ON A THEOREM IN MULTI-PARAMETER POTENTIAL THEORY

MING YANG
Department of Mathematics, University of Illinois, Urbana, Illinois 61801 email: yang123@uiuc.edu

Submitted March 23, 2007, accepted in final form July 17, 2007
AMS 2000 Subject classification: 60G60, 60G51, 60G17
Keywords: Additive Lévy processes, Hausdorff dimension, multiple points.

Abstract

Let X be an N-parameter additive Lévy process in \mathbb{R}^{d} with Lévy exponent $\left(\Psi_{1}, \cdots, \Psi_{N}\right)$ and let λ_{d} denote Lebesgue measure in \mathbb{R}^{d}. We show that

$$
E\left\{\lambda_{d}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)\right\}>0 \Longleftrightarrow \int_{\mathbb{R}^{d}} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi<\infty .
$$

This was previously proved by Khoshnevisan, Xiao and Zhong [1] under a sector condition.

1 Introduction and Proof

Let $X_{t_{1}}^{1}, X_{t_{2}}^{2}, \cdots, X_{t_{N}}^{N}$ be N independent Lévy processes in \mathbb{R}^{d} with their respective Lévy exponents $\Psi_{j}, j=1,2, \cdots, N$. The random field

$$
X_{t}=X_{t_{1}}^{1}+X_{t_{2}}^{2}+\cdots+X_{t_{N}}^{N}, \quad t=\left(t_{1}, t_{2}, \cdots, t_{N}\right) \in \mathbb{R}_{+}^{N}
$$

is called the additive Lévy process. Let λ_{d} denote Lebesgue measure in \mathbb{R}^{d}.
Theorem 1.1 Let X be an additive Lévy process in \mathbb{R}^{d} with Lévy exponent $\left(\Psi_{1}, \cdots, \Psi_{N}\right)$. Then

$$
\begin{equation*}
E\left\{\lambda_{d}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)\right\}>0 \Longleftrightarrow \int_{\mathbb{R}^{d}} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi<\infty \tag{1.1}
\end{equation*}
$$

Recently, Khoshnevisan, Xiao and Zhong [1] proved that if

$$
\begin{equation*}
\operatorname{Re}\left(\prod_{j=1}^{N} \frac{1}{1+\Psi_{j}(\xi)}\right) \geq \theta \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) \tag{1.2}
\end{equation*}
$$

for some constant $\theta>0$ then Theorem 1.1 holds. In fact the proof of Theorem 1.1 does not need any condition.

Proof of Theorem 1.1: Define

$$
\mathcal{E}_{\Psi}(\mu)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}}|\hat{\mu}(\xi)|^{2} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi
$$

where μ is a probability measure on a compact set $F \subset \mathbb{R}^{d}$ and $\hat{\mu}(\xi)=\int_{\mathbb{R}^{d}} e^{i \xi \cdot x} \mu(d x)$. Let $F=\{0\} \subset \mathbb{R}^{d}$ and δ_{0} be the point mass at $0 \in \mathbb{R}^{d}$. We first quote a key lemma of [1]:

Lemma 5.5 Suppose X is an additive Lévy process in \mathbb{R}^{d} that satisfies Condition (1.3), and that $\int_{\mathbb{R}^{d}} \prod_{j=1}^{N}\left|1+\Psi_{j}(\xi)\right|^{-1} d \xi<+\infty$, where $\Psi=\left(\Psi_{1}, \cdots, \Psi_{N}\right)$ denotes the Lévy exponent of X. Then, for all compact sets $F \subset \mathbb{R}^{d}$, and for all $r>0$,

$$
E\left\{\lambda_{d}\left(X\left([0, r]^{N} \oplus F\right)\right\} \leq \theta^{-2}\left(4 e^{2 r}\right)^{N} \cdot \mathcal{C}_{\Psi}(F)\right.
$$

where $\theta>0$ is the constant in Condition (1.3).
By reviewing the whole process of the proof of Theorem 1.1 of [1] given by Khoshnevisan, Xiao and Zhong, our Theorem 1.1 certainly follows if we instead prove the following statement:

Let X be any additive Lévy process in \mathbb{R}^{d}. If $\int_{\mathbb{R}^{d}} \prod_{j=1}^{N}\left|1+\Psi_{j}(\xi)\right|^{-1} d \xi<+\infty$, then

$$
\begin{equation*}
E\left\{\lambda_{d}\left(X\left([0, r]^{N}\right)\right)\right\} \leq \frac{c_{N, d, r}}{\mathcal{E}_{\Psi}\left(\delta_{0}\right)} \tag{1.3}
\end{equation*}
$$

for some constant $c_{N, d, r} \in(0, \infty)$ depending on N, d, r only.
Clearly, all we have to do is to complete Eq. (5.11) of [1] without bothering ourselves with Condition (1.3) of [1]. Since δ_{0} is the only probability measure on $F=\{0\}$, letting $\eta \rightarrow 0, k \rightarrow$ ∞, and $\varepsilon \rightarrow 0$ and using the integrability condition $\int_{\mathbb{R}^{d}} \prod_{j=1}^{N}\left|1+\Psi_{j}(\xi)\right|^{-1} d \xi<+\infty$ yield

$$
\begin{equation*}
\mathcal{E}_{\Psi}\left(\delta_{0}\right) \geq c_{1}\left|\int_{\mathbb{R}^{d}} \operatorname{Re}\left(\prod_{i=1}^{N} \frac{1}{1+\Psi_{i}(\xi)}\right) d \xi\right|^{2} E\left\{\lambda_{d}\left(X\left([0, r]^{N}\right)\right)\right\} \tag{1.4}
\end{equation*}
$$

where $c_{1} \in(0, \infty)$ is a constant depending on N, d, r only.
Consider the 2^{N-1} similar additive Lévy processes (including X_{t} itself) $X_{t}^{ \pm}=X_{t_{1}}^{1} \pm X_{t_{2}}^{2} \pm$ $\cdots \pm X_{t_{N}}^{N}$. Here, \pm is merely a symbol for each possible arrangement of the minus signs; e.g., $X^{1}-X^{2}+X^{3}, X^{1}-X^{2}-X^{3}, X^{1}+X^{2}+X^{3}$ and so on. Let $\Psi^{ \pm}$be the Lévy exponent for $X_{t}^{ \pm}$. Since $-X^{j}$ has Lévy exponent $\overline{\Psi_{j}}, \mathcal{E}_{\Psi^{ \pm}}(\mu)=\mathcal{E}_{\Psi}(\mu)$ for all $X_{t}^{ \pm}$and

$$
\sum \operatorname{Re}\left(\int_{\mathbb{R}_{+}^{N}} e^{-\sum_{j=1}^{N} s_{j}-s \cdot \Psi^{ \pm}(\xi)} d s\right)=2^{N-1} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)>0
$$

where the first summation \sum is taken over the collection of all the $X_{t}^{ \pm}$. On the other hand,

$$
Q_{\mu}(\xi)=\int_{\mathbb{R}_{+}^{N}} \int_{\mathbb{R}_{+}^{N}} e^{-\sum_{j=1}^{N}\left|t_{j}-s_{j}\right| \Psi_{j}\left(\operatorname{sgn}\left(t_{j}-s_{j}\right) \xi\right)} \mu(d s) \mu(d t)
$$

remains unchanged for all $X_{t}^{ \pm}$as long as μ is an N-fold product measure on \mathbb{R}_{+}^{N}. Proposition 10.3 of [1] and Theorem 2.1 of [1] together state that for any additive Lévy process X,

$$
k_{1}\left(\int_{\mathbb{R}^{d}} Q_{\lambda^{r}}(\xi) d \xi\right)^{-1} \leq E\left\{\lambda_{d}\left(X\left([0, r]^{N}\right)\right)\right\} \leq k_{2}\left(\int_{\mathbb{R}^{d}} Q_{\lambda^{r}}(\xi) d \xi\right)^{-1}
$$

where λ^{r} is the restriction of the Lebesgue measure λ_{N} in \mathbb{R}^{N} to $[0, r]^{N}$ and $k_{1}, k_{2} \in(0, \infty)$ are two constants depending only on r, N, d, π. Note that λ^{r} is an N-fold product measure on \mathbb{R}_{+}^{N}. Thus, there exists a constant $c_{2} \in(0, \infty)$ depending only on N and r such that

$$
E\left\{\lambda_{d}\left(X\left([0, r]^{N}\right)\right)\right\} \leq c_{2} E\left\{\lambda_{d}\left(X^{ \pm}\left([0, r]^{N}\right)\right)\right\}
$$

for all $X_{t}^{ \pm}$. Since $|1+z|=|1+\bar{z}|$ where z is a complex number, $\int_{\mathbb{R}^{d}} \prod_{j=1}^{N}\left|1+\Psi_{j}^{ \pm}(\xi)\right|^{-1} d \xi<+\infty$ as well. Therefore, by (1.4),

$$
\begin{aligned}
& 2^{N-1} \sqrt{c_{2}} \sqrt{\frac{\mathcal{E}_{\Psi}\left(\delta_{0}\right)}{E\left\{\lambda_{d}\left(X\left([0, r]^{N}\right)\right)\right\}}} \\
& \geq \sum \sqrt{\frac{\mathcal{E}_{\Psi^{ \pm}}\left(\delta_{0}\right)}{E\left\{\lambda_{d}\left(X^{ \pm}\left([0, r]^{N}\right)\right)\right\}}} \\
& \geq \sqrt{c_{1}} \sum\left|\int_{\mathbb{R}^{d}} \operatorname{Re}\left(\int_{\mathbb{R}_{+}^{N}} e^{-\sum_{j=1}^{N} s_{j}-s \cdot \Psi^{ \pm}(\xi)} d s\right) d \xi\right| \\
& \geq \sqrt{c_{1}}\left|\sum \int_{\mathbb{R}^{d}} \operatorname{Re}\left(\int_{\mathbb{R}_{+}^{N}} e^{-\sum_{j=1}^{N} s_{j}-s \cdot \Psi^{ \pm}(\xi)} d s\right) d \xi\right| \\
& =2^{N-1} \sqrt{c_{1}} \int_{\mathbb{R}^{d}} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi \\
& =2^{N-1} \sqrt{c_{1}}(2 \pi)^{d} \mathcal{E}_{\Psi}\left(\delta_{0}\right) .
\end{aligned}
$$

(1.3) follows, so does the theorem.

2 Applications

2.1 The Range of An Additive Lévy Process

As the first application, we use Theorem 1.1 to compute $\operatorname{dim}_{H} X\left(\mathbb{R}_{+}^{N}\right)$. Here, dim_{H} denotes the Hausdorff dimension. To begin, we introduce the standard d-parameter additive α-stable Lévy process in \mathbb{R}^{d} for $\alpha \in(0,1)$:

$$
S_{t}^{\alpha}=S_{t_{1}}^{1}+S_{t_{2}}^{2}+\cdots+S_{t_{d}}^{d}
$$

that is, the S^{j} are independent standard α-stable Lévy processes in \mathbb{R}^{d} with the common Lévy exponent $|\xi|^{\alpha}$.

Theorem 2.1 Let X be any N-parameter additive Lévy process in \mathbb{R}^{d} with Lévy exponent $\left(\Psi_{1}, \cdots, \Psi_{N}\right)$. Then

$$
\begin{equation*}
\operatorname{dim}_{H} X\left(\mathbb{R}_{+}^{N}\right)=\sup \left\{\beta \in(0, d): \int_{\mathbb{R}^{d}}|\xi|^{\beta-d} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi<\infty\right\} \text { a.s. } \tag{2.1}
\end{equation*}
$$

Proof Let \mathcal{C}_{β} denote the Riesz capacity. By Theorem 7.2 of [1], for all $\beta \in(0, d)$ and $S^{1-\beta / d}$ independent of X,

$$
\begin{equation*}
E \mathcal{C}_{\beta}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)>0 \Longleftrightarrow E\left\{\lambda_{d}\left(S^{1-\beta / d}\left(\mathbb{R}_{+}^{d}\right)+X\left(\mathbb{R}_{+}^{N}\right)\right)\right\}>0 \tag{2.2}
\end{equation*}
$$

Note that $S^{1-\beta / d}+X$ is a $(d+N, d)$-additive Lévy process. Thus, by Theorem 1.1 and the fact that $\beta<d$ and $\operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) \in(0,1]$, we have for all $\beta \in(0, d)$,

$$
\begin{equation*}
E \mathcal{C}_{\beta}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)>0 \Longleftrightarrow \int_{\mathbb{R}^{d}}|\xi|^{\beta-d} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi<\infty \tag{2.3}
\end{equation*}
$$

Thanks to the Frostman theorem, it remains to show that $\mathcal{C}_{\beta}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)>0$ is a trivial event. Let \mathcal{E}_{β} denote the Riesz energy. By Plancherel's theorem, given any $\beta \in(0, d)$, there is a constant $c_{d, \beta} \in(0, \infty)$ such that

$$
\begin{equation*}
\mathcal{E}_{\beta}(\nu)=c_{d, \beta} \int_{\mathbb{R}^{d}}|\hat{\nu}(\xi)|^{2}|\xi|^{\beta-d} d \xi \tag{2.4}
\end{equation*}
$$

holds for all probability measures ν in \mathbb{R}^{d}; see Mattila [3; Lemma 12.12]. Consider the 1-killing occupation measure

$$
O(A)=\int_{\mathbb{R}_{+}^{N}} 1\left(X_{t} \in A\right) e^{-\sum_{j=1}^{N} t_{j}} d t, \quad A \subset \mathbb{R}^{d}
$$

Clearly, O is a probability measure supported on $X\left(\mathbb{R}_{+}^{N}\right)$. It is easy to verify that

$$
E|\widehat{O}(\xi)|^{2}=\prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)
$$

It follows from (2.4) that

$$
E \mathcal{E}_{\beta}(O)=c_{d, \beta} \int_{\mathbb{R}^{d}}|\xi|^{\beta-d} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi<\infty
$$

when $E \mathcal{C}_{\beta}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)>0$. Therefore, $\mathcal{E}_{\beta}(O)<\infty$ a.s. Hence, $\mathcal{C}_{\beta}\left(X\left(\mathbb{R}_{+}^{N}\right)\right)>0$ a.s.

2.2 The Set of k-Multiple Points

First, we mention a q-potential density criterion: Let X be an additive Lévy process and assume that X has an a.e. positive q-potential density on \mathbb{R}^{d} for some $q \geq 0$. Then for all Borel sets $F \subset \mathbb{R}^{d}$,

$$
\begin{equation*}
P\left\{F \bigcap X\left((0, \infty)^{N}\right) \neq \emptyset\right\}>0 \Longleftrightarrow E\left\{\lambda_{d}\left(F-X\left((0, \infty)^{N}\right)\right)\right\}>0 \tag{2.5}
\end{equation*}
$$

The argument is elementary but crucially hinges on the property: $X_{b+t}-X_{b}, t \in \mathbb{R}_{+}^{N}$ (independent of X_{b}) can be replaced by X for all $b \in \mathbb{R}_{+}^{N}$; moreover, the second condition "a.e. positive on $\mathbb{R}^{d "}$ is absolutely necessary for the direction \Longleftarrow in (2.5); see for example Proposition 6.2 of [1].

Let X^{1}, \cdots, X^{k} be k independent Lévy processes in \mathbb{R}^{d}. Define

$$
Z_{t}=\left(X_{t_{2}}^{2}-X_{t_{1}}^{1}, \cdots, X_{t_{k}}^{k}-X_{t_{k-1}}^{k-1}\right), \quad t=\left(t_{1}, t_{2}, \cdots, t_{k}\right) \in \mathbb{R}_{+}^{k}
$$

Z is a k-parameter additive Lévy process taking values in $\mathbb{R}^{d(k-1)}$.
Theorem 2.2 Let $\left(X^{1} ; \Psi_{1}\right), \cdots,\left(X^{k} ; \Psi_{k}\right)$ be k independent Lévy processes in \mathbb{R}^{d} for $k \geq 2$. Assume that Z has an a.e. positive q-potential density for some $q \geq 0$. [A special case is that if for each $j=1, \cdots, k, X^{j}$ has a one-potential density $u_{j}^{1}>0, \lambda_{d}$-a.e., then Z has an a.e. positive 1-potential density on $\mathbb{R}^{d(k-1)}$.] Then

$$
\begin{gather*}
P\left(\bigcap_{j=1}^{k} X^{j}((0, \infty)) \neq \emptyset\right)>0 \Longleftrightarrow \\
\int_{\mathbb{R}^{d(k-1)}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{1} \cdots d \xi_{k-1}<\infty \tag{2.6}
\end{gather*}
$$

with $\xi_{0}=\xi_{k}=0$.
Proof For any \mathbb{R}^{d}-valued random variable X and $\xi_{1}, \xi_{2} \in \mathbb{R}^{d}, e^{i\left[\left(\xi_{1}, \xi_{2}\right) \cdot(X,-X)\right]}=e^{i\left(\xi_{1}-\xi_{2}\right) \cdot X}$. In particular, the Lévy process $\left(X^{j},-X^{j}\right)$ has Lévy exponent $\Psi_{j}\left(\xi_{1}-\xi_{2}\right)$. It follows that the corresponding integral in (1.1) for Z equals

$$
\int_{\mathbb{R}^{d(k-1)}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{1} \cdots d \xi_{k-1}
$$

with $\xi_{0}=\xi_{k}=0$. Clearly,

$$
P\left(\bigcap_{j=1}^{k} X^{j}((0, \infty)) \neq \emptyset\right)>0 \Longleftrightarrow P\left(0 \in Z\left((0, \infty)^{k}\right)\right)>0
$$

Since Z has an a.e. positive q-potential density, by (2.5)

$$
P\left(0 \in Z\left((0, \infty)^{k}\right)\right)>0 \Longleftrightarrow E\left\{\lambda_{d(k-1)}\left(Z\left((0, \infty)^{k}\right)\right)\right\}>0
$$

(2.6) now follows from Theorem 1.1.

For each $\beta \in(0, d)$ and $S^{1-\beta / d}$ independent of X^{1}, \cdots, X^{k}, define

$$
\begin{gathered}
Z_{t}^{S, \beta}=\left(X_{t_{1}}^{1}-S_{t_{0}}^{1-\beta / d}, X_{t_{2}}^{2}-X_{t_{1}}^{1}, \cdots, X_{t_{k}}^{k}-X_{t_{k-1}}^{k-1}\right) \\
t=\left(t_{0}, t_{1}, t_{2}, \cdots, t_{k}\right) \in \mathbb{R}_{+}^{d+k}, \quad t_{0} \in \mathbb{R}_{+}^{d}
\end{gathered}
$$

$Z^{S, \beta}$ is a $k+d$ parameter additive Lévy process taking values in $\mathbb{R}^{d k}$.
Theorem 2.3 Let $\left(X^{1} ; \Psi_{1}\right), \cdots,\left(X^{k} ; \Psi_{k}\right)$ be k independent Lévy processes in \mathbb{R}^{d} for $k \geq 2$. Assume that for each $\beta \in(0, d), Z^{S, \beta}$ has an a.e. positive q-potential density on $\mathbb{R}^{d k}$ for some $q \geq 0$. (q might depend on β.) [A special case is that if for each $j=1, \cdots, k, X^{j}$ has a
one-potential density $u_{j}^{1}>0, \lambda_{d}$-a.e., then $Z^{S, \beta}$ has an a.e. positive 1-potential density on $\mathbb{R}^{d k}$ for all $\beta \in(0, d)$.] If $P\left(\bigcap_{j=1}^{k} X^{j}((0, \infty)) \neq \emptyset\right)>0$, then almost surely $\operatorname{dim}_{H} \bigcap_{j=1}^{k} X^{j}((0, \infty))$ is a constant on $\left\{\bigcap_{j=1}^{k} X^{j}((0, \infty)) \neq \emptyset\right\}$ and

$$
\begin{gather*}
\operatorname{dim}_{H} \bigcap_{j=1}^{k} X^{j}((0, \infty))=\sup \{\beta \in(0, d): \\
\left.\int_{\mathbb{R}^{d k}}\left(1+\left|\sum_{j=1}^{k} \xi_{j}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}\right)}\right) d \xi_{1} d \xi_{2} \cdots d \xi_{k}<\infty\right\} \tag{2.7}
\end{gather*}
$$

Proof According to the argument, Eq. (4.96)-(4.102), in Proof of Theorem 3.2. of Khoshnevisan, Shieh, and Xiao [2], it suffices to show that for all $\beta \in(0, d)$ and $S^{1-\beta / d}$ independent of X^{1}, \cdots, X^{k},

$$
\begin{gather*}
P\left[\bigcap_{j=1}^{k} X^{j}((0, \infty)) \bigcap S^{1-\beta / d}\left((0, \infty)^{d}\right) \neq \emptyset\right]>0 \Longleftrightarrow \\
\int_{\mathbb{R}^{d k}}\left(1+\left|\sum_{j=1}^{k} \xi_{j}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}\right)}\right) d \xi_{1} d \xi_{2} \cdots d \xi_{k}<\infty \tag{2.8}
\end{gather*}
$$

Similarly, the corresponding integral in (1.1) for $Z^{S, \beta}$ equals

$$
\int_{\mathbb{R}^{d k}} \frac{1}{\left(1+\left|\xi_{0}\right|^{1-\beta / d}\right)^{d}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{0} d \xi_{1} \cdots d \xi_{k-1}
$$

with $\xi_{k}=0$. Since $Z^{S, \beta}$ has an a.e. positive q-potential density, by (2.5) and Theorem 1.1

$$
\begin{gathered}
P\left[\bigcap_{j=1}^{k} X^{j}((0, \infty)) \bigcap S^{1-\beta / d}\left((0, \infty)^{d}\right) \neq \emptyset\right]>0 \Longleftrightarrow \\
P\left(0 \in Z^{S, \beta}\left((0, \infty)^{k+d}\right)\right)>0 \Longleftrightarrow E\left\{\lambda_{d k}\left(Z^{S, \beta}\left((0, \infty)^{k+d}\right)\right)\right\}>0 \Longleftrightarrow \\
\int_{\mathbb{R}^{d k}} \frac{1}{\left(1+\left|\xi_{0}\right|^{1-\beta / d}\right)^{d}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{0} d \xi_{1} \cdots d \xi_{k-1}<\infty
\end{gathered}
$$

with $\xi_{k}=0$. Note that

$$
\begin{aligned}
& \int_{\mathbb{R}^{d k}} \frac{1}{\left(1+\left|\xi_{0}\right|^{1-\beta / d}\right)^{d}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{0} d \xi_{1} \cdots d \xi_{k-1}<\infty \\
& \Longleftrightarrow \int_{\mathbb{R}^{d k}}\left(1+\left|\xi_{0}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{0} d \xi_{1} \cdots d \xi_{k-1}<\infty
\end{aligned}
$$

Finally, use the cyclic transformation: $\xi_{j}-\xi_{j-1}=\xi_{j}^{\prime}, j=1, \cdots, k-1, \xi_{k-1}=\xi_{k}^{\prime}$ to obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{d k}}\left(1+\left|\xi_{0}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{0} d \xi_{1} \cdots d \xi_{k-1}<\infty \\
& \Longleftrightarrow \int_{\mathbb{R}^{d k}}\left(1+\left|\sum_{j=1}^{k} \xi_{j}^{\prime}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}\left(\xi_{j}^{\prime}\right)}\right) d \xi_{1}^{\prime} d \xi_{2}^{\prime} \cdots d \xi_{k}^{\prime}<\infty
\end{aligned}
$$

Let X be a Lévy process in \mathbb{R}^{d}. Fix any path $X_{t}(\omega)$. A point $x^{\omega} \in \mathbb{R}^{d}$ is said to be a k-multiple point of $X(\omega)$ if there exist k distinct times $t_{1}, t_{2}, \cdots, t_{k}$ such that $X_{t_{1}}(\omega)=X_{t_{2}}(\omega)=\cdots=$ $X_{t_{k}}(\omega)=x^{\omega}$. Denote by E_{k}^{ω} the set of k-multiple points of $X(\omega)$. It is well known that E_{k} can be identified with $\bigcap_{j=1}^{k} X^{j}((0, \infty))$ where the X^{j} are i.i.d. copies of X. Thus, Theorem 2.2 and Theorem 2.3 imply the next theorem.

Theorem 2.4 Let (X, Ψ) be any Lévy process in \mathbb{R}^{d}. Assume that X has a one-potential density $u^{1}>0, \lambda_{d}$-a.e. Let E_{k} be the k-multiple-point set of X. Then

$$
\begin{equation*}
P\left(E_{k} \neq \emptyset\right)>0 \Longleftrightarrow \int_{\mathbb{R}^{d(k-1)}} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi\left(\xi_{j}-\xi_{j-1}\right)}\right) d \xi_{1} \cdots d \xi_{k-1}<\infty \tag{2.9}
\end{equation*}
$$

with $\xi_{0}=\xi_{k}=0$. If $P\left(E_{k} \neq \emptyset\right)>0$, then almost surely $\operatorname{dim}_{H} E_{k}$ is a constant on $\left\{E_{k} \neq \emptyset\right\}$ and

$$
\operatorname{dim}_{H} E_{k}=\sup \{\beta \in(0, d):
$$

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{d k}}\left(1+\left|\sum_{j=1}^{k} \xi_{j}\right|\right)^{\beta-d} \prod_{j=1}^{k} \operatorname{Re}\left(\frac{1}{1+\Psi\left(\xi_{j}\right)}\right) d \xi_{1} d \xi_{2} \cdots d \xi_{k}<\infty\right\} \tag{2.10}
\end{equation*}
$$

2.3 Intersection of Two Independent Subordinators

Let $X_{t}, t \geq 0$ be a process with $X_{0}=0$, taking values in \mathbb{R}_{+}. First, we ask this question: What is a condition on X such that for all sets $F \subset(0, \infty)$,

$$
P(F \bigcap X((0, \infty)) \neq \emptyset)>0 \Longleftrightarrow E\left\{\lambda_{1}(F-X((0, \infty)))\right\}>0 ?
$$

For subordinators, still the existence and positivity of a q-potential density $(q \geq 0)$ is the only known useful condition to this question.
Let σ be a subordinator. Take an independent copy σ^{-}of $-\sigma$. We then define a process $\tilde{\sigma}$ on \mathbb{R} by $\tilde{\sigma}_{s}=\sigma_{s}$ for $s \geq 0$ and $\tilde{\sigma}_{s}=\sigma_{-s}^{-}$for $s<0$. Note that $\tilde{\sigma}$ is a process of the property: $\tilde{\sigma}_{t+b}-\tilde{\sigma}_{b}, t \geq 0$ (independent of $\tilde{\sigma}_{b}$) can be replaced by σ for all $b \in \mathbb{R}$.
Let $X_{t}, t \geq 0$ be any process in \mathbb{R}^{d}. Then the q-potential density is nothing but the density of the expected q-occupation measure with respected to the Lebesgue measure. (When $q=0$, assume that the expected 0-occupation measure is finite on the balls.) Since the reference measure is Lebesgue, one can easily deduce that if u is a q-potential density of X, then $u(-x)$ is a q-potential density of $-X$. Consequently, if we define $\widetilde{X}_{s}=X_{s}$ for $s \geq 0$ and $\widetilde{X}_{s}=X_{-s}^{-}$for $s<0$ where X^{-}is an independent copy of $-X$, then $u(x)+u(-x)$ is a q-potential density of \widetilde{X}. Conversely, if \widetilde{X} has a q-potential density, then it has to be the form $u(x)+u(-x)$, where u
is a q-potential density of X. If σ is a subordinator, after a little thought we can conclude that $\tilde{\sigma}$ has an a.e. positive q-potential density on \mathbb{R} if and only if σ has an a.e. positive q-potential density on \mathbb{R}_{+}.

Lemma 2.5 If a subordinator σ has an a.e. positive q-potential density for some $q \geq 0$ on \mathbb{R}_{+}, then for all Borel sets $F \subset(0, \infty)$,

$$
\begin{equation*}
P(F \bigcap \sigma((0, \infty)) \neq \emptyset)>0 \Longleftrightarrow E\left\{\lambda_{1}(F-\sigma((0, \infty)))\right\}>0 \tag{2.11}
\end{equation*}
$$

Proof Assume that $E\left\{\lambda_{1}(F-\sigma((0, \infty)))\right\}>0$. From the above discussion, $\tilde{\sigma}$ has an a.e. positive q-potential density. Moreover, $\tilde{\sigma}$ is a process of the property: $\tilde{\sigma}_{t+b}-\tilde{\sigma}_{b}, t \geq 0$ (independent of $\tilde{\sigma}_{b}$) can be replaced by σ for all $b \in \mathbb{R}$. It follows from the standard q-potential density argument that $P(F \bigcap \tilde{\sigma}(\mathbb{R} \backslash\{0\}) \neq \emptyset)>0$. But $F \subset(0, \infty)$ and $\tilde{\sigma}((-\infty, 0]) \subset(-\infty, 0]$. Thus, $P(F \bigcap \sigma((0, \infty)) \neq \emptyset)>0$. The direction \Longrightarrow in (2.11) is elementary since σ has a q-potential density.

Theorem 2.6 Let σ^{1} and σ^{2} be two independent subordinators having the Lévy exponents Ψ_{1} and Ψ_{2}, respectively. Assume that σ^{1} has an a.e. positive q-potential density for some $q \geq 0$ on \mathbb{R}_{+}. Then

$$
\begin{gather*}
P\left[\sigma^{1}((0, \infty)) \bigcap \sigma^{2}((0, \infty)) \neq \emptyset\right]>0 \Longleftrightarrow \\
\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{\Psi_{1}(x)}\right) \operatorname{Re}\left(\frac{1}{1+\Psi_{2}(x)}\right) d x<\infty \tag{2.12}
\end{gather*}
$$

Note that our result does not require any continuity condition on the q-potential density.
Proof By Lemma 2.5 and Theorem 1.1,

$$
\begin{gathered}
P\left[\sigma^{1}((0, \infty)) \bigcap \sigma^{2}((0, \infty)) \neq \emptyset\right]>0 \Longleftrightarrow \\
\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi_{1}(x)}\right) \operatorname{Re}\left(\frac{1}{1+\Psi_{2}(x)}\right) d x<\infty
\end{gathered}
$$

Since σ^{1} is transient, $\int_{|x| \leq 1} \operatorname{Re}\left(\frac{1}{\Psi_{1}(x)}\right) d x<\infty$. The proof is therefore completed.

2.4 A Fourier Integral Problem

This part of content can be found in Section 6 of [1]. It is an independent Fourier integral problem. Neither computing the Hausdorff dimension nor proving the existence of 1-potential density needs the discussion below. [But this Fourier integral problem might be of novelty to those who want to replace the Lévy exponent by the 1-potential density.] Let X be an additive Lévy process. Here is the question. Suppose that $K: \mathbb{R}^{d} \rightarrow[0, \infty]$ is a symmetric function with $K(x)<\infty$ for $x \neq 0$ that satisfies $K \in L^{1}$ and $\widehat{K}(\xi)=k_{1} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)$. Under what conditions, can

$$
\begin{equation*}
\iint K(x-y) \mu(d x) \mu(d y)=k_{2} \int|\hat{\mu}(\xi)|^{2} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right) d \xi \tag{2.13}
\end{equation*}
$$

hold for all probability measures μ in \mathbb{R}^{d} ? Here, $k_{\tilde{X}_{1}}, k_{2} \in(0, \infty)$ are two constants. Consider the function K in the following example. Define $\widetilde{X}_{t_{j}}^{j}=-Y_{-t_{j}}^{j}$ for $t_{j}<0$ and $\widetilde{X}_{t_{j}}^{j}=X_{t_{j}}^{j}$ for $t_{j} \geq 0$, where Y^{j} is an independent copy of X^{j} and the Y^{j} are independent of each other and of X as well. Then $\widetilde{X}_{t}=\widetilde{X}_{t_{1}}^{1}+\widetilde{X}_{t_{2}}^{2}+\cdots+\widetilde{X}_{t_{N}}^{N}, t \in \mathbb{R}^{N}$ is a random field on \mathbb{R}^{N}. Assume that \widetilde{X} has a 1-potential density K. So, $K \in L^{1}$ and a direct check verifies that K is symmetric. By the definition of $K, \widehat{K}(\xi)=\int_{\mathbb{R}^{N}} e^{-\sum_{j=1}^{N}\left|t_{j}\right|} E e^{i \xi \cdot \widetilde{X}_{t}} d t$. Evaluating this integral quadrant by quadrant and using the identity $\sum \prod_{j=1}^{N} \frac{1}{1+z_{j}^{ \pm}}=2^{N} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+z_{j}}\right)$ for $\operatorname{Re}\left(z_{j}\right) \geq 0$ (where \sum is taken over the 2^{N} permutations of conjugate) yield $\widehat{K}(\xi)=k_{1} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)>0$. If $\widehat{K} \in L^{1}$ (even though this case is less interesting), on one hand by Fubini,

$$
\int|\hat{\mu}(\xi)|^{2} \widehat{K}(\xi) d \xi=\iiint e^{-i \xi \cdot(x-y)} \widehat{K}(\xi) d \xi \mu(d x) \mu(d y)
$$

and on the other hand by inversion (assuming the inversion holds everywhere by modification on a null set),

$$
\iint K(x-y) \mu(d x) \mu(d y)=(2 \pi)^{-d} \iiint e^{-i \xi \cdot(x-y)} \widehat{K}(\xi) d \xi \mu(d x) \mu(d y)
$$

Thus, (2.13) holds automatically in this case. If K is continuous at 0 and $K(0)<\infty$, then $\widehat{K} \in L^{1}$. This is a standard fact. Since $K \in L^{1}$ and $\widehat{K}>0$, a bottom line condition needed to prove (2.13) is that K is continuous at 0 on $[0, \infty]$. This paper makes no attempt to solve the general case $K(0)=\infty$.

Remark Lemma 6.1 of [1] is not valid. The assumption that $\operatorname{Re}\left(\prod_{j=1}^{N} \frac{1}{1+\Psi_{j}(\xi)}\right)>0$ cannot justify either equation in (6.4) of [1]. Fortunately, Lemma 6.1 played no role in [1], because Theorem 7.2 of [1] is an immediate consequence of the well-known identity (2.4) of the present paper and Theorem 1.5 of [1]. Nevertheless [1] indeed showed that the 1-potential density of an isotropic stable additive process is comparable to the Riesz kernel at 0 , and therefore the 1 -potential density is continuous at 0 on $[0, \infty]$.

References

[1] D. Khoshnevisan, Y. Xiao and Y. Zhong, Measuring the range of an additive Lévy process, Ann. Probab. 31 (2003) pp.1097-1141. MR1964960
[2] D. Khoshnevisan, N.-R. Sheih, and Y. Xiao, Hausdorff dimension of the contours of symmetric additive proceeses, Probab. Th. Rel. Fields (2006), to appear.
[3] P. Mattila, (1995), Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge. MR1333890

