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Abstract

In this article, we establish a probabilistic representation for the second-order moment of the

solution of stochastic heat equation in [0,1]×Rd , with multiplicative noise, which is fractional in

time and colored in space. This representation is similar to the one given in [8] in the case of an

s.p.d.e. driven by a Gaussian noise, which is white in time. Unlike the formula of [8], which is

based on the usual Poisson process, our representation is based on the planar Poisson process, due

to the fractional component of the noise.

1 Introduction

The classical Feynman-Kac (F-K) formula gives a stochastic representation for the solution of the

heat equation with potential, as an exponential moment of a functional of Brownian paths (see

e.g. [14]). This representation is a useful tool in stochastic analysis, in particular for the study

stochastic partial differential equations (s.p.d.e.’s). We mention briefly several examples in this

direction. The F-K formula lied at the origin of the existence, large time asymptotic and inter-

mittency results of [4] and [5], for the solution of the heat equation with random potential on

Z
d , respectively Rd . The same method, based on a discretized F-K formula, was used in [17] for

obtaining an upper bound for the exponential behavior of the solution of the heat equation with

random potential on a smooth compact manifold. The technique of [4] was further refined in

[6] in the case of parabolic equations with Lévy noise, for proving the exponential growth of the

solution. The F-K formula was used in [9] for solving stochastic parabolic equations, in the context

of white noise analysis. A F-K formula for the solution of the stochastic KPP equation is used in

[15] for examining the asymptotic behavior of the solution.

The present work has been motivated by the recent article [8], in which the authors obtained

an alternative probabilistic representation for the solution of a deterministic p.d.e., as well as a
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representation for the moments of the (mild-sense) solution of a s.p.d.e. perturbed by a Gaussian

noise Ḟ , with “formal” covariance:

E[Ḟt,x Ḟs,y] = δ0(t − s) f (x − y).

More precisely, in [8], {F(h),h ∈ P } is a zero-mean Gaussian process with covariance

E(F(h)F(g)) = 〈h, g〉P , where P is the completion of {1[0,t]×A; t ∈ [0,1],A ∈ Bb(R
d)} with

respect to the inner product 〈·, ·〉P given by

〈1[0,t]×A, 1[0,s]×B〉P = (t ∧ s)

∫

A

∫

B

f (x − y)d yd x .

(Here,Bb(R
d) denotes the class of bounded Borel sets in Rd .)

In the particular case of the stochastic heat equation:

∂ u

∂ t
=

1

2
∆u+ u Ḟ , t > 0, x ∈ Rd (1)

u0,x = u0(x), x ∈ Rd ,

the representation for the second-moments of the (mild-sense) solution u is:

E[ut,xut,y] = et Ex ,y



w(t −τNt
, B1
τNt

)w(t −τNt
, B2
τNt

)

Nt
∏

j=1

f (B1
τ j
− B2

τ j
)



 , (2)

(with the convention that on {Nt = 0}, the product is defined to be 1), where B1 = (B1
t
)t≥0 and

B2 = (B2
t
)t≥0 are independent d-dimensional Brownian motions starting from x , respectively y ,

N = (Nt)t≥0 is an independent Poisson process with rate 1 and points τ1 < τ2 < . . ., and

w(t, x) =

∫

Rd

pt(x − y)u0(y)d y, where pt(x) =
1

(2πt)d/2
e−|x |

2/(2t).

Note that the representation (2) does not rely on the entire Brownian path, but only on its values

at the (random) points τ1,τ2, . . . ,τNt
. This property has allowed the authors of [8] to generalize

the representation to a large class of s.p.d.e.’s, including the wave equation.

To see where the idea for this representation comes from, we recall briefly the salient points lead-

ing to (2). If the solution of (1) exists, then it is unique and admits the Wiener chaos expansion:

(see e.g. Proposition 4.1 of [8])

ut,x = w(t, x) +

∞
∑

n=1

In( fn(·, t, x)), (3)

where In( fn(·, t, x)) =
∫

([0,1]×Rd )n
fn(t1, x1, . . . , tn, xn)dFt1,x1

. . . dFtn,xn
, and fn ∈ P

⊗n is a symmet-

ric function given by:

fn(t1, x1, . . . , tn, xn, t, x) =
1

n!
w(tρ(1), xρ(1))

n
∏

j=1

ptρ( j+1)−tρ( j)
(xρ( j+1) − xρ( j)). (4)

Here, ρ is a permutation of {1, . . . , n} such that tρ(1) < tρ(2) < . . . < tρ(n), tρ(n+1) = t and

xρ(n+1) = x . By the orthogonality of the terms in the series (3),

E[ut,xut,y] = w(t, x)w(t, y) +

∞
∑

n=1

Jn(t, x , y),
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where

Jn(t, x , y) = n!〈 fn(·, t, x), fn(·, t, y)〉2
P ⊗n =

∫

Tn(t)

F(t1, . . . , tn)dt, and

F(t1, . . . , tn) =

∫

R2nd

n
∏

j=1

pt j+1−t j
(x j+1 − x j)

n
∏

j=1

pt j+1−t j
(y j+1 − y j)

w(t1, x1)w(t1, y1)

n
∏

j=1

f (x j − y j)dydxdt.

Here, we denote t = (t1, . . . , tn),x = (x1, . . . , xn), y = (y1, . . . , yn) and Tn(t) = {(t1, . . . , tn);

0< t1 < . . .< tn < t}.

A crucial observation of [8] is that, for any F : [0, t]n→ R+ measurable,

∫

Tn(t)

F(t1, . . . , tn)dt= et EN[F(t −τn, . . . , t −τ1)1{Nt=n}]. (5)

This is a key idea, which yields a probabilistic representation for Jn(t, x , y), based on the jump

times of the Poisson process. This idea is new in the literature, although it appeared implicitly in

the earlier works [10], [13], [16]. Secondly, for any 0 < t1 < . . . < tn < t, F(t − tn, . . . , t − t1) is

represented as:

F(t − tn, . . . , t − t1) =

EB1,B2



w(t − tn, B1
tn
)w(t − tn, B2

tn
)

n
∏

j=1

f (B1
t j
− B2

t j
)



 . (6)

Relation (2) follows from these observations, using the independence between N and B1, B2.

In this article, we generalize these ideas to the case of the stochastic heat equation driven by a

fractional-colored noise. More precisely, we consider the following equation:

∂ u

∂ t
=

1

2
∆u+ u ⋄ Ẇ , t ∈ [0,1], x ∈ Rd (7)

u0,x = u0(x), x ∈ Rd ,

where u0 ∈ Cb(R
d) is non-random, ⋄ denotes the Wick product, and Ẇ is a Gaussian noise whose

covariance is formally given by:

E[Ẇt,xẆs,y] = η(t, s) f (x − y),

with

η(t, s) = αH |t − s|2H−2, f (x) =

∫

Rd

e−iξ·xµ(dξ).

Here, H ∈ (1/2,1), αH = H(2H − 1) and µ is a tempered measure on Rd . (Note that η(t, s) is the

covariance kernel of the fractional Brownian motion.)

The noise Ẇ is defined rigourously as in [2], by considering a zero-mean Gaussian process W =

{W (h); h ∈HP } with covariance

E(W (h)W (g)) = 〈h, g〉HP ,
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where HP is the the completion of {1[0,t]×A; t ∈ [0,1],A ∈ Bb(R
d)} with respect to the inner

product 〈·, ·〉HP given by:

〈1[0,t]×A, 1[0,s]×B〉HP =

∫ t

0

∫ s

0

∫

A

∫

B

η(u, v) f (x − y)d yd xdvdu.

(See also [7] for a martingale treatment of the case η(t, s) = δ0(t − s), which corresponds to

H = 1/2.)

As in [3], the solution of equation (7) is interpreted in the mild sense, using the Skorohod integral

with respect to W . More precisely, an adapted square-integrable process u= {ut,x ; (t, x) ∈ [0,1]×

R
d} is a solution to (7) if for any (t, x) ∈ [0,1]×Rd , the process {pt−s(x− y)us,y1[0,t](s); (s, y) ∈

[0,1]×Rd} is Skorohod integrable, and

ut,x = ptu0(x) +

∫ T

0

∫

Rd

pt−s(x − y)us,y1[0,t](s)δWs,y .

The existence of a solution u (in the space of square-integrable processes) depends on the rough-

ness of the noise, introduced by H and the kernel f . We mention briefly several cases which

have been studied in the literature. If f = δ0, the solution exists for d = 1,2 (see [12]). If

f (x) =
∏d

i=1
αHi
|x i |

2Hi−2, the solution exists for d < 2/(2H − 1) +
∑d

i=1
Hi (see [11]). Recently,

it was shown in [3] that if f is the Riesz kernel of order α, or the Bessel kernel of order α < d,

then the solution exists for d ≤ 2+ α, whereas if f is the heat kernel or the Poisson kernel, then

the solution exists for any d.

Our main result establishes a probabilistic representation for the second moment of the solution,

similar to (2), and based on the planar Poisson process.

Theorem 1.1. Suppose that equation (7) has a solution u= {ut,x ; (t, x) ∈ [0,1]×Rd} in [0,1]×Rd .

Then, for any (t, x) ∈ [0,1]×Rd and (s, y) ∈ [0,1]×Rd ,

E[ut,xus,y] = w(t, x)w(s, y) + ets

∑

i1,...,in

Ex ,y



w(t −τ∗, B1
τ∗)w(s−ρ

∗, B2
ρ∗)

Nt,s
∏

j=1

η(t −τi j
, s−ρi j

) f (B1
τi j

− B2
ρi j

)IAi1,...,in



 ,

where the sum is taken over all distinct indices i1, . . . , in,

• B1 = (B1
t
)t∈[0,1] and B2 = (B2

t
)t∈[0,1] are independent d-dimensional standard Brownian mo-

tions, starting from x, respectively y,

• N = (Nt,s)(t,s)∈[0,1]2 is an independent planar Poisson process with rate 1 and points {Pi}i≥1,

with Pi = (τi ,ρi),

• Ai1,...,in
(t, s) is the event that N has points Pi1

, . . . , Pin
in [0, t] × [0, s], τ∗ = max{τi1

, . . . ,

τin
} and ρ∗ =max{ρi1

, . . . ,ρin
}.
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2 Proof of Theorem 1.1

We begin by recalling some basic facts about the planar Poisson process. If N = (Nt,s)(t,s)∈[0,1]2 is a

2-parameter process, and R= (a, b]× (c, d] is a rectangle in [0,1]2, we define NR = Na,c + Nb,d −

Na,d − Nb,c .

We say that N = (Nt,s)(t,s)∈[0,1]2 is a planar Poisson process of rate λ > 0, if it satisfies the

following conditions:

(i) N vanishes on the axes, i.e. Nt,0 = N0,t = 0 for all t ∈ [0,1].

(ii) NR has a Poisson distribution with mean λ|R|, for any rectangle R;

(iii) NR1
, . . . , NRk

are independent, for any disjoint rectangles R1, . . . ,Rk.

The following construction of the planar Poisson process is well-known (see e.g. [1]). Let X a

Poisson random variable with mean λ, and {Pi}i≥1 be an independent sequence of i.i.d. random

vectors, uniformly distributed on [0,1]2. We denote Pi = (τi ,ρi). For any (t, s) ∈ [0,1]2, define

Nt,s =

X
∑

i=1

I{τi ≤ t,ρi ≤ s}.

Then N = (Nt,s)(t,s)∈[0,1]2 is a planar Poisson process with rate λ.

For any n ≥ 1 and for any distinct positive integers i1, . . . , in, let Ai1,...,in
(t, s) be the event that N

has points Pi1
, . . . , Pin

in [0, t]× [0, s]. Then

{Nt,s = n}=
⋃

i1,...,in≥1 distinct

Ai1,...,in
(t, s). (8)

The following result is probably well-known. We include it for the sake of completeness.

Lemma 2.1. The conditional distribution of

((t −τi1
, s−ρi1

), . . . , (t −τin
, s−ρin

)) given Ai1,...,in
(t, s)

is uniform over ([0, t]× [0, s])n.

Proof: Let I = {i1, . . . , in} and i∗ =max{i1, . . . , in}. Then

AI (t, s) =
⋃

k≥n,I⊂{1,...,k}

{X = k}
⋂

 

⋂

i∈I

{τi ≤ t,ρi ≤ s}

!

⋂







⋂

i≤k,i 6∈I

{τi > t or ρi > s}







and

P(AI (t, s)) =
∑

k≥n∨i∗

e−λ
λk

k!
(ts)n(1− ts)k−n.

For any Borel sets Γ1, . . . ,Γn in [0, t]× [0, s], we have

P







n
⋂

j=1

{(t −τi j
, s−ρi j

) ∈ Γ j}
⋂

AI (t, s)





 =
∑

k≥n∨i∗

e−λ
λk

k!





n
∏

j=1

|Γ j |



 (1− ts)k−n,

and hence

P







n
⋂

j=1

{(t −τi j
, s−ρi j

) ∈ Γ j} | AI (t, s)





 =
1

(ts)n

n
∏

j=1

|Γ j |.
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�

As a consequence, for any measurable function F : ([0, t]× [0, s])n→ R+,

E[F(t −τi1
, s−ρi1

, . . . , t −τin
, s−ρin

) | Ai1,...,in
(t, s)] = (9)

1

(ts)n

∫

[0,t]n

∫

[0,s]n

F(t1, s1, . . . , tn, sn)dsdt,

where t= (t1, . . . , tn) and s= (s1, . . . , sn).

Suppose that λ = 1. Then (ts)n = n! ets P(Nt,s = n) and

E[F(t −τi1
, s−ρi1

, . . . , t −τin
, s−ρin

) | Ai1,...,in
(t, s)] =

1

n!etsP(Nt,s = n)

∫

[0,t]n

∫

[0,s]n

F(t1, s1, . . . , tn, sn)dsdt.

Using (8) and (9), we obtain that for any F : ([0, t]× [0, s])n→ R+ measurable,
∫

[0,t]n

∫

[0,s]n

F(t1, s1, . . . , tn, sn)dsdt= (10)

n! ets
∑

i1,...,in≥1 distinct

EN[F(t −τi1
, s−ρi1

, . . . , t −τin
, s−ρin

)IAi1,...,in
(t,s)].

Relation (10) is the analogue of (5), needed in the fractional case.

Suppose now that equation (7) has a solution u= {ut,x ; (t, x) ∈ [0,1]×Rd}. Then the solution is

unique and admits the Wiener chaos expansion (3), where

In( fn(·, t, x)) =

∫

([0,1]×Rd )n

fn(t1, x1, . . . , tn, xn)dWt1,x1
. . . dWtn,xn

is the multiple Wiener integral with respect to W , and fn ∈HP
⊗n is the symmetric function given

by (4). (See (7.4) of [11], or (4.4) of [12], or Proposition 3.2 of [3]).

Using (3), and the orthogonality of the Wiener chaos spaces, we conclude that for any (t, x) ∈

[0,1]×Rd and (s, y) ∈ [0,1]×Rd ,

E[ut,xus,y] = E(ut,x)E(us,y) +
∑

n≥1

E[In( fn(·, t, x))In( fn(·, s, y))]

= w(t, x)w(s, y) +
∑

n≥1

1

n!
αn(t, x , s, y), (11)

where αn(t, x , s, y) := (n!)2〈 fn(·, t, x), fn(·, s, y)〉HP ⊗n for any n≥ 1. Note that

αn(t, x , s, y) =

∫

[0,t]n

∫

[0,s]n

n
∏

j=1

η(t j , s j)〈Gt;x , Gs;y〉P (Rd )⊗n dsdt, (12)

whereP (Rd) is the the completion of {1A; A∈Bb(R
d)}with respect to the inner product 〈1A, 1B〉P (Rd ) =

∫

A

∫

B
f (x − y)d yd x ,

Gt;x(x1, . . . xn) = w(tρ(1), xρ(1))

n
∏

j=1

ptρ( j+1)−tρ( j)
(xρ( j+1) − xρ( j))

Gs;y(y1, . . . yn) = w(sσ(1), yσ(1))

n
∏

j=1

psσ( j+1)−sσ( j)
(yσ( j+1) − yσ( j)),
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the permutations ρ and σ are chosen such that:

0< tρ(1) < tρ(2) < . . .< tρ(n) and 0< sσ(1) < sσ(2) < . . .< sσ(n),

tρ(n+1) = t, sσ(n+1) = s, xρ(n+1) = x and yσ(n+1) = y .

Using (10) and (12), we conclude that αn(t) admits the representation:

αn(t, x , s, y) = n! ets
∑

i1,...,in≥1 distinct

EN





n
∏

j=1

η(t −τi j
, s−ρi j

)

〈Gt−τi1
,...,t−τin

;x , Gs−ρi1
,...,s−ρin

;y〉P (Rd )⊗n IAi1,...,in
(t,s)

i

. (13)

The next result gives a probabilistic representation of the inner product appearing in (13). This

result is the analogue of (6), needed for the treatment of the fractional case.

Lemma 2.2. For any t1, . . . , tn ∈ [0, t], s1, . . . , sn ∈ [0, s], x ∈ Rd and y ∈ Rd ,

〈Gt−t1,...,t−tn;x , Gs−s1,...,s−sn;y〉P (Rd )⊗n =

EB1,B2



w(t − t∗, B1
t∗
)w(s− s∗, B2

s∗
)

n
∏

j=1

f (B1
t j
− B2

s j
)



 ,

where t∗ = max{t1, . . . , tn}, s∗ = max{s1, . . . , sn}, and B1 = (B1
t
)t∈[0,1] and B2 = (B2

t
)t∈[0,1] are

independent d-dimensional Brownian motions, starting from x, respectively y.

Proof: Let B1 and B2 be independent d-dimensional Brownian motions, starting from 0. Note that

I := 〈Gt−t1,...,t−tn;x , Gs−s1,...,s−sn;y〉P (Rd )⊗n =

∫

R2nd

w(t − tρ(1), xρ(1))w(s− sσ(1), yσ(1))

n
∏

j=1

f (x j − y j)ptρ( j)−tρ( j+1)
(xρ( j) − xρ( j+1))psσ( j)−sσ( j+1)

(yσ( j) − yσ( j+1))dydx,

where the permutations ρ and σ of {1, . . . , n} are chosen such that

0< tρ(n) < . . .< tρ(1) < t and 0< sσ(n) < . . .< sσ(1) < s,

tρ(n+1) = sσ(n+1) = 0, xρ(n+1) = x , yσ(n+1) = y . We use the change of variables

xρ( j) − xρ( j+1) = zn+1− j , yσ( j) − yσ( j+1) = wn+1− j , j = 1, . . . , n.

Note that xρ( j) = x +
∑n+1− j

k=1
zk, i.e. x j = x +

∑n+1−ρ−1( j)

k=1
zk. We get:

I =

∫

R2nd

w(t − tρ(1), x +

n
∑

k=1

zk)w(s− sσ(1), y +

n
∑

k=1

wk)

n
∏

j=1

f





(x +

n+1−ρ−1( j)
∑

k=1

zk)− (y +

n+1−σ−1( j)
∑

k=1

wk)






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n
∏

j=1

ptρ( j)−tρ( j+1)
(zn+1− j)

n
∏

j=1

psσ( j)−sσ( j+1)
(wn+1− j)dwdz.

We now use the fact that pt−s(x)d x is the density of the increment of a d-dimensional Brownian

motion over the interval (s, t], these increments over disjoint intervals are independent, and the

Brownian motions B1, B2 are independent. Therefore, we replace the integral over R2nd by the

expectation EB1,B2

, and the variables zk, wk by B1
tρ(n+1−k)

−B1
tρ(n+1−k+1)

, respectively B2
sσ(n+1−k)

−B2
sσ(n+1−k+1)

,

for all k = 1, . . . , n. Note that, for any m= 1, . . . , n

m
∑

k=1

(B1
tρ(n+1−k)

− B1
tρ(n+1−k+1)

) = B1
tρ(n+1−m)

m
∑

k=1

(B2
sσ(n+1−k)

− B2
sσ(n+1−k+1)

) = B2
sσ(n+1−m)

.

Hence,

I = EB1,B2

[w(t − tρ(1), x + B1
tρ(1)
)w(s− sσ(1), y + B2

sσ(1)
)

n
∏

j=1

f ((x + B1
t j
)− (y + B2

s j
))].

�

Conclusion of the Proof of Theorem 1.1: Since equation (7) has a solution, this solution is

unique and admits the Wiener chaos expansion (3). The result follows from (11), (13) and Lemma

2.2. �
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