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Abstract

In a 2-parameter scale free model of random graphs it is shown that the asymptotic degree
distribution is the same in the neighbourhood of every vertex. This degree distribution is still a
power law with characteristic exponent 2, but this exponent is different from the one observed
in the whole graph.

1 The model

In their paper [1] Barabási and Albert proposed a certain random process of evolving graphs
as a model of real-world networks, like the Internet. In their model vertices are added to the
graph one by one, and edges connecting the new vertex to the old ones are drawn randomly,
with probabilities proportional to the degree of the endpoint. In the particular case where only
a single edge is allowed at every step, a recursive tree process, also known as plane oriented
recursive trees, is obtained. In fact, that model was introduced more than a decade earlier by
Szymański [9], and then a couple of papers have been devoted to it. The interested reader is
referred to [2] for a very general model of web graphs.

In [5] the asymptotic degree distribution was obtained for a one-parameter generalization of
the Barabási–Albert random tree. In [3] the same degree distribution was proved to exist on
each of the largest levels of the tree. Surprisingly, in the neighbourhood of the root, on the
lower levels a completely different degree distribution was found to emerge [6].

Consider the following modification of the Barabási–Albert random graph. Starting from the
very simple graph consisting of two points and the edge between them, at every step we add a
new vertex and some (possibly 0) new edges to the graph. For the new edges each old vertex
is selected at random, with probability depending linearly on its degree, and independently of
the others; then the selected vertices are connected to the new one.
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Let us number the vertices in the order they are added to the graph; thus the vertex set of the
graph after n steps is {0, 1, . . . , n}. Let X [n, k] denote the number of vertices of degree k after
n steps. Then X [n, 0]+ X [n, 1]+ · · · = n + 1. Let Sn =

∑

k≥1 kX [n, k], the sum of degrees, or
equivalently, twice the number of edges. At the nth step an old vertex of degree k is connected
to the new one with probability (λ1k + λ0)/Sn−1, where λ0, λ1 are nonnegative parameters.
This quantity remains below 1, provided λ0 + λ1 < 2, which will therefore be assumed in the
sequel. In order to preserve the scale free property we also assume that λ1 > 0.
This model was investigated in [7] (and a particular case in [4]). It was proved ([7], Theorem
2.1) that

Sn = 2sn + o
(

n1−ε
)

a.s., (1)

if ε > 0 is sufficiently small, where

s =
1

2

(

λ1 +
√

λ2
1 + 2λ0

)

. (2)

Moreover, the following asymptotic degree distribution was found ([7], Theorem 3.1). For
every k = 0, 1, . . . , the proportion of vertices of degree k converges a.s. as n → ∞:

P
(

lim
n→∞

X [n, k]

n + 1
= xk

)

= 1, (3)

where

xk =
1

tk + 1

k
∑

i=0

pi

k−1
∏

j=i

tj
tj + 1

, (4)

with

pk =
sk

k!
e−s, k ≥ 0, tk =

λ1k + λ0

2s
, k ≥ 1. (5)

This is a power law, that is, xk ∼ const · k−β as k → ∞, and the exponent is β = 2 +
√

1 + λ0/λ2
1.

The aim of the present note is to investigate whether this degree distribution is preserved
when a certain part of the graph is considered only, namely, the neighbours of a fixed vertex.
The answer is negative: in the neighbourhood of each vertex the same asymptotic degree
distribution is found, but it differs significantly from (3), having exponent 2.

2 Neighbourhood sizes

In this section we approximate the number of neighbours, that is, the degree of a fixed vertex
as the size of the graph tends to infinity.
Let Fn denote the σ-field generated by the first n steps. Let ∆[n, k] be the number of new edges
into the set of old vertices of degree k at the nth step, and let ∆n =

∑

k≥0 ∆[n, k] be the total
number of new edges. Obviously, the conditional distribution of ∆[n, k] with respect to Fn−1

is binomial with parameters X [n− 1, k] and
λ1k + λ0

Sn−1
, hence E

(

∆n

∣

∣ Fn−1

)

= λ1 +
n

Sn−1
λ0.

In (3.1) of [7] it is proved that the increments ∆n are asymptotically independent and asymp-
totically Poisson distributed. More precisely,

lim
n→∞

∞
∑

k=0

∣

∣

∣

∣

P
(

∆n+1 = k
∣

∣ Fn

)

−
sk

k!
es

∣

∣

∣

∣

= 0, a.s. (6)
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Introduce

w =
λ0

λ1
, φ =

λ1

2s
. (7)

For j = 0, 1, . . . let W [n, j] denote the weight of vertex j after n steps, defined as W [n, j] =
degree + w with the initial values W [n, j] = 0 for n < j, W [1, 0] = W [1, 1] = 1 + w, W [j, j] =
∆j + w.
It can happen that ∆j = 0, i.e., when vertex j is added to the graph, it does not get any
edges. If λ0 = 0, j will always remain isolated: W [n, j] = 0 for all n. By (6) the probability
of ∆j = 0 tends to e−λ1 as j → ∞.
If λ0 > 0, then not even ∆j = 0 can prevent vertex j from getting edges at later steps.

Theorem 2.1. With probability 1,

W [n, j] ∼ ζj nφ, (8)

as n → ∞, where ζj is a positive random variable if λ0 > 0, and {ζj = 0} = {∆j = 0} if
λ0 = 0.

Proof. (8) is proved in [7], p.41, with a nonnegative ζj . Now we are going to show the positivity
of ζj .

Let j, k be fixed, and Z[n, j] =
I(W [k, j] > 1)

W [n, j] − 1
, n ≥ k ≥ j. Define

cn =

n−1
∏

i=1

(

1 −
λ1

Si

)−1

.

Since clearly

E
(

Z[n + 1, j]
∣

∣ Fn

)

=
(

1 −
λ1W [n, j]

Sn

)

Z[n, j] +
λ1W [n, j]

Sn
·
I(W [k, j] > 1)

W [n, j]

=
(

1 −
λ1

Sn

)

Z[n, j],

we obtain that
(

cnZ[n, j], Fn

)

, n ≥ k, is a nonnegative, thus convergent, martingale.
For n → ∞, with probability 1 we have

cn = exp

(

λ1

n−1
∑

i=1

1

Si
+

λ2
1

2

n−1
∑

i=1

1 + o(1)

S2
i

)

. (9)

Since
1

Si
=

1

2si

(

1 + o
(

i−ε
))

, by (1), we obtain that the exponent in (9) differs from φ log n

only by a term converging with probability 1. Thus cn ∼ γ nφ, where γ > 0; hence Z[n, j] =
O

(

n−φ
)

. From this we get that nφ/W [n, j] converges a.e. on the event {W [k, j] > 1}, hence
ζj > 0 there.
We can complete the proof by showing that W [n, j] → ∞ a.s. if λ0 > 0, and W [n, j] → ∞ a.s.
on the event {∆j > 0} if λ0 = 0.

The conditional probability that the weight of vertex j grows at the nth step is
λ1W [n − 1, j]

Sn−1
.

This can be estimated from below by
λ0

Sn−1
∼

λ0

2sn
, if λ0 > 0, and by

1

Sn−1
∼

1

2sn
, if λ0 = 0

and ∆j > 0. Then the Lévy variant of the Borel–Cantelli lemma ([8], Corollary VII-2-6)
implies just what we needed.
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3 Degree distribution in the neighbourhood of a fixed

vertex

In this section we prove that the degree distribution among the neighbours of vertex j stabilizes
almost surely, as n → ∞, around a power law with exponent 2.
Let Y [n, j, k] be the number of neighbours of vertex j with degree k after n steps, n > j.
Clearly, Y [n, j, 1] + Y [n, j, 2] + · · · = W [n, j] − w.

Theorem 3.1. Suppose λ0 > 0. Then for every j ≥ 0 and k ≥ 1 the proportion of vertices of
degree k among the neighbours of vertex j converges a.s., as n → ∞:

P

(

lim
n→∞

Y [n, j, k]

W [n, j]
=

1

(k + w)(k + 1 + w)

k−1
∑

i=0

(i + 1 + w) pi

)

= 1. (10)

If λ0 = 0, (10) holds conditionally given that j is not isolated:

P

(

lim
n→∞

Y [n, j, k]

W [n, j]
=

1

k(k + 1)

k−1
∑

i=0

(i + 1)pi

∣

∣

∣

∣

∆j > 0

)

= 1. (11)

Note that the limit in (10) is (1 + w + s)k−2 asymptotically, as k → ∞.
This phenomenon seems to be the same as in the case of scale free trees in [5] and [6]. In
both cases we investigated the degree distribution constrained to vertices “close” to the initial
configuration. However, level j of a rooted tree can also be characterized as the set of vertices
that are of distance j from the root. It would be interesting to know whether Theorem 3.1
remains true in our scale free graph for the set of vertices that are of a certain distance from
vertex 0. This looks a little harder, because those sets lack the convenient property that both
the neighbourhoods here and the levels in random recursive trees have, namely, that they never
decrease as the size of the graph grows.
What is behind this phenomenon? Decrease of the characteristic exponent may be caused
by the overlapping of neighbourhoods. Vertices with higher degrees belong to more neigh-
bourhoods at the same time, hence their importance increases, resulting a heavier tail of the
asymptotic degree distribution. This sounds plausible, but does not apply to the levels of a
tree, for they are disjoint. It is rather due to the observation that nearby the origin there is a
relatively large number of old vertices, which are more likely to have higher degrees. But the
exponent 2, which appears both here and in [6], independently of the parameters of the two
models, is still looking somewhat mysterious. In fact, it seems to be connected with the neigh-
bourhood sizes. The number of neighbours of any fixed node is of the same order of magnitude
as the maximal degree of the graph. It has been observed in many scale free graph models
that the exponent of the asymptotic degree distribution is in connection with the maxdegree:
if the former is equal to β, then the maxdegree is of order nφ, where φ(β − 1) = 1. Suppose
we are interested in the asymptotic degree distribution restricted to a subset of nodes, the size
of which is a regularly varying function of n with exponent α. Under a couple of additional
conditions it is true that the restricted asymptotic degree distribution is still a power law, and
its exponent is a function of both α and β. Particularly, when α(β − 1) = 1, this exponent is
equal to 2. The exact theory is still to be worked out (in progress).

Proof. The basic idea, that is, the way we apply martingale theory, is reminiscent of the proof
of Theorem 3.1 in [7].
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For n > j let A[n, j, k] denote the event that when vertex n is added to the graph, it gets
exactly k edges, one of them connecting it to vertex j. Then clearly

P
(

A[n + 1, j, k]
∣

∣ Fn

)

≤
λ1W [n, j]

Sn
.

In addition, let ∆[n, j, k] be the number of new edges from vertex n into the set of neighbours
of vertex j with degree k. Then, conditionally on Fn, the distribution of ∆[n + 1, j, k] is

binomial with parameters Y [n, j, k] and
λ1k + λ0

Sn
.

We clearly have

Y [n, j, k] = Y [n − 1, j, k] − ∆[n, j, k] + ∆[n, j, k − 1] + I(A[n, j, k]), (12)

hence

E
(

Y [n + 1, j, k]
∣

∣ Fn

)

= Y [n, j, k] −
λ1k + λ0

Sn
Y [n, j, k]

+
λ1(k − 1) + λ0

Sn
Y [n, j, k − 1] + P

(

A[n + 1, j, k]
∣

∣ Fn

)

.

We will use the random normalizing factors of [7] defined as

d[n, k] =
n−1
∏

i=1

(

1 − I
(

Si ≥ 2k
)λ1k + λ0

Si

)−1

. (13)

If Si ≥ 2k, then λ1k + λ0 ≤ (λ1 + λ0)k < 2k ≤ Si, thus d[n, k] is well defined and bounded:

d[n, k] <
(

1 −
λ0 + λ1

2

)−(n−1)

.

On the other hand, when Si < 2k, the maxdegree is less than k, hence Y [i, j, k] = 0. Thus we
have

E
(

d[n + 1, k] Y [n + 1, j, k]
∣

∣ Fn

)

= d[n, k] Y [n, j, k] + b[n, j, k], (14)

where

b[n, j, k] = d[n + 1, k]

(

Y [n, j, k − 1]
λ1(k − 1) + λ0

Sn
+ P

(

A[n + 1, j, k]
∣

∣ Fn

)

)

.

Let us estimate the conditional variance. By using (12) and the trivial inequality Var(u1 +
· · · + un) ≤ n(Varu1 + · · · + Varun), we obtain that

Var
(

d[n + 1, k] Y [n + 1, j, k]
∣

∣ Fn

)

≤ 3 d[n + 1, k]2
(

Var
(

∆[n + 1, j, k]
∣

∣ Fn

)

+

+ Var
(

∆[n + 1, j, k − 1]
∣

∣ Fn

)

+ Var
(

I
(

A[n + 1, j, k]
)

|Fn

)

)

.

On the right-hand side each random variable has binomial (conditional) distribution, therefore
its (conditional) variance is less than the corresponding expectation. Thus,

Var
(

d[n + 1, k] Y [n + 1, j, k]
∣

∣ Fn

)

≤ 3 d[n + 1, k]2
(

Y [n, j, k]
λ1k + λ0

Sn
+

+ Y [n, j, k − 1]
λ1(k − 1) + λ0

Sn
+

λ1W [n, j]

Sn

)

.
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Similarly to (9), in [7] it is proved that

d[n, k] ∼ δk ntk , (15)

as n → ∞, with some positive random variable δk. Hence,

Var
(

d[n + 1, k] Y [n + 1, j, k]
∣

∣ Fn

)

≤ 3 d[n + 1, k]2
(

W [n, j]
λ1k + λ0

Sn
+

λ1W [n, j]

Sn

)

= O
(

n2tk+φ−1
)

. (16)

Let us introduce a martingale
(

Mn,Fn

)

, n ≥ j, by its differences ξn = Mn −Mn−1 as follows.

Mj = d[j, k] Y [j, j, k],

ξn = d[n, k] Y [n, j, k] − E
(

d[n, k] Y [n, j, k]
∣

∣ Fn−1

)

= d[n, k] Y [n, j, k] − d[n − 1, k] Y [n − 1, j, k] − b[n − 1, j, k], n > j.

Since both d[n, k] and Y [n, j, k] are bounded random variables, Mn is square integrable.
The increasing process associated with M2

n in its Doob decomposition is

n−1
∑

i=j

E
(

ξ2
i+1

∣

∣ Fi

)

=
n−1
∑

i=j

Var
(

d[i + 1, k] Y [i + 1, k]
∣

∣ Fi

)

,

which is of order O
(

n2tk+φ
)

by (16). By Proposition VII-2-4 of [8] we have that

Mn = o

( n−1
∑

i=j

E
(

ξ2
i+1

∣

∣ Fi

)

)1/2+ε

for all ε > 0, hence

Mn = d[n, k] Y [n, j, k] −

n−1
∑

i=j

b[i, j, k] = o
(

ntk+φ
)

. (17)

From (15) and (17) we obtain that

Y [n, j, k] =
1

d[n, k]

n−1
∑

i=1

b[i, j, k] + o
(

nφ
)

. (18)

We are going to prove by induction over k that limn→∞ Y [n, j, k]/W [n, j] exists (on the event
{∆j > 0} when λ0 = 0), it is a constant, and does not depend on j. We will denote it by yk.
Since Y [n, j, 0] = 0, this holds for k = 0 with y0 = 0. For the induction step we shall need
the asymptotics of P

(

A[n + 1, j, k]
∣

∣ Fn

)

. The (conditional) probability that vertex n + 1 gets

connected to j is
λ1W [n, j]

Sn
, and, independently of it, we require k − 1 further edges toward

the other vertices. The number of such edges, being a sum of (conditionally) independent
indicators, is asymptotically Poisson with parameter s. This can be shown similarly to (6, by
applying LeCam’s theorem on Poisson approximation. Hence

P
(

A[n + 1, j, k]
∣

∣ Fn

)

∼ φpk−1n
−1W [n, j].
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Making use of the induction hypothesis we obtain that

b[n, j, k] ∼ d[n + 1, k] n−1W [n, j]
(

yk−1tk−1 + φpk−1

)

∼
(

tk−1yk−1 + φpk−1

)

δk ζj ntk+φ−1.

Plug it back into (18) to get

Y [n, j, k] ∼
1

δkntk

·

(

tk−1yk−1 + φpk−1

)

δkζj ntk+φ

tk + φ

∼ W [n, j] ·
tk−1yk−1 + φpk−1

tk+1
.

This is just what we wanted to prove. It also yields the following recursive formula for the
constants yk.

yk =
tk−1yk−1 + φpk−1

tk+1
=

(k − 1 + w) yk−1 + pk−1

k + 1 + w
.

Finally, it is not hard to see that the solution to this recursion is given by (10).
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