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Abstract

Some deviation inequalities and moderate deviation principles for the maximum likelihood esti-
mators of parameters in an Ornstein-Uhlenbeck process with linear drift are established by the
logarithmic Sobolev inequality and the exponential martingale method.

1 Introduction and main results
1.1 Introduction
We consider the following Ornstein-Uhlenbeck process
dX, =(-0X, +y)dt +dw,, Xo=2x (1.1)
where W is a standard Brownian motion and 6, y are unknown parameters with 6 € (0, +00). We

denote by Py« the distribution of the solution of (1.1).

It is known that the maximum likelihood estimators (MLE) of the parameters 6 and y are (cf.
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[15])

=T [ XdX, + (X —x) [ X,dt

b, =—10 o (1.2)
T [y X2de - ([, X.dt)

Wrir _foTXtth

52
TG63

=6+ ,

— [ X dt [ X,dX, + Xy - x) [ X2d¢

T[] x2dt - (fOTXtdt)z

R N T
Wy r(Wrfs - Jo Xedw,)
T T2

Yr= (1.3)

>

where
T T
- 1 o1 2 -2
uT=? X.dt, aTz? X;dt — 7. (1.4)
0 0

It is known that §; and 7, are consistent estimators of 6 and y and have asymptotic normality
(cf. [15]).
For v = 0 case, Florens-Landais and Pham([9]) calculated the Laplace functional of (fOT X.dX,,

fOT X [Zd t) by Girsanov’s formula and obtained large deviations for 0, by Gértner-Ellis theorem.

Bercu and Rouault ([1]) presented a sharp large deviation for 6;. Lezaud ([14]) obtained the
deviation inequality of quadratic functional of the classical OU processes. We refer to [8] and
[11] for the moderate deviations of some non-linear functionals of moving average processes and
diffusion processes. In this paper we use the logarithmic Sobolev inequality (LSI) to study the
deviation inequalities and the moderate deviations of 8, and 7 for y # 0 case.

1.2 Main results

Throughout this paper, let A7, T > 1 be a positive sequence satisfying

A M 0 (1.5)
— 00, — — U. .
! JT

Theorem 1.1. There exist finite positive constants Cy, C;,C, and C5 such that for all r > 0 and all
T>1,

Py, (IéT -0/> r) <C, exp{—CerEQ,%x(é'%)min{l,Czr}}
+Coexp{—CsTEy,, . (67)}

and
Py, (Itr —vl=1) <G exp{—CerEe’Y’x((f%)min{l,Czr}}

+ Cyexp {—Cg TEQ’Y,X((?%)} )

Remark 1.1. In this theorem and the remainder of the paper, all the constants involved depend on
0, v and the initial point x.
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Theorem 1.2. (1). {Pe’%x (, / AL(QAT —-0)e ) ,T > 1} satisfies the large deviation principle with
T

speed A; and rate function I;(u) = Z—;, that is, for any closed set F in R,

lllr‘lllsolip log Py .. (” —(6; — Q)EF) 3254—9
hr{ggjlf—logP@Yx (1/ (QT—Q)EG) 15224_6

2). {Pe,y,x (1 / %(?T —-y)e ) , T > 1} satisfies the large deviation principle with speed A and
T

rate function I,(u) =

and open set G in R,

Ou . .
20+279) that is, for any closed set F in R,

ou?
hglsogp Ar log Po,y.x (V 2, r=re F) PO 2(0 +2y?)

and open set G in R,

Ou?
11r{1_1)glf logPQ rox (” (Fr—71)€ G) Lllgg 260 +2y%)

In y = 0 case, the deviation inequalities of quadratic functionals of the classical OU process are
obtained in [14]. For the large deviations and the moderate deviations of 8, we refer to [1],
[9] and [11]. The proofs of Theorem[1.1land Theorem 1.2]are based on the LSI with respect to
L?-norm in the Wiener space and Herbst’s argument (cf. [10], [12]).

2 Deviation inequalities

In this section, we give some deviation inequalities for the estimators 6, and 7 by the logarithmic
Sobolev inequality and the exponential martingale method. For deviation bounds for additive
functionals of Markov processes, we refer to [3] and [18].

2.1 Moments

It is known that the solution of equation (1.1) has the following expression:

t
X, = (x - Z) e 9t 4 r +e 9 [ e%dw,. 2.0
0 0 .

From this expression, it is easily seen that for any t > 0,

e =Eo X0 = (x =5 ) e+ 1 (2.2)

1
o2 :=Vary, (X,) = %(1 — 200 (2.3)
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and forany 0 <s <'t,

1
Covg, (X, X,) =%(1 — e 205)p=0(t=5), 2.4
Therefore
1 ' 1 y ¥
Eg,(ir) Z?EQ,y,x (L ert) = o7 (X - 5) 1-e )+ 7’ (2.5)
1 T t 2
VarQ,y,x (:aT) :FEG,)’,X (J thJ‘ eedesdt) (2.6)
0 0
1 1 2
= | T - — *297"_1 - 79T_1
9272 ( 20 I )
andso forall T > 1,
1

Varg . (fir) < (20 +1) 2.7)

203T

and

1 1 7\ 2
52) —___ =207y [ _ 7
EQ,Y,X(O-T)_ZG + 492T(1 € )( 1+29 (X 9) )

(1—e?T)? (X - g)z(l —e797)

_i -20T _ E -0T _
(T 29(e 1)+6(e 1))

9272
1
9272

which implies

1 1 Y\ 2
S N _r <
Fopx(03) = 25| < (9 (x 9) + 9). 2.8)

Lemma 2.1. Forany 0 < a < 0?%/4, forall T > 1,

T
Eg .y x (exp (af thdt)) < 00,
0

and there exist finite positive constants L, and L, such that forall 0 < a < 6%/4and T > 1,

T
Eg,x (exp (aJ thdt)) < LefT,
0

Proof. For any 0 < a < 6%/4, set k = 1/ 2 — 2a. Then by Girsanov theorem, we have

dPy, .
dp

K,Y,X

= exp{—J (6 — k)X, dX, —J (aX?—y(6 — K)Xt)dt}
0 0
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T
Eg, . (exp (af thdt))
0
dPy., r
=E,,x 2, . exp{ozfO X2dt
T T
=E,,x | €Xp {(—9 + K)f X.dX, +)/J (6 — K)Xtdt})
0 0

—(0-x) _, !
=E,,x | exp T(XT_T)‘H’ (6 —x)X, dt
0

(6 —x)T !
Sexp{T}EK%X (exp{yf (6 — K)Xtdt})
0

T
where the last inequality is due to 6 > k. Now we have to estimate E, . . (exp{y fo (6 —x)Xdt}).
Since under P, .,

and so

1 Y y 1 1 2
fgt "VN - _ 1_ —kT s T__ —2K'T_1 — —KT_1
i (KT(x )(1-e ”wmz( T+~ -1 |,

Epyx (exp{yfT(G —K)Xtdt})
0
_ Y(Q _K) Y —xT
—eXP{T ((x-5)a- )”T)}

2(0 — k)? 1 2
XP{Y (ZKZK) (T— E(e—sz _1)+;(e—KT _ 1))}

Noting 0/vV2<k<60,0<60 —x =2a/(0 +x) <2a/6 and (6 — k)*> < ab for all 0 < a < 62/4,
we complete the proof of the lemma.

we have

O

2.2 Logarithmic Sobolev inequality

Since the LSI with respect to the Cameron-Martin metric does not produce the concentration
inequality of correct order in large time T for the functionals

FX) = % U ¢(X,)ds —E ( f g(xs)ds)),

in order to get the concentration inequality of correct order for the functionals F(X), as pointed
out by Djellout, Guillin and Wu ([7]) we should establish the LSI with respect to the L?-metric.

Let us introduce the logarithmic Sobolev inequality on W with respect to the gradient in L2([0, T], R)
([10]). Let u be the Wiener measure on W = C([0, T],R). A function f : W — R is said to be
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differentiable with respect to the L2-norm, if it can be extend to L2([0, T],R) and for any w € W,
there exists a bounded linear operator Df (w) : g — D, f (w) on L%([0, T],R) such that

|f(w+g)—f(w)—D,f(w)] o

m
ligllz,—0 llglly,

If f : W — R is differentiable with respect to the L2-norm, then there exists a unique element
Vf(w)= (V. f(w),t€[0,T])in L%([0, T],R) such that

D,f(w)=(Vf(w),g)2, forallge L*([0,T],R).

Denote by Cbl(W /L?) the space of all bounded function f on W, differentiable with respect to
the L?-norm, such that Vf is also continuous and bounded from W equipped with L2-norm to
L%([0,T],R). Applying Theorem 2.3 in [10] to the Ornstein-Uhlenbeck process with linear drift,

we have
5 2
EntPemx (f ) < ﬁEG,y,x
0

where the entropy of f2 is given by

Entngm(fz) = E@,y,x(fZIngz) - EG,y,x(fz)IOgEQ,y,x(fz)-

Lemma 2.2. For any |a| < 62/4,

T T 9 T
2 2 4a 2
Eg, x| exp{a X;dt— Eg .y x Xodt < Eg, .| exp o7 X;dt
0 0 0

and

T

IV[flzdt) , feciw/L? (2.9

2 T
Egyx (exp{aT (83 — Egyx (7)) }) < Eo (exp { 49% f thdt}) .
0

Proof. We apply Theorem 2.7 in [12] to prove the conclusions of the lemma. Take .} =
{af; la| < 62%/4} and .o, = {ah; |a| < 62/4}, where

T 1 T 2
fw)= J wfdt, h(w) == f wdt | .
0 '\ Jo

4 g2 4 g2

ﬁ?l’ 81 € A; rz(gz)Z@f, 82 € s

Then for any A € [—1,1], g; € .«/; and g, € .o, Ag, € ., Agy € o, [1(Agy) = A?T'1(gy),
I',(Ag,) = A?I',(g,) and by Lemma|2.1]

Define
ri(g1)=

Ee,y,x (eXP{M—'ﬂgl)}) < 00, Ee,y,x (eXp{AFZ(gZ)}) < 0.

Choose a sequence of real C**-functions &,,,n > 1 with compact support such that lim,,_,,, supj,<y [®,(x)—
e*| =0 for all M € (0,00). For any g; = af € .¢/; and g, = ah € ., set
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Then for any g € L2([0, T],R),

|F,(w +g) — F,(w) — a®, (8:(w)/2) (w, g) 2| —0

ligll,—0 llgllz2

and

T T
- Ha(w +g) — Hy(w) — a9 (8;(w)/2) 1 [, wedt [ g.dt| .
1 =
llglz,—0 gl

Therefore, F,,H, € C}(W/L?), VF, = a®’ (g,(w)/2) w, and

a [T
VH, = T w dt®! (g,(w)/2)
0

and so by (2.9), we have

T
2 2
Enty, (FY) < g3E05m (f law, [2dt (&) (g1(w)/2)) )
0
and
T 2
2 2 1 , 9
Entp, (Hy) < g3Bopx | 7| @ | wedt | (&) (2(w)/2))" |
0
Letting n — oo and by Lemmal2.1, we get
1 1
Entpgm (ef1) < EEO,)/,X (T1(g1)es), Entpsm (e2) < EEG,)/,X (To(g2)e®?), (2.10)

. . N T
and so the conclusions of the lemma hold by Theorem 2.7 in [12] and T3 < f 0 X 2dt.

O
2.3 Deviation inequalities
Since X; ~ N (,uT, o%), and under Py, .
1 Y —ory, ¥ 1 Lo _ser 2. _or
dr ~N [ =—=(x — =)(1 - + =, T—— -1)+= -1,
i (GT(X Bl Cr G DRI L
it is easily to get from Chebyshev inequality, for any r > 0,
Py (|Xr —Eopx(Xp)| = 1) < 2exp{-6r7}, (2.11)
. R 03Tr?
Povar ([Pir = Bou (i) 2 1) S 2exp = (2.12)

where we used (2.7).
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Lemma 2.3. There exist finite positive constants C, C,, Cy such that forallr >0and all T > 1,

T T
Py x ( J Xidt—Eg, . (J det)
0 0

Py, x (\ai —Ep, . (02)| = r) < Cyexp{—C;rTmin{1,C,r}}.

In particular, there exist finite positive constants C, C;, Cy such that forallr > 0and all T > 1,

> rT) < Coexp{—C;rTmin{1,C,r}}

and

Py, » (lé‘% —Eg,(67) > r) < Cyexp{—C;rTmin{1,Cyr}}.

Proof. 'We only prove the first inequality. By Lemma(2.2/and Lemmal2.1] there exist finite positive
constants L, and L, such that for all T > 1, for any |a| < 62/4,

T T
Egyx (exp {a (f thdt —Egyx (J det)) }) SLleLzazT.
0 0

Therefore, by Chebyshev inequality, for any r > 0, T > 1 and |a| < 62/4,

T T
Py x (f X2dt —EQ,Y,X(J X2dt) > rT) < Lo~ (@r—Lad)T
0 0

and
T T
Py, (J X2dt —EQ,Y,X(J X2dt) < —rT) < e~ (@r—12a")T
0 0

Now, by

far— La% = O '{1 zr}
sup {ar —L,a’}> —min{1,—},
lal<62/4 8 L,6?

we obtain the first inequality of the lemma from the above estimates.
O

Lemma 2.4. There exist finite positive constants C,, C; and C, such that forallr >0and all T > 1,

_ Y
PG,y,x ( WT (‘uT - 5)

Proof. Since foranyr >0and T > 1,

[ o)

> rT) < Coexp{—CrTmin{1,C,r}}.

< {|Wr(ar —Eg (1)) = rT/2} U { Wi (Ee,m(m) - g) > rT/z}
6
c {IWrl = VrT/2} u{|(ir — Egpx ()| = VT }U {)WT\ > ;TY}
2 (x=§)1
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by (2.12) and Wy ~ N(0, T), we get

_ Y
p@,y,x ()WT(‘U'T - 5)’ > TT)

<5 Tr 42 03Tr 4o 02r2T
<2exp 8 exp 2051 exp g(x—l)z
0

O

Lemma 2.5. For each 8 € R fixed, there exist finite positive constants C,, Cy,C, such that for all
r>0anddlT>1,

PG,y,x (

Proof. It is known that for a € R,

JOT(Xf—ﬁ)dwt

> rT) < Cyexp{—CyrTmin{1,C,r}}.

T 2 T
M§“)=exp{af (Xt—ﬁ)th—%f (Xt—[a’)zdt}, T>0
0 0

is Z-martingale, where & := o(W,,t < T). Therefore, by Holder inequality, we can get that for
any € € (0,1],

T
Ee,y,x (exp{af (Xt_ﬁ) th})
0
2.2 T T 1
< (Ee,y,x (exp {%J (Xt _ ﬁ)zdt})) (Ee,y,x (M;(l+e)a))) Tre
0
2 2 15?
:(Ee’m (exp{(1+e) J (X, -8) dt})) .

In particular, take € = 1, then by Lemma 2.1} there exists finite positive constants L, = L1(0, 3,7, x)
and L, = L,(0, 3,7, x) such that for all T > 1, for any a® < 62/16, by Cauchy-Schwartz inequality,

EQ,y,x (exp{af (Xt_ﬁ) dWr})
0
T 3
< (Ee,y,x (exp {Zazf X, — ﬁ)zdt}))
0
T i T i
< (Ee’m (exp{4azf thdt})) (EQ’Y,X (exp{ f (—2BX,+ B )dt}))
0 0

2
SLleLza T'

Therefore, by Chebyshev inequality, the conclusion of the lemma holds.
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Proof of Theorem 1.1
We only show the first inequality. The second one is similar. By

W (= E) ] (5 B aw,

6. _
! TG

foranyr>0and T > 1,

PG,)/,X (|éT - Gl = T')

<Py, (|07 — o, (63)| 2 Eo, £(67)/2)

T
- Y Y
Py OWT (ar-3) —f (x5 aw.
0

Therefore, by Lemmas|[2.3, and we obtain the first inequality of the theorem.

> Eg,y,x(ai)rT/z)

O
3 Moderate deviations
In this section, we show Theorem/[1.2. By (1.2) and (1.3), we have the following estimates
N 20 (" Y
(Br-0)+ = (xt—g) aw, 3.1
0
_ A2 T Y
(o)1 2003 ] (- )
B T62 T6%
and for
(Fp—y)— 21 2T C(x T dw, (3.2)
Yr—Y T T . ( t 9) t .

L G I fo (=) aw,

= ) =2
TG7 TG7

Lemma 3.1. (1). Forany r >0,

i — g’ Wy | > \/TlTr) = —00,

1
lim sup — log P (
T—>oop AT g 0,y,x

T
. 1 N Y Y
hrTn_,SolipA_TInge’V’x(MT_E‘ JO (Xt_g) dw,| > TATr) = -0
and
T
limsu i10 p 62—i (X —Z)dW > TArr | =—00
Tl 280\ |91 g || ] T T ) e = VAT '
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(2). For any 6 > 0,
T

(éT—e)—?f (xt—g)dwt
0

25”ﬁ) = -

T

25Hﬁ) = —o00.
T

Proof. (1). We only give the proof of the third assertion in (1). The rest is similar. For any L > 0,

T
J(Xt—f)dwtz T?LTr}
. 0

c{a

T
52 LT U ! (X—z)dw
T 2007 L \/T_M 0 £ ‘

By Lemma(2.3, and Lemma/2.5] we have

1
lim sup . log Py, (
T

T—o00

and

T
) Wy 2y Y)
—y)-—= = X, —— | dw,
P, Fr—7) T T . ( tT 9 t

1
limsup - log Py, (

2 1

=L

. 1 5 1 r
limsup —logPy, . | |67 — 20 > )= —00

T—o00 XT
and
T
li 11 P ! f (X Y)dw >1 | <-L?%c,C
umsup — 10 pp— _ = = S — .
T—»oop AT g 0,7,x \/T_AT o t 0 t 1-~2
Hence,
lim sup — log P 52— = T(X—Z)dw > /TAr | <—12¢,C
T—»oop AT g 0,y,x T 20 . t 0 t| = T —= 1“2

Letting L — oo, we obtain the third conclusion.

(2). It follows from (3.1) and (3.2) that
@, -0y 22 C(x - D) aw >5\/7‘T
T T o ( t 6) t| — T

U< 2062 —1|

! Y
L (Xt—g) aw,| >

JTAs

_ Y - . . .
cq Iwr (uT - 5) |2 8, (07)=—— p U{167 — Eo,a(07)] 2 Eo,p 1(67)/2}

VT 2y

4

U+ (20062 —1] > 6Ey, . (62)

8 Y
JO (Xt - 5) aw,
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ooy [T
r=7) TL(t e)dw

>5 AT)
T

U{ 267 = frl

“’j

! ¥
L (xt—g) aw,| >

N

_ Y Y . - -
C{ fr— 5‘ > %} U {|0% —Eg . (67)2 Ee,y,x(U%)/Z}
3y R Y v TAr
U {%lWT (.U'T 5) | > 6Eq, (63)—— "

NG

4

2 6E9,y,x(a%)

DI G p)am

Therefore, by Lemmas(2.3 and (1), we get the conclusions.

O
Lemma 3.2. For each f,x € R fixed, {Pemx (ﬁ fOT (X, —B)dw, e ) ,T > 1} satisfies the
T

LDP with speed A and rate function J(u) = #ﬁeﬁ)z)‘

Proof. By (2.12) and Lemmal2.3] we can get for any 6 > 0,

1 (" 1 1
7L (X, —B)*dt - (%+¥(Y—9ﬁ)2)

Therefore, Proposition 1 in [4] yields the conclusion of the lemma.

> 5) <0. (3.3)

. 1
Jim - 10gPo . (

O

Proof of Theorem|1.2|
By Lemma|3.1] {Peyx(\/7(9T 0)e:),T > 1} and {Peyx(f(yT y) € ), T > 1} are expo-

nential equivalent to
T 20
Pore |\ 77 dW e |, T>1
[T (wr 2 ’ Y
Wr
P — Xe——|dW, |- |, T>1

respectively. Noting for y # 0, % + 2?7 fOT (Xt Y) daw, =% | (Xt -I4 %) dW,, Theorem
[1.2 follows from Lemma/3.2]

and
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