Elect. Comm. in Probab. 12 (2007), 248-256

ELECTRONIC COMMUNICATIONS in PROBABILITY

ON A THEOREM IN MULTI-PARAMETER POTENTIAL THEORY

MING YANG

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 email: yang123@uiuc.edu

Submitted March 23, 2007, accepted in final form July 17, 2007

AMS 2000 Subject classification: 60G60, 60G51, 60G17 Keywords: Additive Lévy processes, Hausdorff dimension, multiple points.

Abstract

Let X be an N-parameter additive Lévy process in \mathbb{R}^d with Lévy exponent (Ψ_1, \dots, Ψ_N) and let λ_d denote Lebesgue measure in \mathbb{R}^d . We show that

$$E\{\lambda_d(X(\mathbb{R}^N_+))\} > 0 \Longleftrightarrow \int_{\mathbb{R}^d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) d\xi < \infty.$$

This was previously proved by Khoshnevisan, Xiao and Zhong [1] under a sector condition.

1 Introduction and Proof

Let $X_{t_1}^1, X_{t_2}^2, \dots, X_{t_N}^N$ be N independent Lévy processes in \mathbb{R}^d with their respective Lévy exponents $\Psi_j, j = 1, 2, \dots, N$. The random field

$$X_t = X_{t_1}^1 + X_{t_2}^2 + \dots + X_{t_N}^N, \qquad t = (t_1, t_2, \dots, t_N) \in \mathbb{R}_+^N$$

is called the additive Lévy process. Let λ_d denote Lebesgue measure in \mathbb{R}^d .

Theorem 1.1 Let X be an additive Lévy process in \mathbb{R}^d with Lévy exponent (Ψ_1, \dots, Ψ_N) . Then

$$E\{\lambda_d(X(\mathbb{R}^N_+))\} > 0 \Longleftrightarrow \int_{\mathbb{R}^d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) d\xi < \infty.$$
(1.1)

Recently, Khoshnevisan, Xiao and Zhong [1] proved that if

$$\operatorname{Re}\left(\prod_{j=1}^{N} \frac{1}{1+\Psi_{j}(\xi)}\right) \geq \theta \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)$$
(1.2)

1

for some constant $\theta > 0$ then Theorem 1.1 holds. In fact the proof of Theorem 1.1 does not need any condition.

Proof of Theorem 1.1: Define

$$\mathcal{E}_{\Psi}(\mu) = (2\pi)^{-d} \int_{\mathbb{R}^d} |\hat{\mu}(\xi)|^2 \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1 + \Psi_j(\xi)}\right) d\xi$$

where μ is a probability measure on a compact set $F \subset \mathbb{R}^d$ and $\hat{\mu}(\xi) = \int_{\mathbb{R}^d} e^{i\xi \cdot x} \mu(dx)$. Let $F = \{0\} \subset \mathbb{R}^d$ and δ_0 be the point mass at $0 \in \mathbb{R}^d$. We first quote a key lemma of [1]:

Lemma 5.5 Suppose X is an additive Lévy process in \mathbb{R}^d that satisfies Condition (1.3), and that $\int_{\mathbb{R}^d} \prod_{j=1}^N |1 + \Psi_j(\xi)|^{-1} d\xi < +\infty$, where $\Psi = (\Psi_1, \dots, \Psi_N)$ denotes the Lévy exponent of X. Then, for all compact sets $F \subset \mathbb{R}^d$, and for all r > 0,

$$E\{\lambda_d(X([0,r]^N \oplus F))\} \le \theta^{-2}(4e^{2r})^N \cdot \mathcal{C}_{\Psi}(F),$$

where $\theta > 0$ is the constant in Condition (1.3).

By reviewing the whole process of the proof of Theorem 1.1 of [1] given by Khoshnevisan, Xiao and Zhong, our Theorem 1.1 certainly follows if we instead prove the following statement:

Let X be any additive Lévy process in \mathbb{R}^d . If $\int_{\mathbb{R}^d} \prod_{j=1}^N |1 + \Psi_j(\xi)|^{-1} d\xi < +\infty$, then

$$E\{\lambda_d(X([0,r]^N))\} \le \frac{c_{N,d,r}}{\mathcal{E}_{\Psi}(\delta_0)}$$
(1.3)

for some constant $c_{N,d,r} \in (0,\infty)$ depending on N, d, r only.

Clearly, all we have to do is to complete Eq. (5.11) of [1] without bothering ourselves with Condition (1.3) of [1]. Since δ_0 is the only probability measure on $F = \{0\}$, letting $\eta \to 0$, $k \to \infty$, and $\varepsilon \to 0$ and using the integrability condition $\int_{\mathbf{R}^d} \prod_{j=1}^N |1 + \Psi_j(\xi)|^{-1} d\xi < +\infty$ yield

$$\mathcal{E}_{\Psi}(\delta_0) \ge c_1 \left| \int_{\mathbb{R}^d} \operatorname{Re}\left(\prod_{i=1}^N \frac{1}{1 + \Psi_i(\xi)} \right) d\xi \right|^2 E\{\lambda_d(X([0, r]^N))\}$$
(1.4)

where $c_1 \in (0, \infty)$ is a constant depending on N, d, r only.

Consider the 2^{N-1} similar additive Lévy processes (including X_t itself) $X_t^{\pm} = X_{t_1}^1 \pm X_{t_2}^2 \pm \cdots \pm X_{t_N}^N$. Here, \pm is merely a symbol for each possible arrangement of the minus signs; e.g., $X^1 - X^2 + X^3$, $X^1 - X^2 - X^3$, $X^1 + X^2 + X^3$ and so on. Let Ψ^{\pm} be the Lévy exponent for X_t^{\pm} . Since $-X^j$ has Lévy exponent $\overline{\Psi_j}$, $\mathcal{E}_{\Psi^{\pm}}(\mu) = \mathcal{E}_{\Psi}(\mu)$ for all X_t^{\pm} and

$$\sum \operatorname{Re}\left(\int_{\mathbb{R}^{N}_{+}} e^{-\sum_{j=1}^{N} s_{j} - s \cdot \Psi^{\pm}(\xi)} ds\right) = 2^{N-1} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1 + \Psi_{j}(\xi)}\right) > 0$$

where the first summation \sum is taken over the collection of all the X_t^{\pm} . On the other hand,

$$Q_{\mu}(\xi) = \int_{\mathbb{R}^{N}_{+}} \int_{\mathbb{R}^{N}_{+}} e^{-\sum_{j=1}^{N} |t_{j} - s_{j}| \Psi_{j}(\operatorname{sgn}(t_{j} - s_{j})\xi)} \mu(ds) \mu(dt)$$

remains unchanged for all X_t^{\pm} as long as μ is an *N*-fold product measure on \mathbb{R}^N_+ . Proposition 10.3 of [1] and Theorem 2.1 of [1] together state that for any additive Lévy process *X*,

$$k_1\left(\int_{\mathbf{R}^d} Q_{\lambda^r}(\xi) d\xi\right)^{-1} \le E\{\lambda_d(X([0,r]^N))\} \le k_2\left(\int_{\mathbf{R}^d} Q_{\lambda^r}(\xi) d\xi\right)^{-1}$$

where λ^r is the restriction of the Lebesgue measure λ_N in \mathbb{R}^N to $[0, r]^N$ and $k_1, k_2 \in (0, \infty)$ are two constants depending only on r, N, d, π . Note that λ^r is an N-fold product measure on \mathbb{R}^N_+ . Thus, there exists a constant $c_2 \in (0, \infty)$ depending only on N and r such that

$$E\{\lambda_d(X([0,r]^N))\} \le c_2 E\{\lambda_d(X^{\pm}([0,r]^N))\}$$

for all X_t^{\pm} . Since $|1+z| = |1+\overline{z}|$ where z is a complex number, $\int_{\mathbb{R}^d} \prod_{j=1}^N |1+\Psi_j^{\pm}(\xi)|^{-1} d\xi < +\infty$ as well. Therefore, by (1.4),

$$2^{N-1}\sqrt{c_2}\sqrt{\frac{\mathcal{E}_{\Psi}(\delta_0)}{E\{\lambda_d(X([0,r]^N))\}}}$$

$$\geq \sum \sqrt{\frac{\mathcal{E}_{\Psi^{\pm}}(\delta_0)}{E\{\lambda_d(X^{\pm}([0,r]^N))\}}}$$

$$\geq \sqrt{c_1} \sum \left| \int_{\mathbb{R}^d} \operatorname{Re}\left(\int_{\mathbb{R}^N_+} e^{-\sum_{j=1}^N s_j - s \cdot \Psi^{\pm}(\xi)} ds \right) d\xi$$

$$\geq \sqrt{c_1} \left| \sum \int_{\mathbb{R}^d} \operatorname{Re}\left(\int_{\mathbb{R}^N_+} e^{-\sum_{j=1}^N s_j - s \cdot \Psi^{\pm}(\xi)} ds \right) d\xi$$

$$= 2^{N-1}\sqrt{c_1} \int_{\mathbb{R}^d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1 + \Psi_j(\xi)} \right) d\xi$$

$$= 2^{N-1}\sqrt{c_1}(2\pi)^d \mathcal{E}_{\Psi}(\delta_0).$$

(1.3) follows, so does the theorem. \Box

2 Applications

2.1 The Range of An Additive Lévy Process

As the first application, we use Theorem 1.1 to compute $\dim_H X(\mathbb{R}^N_+)$. Here, \dim_H denotes the Hausdorff dimension. To begin, we introduce the standard *d*-parameter additive α -stable Lévy process in \mathbb{R}^d for $\alpha \in (0, 1)$:

$$S_t^{\alpha} = S_{t_1}^1 + S_{t_2}^2 + \dots + S_{t_d}^d,$$

that is, the S^j are independent standard α -stable Lévy processes in \mathbb{R}^d with the common Lévy exponent $|\xi|^{\alpha}$.

Theorem 2.1 Let X be any N-parameter additive Lévy process in \mathbb{R}^d with Lévy exponent (Ψ_1, \dots, Ψ_N) . Then

$$\dim_H X(\mathbb{R}^N_+) = \sup\left\{\beta \in (0,d) : \int_{\mathbb{R}^d} |\xi|^{\beta-d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) d\xi < \infty\right\} \ a.s.$$
(2.1)

Proof Let C_{β} denote the Riesz capacity. By Theorem 7.2 of [1], for all $\beta \in (0, d)$ and $S^{1-\beta/d}$ independent of X,

$$E\mathcal{C}_{\beta}(X(\mathbb{R}^{N}_{+})) > 0 \iff E\{\lambda_{d}(S^{1-\beta/d}(\mathbb{R}^{d}_{+}) + X(\mathbb{R}^{N}_{+}))\} > 0.$$

$$(2.2)$$

Note that $S^{1-\beta/d} + X$ is a (d+N, d)-additive Lévy process. Thus, by Theorem 1.1 and the fact that $\beta < d$ and $\operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) \in (0,1]$, we have for all $\beta \in (0,d)$,

$$E\mathcal{C}_{\beta}(X(\mathbb{R}^{N}_{+})) > 0 \Longleftrightarrow \int_{\mathbb{R}^{d}} |\xi|^{\beta-d} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d\xi < \infty.$$

$$(2.3)$$

Thanks to the Frostman theorem, it remains to show that $C_{\beta}(X(\mathbb{R}^N_+)) > 0$ is a trivial event. Let \mathcal{E}_{β} denote the Riesz energy. By Plancherel's theorem, given any $\beta \in (0, d)$, there is a constant $c_{d,\beta} \in (0, \infty)$ such that

$$\mathcal{E}_{\beta}(\nu) = c_{d,\beta} \int_{\mathbf{R}^d} |\hat{\nu}(\xi)|^2 |\xi|^{\beta-d} d\xi$$
(2.4)

holds for all probability measures ν in \mathbb{R}^d ; see Mattila [3; Lemma 12.12]. Consider the 1-killing occupation measure

$$O(A) = \int_{\mathbb{R}^N_+} \mathbb{1}(X_t \in A) e^{-\sum_{j=1}^N t_j} dt, \quad A \subset \mathbb{R}^d.$$

Clearly, O is a probability measure supported on $X(\mathbb{R}^N_+)$. It is easy to verify that

$$E|\widehat{O}(\xi)|^2 = \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right).$$

It follows from (2.4) that

$$E\mathcal{E}_{\beta}(O) = c_{d,\beta} \int_{\mathbb{R}^d} |\xi|^{\beta-d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) d\xi < \infty$$

when $E\mathcal{C}_{\beta}(X(\mathbb{R}^{N}_{+})) > 0$. Therefore, $\mathcal{E}_{\beta}(O) < \infty$ a.s. Hence, $\mathcal{C}_{\beta}(X(\mathbb{R}^{N}_{+})) > 0$ a.s. \Box

2.2 The Set of k-Multiple Points

First, we mention a q-potential density criterion: Let X be an additive Lévy process and assume that X has an a.e. positive q-potential density on \mathbb{R}^d for some $q \ge 0$. Then for all Borel sets $F \subset \mathbb{R}^d$,

$$P\left\{F\bigcap X((0,\infty)^N)\neq\emptyset\right\}>0 \iff E\left\{\lambda_d(F-X((0,\infty)^N))\right\}>0.$$
(2.5)

The argument is elementary but crucially hinges on the property: $X_{b+t} - X_b$, $t \in \mathbb{R}^N_+$ (independent of X_b) can be replaced by X for all $b \in \mathbb{R}^N_+$; moreover, the second condition "a.e. positive on \mathbb{R}^d " is absolutely necessary for the direction \Leftarrow in (2.5); see for example Proposition 6.2 of [1].

Let X^1, \dots, X^k be k independent Lévy processes in \mathbb{R}^d . Define

$$Z_t = (X_{t_2}^2 - X_{t_1}^1, \cdots, X_{t_k}^k - X_{t_{k-1}}^{k-1}), \quad t = (t_1, t_2, \cdots, t_k) \in \mathbb{R}_+^k.$$

Z is a k-parameter additive Lévy process taking values in $\mathbb{R}^{d(k-1)}$.

Theorem 2.2 Let $(X^1; \Psi_1), \dots, (X^k; \Psi_k)$ be k independent Lévy processes in \mathbb{R}^d for $k \geq 2$. Assume that Z has an a.e. positive q-potential density for some $q \geq 0$. [A special case is that if for each $j = 1, \dots, k, X^j$ has a one-potential density $u_j^1 > 0, \lambda_d$ -a.e., then Z has an a.e. positive 1-potential density on $\mathbb{R}^{d(k-1)}$.] Then

$$P(\bigcap_{j=1}^{k} X^{j}((0,\infty)) \neq \emptyset) > 0 \iff$$

$$\int_{\mathbb{R}^{d(k-1)}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1 + \Psi_{j}(\xi_{j} - \xi_{j-1})}\right) d\xi_{1} \cdots d\xi_{k-1} < \infty$$
(2.6)

with $\xi_0 = \xi_k = 0$.

Proof For any \mathbb{R}^d -valued random variable X and $\xi_1, \xi_2 \in \mathbb{R}^d, e^{i[(\xi_1,\xi_2)\cdot(X,-X)]} = e^{i(\xi_1-\xi_2)\cdot X}$. In particular, the Lévy process $(X^j, -X^j)$ has Lévy exponent $\Psi_j(\xi_1 - \xi_2)$. It follows that the corresponding integral in (1.1) for Z equals

$$\int_{\mathbf{R}^{d(k-1)}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi_{j}-\xi_{j-1})}\right) d\xi_{1}\cdots d\xi_{k-1}$$

with $\xi_0 = \xi_k = 0$. Clearly,

$$P(\bigcap_{j=1}^{k} X^{j}((0,\infty)) \neq \emptyset) > 0 \iff P(0 \in Z((0,\infty)^{k})) > 0.$$

Since Z has an a.e. positive q-potential density, by (2.5)

$$P(0 \in Z((0,\infty)^k)) > 0 \iff E\{\lambda_{d(k-1)}(Z((0,\infty)^k))\} > 0.$$

(2.6) now follows from Theorem 1.1. $\hfill\square$

For each $\beta \in (0, d)$ and $S^{1-\beta/d}$ independent of X^1, \cdots, X^k , define

$$Z_t^{S,\beta} = (X_{t_1}^1 - S_{t_0}^{1-\beta/d}, X_{t_2}^2 - X_{t_1}^1, \cdots, X_{t_k}^k - X_{t_{k-1}}^{k-1}),$$

$$t = (t_0, t_1, t_2, \cdots, t_k) \in \mathbb{R}_+^{d+k}, \ t_0 \in \mathbb{R}_+^d.$$

 $Z^{S,\beta}$ is a k+d parameter additive Lévy process taking values in \mathbb{R}^{dk} .

Theorem 2.3 Let $(X^1; \Psi_1), \dots, (X^k; \Psi_k)$ be k independent Lévy processes in \mathbb{R}^d for $k \geq 2$. Assume that for each $\beta \in (0, d), Z^{S,\beta}$ has an a.e. positive q-potential density on \mathbb{R}^{dk} for some $q \geq 0$. (q might depend on β .) [A special case is that if for each $j = 1, \dots, k, X^j$ has a

one-potential density $u_j^1 > 0$, λ_d -a.e., then $Z^{S,\beta}$ has an a.e. positive 1-potential density on \mathbb{R}^{dk} for all $\beta \in (0,d)$.] If $P(\bigcap_{j=1}^k X^j((0,\infty)) \neq \emptyset) > 0$, then almost surely $\dim_H \bigcap_{j=1}^k X^j((0,\infty))$ is a constant on $\{\bigcap_{j=1}^k X^j((0,\infty)) \neq \emptyset\}$ and

$$\dim_{H} \bigcap_{j=1}^{k} X^{j}((0,\infty)) = \sup\{\beta \in (0,d) :$$
$$\int_{\mathbb{R}^{dk}} (1+|\sum_{j=1}^{k} \xi_{j}|)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi_{j})}\right) d\xi_{1} d\xi_{2} \cdots d\xi_{k} < \infty\}.$$
(2.7)

Proof According to the argument, Eq. (4.96)-(4.102), in *Proof of Theorem 3.2.* of Khoshnevisan, Shieh, and Xiao [2], it suffices to show that for all $\beta \in (0, d)$ and $S^{1-\beta/d}$ independent of X^1, \dots, X^k ,

$$P\left[\bigcap_{j=1}^{k} X^{j}((0,\infty)) \bigcap S^{1-\beta/d}((0,\infty)^{d}) \neq \emptyset\right] > 0 \iff \int_{\mathbb{R}^{dk}} (1+|\sum_{j=1}^{k} \xi_{j}|)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi_{j})}\right) d\xi_{1} d\xi_{2} \cdots d\xi_{k} < \infty.$$
(2.8)

Similarly, the corresponding integral in (1.1) for $Z^{S,\beta}$ equals

$$\int_{\mathbf{R}^{dk}} \frac{1}{(1+|\xi_0|^{1-\beta/d})^d} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi_j-\xi_{j-1})}\right) d\xi_0 d\xi_1 \cdots d\xi_{k-1}$$

with $\xi_k = 0$. Since $Z^{S,\beta}$ has an a.e. positive q-potential density, by (2.5) and Theorem 1.1

$$P\left[\bigcap_{j=1}^{k} X^{j}((0,\infty)) \bigcap S^{1-\beta/d}((0,\infty)^{d}) \neq \emptyset\right] > 0 \iff$$
$$P(0 \in Z^{S,\beta}((0,\infty)^{k+d})) > 0 \iff E\{\lambda_{dk}(Z^{S,\beta}((0,\infty)^{k+d}))\} > 0 \iff$$
$$\int_{\mathbb{R}^{dk}} \frac{1}{(1+|\xi_{0}|^{1-\beta/d})^{d}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi_{j}-\xi_{j-1})}\right) d\xi_{0} d\xi_{1} \cdots d\xi_{k-1} < \infty$$

with $\xi_k = 0$. Note that

$$\int_{\mathbf{R}^{dk}} \frac{1}{(1+|\xi_0|^{1-\beta/d})^d} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi_j-\xi_{j-1})}\right) d\xi_0 d\xi_1 \cdots d\xi_{k-1} < \infty$$
$$\iff \int_{\mathbf{R}^{dk}} (1+|\xi_0|)^{\beta-d} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi_j-\xi_{j-1})}\right) d\xi_0 d\xi_1 \cdots d\xi_{k-1} < \infty.$$

Finally, use the cyclic transformation: $\xi_j - \xi_{j-1} = \xi'_j$, $j = 1, \dots, k-1$, $\xi_{k-1} = \xi'_k$ to obtain

$$\int_{\mathbf{R}^{dk}} (1+|\xi_0|)^{\beta-d} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi_j-\xi_{j-1})}\right) d\xi_0 d\xi_1 \cdots d\xi_{k-1} < \infty$$
$$\iff \int_{\mathbf{R}^{dk}} (1+|\sum_{j=1}^k \xi_j'|)^{\beta-d} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi_j')}\right) d\xi_1' d\xi_2' \cdots d\xi_k' < \infty.$$

Let X be a Lévy process in \mathbb{R}^d . Fix any path $X_t(\omega)$. A point $x^{\omega} \in \mathbb{R}^d$ is said to be a k-multiple point of $X(\omega)$ if there exist k distinct times t_1, t_2, \cdots, t_k such that $X_{t_1}(\omega) = X_{t_2}(\omega) = \cdots = X_{t_k}(\omega) = x^{\omega}$. Denote by E_k^{ω} the set of k-multiple points of $X(\omega)$. It is well known that E_k can be identified with $\bigcap_{j=1}^k X^j((0,\infty))$ where the X^j are i.i.d. copies of X. Thus, Theorem 2.2 and Theorem 2.3 imply the next theorem.

Theorem 2.4 Let (X, Ψ) be any Lévy process in \mathbb{R}^d . Assume that X has a one-potential density $u^1 > 0$, λ_d -a.e. Let E_k be the k-multiple-point set of X. Then

$$P(E_k \neq \emptyset) > 0 \iff \int_{\mathbb{R}^{d(k-1)}} \prod_{j=1}^k \operatorname{Re}\left(\frac{1}{1 + \Psi(\xi_j - \xi_{j-1})}\right) d\xi_1 \cdots d\xi_{k-1} < \infty$$
(2.9)

with $\xi_0 = \xi_k = 0$. If $P(E_k \neq \emptyset) > 0$, then almost surely $\dim_H E_k$ is a constant on $\{E_k \neq \emptyset\}$ and

$$\dim_H E_k = \sup\{\beta \in (0,d) :$$

$$\int_{\mathbb{R}^{dk}} (1+|\sum_{j=1}^{k} \xi_j|)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi(\xi_j)}\right) d\xi_1 d\xi_2 \cdots d\xi_k < \infty\}.$$
 (2.10)

2.3 Intersection of Two Independent Subordinators

Let $X_t, t \ge 0$ be a process with $X_0 = 0$, taking values in \mathbb{R}_+ . First, we ask this question: What is a condition on X such that for all sets $F \subset (0, \infty)$,

$$P(F \bigcap X((0,\infty)) \neq \emptyset) > 0 \iff E\{\lambda_1(F - X((0,\infty)))\} > 0 ?$$

For subordinators, still the existence and positivity of a q-potential density $(q \ge 0)$ is the only known useful condition to this question.

Let σ be a subordinator. Take an independent copy σ^- of $-\sigma$. We then define a process $\tilde{\sigma}$ on \mathbb{R} by $\tilde{\sigma}_s = \sigma_s$ for $s \ge 0$ and $\tilde{\sigma}_s = \sigma_{-s}^-$ for s < 0. Note that $\tilde{\sigma}$ is a process of the property: $\tilde{\sigma}_{t+b} - \tilde{\sigma}_b$, $t \ge 0$ (independent of $\tilde{\sigma}_b$) can be replaced by σ for all $b \in \mathbb{R}$.

Let X_t , $t \ge 0$ be any process in \mathbb{R}^d . Then the q-potential density is nothing but the density of the expected q-occupation measure with respected to the Lebesgue measure. (When q = 0, assume that the expected 0-occupation measure is finite on the balls.) Since the reference measure is Lebesgue, one can easily deduce that if u is a q-potential density of X, then u(-x)is a q-potential density of -X. Consequently, if we define $\widetilde{X}_s = X_s$ for $s \ge 0$ and $\widetilde{X}_s = X_{-s}^-$ for s < 0 where X^- is an independent copy of -X, then u(x) + u(-x) is a q-potential density of \widetilde{X} . Conversely, if \widetilde{X} has a q-potential density, then it has to be the form u(x) + u(-x), where u is a q-potential density of X. If σ is a subordinator, after a little thought we can conclude that $\tilde{\sigma}$ has an a.e. positive q-potential density on \mathbb{R} if and only if σ has an a.e. positive q-potential density on \mathbb{R}_+ .

Lemma 2.5 If a subordinator σ has an a.e. positive q-potential density for some $q \ge 0$ on \mathbb{R}_+ , then for all Borel sets $F \subset (0, \infty)$,

$$P(F \bigcap \sigma((0,\infty)) \neq \emptyset) > 0 \iff E\{\lambda_1(F - \sigma((0,\infty)))\} > 0.$$
(2.11)

Proof Assume that $E\{\lambda_1(F - \sigma((0, \infty)))\} > 0$. From the above discussion, $\tilde{\sigma}$ has an a.e. positive q-potential density. Moreover, $\tilde{\sigma}$ is a process of the property: $\tilde{\sigma}_{t+b} - \tilde{\sigma}_b$, $t \ge 0$ (independent of $\tilde{\sigma}_b$) can be replaced by σ for all $b \in \mathbb{R}$. It follows from the standard q-potential density argument that $P(F \cap \tilde{\sigma}(\mathbb{R} \setminus \{0\}) \neq \emptyset) > 0$. But $F \subset (0, \infty)$ and $\tilde{\sigma}((-\infty, 0]) \subset (-\infty, 0]$. Thus, $P(F \cap \sigma((0, \infty)) \neq \emptyset) > 0$. The direction \Longrightarrow in (2.11) is elementary since σ has a q-potential density. \Box

Theorem 2.6 Let σ^1 and σ^2 be two independent subordinators having the Lévy exponents Ψ_1 and Ψ_2 , respectively. Assume that σ^1 has an a.e. positive q-potential density for some $q \ge 0$ on \mathbb{R}_+ . Then

$$P[\sigma^{1}((0,\infty)) \bigcap \sigma^{2}((0,\infty)) \neq \emptyset] > 0 \iff \int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{\Psi_{1}(x)}\right) \operatorname{Re}\left(\frac{1}{1+\Psi_{2}(x)}\right) dx < \infty.$$

$$(2.12)$$

Note that our result does not require any continuity condition on the q-potential density.

Proof By Lemma 2.5 and Theorem 1.1,

$$P[\sigma^{1}((0,\infty)) \bigcap \sigma^{2}((0,\infty)) \neq \emptyset] > 0 \iff$$
$$\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi_{1}(x)}\right) \operatorname{Re}\left(\frac{1}{1+\Psi_{2}(x)}\right) dx < \infty$$

Since σ^1 is transient, $\int_{|x| \leq 1} \operatorname{Re}\left(\frac{1}{\Psi_1(x)}\right) dx < \infty$. The proof is therefore completed. \Box

2.4 A Fourier Integral Problem

This part of content can be found in Section 6 of [1]. It is an independent Fourier integral problem. Neither computing the Hausdorff dimension nor proving the existence of 1-potential density needs the discussion below. [But this Fourier integral problem might be of novelty to those who want to replace the Lévy exponent by the 1-potential density.] Let X be an additive Lévy process. Here is the question. Suppose that $K : \mathbb{R}^d \to [0, \infty]$ is a symmetric function with $K(x) < \infty$ for $x \neq 0$ that satisfies $K \in L^1$ and $\widehat{K}(\xi) = k_1 \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right)$. Under what conditions, can

$$\int \int K(x-y)\mu(dx)\mu(dy) = k_2 \int |\hat{\mu}(\xi)|^2 \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) d\xi$$
(2.13)

hold for all probability measures μ in \mathbb{R}^d ? Here, k_1 , $k_2 \in (0, \infty)$ are two constants. Consider the function K in the following example. Define $\widetilde{X}_{t_j}^j = -Y_{-t_j}^j$ for $t_j < 0$ and $\widetilde{X}_{t_j}^j = X_{t_j}^j$ for $t_j \geq 0$, where Y^j is an independent copy of X^j and the Y^j are independent of each other and of X as well. Then $\widetilde{X}_t = \widetilde{X}_{t_1}^1 + \widetilde{X}_{t_2}^2 + \cdots + \widetilde{X}_{t_N}^N$, $t \in \mathbb{R}^N$ is a random field on \mathbb{R}^N . Assume that \widetilde{X} has a 1-potential density K. So, $K \in L^1$ and a direct check verifies that K is symmetric. By the definition of K, $\widehat{K}(\xi) = \int_{\mathbb{R}^N} e^{-\sum_{j=1}^N |t_j|} Ee^{i\xi \cdot \widetilde{X}_t} dt$. Evaluating this integral quadrant by quadrant and using the identity $\sum \prod_{j=1}^N \frac{1}{1+z_j^\pm} = 2^N \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+z_j}\right)$ for $\operatorname{Re}(z_j) \geq 0$ (where \sum is taken over the 2^N permutations of conjugate) yield $\widehat{K}(\xi) = k_1 \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) > 0$. If $\widehat{K} \in L^1$ (even though this case is less interesting), on one hand by Fubini,

$$\int |\hat{\mu}(\xi)|^2 \widehat{K}(\xi) d\xi = \int \int \int e^{-i\xi \cdot (x-y)} \widehat{K}(\xi) d\xi \mu(dx) \mu(dy)$$

and on the other hand by inversion (assuming the inversion holds everywhere by modification on a null set),

$$\int \int K(x-y)\mu(dx)\mu(dy) = (2\pi)^{-d} \int \int \int e^{-i\xi \cdot (x-y)} \widehat{K}(\xi)d\xi\mu(dx)\mu(dy).$$

Thus, (2.13) holds automatically in this case. If K is continuous at 0 and $K(0) < \infty$, then $\widehat{K} \in L^1$. This is a standard fact. Since $K \in L^1$ and $\widehat{K} > 0$, a bottom line condition needed to prove (2.13) is that K is continuous at 0 on $[0, \infty]$. This paper makes no attempt to solve the general case $K(0) = \infty$.

Remark Lemma 6.1 of [1] is not valid. The assumption that

 $\operatorname{Re}\left(\prod_{j=1}^{N} \frac{1}{1+\Psi_{j}(\xi)}\right) > 0$ cannot justify either equation in (6.4) of [1]. Fortunately, Lemma 6.1 played no role in [1], because Theorem 7.2 of [1] is an immediate consequence of the well-known identity (2.4) of the present paper and Theorem 1.5 of [1]. Nevertheless [1] indeed showed that the 1-potential density of an isotropic stable additive process is comparable to the Riesz kernel at 0, and therefore the 1-potential density is continuous at 0 on $[0, \infty]$.

References

- D. Khoshnevisan, Y. Xiao and Y. Zhong, Measuring the range of an additive Lévy process, Ann. Probab. 31 (2003) pp.1097-1141. MR1964960
- [2] D. Khoshnevisan, N.-R. Sheih, and Y. Xiao, Hausdorff dimension of the contours of symmetric additive proceeses, Probab. Th. Rel. Fields (2006), to appear.
- [3] P. Mattila, (1995), Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge. MR1333890