ON THE CHUNG-DIACONIS-GRAHAM RANDOM PROCESS

MARTIN HILDEBRAND
Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, NY 12222 USA
email: martinhi@math.albany.edu

Submitted November 5, 2006, accepted in final form December 11, 2006
AMS 2000 Subject classification: 60B15, 60J10
Keywords: Random processes, discrete Fourier analysis

Abstract

Chung, Diaconis, and Graham considered random processes of the form $X_{n+1}=2 X_{n}+b_{n}$ $(\bmod p)$ where $X_{0}=0, p$ is odd, and b_{n} for $n=0,1,2, \ldots$ are i.i.d. random variables on $\{-1,0,1\}$. If $\operatorname{Pr}\left(b_{n}=-1\right)=\operatorname{Pr}\left(b_{n}=1\right)=\beta$ and $\operatorname{Pr}\left(b_{n}=0\right)=1-2 \beta$, they asked which value of β makes X_{n} get close to uniformly distributed on the integers $\bmod p$ the slowest. In this paper, we extend the results of Chung, Diaconis, and Graham in the case $p=2^{t}-1$ to show that for $0<\beta \leq 1 / 2$, there is no such value of β.

1 Introduction

In [1], Chung, Diaconis, and Graham considered random processes of the form $X_{n+1}=2 X_{n}+b_{n}$ $(\bmod p)$ where p is an odd integer, $X_{0}=0$, and $b_{0}, b_{1}, b_{2}, \ldots$ are i.i.d. random variables. This process is also described in Diaconis [2], and generalizations involving random processes of the form $X_{n+1}=a_{n} X_{n}+b_{n}(\bmod p)$ where $\left(a_{i}, b_{i}\right)$ for $i=0,1,2, \ldots$ are i.i.d. were considered by the author in [3] and [4]. A question asked in [1] concerns cases where $\operatorname{Pr}\left(b_{n}=1\right)=\operatorname{Pr}\left(b_{n}=\right.$ $-1)=\beta$ and $\operatorname{Pr}\left(b_{n}=0\right)=1-2 \beta$. If $\beta=1 / 4$ or $\beta=1 / 2$, then P_{n} is close to the uniform distribution (in variation distance) on the integers $\bmod p$ if n is a large enough multiple of $\log p$ where $P_{n}(s)=\operatorname{Pr}\left(X_{n}=s\right)$. If $\beta=1 / 3$, however, for n a small enough multiple of $(\log p) \log (\log p)$, the variation distance $\left\|P_{n}-U\right\|$ is far from 0 for certain values of p such as $p=2^{t}-1$. Chung, Diaconis, and Graham comment "It would be interesting to know which value of β maximizes the value of N required for $\left\|P_{N}-U\right\| \rightarrow 0$."
If $\beta=0$, then $X_{n}=0$ with probability 1 for all n. Thus we shall only consider the case $\beta>0$. We shall show that unless $\beta=1 / 4$ or $\beta=1 / 2$, then there exists a value $c_{\beta}>0$ such that for certain values of p (namely $p=2^{t}-1$), if $n \leq c_{\beta}(\log p) \log (\log p)$, then $\left\|P_{n}-U\right\| \rightarrow 1$ as $t \rightarrow \infty$. Furthermore, one can have $c_{\beta} \rightarrow \infty$ as $\beta \rightarrow 0^{+}$. Work of the author [3] shows that for each β, there is a value c_{β}^{\prime} such that if $n \geq c_{\beta}^{\prime}(\log p) \log (\log p)$, then $\left\|P_{n}-U\right\| \rightarrow 0$ as $p \rightarrow \infty$. Thus one may conclude that there is no value of β which maximizes the value of N required for $\left\|P_{N}-U\right\| \rightarrow 0$.

This paper will consider a broader class of distributions for b_{n}. In particular, $\operatorname{Pr}\left(b_{n}=1\right)$ need not equal $\operatorname{Pr}\left(b_{n}=-1\right)$. The main argument here relies on a generalization of an argument in [1].

2 Notation and Main Theorem

Recall that the variation distance of a probability P on a finite group G from the uniform distribution on G is given by

$$
\begin{aligned}
\|P-U\| & =\frac{1}{2} \sum_{s \in G}|P(s)-1 /|G|| \\
& =\max _{A \subseteq G}|P(A)-U(A)| \\
& =\sum_{s: P(s)>1 /|G|}|P(s)-1 /|G||
\end{aligned}
$$

The following assumptions are used in the main theorem. Suppose $\operatorname{Pr}\left(b_{n}=1\right)=a, \operatorname{Pr}\left(b_{n}=\right.$ $0)=b$, and $\operatorname{Pr}\left(b_{n}=-1\right)=c$. We assume $a+b+c=1$ and a, b, and c are all less than 1 . Suppose $b_{0}, b_{1}, b_{2}, \ldots$ are i.i.d. and $X_{0}=0$. Suppose $X_{n+1}=2 X_{n}+b_{n}(\bmod p)$ and p is odd. Let $P_{n}(s)=\operatorname{Pr}\left(X_{n}=s\right)$. The theorem itself follows:

Theorem 1 Case 1: Suppose either $b=0$ and $a=c=1 / 2$ or $b=1 / 2$. If $n>c_{1} \log _{2} p$ where $c_{1}>1$ is constant, then $\left\|P_{n}-U\right\| \rightarrow 0$ as $p \rightarrow \infty$ where p is an odd integer.
Case 2: Suppose a, b, and c do not satisfy the conditions in Case 1. Then there exists a value c_{2} (depending on a, b, and c) such that if $n<c_{2}(\log p) \log (\log p)$ and $p=2^{t}-1$, then $\left\|P_{n}-U\right\| \rightarrow 1$ as $t \rightarrow \infty$.

3 Proof of Case 1

First let's consider the case where $b=1 / 2$. Then $b_{n}=e_{n}+d_{n}$ where e_{n} and d_{n} are independent random variables with $\operatorname{Pr}\left(e_{n}=0\right)=\operatorname{Pr}\left(e_{n}=1\right)=1 / 2, \operatorname{Pr}\left(d_{n}=-1\right)=2 c$, and $\operatorname{Pr}\left(d_{n}=0\right)=$ $2 a$. (Note that here $a+c=1 / 2=b$. Thus $2 a+2 c=1$.) Observe that

$$
\begin{aligned}
X_{n} & =\sum_{j=0}^{n-1} 2^{n-1-j} b_{j} \quad(\bmod p) \\
& =\sum_{j=0}^{n-1} 2^{n-1-j} e_{j}+\sum_{j=0}^{n-1} 2^{n-1-j} d_{j} \quad(\bmod p)
\end{aligned}
$$

Let

$$
Y_{n}=\sum_{j=0}^{n-1} 2^{n-1-j} e_{j} \quad(\bmod p)
$$

If P_{n} is the probability distribution of X_{n} (i.e. $P_{n}(s)=\operatorname{Pr}\left(X_{n}=s\right)$) and Q_{n} is the probability distribution of Y_{n}, then the independence of e_{n} and d_{n} implies $\left\|P_{n}-U\right\| \leq\left\|Q_{n}-U\right\|$. Observe
that on the integers, $\sum_{j=0}^{n-1} 2^{n-1-j} e_{j}$ is uniformly distributed on the set $\left\{0,1, \ldots, 2^{n}-1\right\}$. Each element of the integers mod p appears either $\left\lfloor 2^{n} / p\right\rfloor$ times or $\left\lceil 2^{n} / p\right\rceil$ times. Thus

$$
\left\|Q_{n}-U\right\| \leq p\left(\frac{\left\lceil 2^{n} / p\right\rceil}{2^{n}}-\frac{1}{p}\right) \leq \frac{p}{2^{n}}
$$

If $n>c_{1} \log _{2} p$ where $c_{1}>1$, then $2^{n}>p^{c_{1}}$ and $\left\|Q_{n}-U\right\| \leq 1 / p^{c_{1}-1} \rightarrow 0$ as $p \rightarrow \infty$.
The case where $b=0$ and $a=c=1 / 2$ is alluded to in [1] and left as an exercise.

4 Proof of Case 2

The proof of this case follows the proof of Theorem 2 in [1] with some modifications.
Define, as in [1], the separating function $f: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
f(k):=\sum_{j=0}^{t-1} q^{k 2^{j}}
$$

where $q:=q(p):=e^{2 \pi i / p}$. We shall suppose $n=r t$ where r is an integer of the form $r=\delta \log t-d$ for a fixed value δ.
If $0 \leq j \leq t-1$, define

$$
\Pi_{j}:=\prod_{\alpha=0}^{t-1}\left(a q^{\left(2^{\alpha}\left(2^{j}-1\right)\right)}+b+c q^{-\left(2^{\alpha}\left(2^{j}-1\right)\right)}\right)
$$

Note that if $a=b=c=1 / 3$, then this expression is the same as Π_{j} defined in the proof of Theorem 2 in [1].
As in the proof of Theorem 2 in [1], $E_{U}(f)=0$ and $E_{U}(f \bar{f})=t$. Furthermore

$$
\begin{aligned}
E_{P_{n}}(f) & =\sum_{k} P_{n}(k) f(k) \\
& =\sum_{k} \sum_{j=0}^{t-1} P_{n}(k) q^{k 2^{j}} \\
& =\sum_{j=0}^{t-1} \hat{P}_{n}\left(2^{j}\right) \\
& =\sum_{j=0}^{t-1} \prod_{\alpha=0}^{t-1}\left(a q^{2^{\alpha} 2^{j} / p}+b+c q^{-2^{\alpha} 2^{j} / p}\right)^{r} \\
& =t \Pi_{1}^{r}
\end{aligned}
$$

Also note

$$
\begin{aligned}
E_{P_{n}}(f \bar{f}) & =\sum_{k} P_{n}(k) f(k) \bar{f}(k) \\
& =\sum_{k} \sum_{j, j^{\prime}} P_{n}(k) q^{k\left(2^{j}-2^{j^{\prime}}\right)} \\
& =\sum_{j, j^{\prime}} \hat{P}_{n}\left(2^{j}-2^{j^{\prime}}\right) \\
& =\sum_{j, j^{\prime}} \prod_{\alpha=0}^{t-1}\left(a q^{2^{\alpha}\left(2^{j}-2^{j^{\prime}}\right)}+b+c q^{-2^{\alpha}\left(2^{j}-2^{j^{\prime}}\right)}\right)^{r} \\
& =t \sum_{j=0}^{t-1} \Pi_{j}^{r} .
\end{aligned}
$$

(Note that the expressions for $E_{P_{N}}(f)$ and $E_{P_{N}}(f \bar{f})$ in the proof of Theorem 2 of [1] have some minor misprints.)
The (complex) variances of f under U and P_{n} are $\operatorname{Var}_{U}(f)=t$ and

$$
\begin{aligned}
\operatorname{Var}_{P_{n}}(f) & =E_{P_{n}}\left(\left|f-E_{P_{n}}(f)\right|^{2}\right) \\
& =E_{P_{N}}(f \bar{f})-E_{P_{n}}(f) E_{P_{n}}(\bar{f}) \\
& =t \sum_{j=0}^{t-1} \Pi_{j}^{r}-t^{2}\left|\Pi_{1}\right|^{2 r}
\end{aligned}
$$

Like [1], we use the following complex form of Chebyshev's inequality for any Q :

$$
Q\left(\left\{x:\left|f(x)-E_{Q}(f)\right| \geq \alpha \sqrt{\operatorname{Var}_{Q}(f)}\right\}\right) \leq 1 / \alpha^{2}
$$

where $\alpha>0$. Thus

$$
U\left(\left\{x:|f(x)| \geq \alpha t^{1 / 2}\right\}\right) \leq 1 / \alpha^{2}
$$

and

$$
P_{n}\left(\left\{x:\left|f(x)-t \Pi_{1}^{r}\right| \geq \beta\left(t \sum_{j=0}^{t-1} \Pi_{j}^{r}-t^{2}\left|\Pi_{1}\right|^{2 r}\right)^{1 / 2}\right\}\right) \leq 1 / \beta^{2} .
$$

Let A and B denote the complements of these 2 sets; thus $U(A) \geq 1-1 / \alpha^{2}$ and $P_{n}(B) \geq$ $1-1 / \beta^{2}$. If A and B are disjoint, then $\left\|P_{n}-U\right\| \geq 1-1 / \alpha^{2}-1 / \beta^{2}$.
Suppose r is an integer with

$$
r=\frac{\log t}{2 \log \left(1 /\left|\Pi_{1}\right|\right)}-\lambda
$$

where $\lambda \rightarrow \infty$ as $t \rightarrow \infty$ but $\lambda \ll \log t$. Then $t\left|\Pi_{1}\right|^{r}=t^{1 / 2}\left|\Pi_{1}\right|^{-\lambda} \gg t^{1 / 2}$. Observe that the fact a, b, and c do not satisfy the conditions in Case 1 implies $\left|\Pi_{1}\right|$ is bounded away from 0 as $t \rightarrow \infty$. Furthermore $\left|\Pi_{1}\right|$ is bounded away from 1 for a given a, b, and c.
In contrast, let's consider what happens to $\left|\Pi_{1}\right|$ if a, b, and c do satisfy the condition in Case 1. If $b=1 / 2$, then the $\alpha=t-1$ term in the definition of Π_{1} converges to 0 as $t \rightarrow \infty$ and thus
Π_{1} also converges to 0 as $t \rightarrow \infty$ since each other term has length at most 1 . If $a=c=1 / 2$ and $b=0$, then the $\alpha=t-2$ term in the definition of Π_{1} converges to 0 as $t \rightarrow \infty$ and thus Π_{1} also converges to 0 as $t \rightarrow \infty$.

Claim 1

$$
\frac{1}{t} \sum_{j=0}^{t-1}\left(\frac{\Pi_{j}}{\left|\Pi_{1}\right|^{2}}\right)^{r} \rightarrow 1
$$

as $t \rightarrow \infty$.
Note that this claim implies $\left(\operatorname{Var}_{P_{n}}(f)\right)^{1 / 2}=o\left(E_{P_{n}}(f)\right)$ and thus Case 2 of Theorem follows. Note that $\Pi_{0}=1$. By Proposition \square below, $\bar{\Pi}_{j}=\Pi_{t-j}$. Thus $t \sum_{j=0}^{t-1} \Pi_{j}^{r}$ is real. Also note that since $\operatorname{Var}_{P_{n}}(f) \geq 0$, we have

$$
\frac{t \sum_{j=0}^{t-1} \Pi_{j}^{r}}{t^{2}\left|\Pi_{1}\right|^{2 r}} \geq 1
$$

Thus to prove the claim, it suffices to show

$$
\frac{1}{t} \sum_{j=0}^{t-1}\left(\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}}\right)^{r} \rightarrow 1
$$

Proposition $1 \bar{\Pi}_{j}=\Pi_{t-j}$.
Proof: Note that

$$
\bar{\Pi}_{j}=\prod_{\alpha=0}^{t-1}\left(a q^{-\left(2^{\alpha}\left(2^{j}-1\right)\right)}+b+c q^{\left(2^{\alpha}\left(2^{j}-1\right)\right)}\right)
$$

and

$$
\Pi_{t-j}=\prod_{\beta=0}^{t-1}\left(a q^{\left(2^{\beta}\left(2^{t-j}-1\right)\right)}+b+c q^{-\left(2^{\beta}\left(2^{t-j}-1\right)\right)}\right)
$$

If $j \leq \beta \leq t-1$, then note

$$
\begin{aligned}
2^{\beta}\left(2^{t-j}-1\right) & =2^{\beta-j}\left(2^{t}-2^{j}\right) \\
& =2^{\beta-j}\left(1-2^{j}\right) \quad(\bmod p) \\
& =-2^{\beta-j}\left(2^{j}-1\right)
\end{aligned}
$$

Thus the terms in Π_{t-j} with $j \leq \beta \leq t-1$ are equal to the terms in $\bar{\Pi}_{j}$ with $0 \leq \alpha \leq t-j-1$. If $0 \leq \beta \leq j-1$, then note

$$
\begin{aligned}
2^{\beta}\left(2^{t-j}-1\right) & =2^{t+\beta}\left(2^{t-j}-1\right) \quad(\bmod p) \\
& =2^{t+\beta-j}\left(2^{t}-2^{j}\right) \\
& =2^{t+\beta-j}\left(1-2^{j}\right) \quad(\bmod p) \\
& =-2^{t+\beta-j}\left(2^{j}-1\right)
\end{aligned}
$$

Thus the terms in Π_{t-j} with $0 \leq \beta \leq j-1$ are equal to the terms in $\bar{\Pi}_{j}$ with $t-j \leq \alpha \leq t-1$.

Now let's prove the claim. Let $G(x)=\left|a e^{2 \pi i x}+b+c e^{-2 \pi i x}\right|$. Thus

$$
\left|\Pi_{j}\right|=\prod_{\alpha=0}^{t-1} G\left(2^{\alpha}\left(2^{j}-1\right) / p\right)
$$

Note that if $0 \leq x<y \leq 1 / 4$, then $G(x)>G(y)$. On the interval $[1 / 4,1 / 2]$, where G increases and where G decreases depends on a, b, and c.
We shall prove a couple of facts analogous to facts in [1].
Fact 1: There exists a value t_{0} (possibly depending on a, b, and c) such that if $t>t_{0}$, then $\left|\Pi_{j}\right| \leq\left|\Pi_{1}\right|$ for all $j \geq 1$.
Since $G(x)=G(1-x)$, in proving this fact we may assume without loss of generality that $2 \leq j \leq t / 2$. Note that

$$
\left|\Pi_{j}\right|=\prod_{i=0}^{t-j-1} G\left(\frac{2^{i+j}-2^{i}}{p}\right) \prod_{i=0}^{j-1} G\left(\frac{2^{i+t-j}-2^{i}}{p}\right)
$$

We associate factors x from $\left|\Pi_{j}\right|$ with corresponding factors $\pi(x)$ of $\left|\Pi_{1}\right|$ in a manner similar to that in [1]. For $0 \leq i \leq t-j-2$, associate $G\left(\left(2^{i+j}-2^{i}\right) / p\right)$ with $G\left(2^{i+j-1} / p\right)$. Note that for $0 \leq i \leq t-j-2$, we have $G\left(\left(2^{i+j}-2^{i}\right) / p\right) \leq G\left(2^{i+j-1} / p\right)$. For $0 \leq i \leq j-3$, associate $G\left(\left(2^{i+t-j}-2^{i}\right) / p\right)$ in $\left|\Pi_{j}\right|$ with $G\left(2^{i} / p\right)$ in $\left|\Pi_{1}\right|$. Note that for $0 \leq i \leq j-3$, we have $G\left(\left(2^{i+t-j}-2^{i}\right) / p\right) \leq G\left(2^{i} / p\right)$.
The remaining terms in $\left|\Pi_{j}\right|$ are

$$
G\left(\frac{2^{t-1}-2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1}-2^{j-1}}{p}\right) G\left(\frac{2^{t-2}-2^{j-2}}{p}\right)
$$

and the remaining terms in $\left|\Pi_{1}\right|$ are

$$
G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right)
$$

It can be shown that

$$
\lim _{t \rightarrow \infty} \frac{G\left(\frac{2^{t-1}-2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1}-2^{j-1}}{p}\right) G\left(\frac{2^{t-2}-2^{j-2}}{p}\right)}{G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right)}=\frac{G(1 / 2)}{G(0)}<1
$$

Indeed, for some t_{0}, if $t>t_{0}$ and $2 \leq j \leq t / 2$,

$$
\begin{aligned}
& G\left(\frac{2^{t-1}-2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1}-2^{j-1}}{p}\right) G\left(\frac{2^{t-2}-2^{j-2}}{p}\right) \\
\leq & G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right)
\end{aligned}
$$

Fact 2: There exists a value t_{1} (possibly depending on a, b, and c) such that if $t>t_{1}$, then the following holds. There is a constant c_{0} such that for $t^{1 / 3} \leq j \leq t / 2$, we have

$$
\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}} \leq 1+\frac{c_{0}}{2^{j}}
$$

To prove this fact, we associate, for $i=0,1, \ldots, j-1$, the terms

$$
G\left(\frac{2^{t-i-1}-2^{j-i-1}}{p}\right) G\left(\frac{2^{t-i-1}-2^{t-j-i-1}}{p}\right)
$$

in $\left|\Pi_{j}\right|$ with the terms

$$
\left(G\left(\frac{2^{t-i-1}}{p}\right)\right)^{2}
$$

in $\left|\Pi_{1}\right|^{2}$. Suppose $A=\max \left|G^{\prime}(x)\right|$. Note that $A<\infty$. Then

$$
\left|G\left(\frac{2^{t-i-1}-2^{j-i-1}}{p}\right)\right| \leq\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|+A \frac{2^{j-i-1}}{p}
$$

Thus

$$
\frac{\left|G\left(\frac{2^{t-i-1}-2^{j-i-1}}{p}\right)\right|}{\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|} \leq 1+A \frac{2^{j-i-1}}{p\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|}
$$

Likewise

$$
\frac{\left|G\left(\frac{2^{t-i-1}-2^{t-j-i-1}}{p}\right)\right|}{\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|} \leq 1+A \frac{2^{t-j-i-1}}{p\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|}
$$

Since we do not have the conditions for Case 1 , there is a positive value B and value t_{2} such that if $t>t_{2}$, then $\left|G\left(2^{t-i-1} / p\right)\right|>B$ for all i with $0 \leq i \leq j-1$. By an exercise, one can verify

$$
\prod_{i=0}^{j-1} \frac{\left|G\left(\frac{2^{t-i-1}-2^{j-i-1}}{p}\right) G\left(\frac{2^{t-i-1}-2^{t-j-i-1}}{p}\right)\right|}{\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|^{2}} \leq 1+\frac{c_{3}}{2^{j}}
$$

for some value c_{3} not depending on j.
Note that the remaining terms in $\left|\Pi_{j}\right|$ all have length less than 1 . The remaining terms in $\left|\Pi_{1}\right|^{2}$ are

$$
\prod_{i=j}^{t-1}\left|G\left(\frac{2^{t-i-1}}{p}\right)\right|^{2}
$$

Since $G^{\prime}(0)=0$, there are positive constants c_{4} and c_{5} such that

$$
\left|G\left(\frac{2^{t-i-1}}{p}\right)\right| \geq 1-c_{4}\left(\frac{2^{t-i-1}}{p}\right)^{2} \geq \exp \left(-c_{5} \frac{2^{t-i-1}}{p}\right)
$$

for $i \geq j \geq t^{1 / 3}$. Observe

$$
\begin{aligned}
\prod_{i=j}^{t-1} \exp \left(-c_{5} \frac{2^{t-i-1}}{p}\right) & =\exp \left(-c_{5} \sum_{i=j}^{t-1} 2^{t-i-1} / p\right) \\
& =\exp \left(-c_{5} \sum_{k=0}^{t-j-1} 2^{k} / p\right) \\
& =\exp \left(-c_{5} \frac{2^{t-j}-1}{2^{t}-1}\right) \\
& >\exp \left(-c_{5} \frac{2^{t-j}}{2^{t}}\right) \\
& =\exp \left(-c_{5} / 2^{j}\right)>1-c_{5} / 2^{j} .
\end{aligned}
$$

There exists a constant c_{0} such that

$$
\frac{1+c_{3} / 2^{j}}{\left(1-c_{5} / 2^{j}\right)^{2}} \leq 1+c_{0} / 2^{j}
$$

for $j \geq 1$.
Thus, as in [1,

$$
\sum_{t^{1 / 3} \leq j \leq t / 2}\left|\left(\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}}\right)^{r}-1\right| \leq \frac{c_{6} t r}{2^{t^{1 / 3}}}<\frac{c_{7}}{2^{t^{1 / 4}}}
$$

for values c_{6} and c_{7}. Since $\left|\Pi_{j}\right|=\left|\Pi_{t-j}\right|$,

$$
\begin{aligned}
\frac{1}{t} \sum_{j=0}^{t-1}\left(\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}}\right)^{r} & \leq \frac{1}{t} \frac{1}{\left|\Pi_{1}\right|^{2 r}}+\frac{2}{t}\left(\sum_{1 \leq j<t^{1 / 3}}\left(\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}}\right)^{r}+\sum_{t^{1 / 3} \leq j \leq t / 2}\left(\frac{\left|\Pi_{j}\right|}{\left|\Pi_{1}\right|^{2}}\right)^{r}\right) \\
& =1+o(1)
\end{aligned}
$$

as $t \rightarrow \infty$. Thus Fact 2, the claim, and Theorem 1 are proved.
The next proposition considers what happens as we vary the values a, b, and c.
Proposition 2 If $a=c=\beta$ and $b=1-2 \beta$ and $m_{\beta}=\liminf _{t \rightarrow \infty}\left|\Pi_{1}\right|$, then $\lim _{\beta \rightarrow 0^{+}} m_{\beta}=1$.
Proof: Suppose $\beta<1 / 4$. Then

$$
\Pi_{1}=\prod_{\alpha=0}^{t-1}\left((1-2 \beta)+2 \beta \cos \left(2 \pi 2^{\alpha} / p\right)\right)
$$

Let $h(\alpha)=(1-2 \beta)+2 \beta \cos \left(2 \pi 2^{\alpha} / p\right)$. Note that

$$
\begin{aligned}
& \lim _{\beta \rightarrow 0^{+}} h(t-1)=1 \\
& \lim _{\beta \rightarrow 0^{+}} h(t-2)=1 \\
& \lim _{\beta \rightarrow 0^{+}} h(t-3)=1
\end{aligned}
$$

Furthermore, for some constant $\gamma>0$, one can show

$$
h(\alpha)>\exp \left(-\beta \gamma\left(2^{\alpha} / p\right)^{2}\right)
$$

if $2^{\alpha} / p \leq 1 / 8$ and $0<\beta<1 / 10$. So

$$
\begin{aligned}
\prod_{\alpha=0}^{t-4} h(\alpha) & >\prod_{\alpha=0}^{t-4} \exp \left(-\beta \gamma\left(2^{\alpha} / p\right)^{2}\right) \\
& =\exp \left(-\beta \gamma \sum_{\alpha=0}^{t-4}\left(2^{\alpha} / p\right)^{2}\right) \\
& >\exp \left(-\beta \gamma 2^{2(t-4)}(4 / 3) / p^{2}\right) \rightarrow 1
\end{aligned}
$$

as $\beta \rightarrow 0^{+}$.
Recalling that

$$
r=\frac{\log t}{2 \log \left(1 /\left|\Pi_{1}\right|\right)}-\lambda
$$

we see that $1 /\left(2 \log \left(1 /\left|\Pi_{1}\right|\right)\right)$ can be made arbitrarily large by choosing β small enough. Thus there exist values $c_{\beta} \rightarrow \infty$ as $\beta \rightarrow 0^{+}$such that if $n \leq c_{\beta}(\log p) \log (\log p)$, then $\left\|P_{n}-U\right\| \rightarrow 1$ as $t \rightarrow \infty$.

5 Problems for further study

One possible problem is to see if in some sense, there is a value of β on $[1 / 4,1 / 2]$ which maximizes the value of N required for $\left\|P_{N}-U\right\| \rightarrow 0$; to consider such a question, one might restrict p to values such that $p=2^{t}-1$.
Another possible question considers the behavior of these random processes for almost all odd p. For $\beta=1 / 3$, Chung, Diaconis, and Graham [1] showed that a multiple of $\log p$ steps suffice for almost all odd p. While their arguments should be adaptable with the change of appropriate constants to a broad range of choices of a, b, and c in Case 2, a more challenging question is to determine for which a, b, and c in Case 2 (if any), $(1+o(1)) \log _{2} p$ steps suffice for almost all odd p.

6 Acknowledgments

The author thanks Ron Graham for mentioning the problem at a January, 2005, conference on the Mathematics of Persi Diaconis. The author also thanks Robin Pemantle for a conversation on the topic and the participants in the Probability and Related Fields Seminar at the University at Albany for listening to some ideas on the problem.

References

[1] Chung, F., Diaconis, P., and Graham, R. A random walk problem arising in random number generation. Ann. Probab. 15 (1987), 1148-1165. MR0893921
[2] Diaconis, P. Group Representations in Probability and Statistics. Institute of Mathematical Statistics, 1988. MR0964069
[3] Hildebrand, M. Random processes of the form $X_{n_{+}}=a_{n} X_{n}+b_{n}(\bmod p)$. Ann. Probab. 21 (1993), 710-720. MR1217562
[4] Hildebrand, M. Random processes of the form $X_{n+1}=a_{n} X_{n}+b_{n}(\bmod p)$ where b_{n} takes on a single value. pp. 153-174, Random Discrete Structures, ed. Aldous and Pemantle. Springer-Verlag, 1996. MR1395613

