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Abstract

Let i be a compactly supported probability measure on RT with expectation 1 and variance
V. Let p, denote the n-time free multiplicative convolution of measure p with itself. Then,
for large n the length of the support of u,, is asymptotically equivalent to eVn, where e is the
base of natural logarithms, e = 2.71...

1 Preliminaries and the main result

First, let us recall the definition of the free multiplicative convolution. Let aj denote the mo-
ments of a compactly-supported probability measure y, a = [ t*du, and let the 1-transform
of uu be 1, (2) = > 7, arz*. The inverse ¢-transform is defined as the functional inverse of
¥ (2) and denoted as zj)ffl) (z). It is a well-defined analytic function in a neighborhood of
z = 0, provided that a; # 0.
Suppose that p and v are two probability measures supported on RT = {z|z > 0} and let
,(fl) (z) and T (2) be their inverse ¢-transforms. Then, as it was first shown by Voiculescu
in [5], the function

Fz):= 1+ (@) el (2)

is the inverse -transform of a probability measure supported on R*. (Voiculescu used a
variant of the inverse t-transform, the S-transform.) This new probability measure is called
the free multiplicative convolution of measures p and v, and denoted as p X v.

The significance of this convolution operation can be seen from the fact that if 4 and v are the
distributions of singular values of two free operators X and Y, then pu X v is the distribution
of singular values of the product operator XY (assuming that the algebra containing X and
Y is tracial). For more details about free convolutions and free probability theory, the reader
can consult [2], [4], or [6].

We are interested in the support of the n-time free multiplicative convolution of the measure
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w with itself, which we denote as f,:
o =p X X p.
—_——
n-times
Let L,, denote the upper boundary of the support of p,,.

Theorem 1. Suppose that p is a compactly-supported probability measure on R, with the
expectation 1 and variance V. Then

lim == = eV,

where e denotes the base of natural logarithms, e = 2.71 ...

Remarks: 1) Let X; be operators in a von Neumann algebra .4 with trace E. Assume that
X; are free in the sense of Voiculescu and identically distributed, and let II,, = X7 ... X,,. It is
known that if p is the spectral probability measure of X X;, then ., is the spectral probability

measure of IT*IT,,. Assume further that £ (X7X;) =1 and E ((X;*Xi)2> =1+ 7V, and define
ITL, ||, =: [E (IT:11,,)]"/? . Then our theorem implies that

11,
lim 11T =VveVn

n—oo [Ty [l

for all sufficiently large n. This result also holds if we relax the assumption F (X} X;) = 1 and
define

E ((X;‘Xi)g)
B (X7 X))

2) Theorem [1]improves the author’s result in [3], where it was shown that L, /n < c¢L where ¢
is a certain absolute constant and L is the upper bound of the support of u. Theorem [1]shows
that the asymptotic growth in the support of free multiplicative convolutions p,, is controlled
by the variance of p and not by the length of its support.

The idea of proof of Theorem [1 is based on the fact that the radius of convergence of Taylor
series for vy, (z) is 1/L,,. Therefore the function v, (z) must have a singularity at the boundary
of the disc |z| = 1/L,,. Since all the coefficients in this Taylor series are real and positive, the
singularity is z,, = 1/L,,. Therefore, the study of L,, is equivalent to the study of the singularity
of ¢y, (z) which is located on RT and which is closest to 0.

By Proposition 5.2 in [1], we know that for all sufficiently large n, the measure p,, is absolutely
continuous on RT\ {0}, and its density is analytic at all points where it is different from zero.
For these n, the singularity of v, (z) is neither an essential singularity nor a pole. Hence, the
problem is reduced to finding a branching point of 1, (z) which is on R* and closest to zero.

The branching point of 1, (z) equals a critical value of w,(fl) (u). Since by Voiculescu’s theo-

- ¥ (w) = (1 . “)n_l [ W]

u

therefore we can find critical points of 77[151_1) (u) from the equation

e ()
o [1osv ™ @)+ (0= og (2| o,
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or

%log YD (u) = (1 - ;) m (1)

Thus, our task is to estimate the root u,, of this equation which is real, positive and closest to
0, and then study the asymptotic behavior of z, = o (un) as n — oo. This study will be

undertaken in the next section.

2 Proof of Theorem |1

Notation: L and L, are the least upper bounds of the support of measures p and pu,,
respectively; V' and V,, are variances of these measures; 1 (z) and 1, (z) are ¥-transforms for

measures g and fi,,, and ¥~ (u) and Y (u) are functional inverses of these i-transforms.
When we work with -transforms, we use letters ¢, x, y, z to denote variables in the domain of
1-transforms, and b, u, v, w to denote the variables in their range.

In our analysis we need some facts about functions v (z) and ¥(~1) (u). Let the support of
a measure u be inside the interval [0, L], and let p have expectation 1 and variance V. Note
that for z € (0,1/L), the function ¢ (2) is positive, increasing, and convex. Correspondingly,
for u € (0,1 (1/L)), the function 1~ (u) is positive, increasing and concave.

Lemma 2. For all positive z such that z < 1/ (2L), it is true that

3

|w(z)—z—(1—|—V)zz‘ c12°,

<
W'(z) =1-2(1+V)2 <

0222,
where c1 and co depend only on L.

Proof: Clearly, E (Xk) < L*. Using the Taylor series for v (z) and v’ (z), we find that for all
positive z such that z < 1/(2L),

LS
-z-(1 2l < 3
[¥(2) =2 = (1+V)2*| < =57,
and 3—2L
/ 1 <732 Z 2
' (z) — 1 2(1—|—V)z|_L( sz)QZ’

which implies the statement of this lemma. QED.

Lemma 3. For all positive u such that w < 1/ (12L), it is true that
VY (u) —u4 (14 V) u?| < esu®,
where c3 depends only on L.

Proof: Let the Taylor series for 1~ (u) be

YD (u) =u— (14 V)u? + deuk.
k=3
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Using the Lagrange inversion formula, it is possible to prove that
3 _
el < 5 (61)

see, e.g., proof of Lemmas 3 and 4 in [3]. This implies that the Taylor series for =D (u) are
convergent in the disc |u| < (6L)”". Hence, in this disc,

= 5412

d k < 3
Z R = ’ 1—6Lu |’
k=3

which implies the statement of this lemma. QED.
The proof of Theorem 1 uses the following proposition. Its purpose is to estimate the critical

point of wr(fl) (u) from below. Later, we will see that this estimate gives the asymptotically
correct order of magnitude of the critical point.

Proposition 4. Let u, be the critical point of 1/17(1_1) (u) which belongs to RY and which is
closest to 0. Then for all e > 0, there exists such ng (L, V,¢€), that for all n > ny,

Proof of Proposition [4:
Claim: Let € be an arbitrary positive constant. Let z, = (n(1+2V +2¢))"" and b, =
Y (x,) . Then for all n > ng (e, L, V) and all u € [0,b,], the following inequality is valid:

n—1 1
n u(l+u)

4 e
I logy' =" (u) > (2)

If this claim is valid, then since w,, is the smallest positive root of equation (1), therefore we
can conclude that u, > b, =¥ (z,). By Lemma 2] it follows that for all sufficiently large n

1 1
un>w<n(1+2V—|—25)> ~ n(l142V+e)

(Indeed, note that the last inequality has 2¢ and e on the left-hand and right-hand side,
respectively. Since Lemma 2 implies that ¢ (z) ~ z for small z, therefore this inequality is
valid for all sufficiently large n.)

Hence, Proposition 4] follows from the claim, and it remains to prove the claim.

Proof of Claim: Let us re-write inequality (2) as

1 n-l 1
2’ (2) no P (z)(1+¢(2)

where z = (=1 (u).
Using Lemma [2, we infer that inequality (3) is implied by the following inequality:

1 1 >n—1 1
21+2(14V) 2+ 222 no 1 (z) (1414 (2)
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where ¢o depends only on L. Note that 1 (2) > z because the first moment of p is 1 and all
other moments are positive. Therefore, it is enough to show that
1 S - 1 1
14+2(1+V)z+ 22 n 14z

for z < (n(1+2V 4 2¢))"" and all sufficiently large n. Let us write this inequality as

1 1

142 2
n—1+n—lz>( +2V)z+ oz

If we fix an arbitrary € > 0, then clearly for all z < (n(1+2V + 25))71 this inequality holds
if n is sufficiently large. QED.

This completes the proof of Proposition [4.

Now let us proceed with the proof of Theorem 1.

Let u, be the critical point of wﬁfl) (u), which is positive and closest to zero, and let y,, =
=1 (up) . We know that y,, is a root of the equation

1 1 1
zwu><1n>¢uﬂl+wu»' @

(This is equation (I) in a slightly different form.) After a re-arrangement, we can re-write this

equation as
v =(1-7) v, 5)

n

¥ (2)

z

On the other hand, from the proof of Proposition 4 we know that w, > b, = 9 (z,), so that
monotonicity of /(=1 implies

1
— (=1 >p = -
Yn =¥ (tn) 2 n n(l1+2V +¢)

Let us look for a root of equation (5) in the range [z, c/n] where ¢ is a fixed positive number.
Let us make a substitution z = ¢/n in equation and use Lemma [2] We get:

(1—|—(1+V);+O(n2)> <1+2+O(n2)) = (1—71) (1+2(1+V):L—|—O(n2)).

After a simplification, we get

t- O =0

Hence, for a fixed ¢ > 1 and all sufficiently large n, the root is unique in the interval [0, ¢| and
given by the expression

1
t= V + O (n_l) .
Therefore,
1
n = T, ) -2
Y Vn * (n )
By Lemma [2] this implies that
1 _
Up =Y (Yn) = WJFO(” %)
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This is the critical point of 14" (u).
The next step is to estimate the critical value of ¢4 " (u), which is z, = Y (uy) . We write:

P () (u")} n (1+u,)" "

Zn = Up
Un

Using Lemma [3, we infer that

Zn o= Uy 1= 1+ V)up +0 (n72)]" (1 +u,)"!
1
= (—+0(n?
(7o)
1 n
1-(14+V)—+0(n?
x[ 1+ )Vn+ (n )}
i L vomy]
Vn
1
eVn’
as n — o0o. Here e denotes the base of the natural logarithm: e =2.71....
Hence,
n . 1
lim — = lim — =eV.
n—oo M n—oo NZy
QED.

3 Conclusion

Let me conclude with a slightly different formulation of the main result. Suppose that X;
are free, identically distributed random variables in a tracial non-commutative W*-probability
space with a faithful trace E. We proved that if E (X}X;) = 1, then the asymptotic growth
in the square of the norm of products II,, = X,, ... X; is linear in n with the rate equal to
e(B (XXX X;)—1).
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