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Abstract

We study a class of adaptive Markov Chain Monte Carlo (MCMC) processes which aim at
behaving as an “optimal” target process via a learning procedure. We show, under appropriate
conditions, that the adaptive MCMC chain and the “optimal” (nonadaptive) MCMC process
share many asymptotic properties. The special case of adaptive MCMC algorithms governed
by stochastic approximation is considered in details and we apply our results to the adaptive
Metropolis algorithm of Haario et al. (2001)

1 Introduction

Markov chain Monte Carlo (MCMC) is a popular computational method for generating sam-
ples from virtually any distribution π defined on a space X . These samples are often used
to efficiently compute expectations with respect to π by invoking some form of the law of
large numbers. The method consists of simulating an ergodic Markov chain {Xn, n ≥ 0} on
X with transition probability P such that π is a stationary distribution for this chain. In
practice the choice of P is not unique, and instead it is required to choose among a family of
transition probabilities {Pθ, θ ∈ Θ} for some set Θ. The problem is then that of choosing the
“best” transition probability Pθ from this set, according to some well defined criterion. For
example, the efficiency of a Metropolis-Hastings algorithm highly depends on the scaling of
its proposal transition probability. In this case, the optimal scaling depends on π, the actual
target distribution, and cannot be set once for all. For more details on MCMC methods, see
e.g. Gilks et al. (1996).
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An attractive solution to this problem, which has recently received attention, consists of us-
ing so-called adaptive MCMC methods where the transition kernel of the algorithm is se-
quentially tuned during the simulation in order to find the “best” θ (see e.g. Gilks et al.
(1998), Haario et al. (2001), Andrieu and Robert (2001), Andrieu and Moulines (2006) and
Atchade and Rosenthal (2005)). These algorithms share more or less the same structure
and fit, as pointed out in Andrieu and Robert (2001), in the general framework of con-
trolled Markov chains. More precisely one first defines a sequence of measurable functions
{ρn : Θ × Xn+1 −→ Θ, for n ≥ 0} which encodes what is meant by “best”. The adap-
tive chain is initialized with some arbitrary but fixed values (θ0,X0) ∈ Θ × X . At iteration
n ≥ 1, given (θ0,X0, . . . ,Xn−1), and θn−1 = ρn−1(θ0,X0, . . . ,Xn−1) (with the convention
that ρ0(θ,X) = θ), Xn is generated according to Pθn−1

(Xn−1, ·) and θn = ρn(θ0,X0, . . . ,Xn).
Most examples currently developed in the literature rely on stochastic approximation type
recursions e.g. Haario et al. (2001), Andrieu and Robert (2001) and Atchade and Rosenthal
(2005). Clearly, the random process {Xn} is in general not a Markov chain. However, with an
abuse of language, we will refer here to this type of process as an adaptive MCMC algorithm.

Given the non-standard nature of adaptive MCMC algorithms and the given aim of sam-
pling from a given distribution π, it is natural to ask if adaptation preserves the desired
ergodicity of classical MCMC algorithms. For example, denoting ‖·‖TV the total variation
norm, do we have ‖P(Xn ∈ ·) − π(·)‖TV → 0 as n → ∞? The answer is “no” in general
and counter-examples abound (see e.g. Andrieu and Moulines (2006), Atchade and Rosenthal
(2005)). However positive ergodicity results do also exist. For example if adaptation of θ
occurs at regeneration times, then ergodicity is preserved for almost any adaptation scheme
(Gilks et al. (1998)). It is also now well established that if adaptation is diminishing (for ex-
ample in the sense that |θn − θn−1| → 0, as n → ∞) then ergodicity is also preserved under
mild additional assumptions (see e.g. Andrieu and Moulines (2006), Atchade and Rosenthal
(2005), Rosenthal and Roberts (2007)). However, beyond ergodicity, it is still unclear how
efficient adaptive MCMC are.

This paper addresses the problem of efficiency of adaptive MCMC. We consider the case
where the adaptation process {θn} converges (in the mean square sense for example) to a
unique nonrandom limit θ∗. Let {Yn} be the stationary Markov chain with transition kernel
Pθ∗ and invariant distribution π. Under some standard assumptions, we obtain a bound on the
rate of convergence in total variation norm of the distribution of (Xn, . . . ,Xn+p) towards the
distribution of (Y0, . . . , Yp) as n → ∞ for any finite integer p ≥ 0 (Theorem 2.1). This bound,
which depends explicitly on the rate of convergence of θn to θ∗, shed some new light on adaptive
MCMC processes. Theorem 2.1 implies that the process {Xn} is asymptotically stationary (in
the weak convergence sense) with stationary distribution given by the distribution of {Yn}. If
θn converges to θ∗ fast enough, it follows as well from Theorem 2.1 that {Xn} is asymptotically
stationary in the total variation norm sense and as a result, there exists a coupling {X̂n, Ŷn}
of {Xn, Yn} and a finite coupling time T such that for any n ≥ T , X̂n = Ŷn. Unfortunately, as
we shall see, the rates required for the convergence of {θn} towards θ∗ for this latter result to
hold are not realistic for current stochastic approximation based implementations of adaptive
MCMC.

More precisely, we pay particular attention to the case where {θn} is constructed through
a stochastic approximation recursion: most existing adaptive MCMC algorithms rely on
this mechanism (Haario et al. (2001), Andrieu and Moulines (2006), Atchade and Rosenthal
(2005)). In particular we derive some verifiable conditions that ensure the mean square conver-
gence of θn to a unique limit point θ∗ and prove a bound on this rate of convergence (Theorem
3.1). These results apply for example to the adaptive Metropolis algorithm of Haario et al.
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(2001) and show that the stochastic process generated by this algorithm is asymptotically
stationary in the weak convergence sense with a limit distribution that is (almost) optimal.
The paper is organized as follows. In the next section we state our main result (Theorem 2.1)
and briefly discuss some of its implications. The proof of Theorem 2.1 is postponed to Section
4.1. Section 3.1 is devoted to the special case of stochastic approximation updates. We first
establish a Theorem 3.1 which establishes the mean square error convergence of θn to some θ∗

under verifiable conditions. We then apply our results to the adaptive Metropolis algorithm
of Haario et al. (2001) (Proposition 3.1).

2 Statement and discussion of the results

Let (X ,B(X ), π) be a probability space, (Θ, |·|) a normed space and {Pθ : θ ∈ Θ} a family of
transition kernels Pθ : X × B(X ) → [0, 1]. We assume that for any A ∈ B(X ), Pθ(x,A) is
measurable as a function of (θ, x). We introduce the following classical notation. If P is a
transition kernel on some measure space (E, E), for n ≥ 0, we write Pn for the transition kernel
defined recursively as Pn(x,A) =

∫

E
P (x, dy)Pn−1(y,A); P 0(x,A) = 1A(x) where 1A(x) is

the indicator function of set A (which we might denote 1(A) at times). Also if ν is a probability
measure on (E, E) and f : E → R is a measurable function, we define νP (·) :=

∫

E
ν(dx)P (x, ·),

Pf(x) :=
∫

E
Pn(x, dy)f(y) and ν(f) :=

∫

E
f(y)ν(dy) whenever these integrals exist. If E is

a topological space, we say that E is Polish if the topology on E arises from a metric with
respect to which E is complete and separable. In this case E is equipped with its Borel σ-
algebra. For µ a probability measure and {µn} a sequence of probability measures on (E, E)

with E a Polish space, we say that µn converges weakly to µ as n → ∞ and write µn
w
→ µ if

∫

E
f(y)µn(dy) →

∫

E
f(y)µ(dy) for any real-valued bounded continuous function f on E.

For any function f : X → R and W : X → [1,∞) we denote |f |W := supx∈X
|f(x)|
W (x) , and define

the set LW := {f, f : X → R, |f |W < ∞}. When no ambiguity is possible, we will use the
piece of notation |·| to denote the norm on Θ and the Euclidean norm. A signed measure ν
on (X ,B(X )) can be seen as a linear functional on LW with norm ‖ν‖W := sup|f |W ≤1 |ν(f)|.

For W ≡ 1, we obtain the total variation norm, denoted ‖ν‖TV hereafter. Similarly, for two
transition kernels P1 and P2 we define |||P1 − P2|||W as

|||P1 − P2|||W := sup
|f |W ≤1

|P1f − P2f |W .

Let ρn : Θ × Xn+1 −→ Θ be a sequence of measurable functions and define the adaptive
chain {Xn} as follows: θ0 = θ ∈ Θ, X0 = x ∈ X and for n ≥ 1, given (θ0,X0, . . . ,Xn),
θn = ρn(θ0,X0, . . . ,Xn) and Xn+1 is generated from Pθn

(Xn, ·). Without any loss of generality,
we shall work with the canonical version of the process {Xn} defined on (X∞,B(X )∞) and
write P for its distribution and E the expectation with respect to P. We omit the dependence
of P on θ0, X0 and {ρn}. Let Qθ be the distribution on (X∞,B(X )∞) of a Markov chain with
initial distribution π and transition kernel Pθ. When convenient, we shall write Z to denote
the random process {Zn}.
We assume the following:

(A1) We assume that for any θ ∈ Θ, Pθ has invariant distribution π and there exist a mea-
surable function V : X −→ [1,∞), a set C ⊂ X , a probability measure ν such that
ν(C) > 0 and constants λ ∈ (0, 1), b ∈ [0,∞), ε ∈ (0, 1] such that for any θ ∈ Θ, x ∈ X
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and A ∈ B,
Pθ(x,A) ≥ εν(A)1C(x) , (1)

and
PθV (x) ≤ λV (x) + b1C(x) . (2)

The inequality (2) of (A1) is the so-called drift condition and (1) is the so-called (1, ε, ν)-
minorization condition. These conditions have proved very effective in analyzing Markov
chains. As pointed out in Andrieu and Moulines (2006), (A1) is sufficient to ensure that V -
geometric ergodicity of the Markov chain holds uniformly in θ, i.e. there exist a measurable
function V : X → [1,∞), ρ ∈ [0, 1) and C ∈ [0,∞) such that for any θ ∈ Θ and x ∈ X ,

‖Pn
θ (x, ·) − π(·)‖V ≤ CV (x)ρn. (3)

For a proof, see e.g. Baxendale (2005) and the references therein.
Next, we assume that Pθ is Lipschitz (in |||·|||-norm) as a function of θ.

(A2) For all α ∈ [0, 1],

sup
θ,θ′∈Θ

θ 6=θ′

|||Pθ − Pθ′ |||V α

|θ − θ′|
< ∞, (4)

where V is defined in (A1).

We assume that θn converges to some fixed element θ∗ ∈ Θ in the mean square sense,

(A3) There exist a deterministic sequence of positive real numbers {αn}, αn → 0 as n → ∞
and a fixed θ∗ ∈ Θ such that

√

E

[

|θn − θ∗|
2
]

= O (αn) . (5)

We assume that an optimality criterion has been defined with respect to which P ∗
θ is the best

possible transition kernel. Of course, in general θ∗ is not known and our objective here is
to investigate how well the adaptive chain {Xn} performs with respect to the optimal chain.
Let Y = {Yn} be the stationary Markov chain on X with transition kernel Pθ∗ and initial
distribution π.
For n, p ≥ 0, n finite, we introduce the projection sn,p : X∞ → X p+1 with sn,p(w0, w1, . . .) =
(wn, . . . , wn+p). For p = ∞, we write sn. If µ is a probability measure on (X∞,B(X )∞),
define µ(n,p) := µ ◦ s−1

n,p, the image of µ by sn,p. If p = ∞, we simply write µ(n). The following
result is fundamental. It provides us with a comparison of the distributions of {Xn . . . ,Xn+p}
and {Yn . . . , Yn+p}.

Theorem 2.1. Assume (A1-3). Let {in} ⊂ Z+ be such that for all n ∈ Z, in < n. Then there
exists C ∈ (0,∞) such that with ρ ∈ (0, 1) as in Eq. (3) and {αk} as in (A3) then for any
n ≥ 1, p ≥ 0,

‖P(n,p) − Q
(0,p)
θ∗ ‖TV ≤ C







ρn−in +

n−1
∑

j=in

αjρ
n−(j+1) +

n+p−1
∑

j=n−1

αj







(6)

≤ C

n+p
∑

j=n

αj when αj ∝ j−γ for some γ > 0 . (7)
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Proof. See Section 4.1.

The bound in Theorem 2.1 implies that under suitable conditions on {αk} any finite di-
mensional distribution of {sn(X)} converges weakly to the corresponding finite dimensional
distribution of Y . As a result if X is Polish, and since weak convergence of finite dimensional
marginals implies weak convergence of measures, we conclude that:

Corollary 2.1. Assume that X is Polish. Under the assumptions of Theorem 2.1,

P(n) w
−→ Qθ∗ , as n → ∞. (8)

When
∑

i≥1 αi < ∞, we can strenghten the conclusion of Corollary 2.1 as follows.

Corollary 2.2. In addition to the assumptions of Theorem 2.1, assume that X is Polish and
that

∑

αi < ∞. Then there exist a coupling (X̂, Ŷ ) of (X,Y ) and a finite coupling time T
such that X̂T+n = ŶT+n, n ≥ 0.

Proof.
∑

i≥1 αi < ∞ implies from Theorem 2.1 that
∥

∥P(n) − Qθ∗

∥

∥

TV
→ 0 and according to

Theorem 2.1 of Goldstein (1979) on maximal coupling of random processes, this is equivalent
to the existence of the asserted coupling .

Remark 2.1. 1. The conclusion of Corollary 2.1 is that the adaptive chain is asymptot-
ically stationary in the weak convergence sense with limiting distribution equal to the
distribution of the “optimal” chain. When

∑

αn < ∞, Corollary 2.2 asserts that the
adaptive chain is asymptotically stationary in the total variation norm. In the latter
case, the existence of the coupling is interesting as it suggests that the adaptive chain
and the optimal Markov chain are essentially the same process.

2. The condition
∑

n≥1 αn < ∞ cannot be removed in general from Corollary 2.2.

3 Adaptive chains governed by stochastic approximation

3.1 Validity of (A3) for the stochastic approximation recursion

Our main objective here is to show that (A3) holds when the family of updating equations {ρn}
corresponds to the popular stochastic approximation procedure. We will assume for simplicity
that Θ is a compact subset of the Euclidean space Rp for some positive integer p and denote by
〈·, ·〉 the inner product on Rp. We assume that {θn} is a stochastic approximation sequence,
defined as follows. Let H : Θ×X → Rp and let {γn} be some sequence of positive real numbers.
For n ≥ 0 we recursively define the sequence, {(dn, θn,Xn), n ≥ 0} ∈ {0, 1}N × ΘN × XN as
follows. Set θ0 = θ ∈ Θ, X0 = x ∈ X and d0 = 0. Given θn and Xn, sample Xn+1 ∼ Pθn

(Xn, ·).
If dn = 1, then set θn+1 = θn and dn+1 = 1. Otherwise if θ := θn +γn+1H(θn,Xn+1) ∈ Θ then
θn+1 = θ and dn+1 = 0, otherwise θn+1 = θn and dn+1 = 1. We define Fn = σ(X0,X1, . . . ,Xn)
and will denote P and E the probability and expectation of this process, omitting again the
dependence of these probability and expectation on θ, x and {γn}.
This set-up is particularly relevant as many recently proposed adaptive MCMC algorithms rely
on stochastic approximation. An extensive literature exists on stochastic approximation algo-
rithms (see e.g. Benveniste et al. (1990), Kushner and Yin (2003) and the references therein).
In order to establish our result, we will need the following definitions and assumption.
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Definition 3.1. Let f : Θ × X → Rq for some positive integer q and let W : X → [1,∞) be
two functions. We say that f is W -bounded in its first argument if

sup
θ∈Θ

|f(θ, ·)|W < ∞ , (9)

and we say that f is W -Lipschitz in its first argument if

sup
θ,θ′∈Θ

θ 6=θ′

|f(θ, ·) − f(θ′, ·)|W
|θ − θ′|

< ∞ . (10)

Also define

h(θ) =

∫

X

H(θ, x)π(dx).

In this section we will require the following additional assumption, specific to the stochastic
approximation framework.

(A4) Let the function V be as in (A1). Assume that H is V 1/2-bounded and V 1/2-Lipschitz
in its first argument. Assume that the equation h(θ) = 0 has a unique solution θ∗ ∈ Θ
and that there exists δ > 0 such that for all θ ∈ Θ,

〈θ − θ∗, h(θ)〉 ≤ −δ |θ − θ∗|
2
. (11)

Let τ := inf{n ≥ 1 : dn = 1} be the exit time from Θ, with the usual convention that
inf{∅} = +∞. The main result of this section is:

Theorem 3.1. Assume (A1-2) and (A4), that {γn} is non-increasing and such that there
exists γ̄ ∈ (γ1,+∞) such that

lim sup
k→∞

γ−1
k γk−⌊log(γ̄−1γk)/ log(ρ)⌋−1 < +∞ , (12)

(where ρ ∈ (0, 1) is as in Eq. (3)) and

lim inf
k→∞

1

γk
−

1

γk+1
> −2δ ,

where δ is as in Eq. (11). Then there exists a constant C < +∞ such that for any n ∈ N,

E

[

|θn − θ∗|
2
1(n < τ)

]

≤ C γn .

Proof. See Section 4.2.

Remark 3.1. It can be checked that any sequence γk = A
nα+B with 0 ≤ α ≤ 1, satisfies (12).

If 0 ≤ α < 1 or α = 1 and 2δA > 1 then lim infk→∞
1
γk

− 1
γk+1

> −2δ.
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3.2 Application to the Adaptive Metropolis algorithm

In this section, we apply our result to the adaptive version of the Random Walk Metropolis
(RWM) algorithm of Haario et al. (2001). We assume here that X is a compact subset of
Rp the p-dimensional (p ≥ 1) Euclidian space equipped with the Euclidean topology and the
associated σ-algebra B(X ). Let π be the probability measure of interest and assume that π
has a bounded density (also denoted π) with respect to the Lebesgue measure on X . Let qΣ

be the density of the 0 mean Normal distribution with covariance matrix Σ,

qΣ(x) = det(2πΣ)−1/2 exp

(

−
1

2
xT Σ−1x

)

, (13)

where xT is the transpose of x.
The RWM algorithm with target density π and proposal density qΣ is the following. Given
Xn, a ‘proposal’ Y is generated from qΣ(Xn, ·). Then we either ‘accept’ Y and set Xn+1 = Y
with probability α(Xn, Y ) or ‘reject’ Y and set Xn+1 = Xn with probability 1 − α(Xn, Y )
where

α(x, y) = min

(

1,
π(y)

π(x)

)

. (14)

Define µ∗ :=
∫

X
xπ(dx) the mean of π and Λ∗ :=

∫

X
xxT π(dx) and Σ∗ := Λ∗ − µ∗ (µ∗)

T
its

covariance matrix. It is intuitively clear that the best performance should be obtained when
Σ is proportional to Σ∗. In Haario et al. (2001), an adaptive algorithm has been proposed
to learn Σ∗ on the fly. As pointed out in Andrieu and Robert (2001), their algorithm is a
particular instance of the Robbins-Monro algorithm with Markovian dynamic. We present
here an equivalent alternative Robbins-Monro recursion which naturally lends itself to the
application of Theorem 3.1. Let Ip be the p × p identity matrix, the algorithm we study is as
follows:

Algorithm 3.1. Initialization Choose X0 = x0 ∈ X the initial point. Choose µ0 ∈ X an
initial estimate of µ∗ and Λ0 a symmetric positive matrix, an initial estimate of Λ∗, such
that Λ0 − µ0µ

T
0 is positive. Let ε > 0.

Iteration At time n + 1 for n ≥ 0, given Xn ∈ X , µn ∈ X and Λn a symmetric positive
matrix:

1 Let Σn := Λn − µnµT
n + εIp. Generate Yn+1 ∼ qΣn

(Xn, ·);

2 With probability α(Xn, Yn+1) set Xn+1 = Yn+1; otherwise, set Xn+1 = Xn;

3 Set

µn+1 = µn +
1

n + 1
(Xn+1 − µn) , (15)

Λn+1 = Λn +
1

n + 1

(

Xn+1X
T
n+1 − Λn

)

. (16)

The small matrix εIp ensures that the covariance matrix Σn remains positive definite, Haario et al.

(2001). We write θn := (µn,Λn), θ∗ := (µ∗,Λ∗) and Σ∗ := Λ∗ − µ∗ (µ∗)
T
. Let P be the dis-

tribution of the process (Xn) on (X∞,B(X )∞) and E its associated expectation. As before,
we omit the dependence of P on the initial values and other parameters of the algorithm x0,
θ0 etc... Let also Q denote the distribution on (X∞,B(X )∞) of the stationary Markov chain
with initial distribution π and transition kernel PΣ∗+εIp

. An application of Theorems 3.1 and
2.1 give the following proposition. We omit the details.
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Proposition 3.1. The adaptive RWM algorithm described above is such that:

(i) there exists a constant C ∈ (0,∞) such that for any n ≥ 1

‖Pr (Xn ∈ ·) − π‖TV ≤ C/n, E

[

|θn − θ∗|
2
]

≤ C/n . (17)

(ii) for any bounded measurable f : X → R, as n → ∞,

1

n

n
∑

i=1

f(Xi)
a.s.
−→ π(f), (18)

(iii) the process is weakly consistent in the sense that,

P(n) w
−→ Qθ∗ as n → ∞ , (19)

and there exist C ∈ (0,∞) such that for any finite n, p ≥ 1:
∥

∥

∥
P(n,p) − Q

(0,p)
θ∗

∥

∥

∥

TV
≤ C log

(

1 +
p

n

)

. (20)

Furthermore for any integer sequence {pn} such that pn = o(n),
∥

∥

∥
P(n,pn) − Q

(0,pn)
θ∗

∥

∥

∥

TV
→ 0 . (21)

Remark 3.2. Note that in the case of this linear Robbins-Monro recursion, a more precise L2

result can also be directly obtained from the martingale decomposition in Andrieu and Moulines
(2006), see also Andrieu (2004) for a discussion.

4 Proofs

4.1 Proof of Theorem 2.1

Proof. Let {Xi} be our adaptive process and {Yi} the homogeneous Markov chain with tran-
sition probability Pθ∗ . Throughout this section, Fn = σ(X0, Y0, . . . ,Xn, Yn). It is sufficient to
work with functions of the form f :=

∏p
i=0 fi for {fi : X → R, |fi| ≤ 1, i = 0, . . . , p} a family

of measurable functions and any p > 1. The proof relies on the following decomposition

E

[

p
∏

i=0

fi(Xn+i) −

p
∏

i=0

fi(Yn+i)

]

= E

[

E

[

p
∏

i=0

fi(Xn+i) −

p
∏

i=0

fi(Yn+i)

∣

∣

∣

∣

∣

Fn−1

]]

. (22)

An estimate of the inner conditional expectation term is given in Proposition 4.2 below and
the outer expectation operator is studied in Proposition 4.1 below as well. The combination
of these results leads to

|E [
∏p

i=0fi(Xn+i) −
∏p

i=0fi(Yn+i)]| ≤ C







ρn−in +

n−1
∑

j=in

αjρ
n−(j+1) +

n+p−1
∑

j=n−1

αj







(23)

≤ C

n+p−1
∑

j=n

αj when αj ∝ j−γ for some γ > 0 , (24)

hence the result.
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Proposition 4.1. Assume (A1-3). Let g ∈ LV 1/2 and {in} ⊂ Z+ be such that for all n ∈ Z,
in < n. Then there exists ρ ∈ (0, 1) and C ∈ (0,∞) such that for any n ≥ 1,

|E [g(Xn) − g(Yn)]| ≤ C ‖g‖V1/2







ρn−in +

n−1
∑

j=in

αjρ
n−(j+1)







V 1/2(x) .

If αn ∝ n−γ for γ > 0, then there exists C ∈ (0,∞) such that

|E [g(Xn) − g(Yn)]| ≤
C ‖g‖V1/2

V 1/2(x)

nγ
.

Proof. Let {Xn} be our adaptive process and {Yn} be the time-homogeneous Markov chain
with transition probability Pθ∗ . First we have the following decomposition

E [g(Xn) − g(Yn)] = E
[

Pn−in

θ∗ g(Xin
) − g(Yn)

]

− E
[

Pn−in

θ∗ g(Xin
) − g(Xn)

]

.

The first term is easily dealt with since from the Markov property

E
[

Pn−in

θ∗ g(Xin
) − g(Yn)

]

= E
[

Pn−in

θ∗ g(Xin
) − Pn−in

θ∗ g(Yin
)
]

and by Lemma 5.1 Andrieu et al. (2005),

∣

∣E
[

Pn−in

θ∗ g(Xin
) − Pn−in

θ∗ g(Yin
)
]∣

∣ ≤ C ‖g‖V1/2
ρn−in E

[

V 1/2(Xin
) + V 1/2(Yin

)
]

≤ C ‖g‖V1/2
ρn−in V 1/2(x) ,

For the second term we introduce the following telescoping sum decomposition,

E
[

Pn−in

θ∗ g(Xin
) − g(Xn)

]

= E





n−1
∑

j=in

Pn−j
θ∗ g(Xj) − P

n−(j+1)
θ∗ g(Xj+1)





= E





n−1
∑

j=in

Pn−j
θ∗ g(Xj) − Ex

[

P
n−(j+1)
θ∗ g(Xj+1)|Fj

]





= E





n−1
∑

j=in

Pn−j
θ∗ g(Xj) − Pθj

P
n−(j+1)
θ∗ g(Xj)





= E





n−1
∑

j=in

(

Pθ∗ − Pθj

)

P
n−(j+1)
θ∗ g(Xj)





= E





n−1
∑

j=in

(

Pθ∗ − Pθj

)

P
n−(j+1)
θ∗ (g(Xj) − π(g)) .



 (25)

Now, for j ∈ {in, . . . , n − 1} from Cauchy-Schwartz’s inequality,
∣

∣

∣
E

[

(

Pθ∗ − Pθj

)

P
n−(j+1)
θ∗ (g(Xj) − π(g))

]∣

∣

∣
≤ C ‖g‖V1/2

E

[

|θ∗ − θj | ρ
n−(j+1)V 1/2(Xj)

]

≤ C ‖g‖V1/2
ρn−(j+1) 2

√

E

[

|θ∗ − θj |
2
]

2

√

E [V (Xj)],
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and consequently, using Lemma 5.1 Andrieu et al. (2005), we first conclude that

|E [g(Xn) − g(Yn)]| ≤ C ‖g‖V 1/2







ρn−in +

n−1
∑

j=in

αjρ
n−(j+1)







V 1/2(x) .

Now in the case where αj ∝ j−γ we will choose in in order to balance the two terms depending
on n on the right hand side. To that purpose we note that,

n−γIn ≤

n−1
∑

j=in

αjρ
n−(j+1) ≤ i−γ

n In with In
1 − ρn−in

1 − ρ
, (26)

and check that the choice

n − in =

⌊

−γ log(n)

log(ρ)

⌋

,

leads to
∑n−1

j=in
αjρ

n−(j+1) ∼ n−γ

1−ρ and ρn−in ∼ n−γ , which concludes the proof.

Let {φk : X → [−1, 1], k = 0, . . . , p + 1} be a family of functions defined as φp+1(x) = 1 and
for k = p, . . . , 0

φk(x) = Pθ∗{φk+1fk}(x) =

∫

X

Pθ∗(x, dy)φk+1(y)fk(y) .

We have the proposition,

Proposition 4.2. Assume (A1-3). Let {Xi} be the adaptive chain and Let {fi : X → R, |fi| ≤
1, i = 0, . . . , p} be a family of measurable functions. Then there exists a constant C ∈ (0,∞)
such that for any n, p ∈ Z+,

E [
∏p

i=0fi(Xn+i) − φ0(Xn)| Fn−1] ≤ C

p
∑

k=0

αn−1+k .

Proof. We have the following telescoping sum decomposition,

E [
∏p

i=0fi(Xn+i) − φ0(Xn)| Fn−1]

= E

[

p
∑

k=0

(

φk+1(Xn+k)
∏k

i=0fi(Xn+i) − φk(Xn+k−1)
∏k−1

i=0 fi(Xn+i)
)

∣

∣

∣

∣

∣

Fn−1

]

. (27)

For any k = 0, . . . , p, using the Markov property, one has

E

[

φk+1(Xn+k)
∏k

i=0fi(Xn+i) − φk(Xn+k−1)
∏k−1

i=0 fi(Xn+i)
∣

∣

∣
Fn−1

]

= E

[(

∏k−1
i=0 fi(Xn+i)

)

(E [φk+1(Xn+k)fk(Xn+k)|Fn+k−1] − Pθ∗ {φk+1fk} (Xn+k−1))
∣

∣

∣
Fn−1

]

= E

[(

∏k−1
i=0 fi(Xn+i)

)

(

Pθn+k−1
(φk+1fk) (Xn+k−1) − Pθ∗ (φk+1fk) (Xn+k−1)

)

∣

∣

∣
Fn−1

]

= E

[(

∏k−1
i=0 fi(Xn+i)

)

(

Pθn+k−1
− Pθ∗

)

(φk+1fk) (Xn+k−1)
∣

∣

∣
Fn−1

]

.
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Finally,

∣

∣

∣

∣

∣

p
∑

k=0

E

[(

∏k−1
i=0 fi(Xn+i)

)

(

Pθn+k−1
− Pθ∗

)

(φk+1fk) (Xn+k−1)
∣

∣

∣
Fn−1

]

∣

∣

∣

∣

∣

≤

p
∑

k=0

∣

∣

∣
E

[(

∏k−1
i=0 fi(Xn+i)

)

(

Pθn+k−1
− Pθ∗

)

(φk+1fk) (Xn+k−1)
∣

∣

∣
Fn−1

]∣

∣

∣

≤ C

p
∑

k=0

E [ |θn+k−1 − θ∗|] ≤ C

p
∑

k=0

αn+k−1 = C

n+p−1
∑

k=n−1

αk .

4.2 Proof of Theorem 3.1

Proof. In what follows C is a finite universal constant, whose value might change upon each
appearance. With for any n ≥ 0 ∆n := θn − θ∗ we have

∆n+11(n + 1 < τ) = [∆n + γn+1H(θn,Xn+1)]1(n + 1 < τ) .

First, since 1(n + 1 < τ) ≤ 1(n < τ) we have for any n ≥ 0,

|∆n+1|
2
1(n + 1 < τ)

≤ |∆n|
2
1(n < τ) + γ2

n+1 |H(θn,Xn+1)|
2
1(n < τ) + 2γn+1 〈∆n,H(θn,Xn+1)〉1(n < τ)

≤ |∆n|
2
1(n < τ) + γ2

n+1 |H(θn,Xn+1)|
2
1(n < τ) + 2γn+1 〈∆n, h(θn)〉1(n < τ)

+ 2γn+1 〈∆n,H(θn,Xn+1) − h(θn)〉1(n < τ) .

From assumptions (A1) and (A4), and e.g. Lemma 5.1 in Andrieu et al. (2005) we deduce
that,

sup
n≥0

E

[

|H(θn,Xn+1)|
2
1(n < τ)

]

≤ C sup
n≥0

E [V (Xn+1)1(n < τ)] < +∞ , (28)

E [〈∆n, h(θn)〉1(n < τ)] ≤ −δE

[

|∆n|
2
1(n < τ)

]

. (29)

From Proposition 4.3 we have that

|E [〈∆n,H(θn,Xn+1) − h(θn)〉1(n < τ)]| ≤ Cγn+1V
1/2(x) .

Consequently there exists a constant C1 such that for n ≥ 1,

E

[

|∆n+1|
2
1(n + 1 < τ)

]

≤ (1 − 2δγn+1) E

[

|∆n|
2
1(n < τ)

]

+ C1γ
2
n+1 ,

and we conclude using Lemma 23 p. 245 in Benveniste et al. (1990).

We first recall the following fundamental lemma, which can be found in the proof of Proposition
3 in Andrieu and Moulines (2006).



On the efficiency of adaptive MCMC algorithms 347

Lemma 4.1. Assume (A1-2). Then there exists C ∈ (0,+∞) such that for any θ, θ′ ∈ Θ,
n ≥ 1 and any g ∈ LV r for any r ∈ [0, 1],

|Pn
θ g − Pn

θ′g|V r ≤ C |g|V r nρn−1 |θ − θ′| .

For any x ∈ R, let us denote ⌊x⌋ the largest integer such that ⌊x⌋ ≤ x. For any gθ(x) :
Θ ×X → Rd denote for any θ ∈ Θ, ḡθ := π (gθ).

Proposition 4.3. Assume that {γk} is nonincreasing, such that limk→∞ γk = 0 and that there
exists γ̄ ∈ (0,+∞) such that

lim sup
k→∞

γ−1
k γk−⌊log(γ̄−1γk)/ log(ρ)⌋−1 < +∞ , (30)

where ρ ∈ (0, 1) is as in Eq. (3). Assume that supθ∈Θ |H(θ, ·)|V 1/2 < ∞. Then there exists a
constant C ∈ (0,+∞) such that for any gθ(x) : Θ × X → Rd such that supθ∈Θ |gθ|V 1/2 < ∞
any x ∈ X and any k ≥ 1,

∣

∣E
[

(gθk−1
(Xk) − ḡθk−1

)1(τ > k)
]
∣

∣ ≤ C sup
θ∈Θ

|gθ|V 1/2 γk V (x) .

Proof. We introduce for integers i and k such that 0 ≤ i < k the following decomposition,

E
[

(gθk−1
(Xk) − ḡθk−1

)1(τ > k)
]

= E
[

(gθk−1
(Xk) − P k−i

θi
gθk−1

(Xi))1(τ > k)
]

+ E
[

(P k−i
θi

gθk−1
(Xi) − ḡθk−1

)1(τ > k)
]

. (31)

We consider the first term and use the following decomposition,

|E
[

(gθk−1
(Xk) − P k−i

θi
gθk−1

(Xi))1(τ > k)
]

|

≤

k−i
∑

j=1

∣

∣

∣
E

[

(P j−1
θk−j+1

gθk−1
(Xk−j+1) − P j

θk−j
gθk−1

(Xk−j))1(τ > k − j + 1)
]∣

∣

∣

≤
k−i
∑

j=1

∣

∣

∣
E

[

E

[

(P j−1
θk−j+1

gθk−1
(Xk−j+1) − P j−1

θk−j
gθk−1

(Xk−j+1))1(τ > k − j + 1)
]

|Fk−j

]
∣

∣

∣
.

(32)

Now for j = 1, . . . , k − i,

∣

∣

∣
E

[

(P j−1
θk−j+1

− P j−1
θk−j

)gθk−1
(Xk−j+1)1(τ > k − j + 1)

]
∣

∣

∣

=
∣

∣

∣
E

[

E

[

(P j−1
θk−j+1

− P j−1
θk−j

)gθk−1
(Xk−j+1)|Fk−j+1

]

1(τ > k − j + 1)
]∣

∣

∣

=
∣

∣

∣
E

[

(P j−1
θk−j+1

− P j−1
θk−j

)
{

E
[

gθk−1
(·)|Fk−j+1

]}

(Xk−j)1(τ > k − j + 1)
]∣

∣

∣
. (33)

Consequently we apply Lemma 4.1 to each term in the sum in Eq. (32), which for 0 ≤ i < k
leads to,

∣

∣E
[

(gθk−1
(Xk) − P k−i

θi
g(Xi))1(τ > k)

]∣

∣ ≤ C sup
θ∈Θ

|gθ|V 1/2

k−i−1
∑

j=1

jρjγk−jE [V (Xk−j)1(τ > k − j)] .
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This, together with Lemma 4.1 in Andrieu et al. (2005), implies that

∣

∣E
[

(gθk−1
(Xk) − P k−i

θi
g(Xi))1(τ > k)

]∣

∣ ≤ C sup
θ∈Θ

|gθ|V 1/2 V (x)

k−i−1
∑

j=1

jρjγk−j ,

which combined with Eq. (31) gives

∣

∣E
[

gθk−1
(Xk) − ḡθk−1

]∣

∣ ≤ C sup
θ∈Θ

|gθ|V 1/2



ρk−i +

k−i−1
∑

j=1

jρjγk−j



V (x) .

Let k0 := inf {k : γk < ργ̄} < +∞ where ρ is as in Eq. (3), and for k ≥ k0 let

ik := k −

⌊

log(γ̄−1γk)

log(ρ)

⌋

,

and ik := 0 for k < k0. Then, since {γk} is non increasing,

ρk−ik +

k−ik−1
∑

j=1

jρjγk−j ≤ γ̄−1γk + γk+1−⌊log(γ̄−1γk)/ log(ρ)⌋

+∞
∑

j=1

jρj ,

and the result follows from Eq. (12).
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