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Abstract

Consider the matrix ∆n = (( I(Xi + Xj > 0) ))i,j=1,2,...,n where {Xi} are i.i.d. and their
distribution is continuous and symmetric around 0. We show that the rank rn of this matrix

is equal in distribution to 2
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) + I(ξn = 1) where ξi
i.i.d.∼ Ber(1, 1/2). As

a consequence
√

n(rn/n−1/2) is asymptotically normal with mean zero and variance 1/4. We
also show that n−1rn converges to 1/2 almost surely.

1 Introduction

Suppose {X1, X2, . . .} is a sequence of i.i.d. random variables. Define the symmetric matrix
∆n = (( I(Xi + Xj > 0) ))i,j=1,2,...,n where I is the indicator function.

The motivation for studying this matrix arises from the study of random network models,
known as threshold models. Suppose that there is a collection of n nodes. Each node is
assigned a fitness value and links are drawn among nodes when the total fitness crosses a
threshold. This gives rise to a good-get-richer mechanism, in which sites with larger fitness are
more likely to become hubs (i.e., to be connected). The scale free random network generated
in this way is often used as a model in social networking, friendship networks, peer-to-peer
(P2P) networks and networks of computer programs. Many features, such as power-law degree
distributions, clustering, and short path lengths etc., of this random network has been studied
in the physics literature extensively (see, for example, Caldarelli et. al. (2002), Söderberg
(2002), Masuda et. al. (2005)).

Suppose that the fitness value of the sites are represented by the random variables {Xi} and
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we connect two points when their accumulated fitness is above the threshold 0. The matrix
∆n then represents the adjacency matrix of the above random graph.

Note that ∆n is a random matrix with zero and one entries. There are a few results known
for the rank of random matrices with zero and one entries. See for example Costello and Vu
(2006), Costello, Tao and Vu (2006). In particular, the latter shows that the matrix with i.i.d.
entries which are Bernoulli with probability 1/2 each is almost surely nonsingular as n → ∞.

Suppose that the distribution of X1 is continuous and symmetric around 0. Then the entries of
the matrix ∆n are identically distributed, being Bernoulli with probability 1/2 but now there
is strong dependency among them. We show that the rank rn of this matrix is asymptotically
half of the dimension. Indeed, the rank of ∆n, can be approximated in distribution by the
sum of a 1-dependent stationary sequence. As a consequence it is asymptotically normal with
asymptotic mean n/2 and variance n/4. Further, rn/n converges to 1/2 almost surely. In

what follows, X
D
= Y means the two random variables X and Y have the same probability

distributions.

Theorem 1. Let ∆n be as above. Then, there exists a sequence of i.i.d. Ber(1, 1/2) random
variables ξi such that with Ξ = ((ξi∧j)),

rank(∆n)
D
= rank(Ξ) = 2

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) + I(ξn = 1).

As a consequence,

(A) E
(

rank(∆n)
n

)

= 1/2

(B)
√

n
( rank(∆n)

n − 1/2
)
⇒ N(0, 1/4)

(C) rank(∆n)
n → 1/2 almost surely.

Proof of Theorem 1: Let

Si =

{
+1 if Xi ≥ 0
−1 if Xi < 0

.

The assumption of continuous symmetric distribution of the {Xi} implies that the two se-
quences {|Xi|} and {Si} are independent. Let (σ(1), . . . , σ(n)) be the random permuta-
tion of (1, . . . , n) such that |Xσ(1)| < |Xσ(2)| < · · · < |Xσ(n)| are the ordered values of
|Xi|, i = 1, 2, . . . , n.

Since any row column permutation leaves the eigenvalues unchanged, the eigenvalues of ∆n are
the same as the eigenvalues of the matrix ((I(Xσ(i) +Xσ(j) > 0))). Note that I(Xσ(i) +Xσ(j) >
0) = I(Sσ(i∧j) = 1). But since σ is a function of |Xi|, i = 1, 2, . . . n and {Si}’s are independent
of {|Xi|}’s, we have the following equality in distribution:.

eigenvalues of (( I(Sσ(i∧j) = 1) ))
D
= eigenvalues of (( I(Si∧j = 1) )).

Let us now define,

ξi = I(Si = 1), i = 1, 2, . . . , n and Ξ = ((ξi∧j)).

Note that ξi
i.i.d.∼ Ber(1, 1/2).

To complete the proof, we will need the following Lemma We will first finish the proof of the
theorem assuming the lemma and then prove the lemma.
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Lemma 1. Suppose we have any sequence ξ1, ξ2, . . . , ξn such that each ξi = 0 or 1. Let
A = ((aij))1≤i,j≤n where aij = ξi∧j . Then

rank(A) − 2

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) = I(ξn = 1).

From the discussion above, and from Lemma 1, we have

rank(∆n)
D
= rank(Ξ) = 2

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) + I(ξn = 1) (1)

where ξi
i.i.d.∼ Ber(1, 1/2).

Now note that Yi = {I(ξi = 1, ξi+1 = 0), i ≥ 1} is a stationary 1-dependent sequence of
random variables with mean 1/4. Part (A) now follows immediately.

From equation (1) above, the asymptotic distribution of
√

n
(
rank(∆n)/n − 1/2

)
is the same

as that of n−1/2
(
2

∑n−1
i=1 I(ξi = 1, ξi+1 = 0) − n/2

)
. But by the central limit theorem for

m-dependent stationary sequence (see for example Brockwell and Davis, 1990, page 213), the
latter is asymptotically normal with mean zero and variance σ2. This variance is calculated as

σ2 = (2)2
[
Var(Y1) + 2 Cov(Y1, Y2)

]
= 4[(1/4 − 1/16)− 2/16] = 1/4.

This proves Part (B) of the theorem.

To prove Part (C), first observe that

∣
∣
∣
rank(Ξ)

n
− 2

n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0)
∣
∣
∣ ≤ 1

n
.

By using the fact that the summands are all bounded, it is easy to check that the moment
convergence in the central limit theorem for m-dependent sequences hold. That is

E
[√

n
( 2

n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) − 1/2
)]4

→ 3/16.

Combining all the above, we conclude that

E
[√

n
( rank(∆n)

n
− 1

2

)]4

≤ E
[√

n
( 2

n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) − 1

2

)]4

+ O(1) = O(1).

This implies that
∞∑

n=1

E
(

rank(∆n)/n − 1/2
)4

< ∞

and now Part (C) follows from Borel Cantelli Lemma, proving the theorem completely. �

Proof of Lemma 1: The idea of the proof is as follows. First we apply an appropriate rank
preserving transformation on A by permuting its rows and columns. Then we calculate the
rank of the transformed matrix to get the result.
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Suppose that k (0 ≤ k ≤ n) many of ξi’s are non-zero. If k = 0, then rank(A) = 0, ξn = 0

and
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) = 0. Similarly, if k = n, then rank(A) = 1, ξn = 1 and
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) = 0. Hence the result holds for k = 0 and k = n.

Claim: Suppose that 1 ≤ k ≤ n − 1. Let 1 ≤ m1 < m2 < · · · < mk ≤ n be such that

ξi =

{

1 if i ∈ {m1, m2, . . . , mk},
0 otherwise.

Then the matrix A may be reduced to the following matrix B = ((bij)) by appropriate row
column transformations.

bij =







1 if j ≤ k, i ≥ mj − j + 1

1 if i ≥ n − k + 1, j ≤ n − (mn−i+1 − n − i + 1)

0 otherwise,

i.e.,

B =

























0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

1
︸︷︷︸

m1−1+1,1

0
... 0 0 0 . . . 0

1 1
︸︷︷︸

m2−2+1,2

... . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

1 1 . . . 1
︸︷︷︸

n−1,n−m2+2

0 0 . . . 0

1 1 . . . 1 1
︸︷︷︸

n,n−m1+1

0 . . . 0

























.

Proof of the claim: By definition of the matrix A, its m1th row (resp. column) has all ones
starting from the m1th column (resp. row). Thus we may visualise A as follows:

A =

















0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . 0 0
0 . . . 0 1

︸︷︷︸

m1,m1

1 . . . 1 1

0 . . . 0 1 am1+1,m1+1 . . . am1+1,n−1 am1+1,n

...
...

...
...

...
...

...
0 . . . 0 1 an,m1+1 . . . an,n−1 an,n

















We move the first (m1 − 1) columns of A to the extreme east end and then move the m1th
row to the extreme south to get the following matrix A1 which has the same rank as that of
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the original matrix A.

A1 =



















0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0
1

︸︷︷︸

m1,1

am1+1,m1+1 . . . am1+1,n−1 am1+1,n 0 . . . 0

...
...

...
...

...
...

...
...

1 an,m1+1 . . . an,n−1 an,n 0 . . . 0
1 1 . . . 1 1

︸︷︷︸

1,n−m1+1

0 . . . 0



















.

Now leave the first column, the last row, the first (m1−1) zero rows and the last (m1−1) zero
columns intact and consider the remaining (n−m1)× (n−m1) submatrix. This is a function
of ξm1+1, ξm1+2, . . . , ξn and write it in the way that A was written and repeat the procedure.
Note that now when we move the rows and columns, we move extreme south and east of only
the submatrix but the remaining part of the matrix does not alter. It is easy to see that in
(k − 1) more steps we obtain B. This proves the claim.

We return to the proof of the Lemma. Note that bij = 1 iff bn−j+1,n−i+1 = 1. In other words,
B is anti-symmetric (symmetric about its anti-diagonal). Indeed, B is the n×n anti-symmetric
0-1 matrix containing minimum number of ones such that its i-th column contains n−mi + i
ones from bottom for 1 ≤ i ≤ k.

Let ui denote the number of 1’s in the i-th column of B. Then, u1 = n − m1 + 1, u2 =
n − m2 + 2, . . . , uk = n − mk + k. Since m1 < m2 < · · · < mk we have u1 ≥ u2 ≥ · · · ≥ uk.
Also from the anti-symmetry of B we get for k < r ≤ n, ur = #{i : 1 ≤ i ≤ k, ui ≥ r}.
This immediately implies that ur ≥ ur+1 for all r > k. Since uk = n − mk + k ≥ k and
uk+1 = #{i : 1 ≤ i ≤ k, ui ≥ k + 1} ≤ k, it follows that uk ≥ uk+1. In fact uk = uk+1 is not
possible since then both are equal to k but then by definition of uk+1 < k. Thus {ui}n

i=1 is a
nonincreasing sequence.

Let d be the number of distinct elements of the set {u1, u2, · · · , uk}. It is easy to see that d
is equal to the number of occurrences of (1, 0) in {(ξ1, ξ2), (ξ2, ξ3), . . . , (ξn−1, ξn), (ξn, 0)}. Our
goal is now to show that the rank of B is 2d or 2d − 1.

Let 1 ≤ i1 < i2 < . . . < id = k be such that u1 = u2 = . . . = ui1 > ui1+1 = . . . = ui2 >
ui2+1 = . . . > . . . = uk. We will consider the following two cases separately:

Case I: mk < n. In this case uk = (n−mk)+k ≥ k+1. If we write out the whole u-sequence,
it looks like this

1 . . . i1 i1 + 1 . . . i2 . . . k k + 1 . . . uk uk + 1 . . . uid−1
. . . ui1 ui1 + 1 . . . n

ui1 . . . ui1 ui2 . . . . . . ui2 . . . uk k . . . . . . k id−1 . . . . . . id−1 . . . i1 0 . . . . . . . . . 0

The first row enumerates the column positions and the second row provides count of the
number of one’s in that column, that is, the corresponding ui.

The rank of the matrix B can be easily computed by looking at the u-sequence. Each distinct
non zero block contributes one to the rank. In this case, rank(B) = 2d and since ξn = 0, we

have also d =
∑n−1

i=1 I(ξi = 1, ξi+1 = 0). And therefore,
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0 = rank(B) − 2d = rank(B) − 2

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) = I(ξn = 1).

Case II: mk = n. In this case uk = (n − mk) + k = k. Now the u-sequence looks as follows

1 . . . i1 i1 + 1 . . . i2 . . . k k + 1 . . . uk uk + 1 . . . uid−1
. . . ui1 ui1 + 1 . . . n

ui1 . . . ui1 ui2 . . . . . . ui2 . . . uk id−1 . . . . . . id−1 id−1 . . . . . . id−1 . . . i1 0 . . . . . . . . . 0

Here, rank(B) = 2d − 1 and since ξn = 1 , we get
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) = d − 1. So,

rank(B) − 2

n−1∑

i=1

I(ξi = 1, ξi+1 = 0) = (2d − 1) − 2(d − 1) = 1 = I(ξn = 1).

This completes the proof of the Lemma. �
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