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Abstract

Let H be a separable real Hilbert space and let F = (Ft)t∈[0,T ] be the augmented filtration gen-
erated by an H-cylindrical Brownian motion (WH(t))t∈[0,T ] on a probability space (Ω,F , P).
We prove that if E is a UMD Banach space, 1 ≤ p < ∞, and F ∈ D1,p(Ω;E) is FT -measurable,
then

F = E(F ) +

∫ T

0

PF(DF ) dWH ,

where D is the Malliavin derivative of F and PF is the projection onto the F-adapted elements
in a suitable Banach space of Lp-stochastically integrable L (H,E)-valued processes.

1 Introduction

A classical result of Clark [5] and Ocone [17] asserts that if F = (Ft)t∈[0,T ] is the augmented
filtration generated by a Brownian motion (W (t))t∈[0,T ] on a probability space (Ω,F , P), then
every FT -measurable random variable F ∈ D1,p(Ω), 1 < p < ∞, admits a representation

F = E(F ) +

∫ T

0

E(DtF |Ft) dWt,

where Dt is the Malliavin derivative of F at time t. An extension to FT -measurable random
variables F ∈ D1,1(Ω) was subsequently given by Karatzas, Ocone, and Li [10]. The Clark-
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Ocone formula is used in mathematical finance to obtain explicit expressions for hedging
strategies.

The aim of this note is to extend the above results to the infinite-dimensional setting using the
theory of stochastic integration of L (H , E)-valued processes with respect to H -cylindrical
Brownian motions, developed recently by Veraar, Weis, and the second named author [15].
Here, H is a separable Hilbert space and E is a UMD Banach space (the definition is recalled
below).

For this purpose we study the properties of the Malliavin derivative D of smooth E-valued
random variables with respect to an isonormal process W on a separable Hilbert space H.
As it turns out, D can be naturally defined as a closed operator acting from Lp(Ω;E) to
Lp(Ω; γ(H,E)), where γ(H,E) is the operator ideal of γ-radonifying operators from a Hilbert
space H to E. Via trace duality, the dual object is the divergence operator, which is a closed
operator acting from Lp(Ω; γ(H,E)) to Lp(Ω;E). In the special case where H = L2(0, T ;H )
for another Hilbert space H , the divergence operator turns out to be an extension of the
UMD-valued stochastic integral of [15].

The first two main results, Theorems 6.6 and 6.7, generalize the Clark-Ocone formula for
Hilbert spaces E and exponent p = 2 as presented in Carmona and Tehranchi [4, Theorem
5.3] to UMD Banach spaces and exponents 1 < p < ∞. The extension to p = 1 is contained
in our Theorem 7.1.

Extensions of the Clark-Ocone formula to infinite-dimensional settings different from the one
considered here have been obtained by various authors, among them Mayer-Wolf and Zakai
[13, 14], Osswald [18] in the setting of abstract Wiener spaces and de Faria, Oliveira, Streit
[7] and Aase, Øksendal, Privault, Ubøe [1] in the setting of white noise analysis. Let us also
mention the related papers [11, 12].

Acknowledgment – Part of this work was done while the authors visited the University of New
South Wales (JM) and the Australian National University (JvN). They thank Ben Goldys at
UNSW and Alan McIntosh at ANU for their kind hospitality.

2 Preliminaries

We begin by recalling some well-known facts concerning γ-radonifying operators and UMD
Banach spaces.

Let (γn)n≥1 be sequence of independent standard Gaussian random variables on a probability
space (Ω,F , P) and let H be a separable real Hilbert space. A bounded linear operator
R : H → E is called γ-radonifying if for some (equivalently, for every) orthonormal basis
(hn)n≥1 the Gaussian sum

∑
n≥1 γnRhn converges in L2(Ω;E). Here, (γn)n≥1 is a sequence

of independent standard Gaussian random variables on (Ω,F , P). Endowed with the norm

‖R‖γ(H,E) :=
(
E

∥∥∥
∑

n≥1

γnRhn

∥∥2
) 1

2

,

the space γ(H,E) is a Banach space. Clearly H ⊗ E ⊆ γ(H,E), and this inclusion is dense.
We have natural identifications γ(H, R) = H and γ(R, E) = E.

For all finite rank operators T : H → E and S : H → E∗ we have

|tr(S∗T )| ≤ ‖T‖γ(H,E)‖S‖γ(H,E∗).
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Since the finite rank operators are dense in γ(H,E) and γ(H,E∗), we obtain a natural con-
tractive injection

γ(H,E∗) →֒ (γ(H,E))∗. (1)

Let 1 < p < ∞. A Banach space E is called a UMD(p)-space if there exists a constant βp,E

such that for every finite Lp-martingale difference sequence (dj)
n
j=1 with values in E and every

{−1, 1}-valued sequence (εj)
n
j=1 we have

(
E

∥∥∥
n∑

j=1

εjdj

∥∥∥
p) 1

p

≤ βp,E

(
E

∥∥∥
n∑

j=1

dj

∥∥∥
p) 1

p

.

Using, for instance, Burkholder’s good λ-inequalities, it can be shown that if E is a UMD(p)
space for some 1 < p < ∞, then it is a UMD(p)-space for all 1 < p < ∞, and henceforth a
space with this property will simply be called a UMD space.
Examples of UMD spaces are all Hilbert spaces and the spaces Lp(S) for 1 < p < ∞ and
σ-finite measure spaces (S,Σ, µ). If E is a UMD space, then Lp(S;E) is a UMD space for
1 < p < ∞. For an overview of the theory of UMD spaces and its applications in vector-valued
stochastic analysis and harmonic analysis we recommend Burkholder’s review article [3].
Below we shall need the fact that if E is a UMD space, then trace duality establishes an
isomorphism of Banach spaces

γ(H,E∗) ≃ (γ(H,E))∗.

As we shall briefly explain, this is a consequence of the fact that every UMD is K-convex.
Let (γn)n≥1 be sequence of independent standard Gaussian random variables on a probability
space (Ω,F , P). For a random variable X ∈ L2(Ω;E) we define

πE
NX :=

N∑

n=1

γnE(γnX).

Each πE
N is a projection on L2(Ω;E). The Banach space E is called K-convex if

K(E) := sup
N≥1

‖πE
N‖ < ∞.

In this situation, πEf := limN→∞ πE
N defines a projection on L2(Ω;E) of norm ‖πE‖ = K(E).

It is easy to see that E is K-convex if and only its dual E∗ is K-convex, in which case one has
K(E) = K(E∗). For more information we refer to the book of Diestel, Jarchow, Tonge [8].
The next result from [19] (see also [9]) shows that if E is K-convex, the inclusion (1) is actually
an isomorphism:

Proposition 2.1. If E is K-convex, then trace duality establishes an isomorphism of Banach

spaces

γ(H,E∗) ≃ (γ(H,E))∗.

The main step is to realize that K-convexity implies that the ranges of πE and πE∗

are
canonically isomorphic as Banach spaces. This isomorphism is then used to represent elements
of (γ(H,E))∗ by elements of γ(H,E∗).

Remark 2.2. Let us comment on the role of the UMD property in this paper. The UMD
property is crucial for two reasons. First, it implies the Lp-boundedness of the vector-valued
stochastic integral. This fact is used at various places (Lemma 5.2, Theorem 5.4). Second,
the UMD property is used to obtain the boundedness of the adapted projection (Lemma 6.5).
The results in Sections 3 and 4 are valid for arbitrary Banach spaces.



154 Electronic Communications in Probability

3 The Malliavin derivative

Throughout this note, (Ω,F , P) is a complete probability space, H is a separable real Hilbert
space, and W : H → L2(Ω) is an isonormal Gaussian process, i.e., W is a bounded linear
operator from H to L2(Ω) such that the random variables W (h) are centred Gaussian and
satisfy

E(W (h1)W (h2)) = [h1, h2]H , h1, h2 ∈ H.

A smooth random variable is a function F : Ω → R of the form

F = f(W (h1), . . . ,W (hn))

with f ∈ C∞
b (Rn) and h1, . . . , hn ∈ H. Here, C∞

b (Rn) denotes the vector space of all bounded
real-valued C∞-functions on Rn having bounded derivatives of all orders. We say that F

is compactly supported if f is compactly supported. The collections of all smooth random
variables and compactly supported smooth random variables are denoted by S (Ω) and Sc(Ω),
respectively.
Let E be an arbitrary real Banach space and let 1 ≤ p < ∞. Noting that Sc(Ω) is dense in
Lp(Ω) and that Lp(Ω) ⊗ E is dense in Lp(Ω;E), we see:

Lemma 3.1. Sc(Ω) ⊗ E is dense in Lp(Ω;E).

The Malliavin derivative of an E-valued smooth random variable of the form

F = f(W (h1), . . . ,W (hn)) ⊗ x

with f ∈ C∞
b (Rn), h1, . . . , hn ∈ H and x ∈ E, is the random variable DF : Ω → γ(H,E)

defined by

DF =

n∑

j=1

∂jf(W (h1), . . . ,W (hn)) ⊗ (hj ⊗ x).

Here, ∂j denotes the j-th partial derivative. The definition extends to S (Ω)⊗E by linearity.
For h ∈ H we define DF (h) : Ω → E by (DF (h))(ω) := (DF (ω))h. The following result is
the simplest case of the integration by parts formula. We omit the proof, which is the same
as in the scalar-valued case [16, Lemma 1.2.1].

Lemma 3.2. For all F ∈ S (Ω) ⊗ E and h ∈ H we have E(DF (h)) = E(W (h)F ).

A straightforward calculation shows that the following product rule holds for F ∈ S (Ω) ⊗ E

and G ∈ S (Ω) ⊗ E∗:

D〈F,G〉 = 〈DF,G〉 + 〈F,DG〉. (2)

On the left hand side 〈·, ·〉 denotes the duality between E and E∗, which is evaluated pointwise
on Ω. In the first term on the right hand side, the H-valued pairing 〈·, ·〉 between γ(H,E)
and E∗ is defined by 〈R, x∗〉 := R∗x∗. Similarly, the second term contains the H-valued
pairing between E and γ(H,E∗), which is defined by 〈x, S〉 := S∗x, thereby considering x as
an element of E∗∗.

For scalar-valued functions F ∈ S (Ω) we may identify DF ∈ L2(Ω; γ(H, R)) with the classical
Malliavin derivative DF ∈ L2(Ω;H). Using this identification we obtain the following product
rule for F ∈ S (Ω) and G ∈ S (Ω) ⊗ E:

D(FG) = F DG + DF ⊗ G. (3)
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An application of Lemma 3.2 to the product 〈F,G〉 yields the following integration by parts
formula for F ∈ S (Ω) ⊗ E and G ∈ S (Ω) ⊗ E∗:

E〈DF (h), G〉 = E(W (h)〈F,G〉) − E〈F,DG(h)〉. (4)

From the identity (4) we obtain the following proposition.

Proposition 3.3. For all 1 ≤ p < ∞, the Malliavin derivative D is closable as an operator

from Lp(Ω;E) into Lp(Ω; γ(H,E)).

Proof. Let (Fn) be a sequence in S (Ω) ⊗ E be such that Fn → 0 in Lp(Ω;E) and DFn → X

in Lp(Ω; γ(H,E)) as n → ∞. We must prove that X = 0.
Fix h ∈ H and define

Vh := {G ∈ S (Ω) ⊗ E∗ : W (h)G ∈ S (Ω) ⊗ E∗}.

We claim that Vh is weak∗-dense in (Lp(Ω;E))∗. Let 1
p

+ 1
q

= 1. To prove this it suffices

to note that the subspace {G ∈ S (Ω) : W (h)G ∈ S (Ω)} is weak∗-dense in Lq(Ω) and that
Lq(Ω) ⊗ E∗ is weak∗-dense in (Lp(Ω;E))∗.
Fix G ∈ Vh. Using (4) and the fact that the mapping Y 7→ E〈Y (h), G〉 defines a bounded
linear functional on Lp(Ω; γ(H,E)) we obtain

E〈X(h), G〉 = lim
n→∞

E〈DFn(h), G〉 = lim
n→∞

E(W (h)〈Fn, G〉) − E〈Fn,DG(h)〉.

Since W (h)G and DG(h) are bounded it follows that this limit equals zero. Since Vh is
weak∗-dense in (Lp(Ω;E))∗, we obtain that X(h) vanishes almost surely. Now we choose an
orthonormal basis (hj)j≥1 of H. It follows that almost surely we have X(hj) = 0 for all j ≥ 1.
Hence, X = 0 almost surely.

With a slight abuse of notation we will denote the closure of D again by D. The domain of
this closure in Lp(Ω;E) is denoted by D1,p(Ω;E). This is a Banach space endowed with the
norm

‖F‖D1,p(Ω;E) := (‖F‖p

Lp(Ω;E) + ‖DF‖p

Lp(Ω;γ(H,E)))
1

p .

We write D1,p(Ω) := D1,p(Ω; R).
As an immediate consequence of the closability of the Malliavin derivative we note that the
identities (2), (3), (4) extend to larger classes of functions. This fact will not be used in the
sequel.

Proposition 3.4. Let 1 ≤ p, q, r < ∞ such that 1
p

+ 1
q

= 1
r
.

(i) For all F ∈ D1,p(Ω;E) and G ∈ D1,q(Ω;E∗) we have 〈F,G〉 ∈ D1,r(Ω) and

D〈F,G〉 = 〈DF,G〉 + 〈F,DG〉.

(ii) For all F ∈ D1,p(Ω) and G ∈ D1,q(Ω;E) we have FG ∈ D1,r(Ω;E) and

D(FG) = F DG + DF ⊗ G.

(iii) For all F ∈ D1,p(Ω;E), G ∈ D1,q(Ω;E∗) and h ∈ H we have 〈DF (h), G〉 ∈ Lr(Ω) and

E〈DF (h), G〉 = E(W (h)〈F,G〉) − E〈F,DG(h)〉.
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4 The divergence operator

In this section we construct a vector-valued divergence operator. The trace inequality (1)
implies that we have a contractive inclusion γ(H,E) →֒ (γ(H,E∗))∗. Hence for 1 < p < ∞
and 1

p
+ 1

q
= 1, we obtain a natural embedding

Lp(Ω; γ(H,E)) →֒ (Lq(Ω; γ(H,E∗)))∗.

For the moment let D denote the Malliavin derivative on Lq(Ω;E∗), which is a densely defined
closed operator with domain D1,q(Ω;E∗) and taking values in Lq(Ω; γ(H,E∗)). The divergence

operator δ is the part of the adjoint operator D∗ in Lp(Ω; γ(H,E)) mapping into Lp(Ω;E).
Explicitly, the domain domp(δ) consists of those X ∈ Lp(Ω; γ(H,E)) for which there exists an
FX ∈ Lp(Ω;E) such that

E〈X,DG〉 = E〈FX , G〉 for all G ∈ D
1,q(Ω;E∗).

The function FX , if it exists, is uniquely determined, and we define

δ(X) := FX , X ∈ domp(δ).

The divergence operator δ is easily seen to be closed, and the next lemma shows that it is also
densely defined.

Lemma 4.1. We have S (Ω) ⊗ γ(H,E) ⊆ domp(δ) and

δ(f ⊗ R) =
∑

j≥1

W (hj)f ⊗ Rhj − R(Df), f ∈ S (Ω), R ∈ γ(H,E).

Here (hj)j≥1 denotes an arbitrary orthonormal basis of H.

Proof. For f ∈ S (Ω), R ∈ γ(H,E), and G ∈ S (Ω) ⊗ E∗ we obtain, using the integration by
parts formula (4) (or Proposition 3.4(iii)),

E〈f ⊗ R,DG〉 =
∑

j≥1

E〈f ⊗ Rhj ,DG(hj)〉

=
∑

j≥1

E(W (hj)〈f ⊗ Rhj , G〉) − E〈[Df, hj ]H ⊗ Rhj , G〉

= E

〈∑

j≥1

W (hj)f ⊗ Rhj −
∑

j≥1

[Df, hj ]H ⊗ Rhj , G

〉

= E

〈∑

j≥1

W (hj)f ⊗ Rhj − R(Df), G

〉
.

The sum
∑

j≥1 W (hj)f⊗Rhj converges in Lp(Ω;E). This follows from the Kahane-Khintchine
inequalities and the fact that (W (hj))j≥1 is a sequence of independent standard Gaussian
variables; note that the function f is bounded.

Using an extension of Meyer’s inequalities, for UMD spaces E and 1 < p < ∞ it can be shown
that δ extends to a bounded operator from D1,p(Ω; γ(H,E)) to Lp(Ω;E). For details we refer
to [11].
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5 The Skorokhod integral

We shall now assume that H = L2(0, T ;H ), where T is a fixed positive real number and H is
a separable real Hilbert space. We will show that if the Banach space E is a UMD space, the
divergence operator δ is an extension of the stochastic integral for adapted L (H , E)-valued
processes constructed recently in [15]. Let us start with a summary of its construction.
Let WH = (WH (t))t∈[0,T ] be an H -cylindrical Brownian motion on (Ω,F , P), adapted to a
filtration F = (Ft)t∈[0,T ] satisfying the usual conditions. The Itô isometry defines an isonormal
process W : L2(0, T ;H ) → L2(Ω) by

W (φ) :=

∫ T

0

φdWH , φ ∈ L2(0, T ;H ).

Following [15] we say that a process X : (0, T ) × Ω → γ(H , E) is an elementary adapted
process with respect to the filtration F if it is of the form

X(t, ω) =

m∑

i=1

n∑

j=1

1(ti−1,ti](t)1Aij
(ω)

l∑

k=1

hk ⊗ xijk, (5)

where 0 ≤ t0 < · · · < tn ≤ T , the sets Aij ∈ Fti−1
are disjoint for each j, and hk, . . . , hk ∈ H

are orthonormal. The stochastic integral with respect to WH of such a process is defined by

I(X) :=

∫ T

0

X dWH :=

m∑

i=1

n∑

j=1

l∑

k=1

1Aij
(WH (ti)hk − WH (ti−1)hk) ⊗ xijk,

Elementary adapted processes define elements of Lp(Ω; γ(L2(0, T ;H ), E)) in a natural way.
Their closure in Lp(Ω; γ(L2(0, T ;H ), E)) is denoted by L

p
F
(Ω; γ(L2(0, T ;H ), E)).

Proposition 5.1 ([15, Theorem 3.5]). Let E be a UMD space and let 1 < p < ∞. The

stochastic integral uniquely extends to a bounded operator

I : L
p
F
(Ω; γ(L2(0, T ;H ), E)) → Lp(Ω;E).

Moreover, for all X ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) we have the two-sided estimate

‖I(X)‖Lp(Ω;E) h ‖X‖Lp(Ω;γ(L2(0,T ;H ),E)),

with constants only depending on p and E.

A consequence of this result is the following lemma, which will be useful in the proof of Theorem
6.6.

Lemma 5.2. Let E be a UMD space and let 1 < p, q < ∞ satisfy 1
p

+ 1
q

= 1. For all

X ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) and Y ∈ L

q
F
(Ω; γ(L2(0, T ;H ), E∗)) we have

E〈I(X), I(Y )〉 = E〈X,Y 〉.

Proof. When X and Y are elementary adapted the result follows by direct computation. The
general case follows from Proposition 5.1 applied to E and E∗, noting that E∗ is a UMD space
as well.
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In the next approximation result we identify L2(0, t;H ) with a closed subspace of L2(0, T ;H ).
The simple proof is left to the reader.

Lemma 5.3. Let 1 ≤ p < ∞ and 0 < t ≤ T be fixed, and let (ψn)n≥1 be an orthonormal

basis of L2(0, t;H ). The linear span of the functions f(W (ψ1), . . . ,W (ψn)) ⊗ (h ⊗ x), with

f ∈ S (Ω), h ∈ H, x ∈ E, is dense in Lp(Ω,Ft; γ(H , E)).

The next result shows that the divergence operator δ is an extension of the stochastic integral
I. This means that δ is a vector-valued Skorokhod integral.

Theorem 5.4. Let E be a UMD space and fix 1 < p < ∞. The space L
p
F
(Ω; γ(L2(0, T ;H ), E))

is contained in domp(δ) and

δ(X) = I(X) for all X ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)).

Proof. Fix 0 < t ≤ T , let (hk)k≥1 be an orthonormal basis of H , and put X := 1A

∑n
k=1 hk ⊗

xk with A ∈ Ft and xk ∈ E for k = 1, . . . , n. Let (ψj)j≥1 be an orthonormal basis of
L2(0, t;H ). By Lemma 5.3 we can approximate X in Lp(Ω,Ft; γ(H , E)) with a sequence
(Xl)l≥1 in S (Ω, γ(H , E)) of the form

Xl :=

Ml∑

m=1

flm(W (ψ1), . . . ,W (ψn)) ⊗ (hm ⊗ xlm)

with xlm ∈ E.

Now let 0 < t < u ≤ T . From ψm ⊥ 1(t,u]⊗h in L2(0, T ;H ) it follows that DXl(1(t,u]⊗h) = 0
for all h ∈ H . By Lemma 4.1,

1(t,u] ⊗ Xl =

Ml∑

m=1

flm(W (ψ1), . . . ,W (ψn)) ⊗ ((1(t,u] ⊗ hm) ⊗ xlm)

belongs to domp(δ) and

δ(1(t,u] ⊗ Xl) =

Ml∑

m=1

W (1(t,u] ⊗ hm)flm(W (ψ1), . . . ,W (ψn)) ⊗ xlm = I(1(t,u] ⊗ Xl).

Noting that 1(t,u] ⊗ Xl → 1(t,u] ⊗ X in Lp(Ω; γ(L2(0, T ;H ), E)) as l → ∞, the closedness of
δ implies that 1(t,u] ⊗ X ∈ domp(δ) and

δ(1(t,u] ⊗ Xl) = I(1(t,u] ⊗ Xl).

By linearity, it follows that the elementary adapted processes of the form (5) with t0 > 0 are
contained in domp(δ) and that I and δ coincide for such processes.

To show that this equality extends to all X ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) we take a sequence

Xn of elementary adapted processes of the above form converging to X. Since I is a bounded
operator from L

p
F
(Ω; γ(L2(0, T ;H ), E)) into Lp(Ω;E), it follows that δ(Xn) = I(Xn) → I(X)

as n → ∞. The fact that δ is closed implies that X ∈ domp(δ) and δ(X) = I(X).
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6 A Clark-Ocone formula

Our next aim is to prove that the space L
p
F
(Ω; γ(L2(0, T ;H ), E)), which has been introduced

in the previous section, is complemented in Lp(Ω; γ(L2(0, T ;H ), E)). For this we need a
number of auxiliary results. Before we can state these we need to introduce some terminology.
Let (γj)j≥1 be a sequence of independent standard Gaussian random variables. Recall that a
collection T ⊆ L (E,F ) of bounded linear operators between Banach spaces E and F is said
to be γ-bounded if there exists a constant C > 0 such that

E

∥∥∥
n∑

j=1

γjTjxj

∥∥∥
2

F
≤ C2

E

∥∥∥
n∑

j=1

γjxj

∥∥∥
2

E

for all n ≥ 1 and all choices of T1, . . . , Tn ∈ T and x1, . . . , xn ∈ E. The least admissible
constant C is called the γ-bound of T , notation γ(T ).

Proposition 6.1. Let T be a γ-bounded subset of L (E,F ) and let H be a separable real

Hilbert space. For each T ∈ T let T̃ ∈ L (γ(H,E), γ(H,F )) be defined by T̃R := T ◦ R. The

collection T̃ = {T̃ : T ∈ T } is γ-bounded, with γ(T̃ ) = γ(T ).

Proof. Let (γj)j≥1 and (γ̃j)j≥1 be two sequences of independent standard Gaussian random

variables, on probability spaces (Ω,F , P) and (Ω̃, F̃ , P̃) respectively. By the Fubini theorem,

E

∥∥∥
n∑

j=1

γj T̃jRj

∥∥∥
2

γ(H,F )
= EẼ

∥∥∥
∞∑

i=1

γ̃i

n∑

j=1

γjTjRjhi

∥∥∥
2

F

= ẼE

∥∥∥
n∑

j=1

γjTj

∞∑

i=1

γ̃iRjhi

∥∥∥
2

F

≤ γ2(T )ẼE

∥∥∥
n∑

j=1

γj

∞∑

i=1

γ̃iRjhi

∥∥∥
2

E

= γ2(T )EẼ

∥∥∥
∞∑

i=1

γ̃i

n∑

j=1

γjRjhi

∥∥∥
2

E

= γ2(T )E
∥∥∥

n∑

j=1

γjRj

∥∥∥
2

γ(H,E)
.

This proves the inequality γ(T̃ ) ≤ γ(T ). The reverse inequality holds trivially.

The next proposition is a result by Bourgain [2], known as the vector-valued Stein inequality.
We refer to [6, Proposition 3.8] for a detailed proof.

Proposition 6.2. Let E be a UMD space and let (Ft)t∈[0,T ] be a filtration on (Ω,F , P). For

all 1 < p < ∞ the conditional expectations {E(·|Ft) : t ∈ [0, T ]} define a γ-bounded set in

L (Lp(Ω;E)).

We continue with a multiplier result due to Kalton and Weis [9]. In its formulation we make
the observation that every step function f : (0, T ) → γ(H , E) defines an element Rg ∈
γ(L2(0, T ;H ), E) by the formula

Rfφ :=

∫ T

0

f(t)φ(t) dt.
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Since Rf determines f uniquely almost everywhere, in what follows we shall always identify
Rf and f .

Proposition 6.3. Let E and F be real Banach spaces and let M : (0, T ) → L (E,F ) have

γ-bounded range {M(t) : t ∈ (0, T )} =: M . Assume that for all x ∈ E, t 7→ M(t)x is strongly

measurable. Then the mapping M : f 7→ [t 7→ M(t)f(t)] extends to a bounded operator from

γ(L2(0, T ;H ), E) to γ(L2(0, T ;H ), F ) of norm ‖M‖ ≤ γ(M ).

Here we identified M(t) ∈ L (E,F ) with M̃(t) ∈ L (γ(H , E), γ(H , F )) as in Proposition 6.1.
The next result is taken from [15].

Proposition 6.4. Let H be a separable real Hilbert space and let 1 ≤ p < ∞. Then f 7→ [h 7→
f(·)h] defines an isomorphism of Banach spaces

Lp(Ω; γ(H,E)) ≃ γ(H,Lp(Ω;E)).

After these preparations we are ready to state the result announced above. We fix a filtration
F = (Ft)t∈[0,T ] and define, for step functions f : (0, T ) → γ(H , Lp(Ω;E)),

(PFf)(t) := E(f(t)|Ft), (6)

where E(·|Ft) is considered as a bounded operator acting on γ(H , Lp(Ω;E)) as in Proposition
6.1.

Lemma 6.5. Let E be a UMD space, and let 1 < p, q < ∞ satisfy 1
p

+ 1
q

= 1.

(i) The mapping PF extends to a bounded operator on γ(L2(0, T ;H ), Lp(Ω;E)).

(ii) As a bounded operator on Lp(Ω; γ(L2(0, T ;H ), E)), PF is a projection onto the subspace

L
p
F
(Ω; γ(L2(0, T ;H ), E)).

(iii) For all X ∈ Lp(Ω; γ(L2(0, T ;H ), E)) and Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)) we have

E〈X,PFY 〉 = E〈PFX,Y 〉.

(iv) For all X ∈ Lp(Ω; γ(L2(0, T ;H ), E)) we have EPFX = EX.

Proof. (i): From Propositions 6.1 and 6.2 we infer that the collection of conditional expecta-
tions {E(·|Ft) : t ∈ [0, T ]} is γ-bounded in L (γ(H , Lp(Ω;E))). The boundedness of PF then
follows from Proposition 6.3. For step functions f : (0, T ) → γ(H , Lp(Ω;E)) it is clear from
(6) that P 2

F
f = PFf , which means that PF is a projection.

(ii): By the identification of Proposition 6.4, PF acts as a bounded projection in the space
Lp(Ω; γ(L2(0, T ;H ), E)). For elementary adapted processes X ∈ Lp(Ω; γ(L2(0, T ;H ), E))
we have PFX = X, which implies that the range of PF contains L

p
F
(Ω; γ(L2(0, T ;H ), E)). To

prove the converse inclusion we fix a step function X : (0, T ) → γ(H , Lp(Ω;E)) and observe
that PFX is adapted in the sense that (PFX)(t) is strongly Ft-measurable for every t ∈ [0, T ].
As is shown in [15, Proposition 2.12], this implies that PFX ∈ L

p
F
(Ω; γ(L2(0, T ;H ), E)). By

density it follows that the range of PF is contained in L
p
F
(Ω; γ(L2(0, T ;H ), E)).
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(iii): Keeping in mind the identification of Proposition 6.4, for step functions with values in
the finite rank operators from H to E this follows from (6) by elementary computation. The
result then follows from a density argument.

(iv): Identifying a step function f : (0, T ) → γ(H , Lp(Ω;E)) with the associated operator in
γ(L2(0, T ;H ), Lp(Ω;E)) and viewing E as a bounded operator from γ(L2(0, T ;H ), Lp(Ω;E))
to γ(L2(0, T ;H ), E), by (6) we have

EPFf(t) = EE(f(t)|Ft) = Ef(t).

Thus EPFf = Ef for all step functions f : (0, T ) → γ(H , Lp(Ω;E)), and hence for all f ∈
γ(L2(0, T ;H ), Lp(Ω;E)) by density. The result now follows by an application of Proposition
6.4.

Now let F = (Ft)t∈[0,T ] be the augmented filtration generated by WH . It has been proved
in [15, Theorem 4.7] that if E is a UMD space and 1 < p < ∞, and if F ∈ Lp(Ω;E) is
FT -measurable, then there exists a unique X ∈ L

p
F
(Ω; γ(L2(0, T ;H ), E)) such that

F = E(F ) + I(X).

The following two results give an explicit expression for X. They extend the classical Clark-
Ocone formula and its Hilbert space extension to UMD spaces.

Theorem 6.6 (Clark-Ocone representation, first Lp-version). Let E be a UMD space and let

1 < p < ∞. If F ∈ D1,p(Ω;E) is FT -measurable, then

F = E(F ) + I(PF(DF )).

Moreover, PF(DF ) is the unique Y ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) satisfying F = E(F ) + I(Y ).

Proof. We may assume that E(F ) = 0. Let X ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) be such that F =

I(X) = δ(X). Let 1
p

+ 1
q

= 1, and let Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)) be arbitrary. By Lemma
6.5, Theorem 5.4, and Lemma 5.2 we obtain

E〈PF(DF ), Y 〉 = E〈DF,PFY 〉 = E〈F, δ(PFY )〉

= E〈δ(X), δ(PFY )〉 = E〈I(X), I(PFY )〉

= E〈X,PFY 〉 = E〈PFX,Y 〉 = E〈X,Y 〉.

Since this holds for all Y ∈ Lq(Ω; γ(L2(0, T ;H ), E∗)), it follows that X = PF(DF ). The
uniqueness of PF(DF ) follows from the injectivity of I as a bounded linear operator from
L

p
F
(Ω; γ(L2(0, T ;H ), E)) to Lp(Ω,FT ).

With a little extra effort we can prove a bit more:

Theorem 6.7 (Clark-Ocone representation, second Lp-version). Let E be a UMD space and

let 1 < p < ∞. The operator PF ◦ D has a unique extension to a bounded operator from

Lp(Ω,FT ;E) to L
p
F
(Ω; γ(L2(0, T ;H ), E)), and for all F ∈ Lp(Ω,FT ;E) we have the repre-

sentation

F = E(F ) + I((PF ◦ D)F ).

Moreover, (PF ◦D)F is the unique Y ∈ L
p
F
(Ω; γ(L2(0, T ;H ), E)) satisfying F = E(F )+ I(Y ).
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Proof. It follows from Theorem 6.6 that F 7→ I((PF ◦ D)F ) extends uniquely to a bounded
operator on Lp(Ω,FT ;E), since it equals F 7→ F−E(F ) on the dense subspace D1,p(Ω,FT ;E).
The proof is finished by recalling that I is an isomorphism from L

p
F
(Ω; γ(L2(0, T ;H ), E)) onto

its range in Lp(Ω,FT ).

Remark 6.8. An extension of the Clark-Ocone formula to a class of adapted processes taking
values in an arbitrary Banach space B has been obtained by Mayer-Wolf and Zakai [13, The-
orem 3.4]. The setting of [13] is slightly different from ours in that the starting point is an
arbitrary abstract Wiener space (W,H, µ), where µ is a centred Gaussian Radon measure on
the Banach space W and H is its reproducing kernel Hilbert space. The filtration is defined
in terms of an increasing resolution of the identity on H, and a somewhat weaker notion of
adaptedness is used. However, the construction of the predictable projection in [13, Section 3]
as well as the proofs of [14, Corollary 3.5 and Proposition 3.14] contain gaps. As a consequence,
the Clark-Ocone formula of [13] only holds in a suitable ‘scalar’ sense. We refer to the errata
[13, 14] for more details.

7 Extension to L
1

We continue with an extension of Theorem 6.7 to random variables in L1(Ω,FT ;E). As before,
F = (Ft)t∈[0,T ] is the augmented filtration generated by the H -cylindrical Brownian motion
WH .
We denote by L0(Ω;F ) the vector space of all strongly measurable random variables with values
in the Banach space F , identifying random variables that are equal almost surely. Endowed
with the metric

d(X,Y ) = E(‖X − Y ‖ ∧ 1),

L0(Ω;F ) is a complete metric space, and we have limn→∞ Xn = X in L0(Ω;F ) if and only if
limn→∞ Xn = X in measure in F .
The closure of the elementary adapted processes in L0(Ω; γ(L2(0, T ;H ), E)) is denoted by
L0

F
(Ω; γ(L2(0, T ;H ), E)). By the results of [15], the stochastic integral I has a unique extension

to a linear homeomorphism from L0
F
(Ω; γ(L2(0, T ;H ), E)) onto its image in L0(Ω,FT ;E).

Theorem 7.1 (Clark-Ocone representation, L1-version). Let E be a UMD space. The op-

erator PF ◦ D has a unique extension to a continuous linear operator from L1(Ω,FT ;E) to

L0
F
(Ω; γ(L2(0, T ;H ), E)), and for all F ∈ L1(Ω,FT ;E) we have the representation

F = E(F ) + I((PF ◦ D)F ).

Moreover, (PF ◦ D)F is the unique element Y ∈ L0
F
(Ω; γ(L2(0, T ;H ), E)) satisfying F =

E(F ) + I(Y ).

Proof. We shall employ the process ξX : (0, T ) × Ω → γ(L2(0, T ;H ), E) associated with a
strongly measurable random variable X : Ω → γ(L2(0, T ;H ), E), defined by

(ξX(t, ω))f := (X(ω))(1[0,t]f), f ∈ L2(0, T ;H ).

Some properties of this process have been studied in [15, Section 4].
Let (Fn)n≥1 be a sequence of FT -measurable random variables in S (Ω)⊗E which is Cauchy
in L1(Ω,FT ;E). By [15, Lemma 5.4] there exists a constant C ≥ 0, depending only on E,
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such that for all δ > 0 and ε > 0 and all m,n ≥ 1,

P
(
‖PF(DFn − DFm)‖γ(L2(0,T ;H ),E) > ε

)

≤
Cδ2

ε2
+ P

(
sup

t∈[0,T ]

‖I(ξPF(DFn−DFm)(t))‖ ≥ δ
)

(∗)
=

Cδ2

ε2
+ P

(
sup

t∈[0,T ]

‖E(Fn − Fm|Ft) − E(Fn − Fm)‖ ≥ δ
)

(∗∗)

≤
Cδ2

ε2
+

1

δ
E‖Fn − Fm − E(Fn − Fm)‖.

In this computation, (∗) follows from Theorem 6.6 which gives

E(F |Ft) − E(F ) = E
(
I(PFDF )

∣∣Ft

)
= E

(
I(ξPFDF (T ))

∣∣Ft

)
= I(ξPFDF (t)).

The estimate (∗∗) follows from Doob’s maximal inequality. Since the right-hand side in the
above computation can be made arbitrarily small, this proves that (PF(DFn))n≥1 is Cauchy
in measure in γ(L2(0, T ;H ), E).
For F ∈ L1(Ω,FT ;E) this permits us to define

(PF ◦ D)F := lim
n→∞

PF(DFn),

where (Fn)n≥1 is any sequence of FT -measurable random variables in S (Ω) ⊗ E satisfying
limn→∞ Fn = F in L1(Ω,FT ;E). It is easily checked that this definition is independent of
the approximation sequence. The resulting linear operator PF ◦ D has the stated properties.
This time we use the fact that I is a homeomorphism from L0

F
(Ω; γ(L2(0, T ;H ), E)) onto its

image in L0(Ω,FT ;E); this also gives the uniqueness of (PF ◦ D)F .
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