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Abstract

We give a characterization of the family of all probability measures on the extended line
(−∞,+∞], which may be obtained as the distribution of the maximum of some linear Bernoulli
process.

On a probability space (Ω,P) consider a linear process

X(t) = a0(t) +

∞
∑

n=1

an(t)ξn, t ∈ T, (1)

generated by independent, identically distributed random variables ξn with Eξn = 0, Eξ2
n = 1.

The coefficients an(t) are assumed to be arbitrary functions on the parameter set T , satisfying
∑∞

n=1 an(t)2 < +∞ for any t ∈ T , so that the series (1) is convergent a.s. Define

M = sup
t

X(t) (2)

in the usual way as the essential supremum in the space of all random variables with values in
the extended real line (identifying random variables that coincide almost surely; cf. Remark 4
below).
We consider the question on the characterization of the family F(L) of all possible distribution
functions F (x) = P{M ≤ x} of M , assuming that the common law L of ξn is given. In
general, M may take the value +∞ with positive probability, so its distribution is supported
on (−∞,+∞]. Introduce also the collection F0(L) of all possible distribution functions of M

in (2), such that in the series (1), for all t ∈ T ,

an(t) = 0, for all sufficiently large n. (3)
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When ξn are standard normal, i.e., L = N(0, 1), we deal in (1) with an arbitrary Gaussian
random process. As is well-known, for the distribution function F of M , x0 = inf{x ∈ R :
F (x) > 0} may be finite, and then it is sometimes called a take-off point of the maximum of the
Gaussian process. Moreover, F may have an atom at it. But anyway F is absolutely continuous
and strictly increasing on (x0,+∞), which follows from the log-concavity of Gaussian measures
(cf. also [C], [HJ-S-D]).
A complete characterization of all possible distributions F in the Gaussian case may be derived
from the Brunn-Minkowski-type inequality for the standard Gaussian measure γn on Rn due
to A. Ehrhard [E]. It states that, for all convex (and in fact, for all Borell measurable, cf.
[Bo2]) sets A and B in Rn of positive measure and for all λ ∈ (0, 1),

Φ−1 (γn(λA + (1 − λ)B)) ≥ λ Φ−1 (γn(A)) + (1 − λ)Φ−1 (γn(B)) ,

where Φ−1 denotes the inverse to the standard normal distribution function on the line. This
inequality immediately implies that, if F is non-degenerate, the function U = Φ−1(F ) must
be concave on R in the generalized sense as a function with values in [−∞,+∞). But the
converse is true, as well.
Indeed, suppose U = Φ−1(F ) is concave on R, and for simplicity let F be non-degenerate and
do not assign a positive mass to the point +∞. Then F is strictly increasing on (x0,+∞), so
is its inverse F−1 : (F (x0), 1) → (x0,+∞). Moreover, the inverse function U−1 = F−1(Φ) is
convex and strictly increasing on (U(x0),+∞). Put M(x) = U−1(x) for x > U(x0), and if x0

is finite, M(x) = x0 on (−∞, U(x0)]. Then M is convex and finite on the whole real line, and
therefore admits a representation

M(x) = sup
t∈T

[a0(t) + a1(t)x], x ∈ R,

for some coefficients a0(t), a1(t). By the construction, M has the distribution function F

under the measure γ1, as was required.
Thus, a given non-degenerate distribution function F belongs to F(N(0, 1)), if and only if the
function Φ−1(F ) is concave. A similar characterization holds true, when ξn’s have a shifted one-
sided exponential distribution with mean zero. Then, F represents the distribution function
of M for some coefficients an(t), if and only if the function log F is concave. This follows from
the log-concavity of the multidimensional exponential distribution (which is a particular case
of Prékopa’s theorem [P]; cf. also [Bo1] for a general theory of log-concave measures).
In both above examples, for the ”if” part it sufficies to consider simple linear processes X(t) =
a0(t) + a1(t)ξ1. Hence, F0(L) = F(L). The situation is completely different, when ξn have a
symmetric Bernoulli distribution L, i.e., taking the values ±1 with probability 1

2 . This may
be seen from:

Theorem 1. Any distribution function F , such that F (x) = 0, for some x ∈ R, may be
obtained as the distribution function of the supremum M of some linear Bernoulli process X

in (1) with coefficients, satisfying the property (3).

In turn, the condition (3) ensures that all random variables X(t) in (1) are bounded from
below, so is the random variable M in (2). Therefore, the distribution F of M must be one-
sided. Thus, we have a full description of the family F0(L) in the Bernoulli case. Removing the
condition (3), we obtain a larger family F(L); however, it is not clear at all how to characterize
it.
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One should also mention that in the homogeneous case a0(t) = 0, much is known about various
properties of M in terms of L, but the characterization problem is more delicate, and it seems
no description or even conjecture are known in all above cases.
For the proof of Theorem 1 one may assume that Ω = {−1, 1}∞ is the infinite dimensional
discrete cube, equipped with the product Bernoulli measure P. An important property of Ω,
which will play the crucial role, is that it represents the collection of all extreme points in the
cube K = [−1, 1]∞. More precisely, we apply the following statement.

Lemma 2. Any lower semi-continuous function f : {−1, 1}∞ → (−∞,+∞] is representable
as

f(x) = sup
t∈T

[

a0(t) +

∞
∑

n=1

an(t)xn

]

, x = (x1, x2, . . . ), (4)

for some family of the coefficient functions an(t), defined on a countable set T and satisfying
the property (3).

Note any function of the form (4) is lower semi-continuous.

Proof. First, more generally, let K be a non-empty, compact convex set in a locally convex
space E, and denote by Ω the collection of all extreme points of K. A function f : Ω →
(−∞,+∞] is representable as

f(x) = sup
t

ft(x), x ∈ Ω, (5)

for some family (ft)t∈T of continuous, affine functions on E, if and only if

a) f is lower semi-continuous on Ω;
b) f is bounded from below.

This characterization follows from a theorem, usually attributed to Hervé [H]; see E. M. Alfsen
[A], Proposition 1.4.1, and historical remarks. Namely, a point x is an extreme point of K, if
and only if ḡ(x) = g(x), for any lower semi-continuous function g on K, where ḡ denotes the
lower envelope of g (i.e., the maximal convex, lower semi-continuous function on K, majorized
by g).
Clearly, the equality (5) defines a function with properties a) − b). For the opposite direction
one may use an argument, contained in the proof of Corollary 1.4.2 of [A]. If f is bounded
and lower semi-continuous on Ω, put g(x) = lim infy→x f(y) for x ∈ clos(Ω) and g = supΩ f

on K \ clos(Ω). Then g is lower semi-continuous on K and g = f on Ω. By Hervé’s theorem,
ḡ(x) = g(x) = f(x), for all x ∈ Ω. Since ḡ is also convex on K, one may apply to it the
classical theorem on the existence of the representation

ḡ(x) = sup
t

ft(x), x ∈ K,

for some family (ft)t∈T of continuous, affine functions on E (cf. e.g. [A], Proposition 1.1.2, or
[M], Chapter 11). Thus, restricting this representation to Ω, we arrive at (5). Finally, if f is
unbounded from above, write f = supn min{f, n} and apply (5) to the sequence min{f, n}.
In case of the infinite dimensional discrete cube, the right-hand side of (5) may further be
specified. Indeed, any continuous, affine function g on E = R∞ has the form g(x1, x2, . . . ) =
a0 +

∑∞
n=1 anxn with finitely many non-zero coefficients. Therefore, (5) is reduced to the
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relation (4) with some coefficient functions an = an(t), that are defined on non-empty, perhaps,
uncountable set T and satisfy the property (3).
The latter implies that the sets TN = {t ∈ T : an(t) = 0, for all n > N} are non-empty for all
N ≥ N0 with a sufficiently large N0. Define

fN (x) = sup
t∈TN

[

a0(t) +
∞
∑

n=1

an(t)xn

]

= sup
t∈TN

[

a0(t) +
N

∑

n=1

an(t)xn

]

, (6)

so that f = supN≥N0
fN . Since for each point v = (x1, . . . , xN ) in the finite dimensional dis-

crete cube {−1, 1}N , the second supremum in (6) is asymptotically attained for some sequence
of indices in TN , one may choose a countable subset TN (v) of TN , such that

sup
t∈TN

[

a0(t) +

N
∑

n=1

an(t)xn

]

= sup
t∈TN (v)

[

a0(t) +

N
∑

n=1

an(t)xn

]

.

Therefore, the set T ′
N = ∪v∈{−1,1}N TN (v) is also countable, is contained in TN , and by (6),

fN (x) = sup
t∈T ′

N

[

a0(t) +

∞
∑

n=1

an(t)xn

]

, for all x ∈ {−1, 1}∞.

As a result, the supremum in (4) may be restricted to the countable set ∪NT ′
N .

Finally, let us note Ω is compact, so the property b) is automatically satisfied, when a) holds.
This yields Lemma 2.

Proof of Theorem 1. According to Lemma 2, we need to show that distributions of lower
semi-continuous functions f on {−1, 1}∞ under the Bernoulli measure P fill the family of all
one-sided distributions on (−∞,+∞]. In fact, it is enough to consider the functions of the
special form f(x) = ϕ(Q(x)), where

Q(x) =
∞
∑

n=1

xn + 1

2n+1
, x = (x1, x2, . . . ) ∈ {−1, 1}∞,

and where ϕ : [0, 1] → (−∞,+∞] is an arbitrary non-decreasing, left (or, equivalently, lower
semi-) continuous function. It is allowed that for some point p ∈ [0, 1], ϕ jumps to the
value +∞, and then we require that lims→p ϕ(s) = +∞, as part of the lower semi-continuity
assumption.
The map Q is continuous and pushes forward P to the normalized Lebesgue measure λ on the
unit interval [0, 1]. Hence, f is lower semi-continuous, and its distribution under P coincides
with the distribution of ϕ under λ.
It remains to see that, for any one-sided probability measure µ on (−∞,+∞], there is an
admissible ϕ with the distribution µ under λ. Let us recall the standard argument (cf. e.g.
[Bi], Theorem 14.1). Introduce the distribution function F (u) = µ((−∞, u]), −∞ < u ≤ +∞,
and define its ”inverse”

ϕ(s) = min{u : F (u) ≥ s}, 0 < s ≤ 1.

Also put ϕ(0) = lims→0 ϕ(s). Clearly, ϕ is non-decreasing. Given a sequence sn ↑ s, 0 < sn <

s ≤ 1, take minimal values un, u, such that F (un) ≥ sn, F (u) ≥ s. We have un ↑ u′, for some
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u′ ≤ u. Since F (u′) ≥ sn, for all n, we get F (u′) ≥ s and hence u′ ≥ u. This shows that ϕ is
left continuous. Finally, given s ∈ (0, 1] and α > ϕ(0), by the definition, ϕ(s) ≤ α ⇔ F (u) ≥ s,
for some u ≤ α. Hence,

{s ∈ (0, 1] : ϕ(s) ≤ α} = {s ∈ (0, 1] : F (u) ≥ s, for some u ≤ α} = (0, F (α)].

Thus, ϕ has the distribution function F under λ. The proof is now complete.

Remark 3. The statement of Theorem 1 remains to hold in case of arbitrary independent
random variables ξn, taking two values, say, an and bn with probabilities pn and qn, satisfying

∞
∏

n=1

max{pn, qn} = 0.

In this case, the joint distribution P of ξn’s represents a product probability measure on
∏∞

n=1{an, bn} without atoms. Let an = −1 and bn = 1 (without loss of generality). Then, the
map Q in the proof of Theorem 1 pushes P forward to a non-atomic probability measure λ on
[0, 1], and a similar argument works.

Remark 4. The set S = S(Ω,P) of all random variables with values in the extended line
(−∞,+∞] represents a lattice with ordering X ≤ Y a.s. Given an arbitrary non-empty
collection {X(t)}t∈T in S, there is a unique element M in S, called the essential (or structural)
supremum of the family {X(t)}t∈T , with the properties that

a) X(t) ≤ M (a.s), for all t ∈ T ;
b) If for all t ∈ T we have X(t) ≤ M ′ (a.s.), M ′ ∈ S, then M ≤ M ′ (a.s.)

It is a well-known general fact that M can be represented as a pointwise supremum M =
supn X(tn) a.s., for some sequence tn in T (cf. e.g. [K-A]). In particular, the supremum in (2)
may always be taken over all t’s from a countable subset of T .
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