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Abstract

For real Lévy processes (X¢):>o having no Brownian component with Blumenthal-Getoor index
3, the estimate E sup <, |Xs — aps? < Cpt for every t € [0, 1] and suitable a, € R has been
established by Millar [6] for 8 < p < 2 provided X; € LP. We derive extensions of these
estimates to the cases p > 2 and p < 3.

1 Introduction and results

We investigate the LP-norm (or quasi-norm) of the maximum process of real Lévy processes
having no Brownian component. A (cadlag) Lévy process X = (X;);>o is characterized by its
so-called local characteristics in the Lévy-Khintchine formula. They depend on the way the
"big” jumps are truncated. We will adopt in the following the convention that the truncation
occurs at size 1. So that

. 1 _
E e Xt = ¢~ with U(u) = —iua + 502u2 — /(e““” — 1 —durl qg<1y)dv() (1.1)

where u, a € R, 0? > 0 and v is a measure on R such that v({0}) = 0 and /x2 Aldv(z) < +00.

The measure v is called the Lévy measure of X and the quantities (a,0?,v) are referred to as
the characteristics of X. One shows that for p > 0,E |X1|P < 400 if and only if E|X;|? < +00
for every t > 0 and this in turn is equivalent to E sup, <, |Xs[P? < +oo for every ¢ > 0.
Furthermore, a

E|X1|P < 4+o0 if and only if / |x|Pdv(z) < 400 (1.2)
{z[>1}
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(see [7]). The index § of the process X introduced in [2] is defined by
B =inf{p >0: / |zPdv(x) < 400} (1.3)
{lz|<1}

Necessarily, 5 € [0,2]. This index is often called Blumenthal-Getoor index of X.
In the sequel we will assume that o2 = 0, i.e. that X has no Brownian component. Then the
Lévy-It6 decomposition of X reads

¢ ¢
X, =at+ / / z(p—A®v)(ds,dx) + / / zu(ds, dx) (1.4)
0 J{|z|<1} 0 J{lz>1}

where A denotes the Lebesgue measure and p is the Poisson random measure on Ry x R
associated with the jumps of X by

H= Zﬁ(t,axt)l {AX,#0}s
>0
AXy =Xy — X, AXo =0 and where ¢, denotes the Dirac measure at z (see [4], [7]).

Theorem 1. Let (X;);>0 be a Lévy process with characteristics (a,0,v) and Blumenthal-
Getoor index 3. Assume either

- pe (B,00) such that E|X;1|P < +oc0

or
—p = provided 3 > 0 and / |z|Pdv(x) < +00. Then, for everyt >0
{lz|<1}
E sup [Y;|P < Cpt if p<1,
s<t
Esup|X; —sEXq|P < Cpt if 1<p<2

s<t

for a finite real constant C,, whereY; = X; —t (a — / xdu(x)) . Furthermore, for every
{lz|<1}

p>2,
E sup | X;|P = O(¢) as t—0.
s<t

If X7 is symmetric one observes that Y = X since the symmetry of X; implies a = 0 and the
symmetry of v (see [7]). We emphasize that in view of the Kolmogorov criterion for continuous
modifications, the above bounds are best possible as concerns powers of ¢t. In case p > 3 and
p < 2, these estimates are due to Millar [6]. However, the Laplace-transform approach in [6]
does not work for p > 2. Our proof is based on the Burkholder-Davis-Gundy inequality.
For the case p < (3 we need some assumptions on X. Recall that a measurable function
©:(0,¢] — (0,00) (¢ > 0) is said to be regularly varying at zero with index b€ R if, for every
t>0,

lim pltz)

z—0 gO(J?)
This means that ¢(1/x) is regularly varying at infinity with index —b. Slow variation cor-
responds to b = 0. One defines on (0,00) the tail function v of the Lévy measure v by

v(z) = v([-=,2]%).

=
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Theorem 2. Let (X;)i>0 be a Lévy process with characteristics (a,0,v) and index 3 such
that B > 0 and E|X;|P < +o0o for some p€ (0,05). Assume that the tail function of the Lévy
measure satisfies

Jee (0,1], v<¢ on (0, (1.5)

where o : (0,c] — (0,00) is a reqularly varying function at zero of index — 3. Let I(x) = 2P ¢(x)
and assume that [(1/z),x > 1/c is locally bounded. Let [(x) = l5(x) = (/).

(a) Assume 3 > 1. Then ast — 0, for everyre€ (5,2], g€ [pV 1,0),

E sup | X,|P = O/ P[1()P/" + 1))  if <2,

s<t

E sup |X,|” = O@/P[L+ 1)) if B=2.

s<t
If v is symmetric then this holds for every q€ [p, ).
(b) Assume 3 < 1. Then ast — 0, for every r€ (5,1], g€ [p, )

E sup Y|P = O/ P[L(t)"" + L(t)"))

s<t
where Yy = X3 — ¢ (a — / xdu(x)). If v is symmetric this holds for every r € (3,2].
{l=|<1}

(¢) Assume B =1 and v is symmetric. Then ast — 0, for every re (5,2],q€ [p,5)

E sup |, — asl? = O/ /[Ut)"'" +1(6)"/").
s<t

It can be seen from strictly a-stable Lévy processes where 8 = « that the above estimates are
best possible as concerns powers of t.

Observe that condition (1.5) is satisfied for a broad class of Lévy processes. For absolutely
continuous Lévy measures one may consider the condition

Je € (0, 1], 1jo<a)<cpv(dz) < P(|2])1{0<|e|<crdT (1.6)

where ¢ : (0, ] — (0, 00) is a regularly varying function at zero of index —(5+1) and ¢(1/z) is
locally bounded, z > 1/c. It implies that the tail function of the Lévy measure is dominated,
for z < ¢, by 2 fzcz/)(s)ds + v(¢), a regularly varying function at zero with index —8, so that
(1.5) holds with p(z) = C z¢)(x) (see [1], Theorem 1.5.11).

Important special cases are as follows.
Corollary 1.1. Assume the situation of Theorem 2 (with v symmetric if 5 = 1) and let U
denote any of the processes X, Y, (X¢ — at)i>o0-

(a) Assume that the slowly varying part | of ¢ is decreasing and unbounded on (0,¢c] (e.g.
(—logx)*,a > 0). Then ast — 0, for every e€ (0, 3),

E sup |U,|P = OP/P1(t)P/ (=9,
s<t
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(b) Assume that 1 is increasing on (0,c] satisfying [(04+) = 0 (e.g. (—logz)~ % a > 0,c < 1)
and € (0,2). Then ast — 0, for every e > 0,

E sup |Us [P = OP/P1(t)P/ B+,

s<t

The remaining cases p = g€ (0,2) if 8 # 1 and p < 1 if 8 = 1 are solved under the assumption
that the slowly varying part of the function ¢ in (1.5) is constant.

Theorem 3. Let (X;)i>0 be a Lévy process with characteristics (a,0,v) and index B such that
B€ (0,2) and E|X1|° < +oo if B# 1 and E|X;|P < +oo for some p < 1 if 3 = 1. Assume
that the tail function of the Lévy measure satisfies

Jece (0,1], 3C€ (0,00), v(z) < Cz™? on (0,c]. (1.7)
Then ast — 0
Esup|X,|” = O(t(—logt)) if 8> 1,
s<t
Esup|Y;|” = O(t(-logt)) if B<1
s<t
and

E sup| X, = O((t(~logt)") i B=1p<1

s<t

where the process Y is defined as in Theorem 2.

The above estimates are optimal (see Section 3). Condition (1.7) is satisfied if
C
Jec € (O, 1], iC € (O,OO)7 1{0<‘w‘gc}y(dx) < W1{0<\w\ﬁc}dx' (18)

The paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1, 2 and 3.
Section 3 contains a collection of examples.

2 Proofs

We will extensively use the following compensation formula (see e.g. [4])

B [ [ st =5 3 16, A% sy = [ [ 5. anaris

s<t

where f: Ry x R — R, is a Borel function.

Proof of Theorem 1. Since E |X1|P < +ooandp > § (orp = provided/ |z|Pdv(z) <
{lz]<1}
+oo and > 0), it follows from (1.2) that

/|x|de(x) < +oo.
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CAsE 1 (0 < p < 1). In this case we have § < 1 and hence / |z|dv(z) < 4o00. Conse-
{z[<1}
quently, X a.s. has finite variation on finite intervals. By (1.4),

Yt:Xt—t<a—/ xdv(zx ) //x,udsd;v ZAX
{lz|<1}

so that, using the elementary inequality (u +v)P < uP 4P,

sup|yv>< > IAX] <Z|AX|?—//|J:|I' (ds, dz).

s<t s<t
Consequently,
E sup |Ys|P < t/ |x|Pdv(z) for every ¢t > 0.
s<t

CaASE 2 (1 <p < 2). Introduce the martingale

Mt:XttEXlXtt<a+/ xdl/x> // z(p— A®v)(ds,dz).
{lz|>1}

It follows from the Burkholder-Davis-Gundy inequality (see [5], p. 524) that

E sup |M.[” < CE [M]}/?

s<t
for some finite constant C'. Since p/2 < 1, the quadratic variation [M] of M satisfies
p/2

M = Y ax ] <Y axp

s<t s<t
so that
E sup | M,P < C’t/ |z|Pdv(z) for every t > 0.
s<t

CASE 3: p > 2. One considers again the martingale Lévy process M; = X; — tE X;. For
k > 1 such that 2* < p, introduce the martingales

N(k / /\J;|2 w—A®v)(ds,dx) Z\AX |2 —t/\x|2 dv(z

s<t
Set m := max{k > 1:2% < p}. Again by the Burkholder-Davis-Gundy inequality

Esup| M. < CE[M}?

s<t
p/2
= CE (t/xQdu(m) —l—Nt(l))

c<tp/2 (/xQdy(x)>p/ +ENG |P/2>

C(t+E|NDP2)

IN

IN
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for every t € [0,1] where C is a finite constant that may vary from line to line. Applying
successively the Burkholder-Davis-Gundy inequality to the martingales N*) and exponents
p/2% > 1,1 < k < m, finally yields

E sup |[M;|P <C@t+E [N(m)}fmm“) for every t€ [0,1].
s<t

Using p < 2™+, one gets

p/27n+1
[NC2mEt — LN Ax < |axp
s<t s<t
so that
E sup [M P < C (t + t/ |x”dy(x)> for every t€ [0,1].
s<t
This implies E sup,<; [ X,[P = O(t) as t — 0. O

Proof of Theorems 2 and 3. Let p < 8 and fix c€ (0,1]. Let v; = 1 {j3<¢} - ¥ and
ve =1 fz|>¢} V. Construct Lévy processes XM and X@ such that X < XM +X®@ and X@
is a compound Poisson process with Lévy measure v5. Then 3 = 8(X) = S(XM), 3(X@) =0,
E|XM|? < 400 for every ¢ > 0 and E |X1(2)|p < +o00. It follows e.g. from Theorem 1 that for
every t > 0,

Esup | XP|P<Cpt  if p<1, (2.1)
s<t

Esup|X® —sEXP|P<Cyt  if 1<p<2
s<t

where IEX{Z) = /IL‘dI/Q(SC) :/ xdv(z).
{

|lz>c}
As concerns XV consider the martingale

t
7V = x{V —tEx{Y = x{V —t (a - /561 {c<z|<1}dV($)> =/ /w(m — A®w1)(ds, dz)
0

where 111 denotes the Poisson random measure associated with the jumps of X(). The starting
idea is to separate the “small” and the “big” jumps of X(1) in a non homogeneous way with
respect to the function s — s'/8. Indeed one may decompose Z(!) as follows

ZW =M+ N
where ,
M, ::/ /xl {zl<si/6} (1 — A ®@ v1)(ds, dx)
0

and .
Mo [ [ i 38 )t
0
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are martingales. Observe that for every ¢ > 0 and ¢t > 0,
t
[ [ 1001 upsmpinteris = [lafoel? (o)
0

/ 2P Tdy(z) < +o0.
{lz[<c}

IN

Consequently,

t
Ny :/ /331 {lz|>s1/81dp1 (s, 7) — g(t)
0

t
where g(t) := / /xl {|z|>s1/8}dv1(z)ds. Furthermore, for every r > Forr=2andt >0
0

t
/ /|l"r1 {|x|<51/ﬁ}dl/1(l')d5 S t/ |ZE|TdV($) < +00. (22)
0 - {lz|<c}

In the sequel let C' denote a finite constant that may vary from line to line.
We first claim that for every t > 0,7 € (5,2] N [1,2] and for r = 2,

t p/T
E sup |M;|P < C </ /|w|’“1 {|x<51/5}d1/1(1:)ds) . (2.3)
0

s<t

In fact, it follows from the Burkholder-Davis-Gundy inequality and from p/r < 1,7/2 < 1 that

p/r
E sup |[M;|P < (ESUP|MS|T>
s<t s<t
o\ P/T
< c(EM”)
r/2 p/r
_ 1))2
- z<:|AXS()|1{|AX£”\§s1/ﬁ}
s<t
p/T
< C ]EZ|AX§1)|T1 (ax®<s1/6)

s<t

t p/T
C (/ /|I|T1 {z|<51//3}d7/1(1})d5) .
0

Exactly as for M, one gets for every ¢ > 0 and every g€ [p,2] N [1,2] that

t r/q
E Sup|NS|p < C (/ /‘Jilql {z|>51/ﬂ}dV1(.’)§)dS) . (24)
0

s<t

If v is symmetric then (2.4) holds for every ¢ € [p,2] (which of course provides additional
information in case p < 1 only). Indeed, g = 0 by the symmetry of v so that

t
Nt :/ /xl {‘w‘>31/ﬁ}d‘u1(5,x)
0
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and for g€ [p, 1]

R » " q\ P/a
E sup / /xl {‘z|>u1/5}u1(du,dac) < <IE sup / /xl {‘z|>u1/g}u1(du,d9&) ) (2.5)
s<t 0 s<t 0
r/q
q
1
= |E Z ‘AXS( )’ L ax®)ssisy
s<t

t p/q
(/ /|£I?|q1 {|w>s1/ﬁ}dyl($)d8) .
0

In the case 8 < 1 we consider the process
Yt(l) = Zt(l) +t/xdu1(x) = Xt(l) —t (a - / xdu(x))
{lz|<1}
= M;+ N; —|—t/xd1/1(a:)

t t
= /0 /ZL']_ {lxlgs1/ﬁ}u1(d8,d$)+A /.’E]. {‘z‘>31/3}ﬂ¢1(d8,dl’).

Exactly as in (2.5) one shows that for ¢ > 0 and r € (5, 1]

s P t p/r
/ /33‘1 {|m‘§u1/g}u1(du,dx) S (/ /|J)|T1 {|m<s1/5}d1/1($)d8> . (26)
0 0

Combining (2.1) and (2.3) - (2.6) we obtain the following estimates. Let

E sup
s<t

Zy =Xy —t (CL — /.1‘1 {c<z|<1}dl/(a:‘)> .

CASE 1: > 1 and p < 1. Then for every t > 0,7€ (5,2] U {2},¢€ [1, 2],

t p/T
Esup|Zs;|F < C <t+ (/ /\x|’"1 {z<51/5}dul(x)ds)
s<t 0 -

+ (/Ot/ |71 {Dsl/ﬁ}dyl(x)ds)p/q). (2.7)

If v is symmetric (2.7) is even valid for every g€ [p, 2].

CASE 2: 8> 1 and p > 1. Then for every t > 0,7€ (5,2] U {2},¢€ [p, 2],

t p/r
Esup|X; —sEXy|P < C <t+ </ /|1’|T1 {|x§sl/ﬁ}dl/1($)ds>

0

s<t
t p/q
+ </ \x|q1 {1|>81/[3}dl/1(1‘)d$) ) . (28)
0
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CASE 3: 8 < 1. Then for every t > 0,7€ (8,1],¢€ [p, 1]

t p/T
Esupl|Vi[f < C <t+ (/ /\x|7‘1 {x|<sl/ﬁ}dV1($)d8)
s<t 0 -
t P/
+ (/ |1‘|q]_ {|x|>s1/ﬁ}dl/1(l‘)d8> ) . (29)
0

If v is symmetric then Y = Z = (X; — at)¢>0 and (2.9) is valid for every r€ (8,2],q€ [p,2].

Now we deduce Theorem 2. Assume p € (0,8) and (1.5). The constant ¢ in the above
decomposition of X is specified by the constant from (1.5). Then one just needs to investigate
the integrals appearing in the right hand side of the inequalities (2.7) - (2.10). One checks
that for a > 0,5 < ¢

1/8 1/8

/|x|a1{|x|gsl/5}dyl(z) < a/ 2 ty(z)dr < a/ " to(x)dx

0 0

and

/|Ji\a1{|m|>51/6}d1’1($) = a/l 2 ty(a)de + 5Py (s'P)
c
< a/ 2 Lo(z)dr + s (s,

Now, Theorem 1.5.11 in [1] yields for r > g,

1/p
S 1 -
/ " Yop(z)dr ~ 755_”(51/6) as s—0
0

r—

which in turn implies that for small ¢,

/ /|x| 1 jja<sr/mydin(z / / x)dxds (2.10)

v f}ﬁ)tr/ﬁl(tl/ﬁ) as t— 0.

Similarly, for 0 < ¢ < g3,

c
1
/ 7 p(x)dr ~ Ts%fll(sl/ﬁ) ass — 0

s1/8 —q
and thus
//|a:| 1 {ja|>st/8ydra(T // A dmds+/ sE N (sYP) ds (2.11)
/8
ﬁitQ/ﬁl(tl/ﬁ) as t— 0.
(B—a)a

Using (2.2) for the case 3 = 2 and t 4 t? = o(t?/P1(t)*) as t — 0, > 0, for the case 8 > 1 one
derives Theorem 2.
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As for Theorem 3, one just needs a suitable choice of ¢ in (2.7) - (2.9). Note that by (1.7) for
every 3€ (0,2) and t < ¢?,

t t c
/ /|a:|ﬁ1 {|z|>s1/83dvi(z)ds < / <Cﬂ/1/g rtdr + 1>ds < Cit(—logt)
0 0 s
so that ¢ = 3 is the right choice. (This choice of ¢ is optimal.) Since by (2.10), for r € (5,2] (#

0. t
/0 /|$|r1 {|x\§sl/ﬁ}dV1($)dS = O(tr/ﬁ)
(2.7) - (2.9)

the assertions follow from

3 Examples

Let K, denote the modified Bessel function of the third kind and index v > 0 given by

1 [~ 1
K,(2) = 5/0 u’"texp (—;(u—k u)> du, z>0.

e The T-process is a subordinator (increasing Lévy process) whose distribution Py, at time
t > 0is a I'(1,t)-distribution

Px, (dx) = 2" (g,00) () d.

I(t)

The characteristics are given by
1
v(dr) = —e "1 (g,00)()ds
x
1
and a = / xdv(zr) =1 —e ! so that 3=0and Y = X. It follows from Theorem 1 that
0
Esup X? =EX? = O(t)

s<t

for every p > 0. This is clearly the true rate since

C(p+1t)
EXP=—F——t~T(p)t t— 0.
LTt +1) Pyt as
e The a-stable Lévy Processes indexed by a € (0,2) have Lévy measure

Ch Cs

with C; > 0,C1 + Cy > 0 so that E|X;|P < 400 for pe (0,a),E|X1|* = o0 and f = a. It
follows from Theorems 2 and 3 that for pe (0, a),

Esup|X,? = O@P*) if a>1,
s<t
Esup|Yy? = O@P*) if a<l,
s<t
E sup|XsP = O((t(=logt))?) if a=1.

s<t
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Here Theorem 3 gives the true rate provided X is not strictly stable. In fact, if « = 1 the

scaling property in this case says that X, L1x 1+ Ctlogt for some real constant C' # 0 (see [7],
p-87) so that for p < 1

E|X:|? = tPE | X1 + Clogt|? ~ |C|Pt?|logt|P as t—0.

Now assume that X is strictly a-stable. If @ < 1, then a = f\x|<1 zdv(z) and thus ¥ = X

and if @ = 1, then v is symmetric (see [7]). Consequently, by Theorem 2, for every a € (0,2),
pe (0,a),
E sup | X,|P = O(t?/%).
s<t

In this case Theorem 2 provides the true rate since the self-similarity property of strictly stable
Lévy processes implies

E sup | X, [P = t?/°E sup | X,|?.

s<t s<1

e Tempered stable processes are subordinators with Lévy measure

2%«

A Y C)

— (o 1 (e
z= ety eXP(*?Yl/ )1 (0,00)(7)dz
and first characteristic a = fol zdv(z),a € (0,1),7 >0 (see [8]) so that f =, Y = X and
E X? < +o0 for every p > 0. The distribution of X; is not generally known. It follows from
Theorems 1,2 and 3 that

E X7} or) if p>aq,
EXP = O(tP/®) if p<a
E X} O(t(—1logt)) if p=a.

For a@ = 1/2, the process reduces to the inverse Gaussian process whose distribution Py, at
time ¢ > 0 is given by

t 1, t
Py, (dz) = ——a %% ex ( x2>1 o) ()dz.
In this case all rates are the true rates. In fact, for p > 0,

Letw ~ 2?32 exp (1(152 + 7235)) dr
\/271' 0 2 x

t t\PV? e ty 1
= e (> / y? 3% exp (—7( + y)> dy
0l 0 2y

1 p—1/2
(7) 2K, s (1)

EXP =

- 7

and, as z — 0,

Kpfl/Q(Z) ~ Zp_1/2 lf p> 5)
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where C,, = 2073/2I'(p — 1/2) if p > 1/2 and C,, = 27P71/2I(L —p) if p < 1/2.

o The Normal Inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen and has
been used in financial modeling (see [8]), in particular for energy derivatives (electricity). The
NIG process is a Lévy process with characteristics (a,0,v) where

)~ 0% RO Kl

™ ||

250 (!

2a sinh(yx) K (ax) dz,
0

a

a >0, y€ (—a,a),d > 0. Since K1(|z]) ~ |2|7! as 2 — 0, the Lévy density behaves like
dmt|z|72 as & — 0 so that (1.8) is satisfied with 3 = 1. One also checks that E | X;|P < +o0
for every p > 0. It follows from Theorems 1 and 3 that, as ¢t — 0

Esup|X,P = O@) i p>1,

s<t

E sup|X;P = O((t(—logt))?) if p<I1.
s<t

If v = 0, then v is symmetric and by Theorem 2,

Esup|X,P=0(@P) if p<l

s<t

The distribution Px, at time ¢t > 0 is given by

Ki(avt?6? + x2) i
Nier e

so that Theorem 3 gives the true rate for p = § = 1 in the symmetric case. In fact, assuming
v=0,wegetast— 0

Px,(dz) = w—a exp(tdv/a? — v2 + yzx)
s

9 © K /12852 1 2
E|lX:| = L(Saet‘sa zKi(avitid +x)dx
™ 0 1/15252_’_'%2
2t e
- 2@ et‘sa/ K (ay)dy
m ts
25, [*1
~ —t/ —dy
T Jw Y
20

e Hyperbolic Lévy motions have been applied to option pricing in finance (see [3]). These
processes are Lévy processes whose distribution Py, at time ¢ = 1 is a symmetric (centered)
hyperbolic distribution

Px, (dx) = C exp(—0+/1+ (z/v)?)dx, -, d > 0.

Hyperbolic Lévy processes have characteristics (0,0,v) and satisfy E|X;1[P < +oo for every
p > 0. In particular, they are martingales. Their (rather involved) symmetric Lévy measure
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has a Lebesgue density that behaves like Cx=2 as x — 0 so that (1.8) is satisfied with 8 = 1.
Consequently, by Theorems 1,2 and 3, as ¢t — 0

Esup|X,P = O@t) if p>1,

s<t
Esup |X,P = O(?) if p<1,

s<t

Esup|Xs| = O(t(-logt)) if p=1.
s<t

e Meizner processes are Lévy processes without Brownian component and with Lévy measure

given by
e
de)= — " _dz. § —
v(dx) T sinb(r2) x, 0 >0, ve (—m,m)

(see [8]). The density behaves like §/ma? as  — 0 so that (1.8) is satisfied with 8 = 1. Using
(1.2) one observes that E | X1|P < oo for every p > 0. It follows from Theorems 1 and 3 that

Esup|Xs|P = O@F) if p>1,

s<t

Esup | X" = O((t(-log?))") if p<1
s<t

If v+ =0, then v is symmetric and hence Theorem 2 yields

Esup |X,[P =0(tP) if p<L
s<t
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