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Abstract

In this article, we establish a probabilistic representation for the second-order moment of the
solution of stochastic heat equation in [0, 1] x RY, with multiplicative noise, which is fractional in
time and colored in space. This representation is similar to the one given in [8] in the case of an
s.p.d.e. driven by a Gaussian noise, which is white in time. Unlike the formula of [8], which is
based on the usual Poisson process, our representation is based on the planar Poisson process, due
to the fractional component of the noise.

1 Introduction

The classical Feynman-Kac (F-K) formula gives a stochastic representation for the solution of the
heat equation with potential, as an exponential moment of a functional of Brownian paths (see
e.g. [14]). This representation is a useful tool in stochastic analysis, in particular for the study
stochastic partial differential equations (s.p.d.e.’s). We mention briefly several examples in this
direction. The F-K formula lied at the origin of the existence, large time asymptotic and inter-
mittency results of [4] and [5], for the solution of the heat equation with random potential on
Vi respectively RY. The same method, based on a discretized F-K formula, was used in [17] for
obtaining an upper bound for the exponential behavior of the solution of the heat equation with
random potential on a smooth compact manifold. The technique of [4] was further refined in
[6] in the case of parabolic equations with Lévy noise, for proving the exponential growth of the
solution. The F-K formula was used in [9] for solving stochastic parabolic equations, in the context
of white noise analysis. A F-K formula for the solution of the stochastic KPP equation is used in
[15] for examining the asymptotic behavior of the solution.

The present work has been motivated by the recent article [8], in which the authors obtained
an alternative probabilistic representation for the solution of a deterministic p.d.e., as well as a
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representation for the moments of the (mild-sense) solution of a s.p.d.e. perturbed by a Gaussian
noise F, with “formal” covariance:

E[Ft,sz,y] = 50(t - S)f(X - J’)

More precisely, in [8], {F(h),h € %} is a zero-mean Gaussian process with covariance
E(F(h)F(g)) = (h,g)», where & is the completion of {1y jxa;t € [0,1],A € B,(RD} with
respect to the inner product (-, )5 given by

(110.7%a> Ljos)xB) o = (t /\S)f f f(x—y)dydx.
AJB

(Here, %,(R%) denotes the class of bounded Borel sets in R%.)
In the particular case of the stochastic heat equation:

u 1 . d

— = —=Au+uF, t>0,xeR (@)
at 2

uO,X = uo(x)’ X ERd’

the representation for the second-moments of the (mild-sense) solution u is:

N,

Elu ] =e'E,, {w(t — Ty, BL wt =7y, B2 [ [F B -B2) |, @
j=1

(with the convention that on {N, = 0}, the product is defined to be 1), where B! = (Bfl)tzo and
B? = (Bf)tzo are independent d-dimensional Brownian motions starting from x, respectively y,
N = (N,);> is an independent Poisson process with rate 1 and points 7, < 7, < ..., and

_ b wpren
(2mt)d/2

Note that the representation (2) does not rely on the entire Brownian path, but only on its values
at the (random) points 74, T,,..., Ty,. This property has allowed the authors of [8] to generalize
the representation to a large class of s.p.d.e.’s, including the wave equation.

To see where the idea for this representation comes from, we recall briefly the salient points lead-
ing to (2). If the solution of (1) exists, then it is unique and admits the Wiener chaos expansion:
(see e.g. Proposition 4.1 of [8])

w(t,x)= f pe(x — y)ug(y)dy, wherep,(x)=
RrRA

e =w(t, %)+ D L (fol, £, X)), @)
n=1

where I,(f,(-, t,x)) = f([o,1]de)" falty, x1,..0, t, x,)dF, o ...dF, . ,and f, € 2" is a symmet-
ric function given by:

1 n
Salty, 20, t, X, ,X) = ;W(fp(wXp(l))l_[pfp(,-+1>—tpm(xp(f+1) = Xp(j))- 4
! 1

Here, p is a permutation of {1,...,n} such that t,q) < t,0) < ... < tym), tpmer) = t and
Xp(n+1) = X. By the orthogonality of the terms in the series (3),

00
E[ut,xut,y] = W(tJ X)W(t: .y) + ZJn(t; X,_y),
n=1
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where

Ju(t,x,y) = n!<fn(-,t,X),fn(-,t,y))é,m=J F(ty,...,t,)dt, and
T,(6)

n n
J l_[szH—fj(XjH —Xj)l—[Pth—tj(}’jﬂ - ¥j)
Ran j:1

j=1

F(tl)""tn)

wty, x)w(es, )| £ G = y))dydxdt.

j=1

Here, we denote t = (t1,...,t,),Xx = (x1,...,%,), ¥ = (¥1,.-.,¥,) and T, (t) = {(t;,...,t,);
O<t;<...<t,<t}h
A crucial observation of [8] is that, for any F : [0, t]" — R, measurable,

J F(ty,...,t)dt=e'EN[F(t = Tp,...,t — 7)1y ] (5)
T,(t)

This is a key idea, which yields a probabilistic representation for J,(t, x, y), based on the jump
times of the Poisson process. This idea is new in the literature, although it appeared implicitly in
the earlier works [10], [13], [16]. Secondly, for any 0 < t; <...<t, <t, F(t —t,,...,t —t;)is
represented as:

F(t—t,,...,t—t;)=
n
1 p2
EBE {w(t—tn,B;)w(t—tn,Bi)]—[f(B;—Bi) : 6)
j=1

Relation follows from these observations, using the independence between N and B, B2.

In this article, we generalize these ideas to the case of the stochastic heat equation driven by a
fractional-colored noise. More precisely, we consider the following equation:

du 1 . d

— = =-Au+tuoW, te€[0,1],x€R @2
at 2

uO,x = uo(x)> X ERdﬁ

where 1, € C,(R?) is non-random, ¢ denotes the Wick product, and W is a Gaussian noise whose
covariance is formally given by:

E[Wt,xvvs,y] = n(tas)f(x - }’),
with
n(t,s) =aylt —s* 2, f(x)= f e X u(de).
]Rd
Here, H € (1/2,1), ay = H(2H — 1) and u is a tempered measure on R¢. (Note that n(t,s) is the
covariance kernel of the fractional Brownian motion.)

The noise W is defined rigourously as in [2], by considering a zero-mean Gaussian process W =
{W(h); h € 3¢} with covariance

EW(hW(g)) = (h, &) o
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where # % is the the completion of {1j .45t € [0,1],A € B,(R)} with respect to the inner
product (-,-) ;5 given by:

t S
<1[O,t]><A’ 1[0,5]><B>%’9 ZJ f f J n(u,v)f (x — y)dydxdvdu.
o Jo JaJs

(See also [7] for a martingale treatment of the case n(t,s) = &,(t —s), which corresponds to
H=1/2)

As in [3], the solution of equation (7) is interpreted in the mild sense, using the Skorohod integral
with respect to W. More precisely, an adapted square-integrable process u = {u, ,; (t,x) € [0,1] X
R4} is a solution to (7) if for any (t,x) € [0,1] x RY, the process {p,_,(x — Yy 110,9(8); (s, ¥) €
[0,1] x R4} is Skorohod integrable, and

T
ut,x = Ptuo(x) +f f pt—s(x - y)us,yl[o,t](s)‘svvs,y'
0 JRI

The existence of a solution u (in the space of square-integrable processes) depends on the rough-
ness of the noise, introduced by H and the kernel f. We mention briefly several cases which
have been studied in the literature. If f = §,, the solution exists for d = 1,2 (see [12]). If
flx)= 1_[?:1 ag |x;|*"72, the solution exists for d < 2/(2H — 1) + Zle H; (see [11]). Recently,
it was shown in [3] that if f is the Riesz kernel of order a, or the Bessel kernel of order a < d,
then the solution exists for d < 2 + a, whereas if f is the heat kernel or the Poisson kernel, then

the solution exists for any d.

Our main result establishes a probabilistic representation for the second moment of the solution,
similar to (2), and based on the planar Poisson process.

Theorem 1.1. Suppose that equation (7) has a solution u = {u, ,; (t,x) € [0,1] xR} in [0,1] x R4,
Then, for any (t,x) € [0,1] x R and (s, y) € [0,1] x RY,

E[ut,xus,y] = W(t: X)W(S, J’) + ets

Nr,s
D By |wt =7 BLw(s — p,B2) | [n(t =75 - pi,.)f(Biij - Bﬁij My, |
j=1

SERBL

where the sum is taken over all distinct indices iy,...,1,,

e Bl = (Btl)té[o,l] and B = (Bf)[e[o’l] are independent d-dimensional standard Brownian mo-
tions, starting from x, respectively y,

® N = (N, )(ts)e[017? is an independent planar Poisson process with rate 1 and points {P;};>,
with P; = (4, py),

e A; i (t,s) is the event that N has points P, ,...,P; in [0,t] x [0,s], 7% = max{7,,...,

.....

7, } and p* = max{p;,...,p; }-
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2 Proof of Theorem

We begin by recalling some basic facts about the planar Poisson process. If N = (N, ;) s)c[0,1]? IS @
2-parameter process, and R = (a, b] x (c,d] is a rectangle in [0, 1], we define Ny = N, +Npg—
Na,d - Nb,c‘

We say that N = (N, ) s)e[01)> is @ planar Poisson process of rate A > 0, if it satisfies the
following conditions:

(i) N vanishes on the axes, i.e. N, o =Ny, =0 for all t € [0,1].

(i) Ny has a Poisson distribution with mean A|R|, for any rectangle R;

(iii) Ng,,...,Ng, are independent, for any disjoint rectangles Ry, ..., Ry.

The following construction of the planar Poisson process is well-known (see e.g. [1]). Let X a
Poisson random variable with mean A, and {P;};>, be an independent sequence of i.i.d. random
vectors, uniformly distributed on [0, 1]2. We denote P; = (1, p;). For any (t,s) € [0,1]2, define

X
N, =ZI{Ti <t,p; <s}
i=1

Then N = (N, ;)¢ s)e[0,172 is @ planar Poisson process with rate A.
For any n > 1 and for any distinct positive integers iy,...,1,, let A; _; (t,s) be the event that N
has points P, ,...,P; in [0,t] x [0,s]. Then

Wy =ny= |J A0 ®)
i1,...,i,=>1 distinct
The following result is probably well-known. We include it for the sake of completeness.

Lemma 2.1. The conditional distribution of

((t - Til:s _pil);'--y(t - Tin)s _pi")) given Ail in(t;s)

is uniform over ([0, t] x [0,s])™.

Proof: Let I = {ij,...,i,} and i* = max{i;,...,i,}. Then

weo= U w=n)(mzenza 0| ) mcorpa
}

k>n,Ic{l,...k i€l i<k,i¢gl

and
k

A
PA(,s) = D) e h o (es)' (1 —ts) .

k>nvi*

For any Borel sets I'y,...,I", in [0, t] X [0,s], we have

n 7Lk n
P Q{(t—fij,s—pij)EFj}ﬂAI(t,s) = > S (Hml) (1—ts)km,
j= _

k>nvi*

and hence

n 1 n
P Q{(r —Tps =P ETHA(LS) | = Q'FJ‘"
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Od
As a consequence, for any measurable function F : ([0,t] x [0,s])" = R,,

E[F(t—7;,5 = Pi,--t —Ti,s —py) [ Ay, i, (6,8)] = 9
1

F(t1,81,...,t,,8,)dsdt,
(ts)n f ”J n
[0,¢e]" J[0,s]

where t = (tq,...,t,) and s = (s1,...,5,)-
Suppose that A = 1. Then (ts)" = n! e”P(N,; = n) and

E[F(t— 7,5 = Pi»--t —Ti,s —py ) | Ay, i, (6,8)] =

,,,,,

1
- F(ty,81,...,t,,s,)dsdt.
nle®P(N, s =n) f[o,t]" f[o,s]n (t1,51 n>Sn)

Using (8) and (9), we obtain that for any F : ([0, t] x [0,s])" — R, measurable,

f J F(t1,51,.-+,tp,s,)dsdt = (10)
[0,t]" J[0,s]"

n! e Z EN[F(f—Til,S—Pil,---,f—Tin,S—Pin)IAil (6]

i1,...,i,=>1 distinct

Relation (10) is the analogue of (5), needed in the fractional case.

Suppose now that equation (7) has a solution u = {u, ,; (t,x) € [0,1] x R?}. Then the solution is
unique and admits the Wiener chaos expansion (3), where

In(fn('; t, X)) = J fn(tl, X15--05 tn,xn)dwtl,xl e th,[,xn

([0,1]xR)"

is the multiple Wiener integral with respect to W, and f,, € 5% ®" is the symmetric function given
by (4). (See (7.4) of [11], or (4.4) of [12], or Proposition 3.2 of [3]).

Using (3), and the orthogonality of the Wiener chaos spaces, we conclude that for any (t,x) €
[0,1] x R? and (s, y) € [0,1] x RY,

E[ut,xus,y] = E(ut,x)E(us,y)+ZE[In(fn(': t:x))ln(fn(':s:y))]

n=1
1
= wlt, (s, y)+ Y —a,(6,%,5,), an
n!
n>1
where a,(t,x,s,y) := (n)2(f,(-, t, %), fa(,5,¥)) wmen for any n > 1. Note that
n
a,(t,x,s,y)= f f l_[ N(t;,5;){Gex, Gs;y ) o rityendsdt, (12)
[0,e]" J[0,5]" j=1

where 2 (R?) is the the completion of {1,;A € %, (R%)} with respect to the inner product (1,,15) PRI =

fAfo(x—y)dydx,

n

G- x) = Wt Xp) [ [Peyg-e, 0o = Xo()
=1
n

Gay s ¥) = WCo You) [ [Pegs, 0 Gotien = Vo)

j=1
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the permutations p and o are chosen such that:

0< tp(l) < tp(Z) <...< tp(n) and 0< Sa(1) < Sa(2) <...< So(n)»
tp(n+1) =t So(n+1) =8> Xp(n+1) = X and Yo(n+1) = Y-
Using (10) and (12), we conclude that a,(t) admits the representation:

n
wltrs=nes ¥ B |[[nte-rs-p;)
j=1

i1,...,i,=>1 distinct

<Gt*Ti1 ..... tfrin;ersfpil ,,,,, sfpin;y>9(Rd)®“IAil i"(t,s):l' (13)

The next result gives a probabilistic representation of the inner product appearing in (13). This
result is the analogue of (6), needed for the treatment of the fractional case.

Lemma 2.2. For any t,,...,t, € [0,t], sq,...,5, € [0,s], x € R and y € RY,

n
1 p2
EPB |:W(t - B w(s =57 BO | [ B -BH |,
j=1

j=

where t* = max{t,,...,t,}, s* = max{s,...,s,}, and B! = (B})c[o.1] and B> = (B?)c[o.1] are
independent d-dimensional Brownian motions, starting from x, respectively y.

Proof: Let B! and B2 be independent d-dimensional Brownian motions, starting from 0. Note that

I:= (Gt—tl,...,r—tn;x: Gs—sl,“.,s—sn;y)ﬂ(]Rd)@” = f W(t - tp(l)’xp(l))w(s —So(1)> ya(l))
Ran

n
l__!f (5 = YidPe,)- o500 Ko () = Xp(41)Ps, )=, Yo (i) — Yoi41))dYdX,
i=

where the permutations p and o of {1,...,n} are chosen such that

O0<tom<...<tpmy<t and 0<ssu <...<s51)<S$,
totnt1) = Som+1) = 05 Xpm41) = X, Yoms1) = Y- We use the change of variables
Xp() T Xp(+1) = Znt1-jp Vo) T Yo(+) = Wnt1—jp  J=L...om

1-j . 1-p1(
Note that x ;) = x + S g il xj=x Y0 F W .. We get:

n n
sz w(t — tp(l),x+sz)w(s—sa(1),y+2wk)
R2nd k=1 k=1

n+1-p~1(j) n+1-07(j)

ﬁf x+ D = -+ > w)
j=1

k=1 k=1
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n n
pfp(j)—fp<f+1>(z"+1—f) | |psnu)—so(m)(W"H—i)dez’
j=1 j=1

We now use the fact that p,_(x)dx is the density of the increment of a d-dimensional Brownian
motion over the interval (s, t], these increments over disjoint intervals are independent, and the
Brownian motions B!, B2 are independent. Therefore, we replace the integral over R?* by the

expectation E55°, and the variables z;, w; by B! —B! , respectively B2 —B?

Ep(n+1-k) Lo(n+1-k+1) So(n+1-k) So(n+1-k+1)”
forall k =1,...,n. Note that, foranym=1,...,n

m

E (B} —B! )=B!
p(n+1-k) tp(n+1—k+1] tp(n+1—m)

k=1

m
2 2 2
B —B =B .
Z( Sa(n+1-k) Sa(n+17k+l)) Sa(n+1-m)
k=1

Hence,

n
1 p2
1= EP P w(t = tyay, x + B} (s —soy,y +B2 V[ [f((x+B)) = (v + B2,
j=1

So(1)

|

Conclusion of the Proof of Theorem [1.1: Since equation (7) has a solution, this solution is
unique and admits the Wiener chaos expansion (3). The result follows from (11), (13) and Lemma
2.2.0
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