2)o.n < loosm + lmon
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and the theory of sub-additive processes (propositionishfilies that lim,_. %In exists and is almost
surely constant. This number, which depends only on thehgBagnd the distributioi?, is denoted by
x(G,P) and called théasymptotic) percolation rater time constant The explicit calculation of the
percolation rate even for the simplest regular infinite gsagnd distribution® is characterized in [5,
p. 1937] as a "hopelessly intractable" problem.

2 Themodel

In this work we first focus on the first-passage percolatiamblgm as described in the last paragraph
for certain families of regular, fectively one-dimensional graphs with independent, randolge-
weights. Letv, = {0,1,...,n} x {0,1} and
{((,O),(i+11):0<i<n
{((1,1),(+1,0):0<i<n
{
{

}
}
}
}

((i,1),(i+11):0<i<n

Y
Wh
%n
P
%, ={((i,0),(,1): 0<i <nh.

To each subset c (v, #, %, %, %} corresponds a family of graphs
gg = {Gﬁ}nEN = {(Vm éDn)}neN

with vertex setsV, and edgess, = Uqee %n. For each graph the edge weights are independent
exponentially distributed random variables which are letb®;, Wi, X;, Y;, Z, in the obvious way. By
time-scaling it is no restriction of generality if we assutine parameter of the edge weight distributions
to be unity. We denote the probability measureRthat isdP(x) = € *dx. We point out that by
construction, for any selection of edgés G; is a subgraph o6Z, ;, an observation which forms
the basis for our inductive argument described below. Th#hoakis based upon [4] where it has
successfully been employed to compute the asymptotic [ai@o rate ong!*-#-Z} where the edge
weights are taken to be independently one with probabiignd zero with probability + p. They
also consider continuous edge-weight distributions ammvsihat one can replace those by suitably
chosen discrete ones to obtain arbitrarily good, yet apprative values for the time constant. We do
not adopt this method here but rather work explicitly wite tontinuous distributions.

3 Realts

It turns out that for only six families of graphg¢ the first-passage percolation is non-trivial. For
three of these six, namely f&'*-%-Z}, ¢!V V- 2.2} gndg!”-%.%.Z} we derive expressions fgrwhich
seem not to have been known so far (see table 1). We are canfiderour method works for the
three remaining familiegg!”-”-%1, @7 2.2} andg!?-7-*.%-%1 as well. Increased complexity in the
calculations involved, however, prevents us from obtajranalytic results; the numerical valuesyof
for theses cases, which are also recorded in table 1, westnelitby means of simulations.

4 Subadditivity and ergodic theorems

In this section we present some theoretical results abattdassage times. In particular we show
that the asymptotic percolation rate jm, %In on graphs with vertex seéf,, := {0,...,n} x {0,1}
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Table 1: Width-two stretcheg?: Non-trivial solved and unsolved cases

| & | Pictograph | x (&) |
(X, %, %) 2 (2
3 2%(2)
W2,V 3 W(V2)
4 2V23(V2)
2.9, 2) 2tan1-2
2tanl-1
%) el
.x, 2 ~ 45
{/1/7 W’%’ @7 g} z ‘35

and translation-invariant edge structure is, with proligbdne, equal to a deterministic number and
provide a formula for its computation (theorem14.4).

Propositin 4.1. Let G be the graph §Gfor someg c (¥, %, %, %, %)}. If the edge weights (&), e
&, are independent, identically-distributed, positive and integrable random variablesrtalmost
surelylimp_,e %In exists and is equal to a deterministic nump€e, P).

To prove this we need a lemma about a property of first-pagsags, calledsubadditivity

Lemma4.2. For any weighted graph G, the functiog d V(G)? — R is subadditive, that isg{u, w) <
dg(u, v) + dg(v, w) for all u, v,w € V(G). If in particular V(G) = V,, this saysd_.n < lom+ Im-n holds
forany0<m<n.

Proof. Subadditivity ofdgs is a consequence of the simple observation that the set pétdb joining
uandw in G is a superset of the set of all paths joinilngndw in G and containing and that one can
combine any two pathg"~" joining u andv and p*~" joining v andw to get a pattp*~" joining u and
w that satisfiesv(p'~") = w(p“>") + w(p“'~%). The remark about the special ca3e- GE is clear.
(Takeu = (0,0),v = (m,0),w = (n,0)) |

To conclude from this subadditivity property that the asywtip percolation rate is almost surely a de-
terministic number we need the followisgbadditive ergodic theoredue to Liggett, who generalized
a result of Kingman. (See|[3, theorem 6.1] for a proof.)

Theorem 4.3 (Liggett). Suppose a family of random variables=XXnn : 0 < m < n} satisfies
() Xon £ Xom + Xmn.
(if) For each ke N, (Xnkn+1))n=0 IS @ stationary sequence.

(iii) The distribution of(Xmm:k)k=0 does not depend on m.
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(iv) E [Xgl] < oo and for each re N, E [Xgn] > o holds withyg > —co.
Then X= limu_,« Xon/N exists almost surely.

In the formulation of(iv) we used, as we will often do in the following, the notatiinas a short-hand
for max0, x}. We can now give a proof of the assertion that the asympteticgsation rate almost
surely equals a non-random number.

Proof of proposition 4.1.We will first argue that the familyXynn = Imon : 0 < m < n} satisfies the
conditions of theoreh 4.3. In lemma 4.2 we have seen thab(gsh (ii) and (iii) follow from the
translational invariance of the graph and the fact {lnge), e € E} is i.i.d. The last condition, (iv),
holds by assumption and in particular for the exponentistritiution. We can thus conclude that
In/n — y almost surely as — . To see thak is indeed constant, we enumerate the edgesE}

in some way, sagi, ,.... Sincey is defined as lim,. In/n and eacH, is a sum of only a finite
number of edge-weights, namely a of a subset of those cautairG, v is measurable with respect
t0 Nns1 0 (W(En), W(ens1), - . .), the tailo-algebra of the i.i.d. sequenege;), w(ey), . ... Kolmogorov's
Zero-One law (see for example [2, Theorem 3.12]) then irsghat for any Borel seB the probability
thaty takes a value iB is either O or 1 which means thatis almost surely equal to a deterministic
number. ]

In view of our next theorem, which provides an explicit folafor the percolation ratg, we could
have done without proposition 4.1 and without invoking Kiman's general subadditivity result. We
chose to include it, however, in order to distinguish thigsersal aspect of first-passage percolation
theory from properties specific to our model. The result ésftillowing:

Theorem 4.4. LetA, := |, — I,_1 and assume there exists an S -valued ergodic Markov ¢ihil-1
and a measurable function :fS — R satisfyingA, = f(M;) for all positive integers n. Then, almost
surely,

nN—oo

oy
x = lim e fs f(9)n(9), (2)

wherer is the unique invariant distribution Mp)n-1. Put diferently,y = E[A], whereA is the weak
limit of the sequenc@\np)n>1, i.€. A 2 A.

Remark4.5. It will be established in lemnia 5.6 that there indeed exidtaskov chain Mp),1 and a
function f satisfying the conditions of the theorem.

Proof. As an instantaneous function of the ergodic Markov chail){>1 the sequenceAR)n>1 IS
ergodic as well. It follows that the time averaée):fv‘:l A, converges tE[A]. Since clearly, =
"_1 An the claim follows. m

5 Calculationsfor ¢'%-%-Z

In this section we prove our results about the time constanfist-passage percolation on width-two
stretches (table 1) in the case®f= {¥, %, %}. The calculations for the other two cases mentioned
are completely analogous and can be found in [8]. We denetketigth of the shortest path from ()

to (n, 0) by, the length of the shortest path from () to (n, 1) by |, and we letA,, = I}, — I, Our first
goal is to find a recurrence relation between the distrilmstiof A, andA,_;.
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Propositin 5.1. The sequence of random variablgs,)n-o is a real-valued Markov chain with initial
distributionP (A¢ < d) = 1 — 79 and transition kernel

1 d<0Ad§<d,
e9 d<0oAas>d,
K(s,d) =ee®  d=0, (2)
e@9) d>0Ad<d,
1 d>0Ad>d.

Proof. Itis clear that we must try to express, the probability density function &f,,, in terms ofon_1,
the density function of\,,_;. To achieve this we define events on whighis a deterministic function
of Xn, Yn, Z, andA,_1, which amounts to separately taking into account tifi@cknt possible behaviors
of the last step of the shortest path. Consider first the ssippathp®* from (0,0) to (n, 1), the last
edge of which must be eithéf, or Z,. Similarly, the last edge of°~°, the shortest path from (0)
to (n, 0), must be eithek, or Z,. We note that almost surely, the edggis not part of bothp®~* and
p®~? because this would contradict the uniqueness propertyiomant in the introduction, so that we
have to consider three cases:

=Yty S Zn+ X+l A X+ It < Zo+ Yo+ 17y (3a)
={Zn 2 [Xn = Yn — Anal}

—={Zo+ Xat s SYa+ g AXa+ln1 S Zo+ Yo+ 17y (3b)
{Yn = Xo+2Zn— Any1}

,,,,, Yo+ 1y S Zo+ Xa+lnt AZo+ Yo+ 1y < Xo+ 1o (3¢)
={Xn = Yn+Zy+ An-1}

In particular we have the relation
An = MiN{An_1 + Yo, Xn + Zn} = Min{Xn, An_1 + Yn + Za}. (4)

The reason why the pictographs above have been chosen &seapthe dierent events is the fol-
lowing: solid lines correspond to edges being used by theestpath to eithem( 0) or (n, 1), double
solid lines represent edges being part of both these patiilg dashed lines stand for unused edges.
Using these events we now compute the cumulative distdbdtinction ofA, as

P(An<d)=P({An<d}n ) +P({An < din )+ P({Aq < d} 0 ). (5)
On the event_, A, is equal toA,_1 + Y, — X, S0 the first term is
P(Ay<dn_)= fR ds pn_1(5) fR 3 dP3(X, Y, 2) Lizspy—op Tissy-x<dl-
Rewriting the indicator functions as integration boundsobtain

f 46 pn1(6) f dB(y) ar [ de@)
R 0 (6+y—d)* |X-y-d|
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and after doing the tedious but easyy- andz-integrals we arrive at

P(An<dn_)= fR ds pn_1(5)G1(6, d)

with
e(1+2d-9)) d<0Ad<d,
1 e?@-9) d<O0A6>d,
Gl(a,ol)z21 &(2-25-e ) d>0A6<0,
e%+20-e2@9) d>0A0<6<d,
e (1 + 29) d>0A6>d.

One can also confirm this computation and similar ones wtotlhvi by use of a computer algebra

00 d* 00
- f 46 pn1(0) fo AP () fo ®Q [
- f 06 pn-1(6)G2(6. ).

where the functiot®; is given by

e(1-e?) §<0,
Go(6.d) = 7laz0 (4 - €7 (3+e2¢9+25) 0<s<d,
4-4g9 - 2de? §>d.

Finally, on the event |, A, is equal to-Z,, so we compute for the third term in equation (5)

= f dé p_1n(s) f "y [ e [ drw
R 0 (—=d)+

(y+z+6)*

- f 06 pn1(6)Ga(6. d)

and
4¢ + &(-2(d-0)-3) d<0Ad<d,
~2(5—d)
G3(5,d)=} e d<0Ad>d,
414+€(26-23) d>0A6<0,
ol d>0A06>0.

It is interesting to note that, due to the symmetry of the &v€8l) and[(3c), the sum &»(s,d) and
Gs(-6, —d) does not depend adly explicitly it holds that

1 1 0<0
Go(8,d) + Ga(-6.~d) = 7& ™" {465 ~-25-3 6>0°
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Putting everything together it follows that
P(s0 <) = [ dopna(9)[Ga(0.c) + Golsi ) + Gal6. O]
R

Differentiating this equation with respectd@nd interchanging éierentiation and integration on the
right hand side we obtain

pn(0) = fR dd pn-1(6)dq [Ga[6, d] + G2(6, d) + G3(6, d)].

so the transition kernél : R — R is given byK(6,d) = dq[G1[6, d] + G2(6, d) + G3(6,d)] and the
claim follows from basic computations. m]

From the explicit description of the transition kerib, d) we can deduce useful properties 8f nso:

Lemma 5.2. The Markov chainAp)nso is ergodic. In particular, as n— oo, (Ay)nso CONVerges in
distribution to a non-degenerate limiting random varialflewith probability density functiop,, =

|imn—>oopn-

Proof. It is enough to note that the kernel functignfrom proposition 5.1 is strictly positive and con-
tinuous. The claim therefore follows from an extension ef Berron-Frobenius theorem to continuous
transfer operators (see [6]). O

Corollary 5.3. Letpe, = limp pn. Then

(i) The density,, of the stationary distribution ofAn)ns0 satisfies the integral equation

Poo(d) =€° f i d6 peo(8) + € fd ) ds pe(8)e™® d<0 (6a)

Poo(d) =€ I i d6 peo(6)€® + €7@ fd ) A6 peo () d>0. (6b)

(i) The density,, is an even function, that j&.(d) = p.(-d) for all d € R.
Proof. For the first claim we observe that, satisfies the integral equatipg,(d) = fR dé p (6)K(8, d)

with the kernelK given in (2). The second assertion follows from the symmits; d) = K(-¢, —d).
m|

In order to solve this integral equation we transform it iatdifferential equation.
Lemma5.4. The density., of the stationary distribution afAn)ns0 satisfies the gferential equation

pL(d) = = [2+ €] pu(d) + 3pL(d) d<o, (72)
pl(d) = = [2+ €] peo(d) - () d>0. (70)
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Proof. We only prove the claim fod < 0. The casa > 0 can be shown in the same way or one uses
(i) of corollary[5.3. In the caséd < 0 we know thafp.., is a solution to the integral equatian (6a).
Differentiating this equation with respectd@nd using[(6a) again we obtain

(@) =Epo(@+ & | " d50)
— ¥ (d) + 26 fd s Poo(8)€7° (8)
=2p0(d) — € f i dS peo ().
Differentiating again and eliminating the remaining integial(8) yields
L) =200, (@) - o) - ¢ [ : 66 9 6)

=3p/,(d) - [2 + €] po(d). O

Propositin 5.5. The density,, of the stationary distribution of the Markov chaifi,)nso is

pe(d) =

1 3y (pedd
532 J1(2e ) ©)

wherelJ, are Bessel functions of the first kind.

Proof. Ford < 0, we writep., asp«(d) = €295, (262¢) with a functiong, which is to be determined.
If this ansatz is inserted into equation (7a) and if we reptioy 2 logZ we obtain? %5 (2) + 2% (2) +
(Z - 1)p.(2) = 0. This is the dferential equation the solution to which are by definition Bessel
functions of the first and second kind, denoted bgrld Y, respectively [see 1, equation 9.1.1]. In this
particular case = 1. One can apply an analogous method for the dase0 to find that the general
solution of equation (7) is given by

po(d) = e 3 [cl X (Ze’%‘d‘) +GYs (Ze’%‘d‘)] . (10)
In order to determine the two constamsand ¢, we insert this general solution into the integral

equation[(6) and take the limit — O (it does not make a flerence whether we takk< 0 ord > 0).
We choosel < 0 and obtain

0 00
Poo(0) = f dope(8) + fo dope(5)e™,

in which we replace..(6) by the expression given ih (10) to get

0 )
c1h(2) +cY1(2) =c1 {f dseid (Ze%d)+f dse 39y, (2e‘%d) e‘d}
—00 0

0 0o
+C [f déengl(Ze%d)+f dse 39y, (2e‘ d)e“s]
—00 0

(}T +Y2 (2)) + (—; +Yo (2))],

Nl

=C1[2 )+ (] +C2
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Since 4(2) = (2 + (2, Y1(2) = Yo(2) + Y2(2) and-1/xr # O it follows thatc, = 0. The
requirement thab., integrate to one implies

2
't =fRd6e‘%"5‘ q (Ze‘%"s‘) = %fo dyy¥ a(y) =2%(2). .

Lemma5.6. There exists ait xR3-valued ergodic Markov chaifM,)n-1 and a function f: RxR3 —
R such thatA, = f(M,) foralln > 1.

Proof. SetM;, = (An-1, Xn, Yn, Zn) @and f (6, X, y, 2) = min{x, § + y + z}. Itis then clear that (M,) = An
(see((12)) andNln)ns1 is Markov becauseé,_; can be written as mihn_» + Yp_1, Xn_1 + Zn-1} —
min{X,_1, An_2 + Yn_1 + Zn_1}. (cf. equation[(4) in the proof of theorém 5.1.) Ergodicisyai direct
consequence of lemma 5.2. m]

We will now use this result to compute the distribution/of= lim,_. An = liMp5o [In — In21], the
expected value of which is, by theorem4.4, the percolatie we are looking for.

Lemma5.7. For each ne N, the densityy, of the distribution ofAn, is r(l) = k dé pn-1(6)Q(4, 1) with
Q: R? — R given by

e -9) l<O0AS<I,
e-)@1+2(0-6) 1>0A6<I
5,1) = ¢ = = 11
Q1) [ >0A6>1, (11)
0 otherwise

In particular, 7., (1) = [ dd pes(6)Q(S. ).

Proof. As before we define events for each possible behavior of #telap of the shortest path from
(0,0) to (G n):

Clearly,
An = min{Xy, An_1 + Yy + Zp}, (12)

i.e. on the first of the two events,, is given byX, while on the second it equal, + Z, + Ap_3.
Now the procedure continues very similar to the proof of psifion5.1. We compute the cumulative
distribution function ofA as

P(An<)=P({An<lin_)+P({An <1 n ), (13)

~ [ [ " dr@) [ " () [ " g

- fR 45 pn 1 (6)P1(6. 1),
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where the functiorP; is the result of thes-, y- andz-integration and given explicitly by

te2[ed(3-20)-3-2(-0)| 6<0,
P1(8.1) = Tj>0) 4 3 [4 —ed—e2+(2( - 6) + 3)] 0<s6<l,
1-¢! 5> 1.

Very similarly we obtain for the second term in equation| (13)

00 (|—Z—§)Jr 00
- f 45 pn1(0) f dB(2) f dB(y) dP(X)
R 0 0 (6+y+2)*

- f 46 pn1(6)P2(6.1).

with P, given by

1-e7(1-5+1) l<0ns <,
Pys.1) = 1-1&[3-20+e2(1+2(-0)| 120r06<0,
e je?0 e —e(1+2(-9))] |>0A0<6<]I,
0 otherwise

Putting things together, it follows th&t(A, < 1) = fR dé pn, (6) [P1(5, 1) + P2(6, 1)]. Taking the deriva-
tive with respect td and interchanging élierentiation and integration on the right hand side we obtain
QS 1) = a1 [P1(s,1) + P2(6,1)]. The statement about the relation between the stationansiteksy.,
andp., is clear. m|

Theorem 5.8. The percolation ratg on 9'%##!is |3 - 23] ~ 068....

Proof. We have already argued that the time constant is the exject#tA, that isy = fR dl ne(1).

From lemma 5.7 we know the explicit form gf, so we obtairy = fR dé oo (6) j;% dlQ(e, 1), where the
change of the order of integration is easily justified usingiRi’'s theorem. A direct calculation shows

_1{8+45-€(5-25) 6<0
fRd”Q(é’l)_4{4—e—5 §>0’

and the percolation rate is

Iy =%(2) f dsed’ 3 (2e%6) [8+45 - &5 20)]
|JR_
+ f& dse 24y (Ze‘%‘s) [4— e“s]}
1 [43(2)-7X((2) . 4\}2(2)_,]0(2)] _3 _ J@ q
23(2)| 4 4 T2 232
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6 Discussion

The diferences between the omitted computations for the dase#’, &, %} and{¥w, X, %, %} and
the ones presented are only a matter of degree, not of kiniidtance, there are not only thre&drent
cases to consider when proving the analogs of propositibnbbit rather eight and six, respectively.
Moreover, for the casg#, &, %, %} the stationary density., of (An)ns1 (cf. proposition 5.5) is not
symmetric. It is also the determination of this stationaistrébution where things get morefticult
with the unsolved cases: the characterizingiedential equation (cf. lemma 5.4) then becomes non-
local, more specifically it involves bojh, (d) andp..(—d), as well as their derivatives, at the same time
and so one can not solve it separatelydas 0 andd < 0 as we did. It might be possible to remedy
this by computing., not as an eigen function to the transition kerKeitself but rather as an eigen
function to its second convolution powkf?(s, d) = k doK(8, 0)K(o, d). As the method used in this
paper is very similar to that in its antecedent [4] its ranfjapplicability is also essentially the same.
It would be a natural generalization to consider graphs wéfttex setg1,...,n} x {0,...,k} for some
integerk > 1 and for the directed first-passage percolation problemijasi techniques as used here
apply equally well to this more general setup. However, thraltinatorial dfficulties arising from the
need to explicitly keep track of the shortest pathsGyn;\G, seem very hard to overcome and for
undirected percolation a similarly easy recursive argurasrtin the cask = 2 is not an option.

Many thanks go to Balint Virag for very helpful advice.
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