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Abstract

We investigate existence and permanence properties of invariant measures for abstract sto-
chastic Cauchy problems of the form

dU(t) = (AU(t) + f) dt + B dWH(t), t > 0,

governed by the generator A of an asymptotically unstable C0-semigroup on a Banach space
E. Here f ∈ E is fixed, WH is a cylindrical Brownian motion over a separable real Hilbert
space H, and B : H → E is a bounded operator. We show that if c0 6⊆ E, such invariant
measures fail to exist generically but may exist for a dense set of operators B. It turns out that
many results on invariant measures which hold under the assumption of uniform exponential
stability of S break down without this assumption.
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1. Introduction

Let A be the infinitesimal generator of a C0-semigroup S = {S(t)}t>0 on a real Banach space
E and let WH = {WH(t)}t>0 be a cylindrical Brownian motion over a separable real Hilbert
space H. In this note we study invariant measures for the stochastic abstract Cauchy problem
of the form

(1.1) dU(t) = (AU(t) + f) dt + B dWH(t), t > 0,

where f ∈ E is a fixed vector and B ∈ L (H,E) is a bounded operator. We are interested in
the situation where the semigroup S fails to be uniformly exponentially stable and intend to
answer such questions as for ‘how many’ operators B an invariant measure exists and what
can be said about its properties.
If the problem (1.1) with initial condition U(0) = x has a weak solution U = Ux, then this
solution is unique up to modification and it is given explicitly by the stochastic convolution
integral

(1.2) Ux(t) = S(t)x +

∫ t

0

S(t − s)f ds +

∫ t

0

S(t − s)B dWH(s), t > 0.

We refer to [11] for more details and unexplained terminology. A Radon probability measure
µ on E is called an invariant measure for the problem (1.1) if for all t > 0 and all bounded
real-valued Borel functions ϕ ∈ Cb(E) we have

∫

E

P (t)ϕdµ =

∫

E

ϕdµ,

where P (t)ϕ ∈ Cb(E) is given as

P (t)ϕ(x) = Eϕ(Ux(t)), x ∈ E.

As is well known [3, 4, 11] a unique invariant measure µ exists if a weak solution Ux exists
for some (all) x ∈ E and the semigroup generated by A is uniformly exponentially stable. It
is obtained as the weak limit µ = limt→∞ µ(t), where µ(t) is the distribution of U(t) := U0(t)
as given by (1.2) with initial value x = 0.
If the operators S(t) are compact for all t > 0, the existence of a nondegenerate invariant
measure for the problem (1.1) with f = 0 implies that the semigroup S is uniformly exponentially
stable [8, Theorem 2.6]. Recall that an invariant measure µ is said to be nondegenerate if
µ(O) > 0 for every nonempty open set O ⊆ E. The following example, adapted from [4,
Chapter 7], shows that in general the uniform exponential stability is by no means a necessary
condition for the existence of a nondegenerate invariant measure, even if E is a Hilbert space.
Although more refined examples will be presented below, this one is included because of its
particular simplicity.

Example 1. Let H = E = L2(R+) and let S be the rescaled left translation semigroup defined
by

S(t)f(x) = etf(x + t), x ∈ R+, t > 0.

Define, for n = 1, 2, . . . , the functions fn ∈ E by fn(x) := pn(x)e−x2

, where the polynomials
pn are chosen in such a way that (fn)n>1 is an orthonormal basis for E. The fact that such
polynomials exist can be deduced, e.g., from [7, Theorem 9.1]. Choose constants λn > 0 such
that

∑

n>1 λ2
n < ∞. The operator B :=

∑

n>1 λnBn, where Bnf := [f, fn]Efn, is well defined,
Hilbert-Schmidt, and has dense range.
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For t > 0 define the operators Qt ∈ L (E) by

Qtf :=

∫ t

0

S(s)BB∗S∗(s)f ds, f ∈ E.

A simple computation using the orthonormality of the fn gives

tr(Qt) =
∑

m>1

[Qtfm, fm]E =
∑

m>1

∑

n>1

λ2
n

∫ t

0

[fm, S(s)fn]2E ds

=
∑

n>1

λ2
n

∫ t

0

‖S(s)fn‖
2
E ds 6

∑

n>1

λ2
n

∫

∞

0

∫

∞

0

pn(x + s)2e2s−2(x+s)2 dx ds.

If we let λn → 0 fast enough the right hand side is finite and we infer that

sup
t>0

tr(Qt) < ∞.

By [3, Theorem 11.7] this implies that the stochastic Cauchy problem

dU(t) = AU(t) dt + B dWH(t), t > 0,

admits an invariant measure µ∞ whose covariance operator is given by the strong operator
limit Q∞ = limt→∞ Qt. Since B (and therefore also BB∗) has dense range, it follows from [6,
Lemma 5.2] that the operator Q∞ has dense range as well. By standard results on Gaussian
measures this implies that µ∞ is nondegenerate.

2. Linear equations with additive noise

In this section we consider the problem (1.1) for f = 0, that is, we study the linear stochastic
Cauchy problem

(2.1) dU(t) = AU(t) dt + B dWH(t), t > 0.

We begin our discussion with recalling some definitions from the theory of C0-semigroups.
Our notations are standard and may be looked up in e.g. [5]. The spectral bound and growth
bound of A are denoted by s(A) and ω0(A), respectively. The abscissa of uniform boundedness
of the resolvent of A is defined as

s0(A) := inf
{

ω ∈ R : {Re λ > ω} ⊆ %(A), sup
Re λ>ω

‖R(λ,A)‖ < ∞
}

.

One has s(A) 6 s0(A) 6 ω0(A), and both inequalities may be strict. As a consequence of
the Pringsheim-Landau theorem one has s(A) = s0(A) for positive C0-semigroups on Banach
lattices E. The celebrated Gearhart-Herbst-Prüss theorem asserts that for C0-semigroups on
Hilbert spaces E one has s0(A) = ω0(A).
Let H be a separable real Hilbert space with orthonormal basis (hn)n>1. In the applications
below, H will be either H or L2(R+;H). Let (γn)n>1 be a sequence of independent standard
Gaussian random variables on a probability space (Ω, P). A bounded operator R ∈ L (H , E)
is called γ-radonifying if the sum

∑

n>1 γn Rhn converges in L2(Ω;E). The space γ(H , E) of

all γ-radonifying operators in L (H , E) is a Banach space with respect to the norm

‖R‖γ(H ,E) :=
(

E

∥

∥

∥

∑

n>1

γn Rhn

∥

∥

∥

2)1/2

.

Moreover, γ(H,E) is an operator ideal in L (H,E), i.e., as a Banach space it is continuously
embedded into L (H,E), it contains all finite rank operators in L (H,E), and for every
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separable real Hilbert space H̃, every real Banach space Ẽ, and all operators R ∈ γ(H,E),

T ∈ L (H̃,H), and S ∈ L (E, Ẽ) we have SRT ∈ γ(H̃, Ẽ) and

‖SRT‖γ(H̃,Ẽ) 6 ‖S‖
L (H̃,H)‖R‖γ(H,E)‖T‖

L (E,Ẽ).

For Hilbert spaces E one has γ(H , E) = L2(H , E) with identical norms, where L2(H , E)
denotes the operator ideal of Hilbert-Schmidt operators from H to E.
The following necessary and sufficient condition for the existence of an invariant measure was
noted in [11, Proposition 4.4]:

Proposition 2. For an operator B ∈ L (H,E) the following assertions are equivalent:

(i) The problem (2.1) admits an invariant measure;
(ii) The operator IB : Cc(R+;H) → E defined by

IBf :=

∫

∞

0

S(t)Bf(t) dt

extends to a bounded operator IB ∈ γ(L2(R+;H), E).

Concerning uniqueness, in [11] it was shown that if there exists a weak∗-sequentially dense
subspace F of E∗ such that weak∗-limt→∞ S∗(t)x∗ = 0 for all x∗ ∈ F , then the problem (2.1)
admits at most one invariant measure. In passing we mention the following application of this
result:

Proposition 3. Let B be a subset of L (H,E) such that
⋃

B∈B

ran(B) = E.

If for all B ∈ B the problem (2.1) admits an invariant measure, then for all B ∈ L (H,E) the
problem (2.1) admits at most one invariant measure. In particular, for all B ∈ B the problem
(2.1) then admits a unique invariant measure.

Proof. Let x∗ ∈ D(A∗) be arbitrary. By the result quoted above it suffices to prove that
weak∗-limt→∞ S∗(t)x∗ = 0. Let x ∈ E be arbitrary. Choose B ∈ B and h ∈ H such that
Bh = x. We claim that limt→∞〈x, S∗(t)x∗〉 = 0. For y∗ ∈ E∗ let fy∗ : R+ → H be defined
as fy∗(t) = 〈x, S∗(t)y∗〉. By the assumptions and Proposition 2 we have that for all y∗ ∈ E∗,
fy∗ ∈ L2(R+) and

‖fy∗‖L2(R+) 6 ‖S(·)B‖γ(R+;H,E)‖h‖‖x
∗‖.

Since x∗ ∈ D(A∗), the function g(t) := |fx∗(t)|
2 is continuously differentiable on R+ with

g′(t) = 2fx∗(t)fA∗x∗(t). Hence by the Cauchy-Schwartz inequality, g′ ∈ L1(R+). From

lim
t,s→∞

|g(t) − g(s)| 6 lim
t,s→∞

∫ t

s

|g′(u)| du = 0

it follows that the limit L = limt→∞ g(t) exists. If L > 0, there exist ε > 0 and T > 0 such
that for all t > T we have g(t) > ε, which contradicts the fact that g ∈ L1(R+). We conclude
that

lim
t→∞

|〈x, S∗(t)x∗〉|2 = lim
t→∞

g(t) = L = 0.

Since x ∈ E was arbitrary, this proves that weak∗-limt→∞ S∗(t)x∗ = 0. �

A subset of a topological space is called residual if it is the intersection of a countable family
of open dense sets. By the Baire category theorem, every residual set in a complete metric
space is dense.
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Theorem 4. Let E be a Banach space not containing a closed subspace isomorphic to c0

and let I be an operator ideal in L (H,E). Let A be the generator of a C0-semigroup on E.
If s0(A) > 0, then the set J of all B ∈ I such that the problem (2.1) does not admit an
invariant measure is residual in I . If, moreover, the finite rank operators are dense in I ,
then the finite rank operators of J are dense in I .

Proof. For k = 1, 2, . . . let

Gk :=
{

B ∈ I : ‖IB‖γ(L2(R+;H),E) > k
}

where we put ‖IB‖γ(L2(R+;H),E) = ∞ in case IB 6∈ γ(L2(R+;H), E). We shall prove that each
Gk is open and dense in I . The residual set G :=

⋂

k>1 Gk is precisely the set of all B ∈ I

for which IB 6∈ γ(L2(R+;H), E), or equivalently, for which the problem (2.1) has no invariant
measure.
Fix k > 1. First we check that Gk is open in I , or equivalently, that the complement {Gk

is closed. Suppose limn→∞ Bn = B in I with each Bn ∈ {Gk. Then ‖IBn
‖γ(L2(R+;H,E)) 6 k

for all n. Since for all t > 0 we have limn→∞ S(t)Bn = S(t)B in L (H,E), from [10, Theorem
4.1] (here we use that c0 6⊆ E) we infer that IB ∈ γ(L2(R+;H), E) and ‖IB‖γ(L2(R+;H),E) 6 k.

Hence, B ∈ {Gk.
Next we check that Gk is dense in I . Suppose the contrary. Then there exist B0 ∈ I and
r > 0 such that B(B0, r) ⊆ {Gk, where B(B0, r) is the open ball in I of radius r centred
at B0. Fix a real number 0 < δ < s0(A). By [11, Theorem 1.2], for all B ∈ B(B0, r) the
L (H,E)-valued function λ 7→ R(λ,A)B admits a uniformly bounded analytic extension to the
half-plane {Re λ > δ}, and by linearity this conclusion holds for all B ∈ I . Fixing an arbitrary
norm one vector h0 ∈ H and taking for B the rank one operators of the form h 7→ [h, h0]Hx

with x ∈ E, we see that the E-valued functions λ 7→ R(λ,A)x admits a uniformly bounded
analytic extension to the half-plane {Re λ > δ}. From the uniform boundedness theorem
we conclude that {Re λ > δ} ⊆ %(A) and supRe λ>δ ‖R(λ,A)‖ < ∞. But this implies that
s0(A) 6 δ, a contradiction.
Suppose next that the finite rank operators are dense in I . Let B ∈ I , fix ε > 0 arbitrary,
and let B̃ ∈ I be a finite rank operator satisfying ‖B̃ − B‖I < ε

2 . If the problem (2.1),

with B replaced by B̃, does not admit an invariant measure we are done. Otherwise, write

B̃h =
∑N

n=1 cn[h, hn]Hxn with h1, . . . , hN orthonormal in H. Let HN be the linear span in H

of the vectors h1, . . . , hN and let WHN
be the restriction of WH to HN . Denote by IN the space

of all linear operators from HN to E endowed with the norm inherited from I . We now apply
the first part of the theorem, with H, WH , I replaced by HN , WHN

, IN . This results in an

operator ˜̃
B ∈ IN with ‖ ˜̃

B− B̃‖IN
< ε

2 for which the problem dU(t) = AU(t) dt+ ˜̃
B dWHN

(t)

has no invariant measure. Extending ˜̃
B identically zero on the orthogonal complement of HN ,

we obtain an operator in I with the desired properties. �

As an immediate consequence we see that if s0(A) > 0, the presence of an invariant measure
can be destroyed by an arbitrary small perturbation of B in I .
An obvious example of an operator ideal for which the first part of the theorem applies is
I = L (H,E). In the special case H = R

N (in which case WH is a standard R
N -valued

Brownian motion W ) we have I = L (RN , E) = EN and problem (2.1) may be written in
the form

dU(t) = AU(t) dt + d[W (t), x], t > 0,

where [W (t), x] =
∑N

n=1 Wn(t)xn.
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Both parts of the theorem apply to the operator ideal I = γ(H,E). The interest of this
particular example is explained by the fact that roughly speaking there is a correspondence
between operators B ∈ γ(H,E) on the one hand and E-valued Brownian motions on the
other. To be more precise let WH be a cylindrical Brownian motion on a probability space
(Ω, P). If (hn)n>1 is an orthonormal basis for H, then for each B ∈ γ(H,E) and t > 0
the sum WB(t) :=

∑

n>1 WH(t)hn Bhn converges in L2(Ω;E) and the resulting process WB

is an E-valued Brownian motion on (Ω, P) which is independent of the choice of (hn)n>1.
Conversely, every E-valued Brownian motion W arises in such a way by taking for H the
so-called reproducing kernel Hilbert space associated with W and for B the (γ-radonifying)
inclusion mapping from H into E. Although in general the problem (1.1) may fail to have a
solution even if B ∈ γ(H,E) (an example is presented in [9]), a solution always exists if in
addition to B ∈ γ(H,E) we assume that either E has type 2 (in particular, if E is a Hilbert
space or if E = Lp for 2 6 p < ∞) or the semigroup generated by A is analytic. See [9, 10, 11]
for more details.
Our next aim is to exhibit an example of a C0-semigroup generator A on a Hilbert space E

with the following properties:

(a) The spectral bound and growth bound of A satisfy s(A) = ω0(A) > 0;
(b) The set of all B ∈ γ(H,E) = L2(H,E) for which (2.1) has an invariant measure is

dense.

Its construction is based on [11, Example 4] which we recall first.

Example 5. For 2 < p < ∞ consider the space F = L2(1,∞) ∩ Lp(1,∞) endowed with the
norm ‖f‖ := max{‖f‖2, ‖f‖p}. On F we define the C0-semigroup SF by

(SF (t)f)(x) = f(xet), x > 1, t > 0.

It was shown by Arendt [1] that its generator AF satisfies s0(A
F ) = − 1

2 and ω0(A
F ) = − 1

p .

Put SF
β (t) := eβtSF (t), where 1

p < β < 1
2 is an arbitrary but fixed number. As is shown in

[11], for every B ∈ γ(H,F ) the stochastic Cauchy problem (2.1) associated with the operator
AF

β := AF + β admits a unique invariant measure. Note that ω0(A
F
β ) = − 1

p + β, which is

strictly positive by the choice of β.

Example 6. We construct a Hilbert space semigroup with the properties (a) and (b) announced
above. The idea is to embed the space F of Example 5 into a suitable weighted L2-space in
such a way that the relevant properties of the semigroup SF

β are preserved.
We have contractive and dense embeddings

F = L2(1,∞) ∩ Lp(1,∞) ↪→ L2(1,∞) ↪→ L2(1,∞; dx
x ) =: E.

The semigroup SF
β on F defined in Example 5 extends to a C0-semigroup S on E. To see this,

note that for f ∈ F and t > 0 we have
∫

∞

1

|SF
β (t)f(x)|2

dx

x
= e2βt

∫

∞

et

|f(ξ)|2
dξ

ξ
6 e2βt

∫

∞

1

|f(ξ)|2
dξ

ξ
.

Thus SF
β (t) extends to a bounded operator S(t) on E of norm ‖S(t)‖ 6 eβt. In combination

with the strong continuity of S on the dense subspace F of E it follows that S is a C0-semigroup
on E. For the function fc := 1(et,cet) with c > 1 we have

‖fc‖
2
E =

∫ cet

et

dx

x
= ln c
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and

‖S(t)fc‖
2
E = e2βt

∫ cet

et

dx

x
= e2βt ln c.

Hence ‖S(t)‖ > eβt, and we conclude that ‖S(t)‖ = eβt. Stated differently, the generator A of S

satisfies ω0(A) = β. Since S is positive and E is a Hilbert space, we have s(A) = s0(A) = ω0(A)
and property (a) holds.
To prove that property (b) holds we make the simple observation that the dense embedding
j : F ↪→ E induces a dense embedding

j : γ(H,F ) ↪→ γ(H,E) = L2(H,E).

The density of this embedding follows from the fact that the finite rank operators with values
in F are dense in both spaces. Now if B ∈ γ(H,F ) is given, let µF

β denote an invariant

measure of the linear stochastic Cauchy problem in F associated with AF
β and B. Then the

image measure µ := j(µF
β ) is an invariant measure for the linear stochastic Cauchy problem

in E associated with A and jB.

Notice that in the previous example the invariant measure µ is nondegenerate whenever B has
dense range.
It was shown in [8] that the existence of a nondegenerate invariant measure for the problem
(2.1) implies that the adjoint operator A∗ has no point spectrum in the closed right half-plane
{Re λ > 0}. If in addition we assume that the semigroup generated by A is uniformly bounded,
then one has

σp(A) ∩ iR ⊆ σp(A∗) ∩ iR

and the existence of a nondegenerate invariant measure for the problem (2.1) implies that A

has no point spectrum in {Re λ > 0}. As was shown in [8, Theorem 4.4] this implies that
there is at most one nondegenerate invariant measure for (2.1). The following example shows
that for semigroups with linear growth and 0 ∈ σp(A), a continuum of nondegenerate invariant
measures may exist.

Example 7. Let 2 < p < ∞ and fix 1
p < β < 1

2 . Put

w(x) :=
x2β−1

1 + log2 x
, x > 1,

and let Ew := L2(1,∞; w(x) dx). The space F of Example 5 is continuously and densely
embedded in Ew, and the semigroup SF

β extends to a C0-semigroup Sw on Ew. We check that

‖Sw(t)‖ =
(

1
2 t2 + 1 + 1

2 t
√

t2 + 4
)1/2

, t > 0,

so Sw grows linearly. Indeed, for f ∈ Ew and t > 0,
∫

∞

1

|Sw(t)f(x)|2w(x) dx =

∫

∞

et

f(ξ)2
ξ2β−1

1 + log2(ξe−t)
dξ

=

∫

∞

et

f(ξ)2w(ξ)
1 + log2 ξ

1 + (log ξ − t)2
dξ.

It is easy to compute that the function ξ 7→
1 + log2 ξ

1 + (log ξ − t)2
attains its maximal value on

(et,∞) at the point

ξt = exp( t
2 + 1

2

√

t2 + 4)
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and that the maximum equals

αt = 1
2 t2 + 1 + 1

2 t
√

t2 + 4.

Hence ‖Sw(t)f‖2 6 αt‖f‖
2. For t > 0 and ε > 0, let ft,ε := 1(ξt,ξt+ε). A straightforward

computation shows that

‖Sw(t)ft,ε‖
2

‖ft,ε‖2
→

1 + log2 ξt

1 + (log ξt − t)2
= αt as ε ↓ 0.

Thus ‖Sw(t)‖ = α
1/2
t as claimed.

Let

(2.2) b(x) := x−β , x > 1.

An elementary computation shows that b ∈ Ew and that Sw(t)b = b. It follows that b ∈ D(Aw)
and Awb = 0. Since b is nonzero, this shows that 0 ∈ σp(Aw).
As in Example 6, in Ew the problem (2.1) admits an invariant measure for every operator
B ∈ γ(H,F ), where we identify γ(H,F ) with a dense subspace of γ(H,Ew) = L2(H,Ew), and
a nondegenerate invariant measure exists whenever B has dense range. If µ is such a measure,
then for all c ∈ R the translated measure µc(C) := µ(C + cb) is a nondegenerate invariant
measure for (2.1); here b is the function defined in (2.2). Thus, a continuum of such measures
exists.

3. The inhomogeneous problem with additive noise

Next we consider the inhomogeneous problem (1.1),

dU(t) = (AU(t) + f)dt + B dWH(t), t > 0,

where f ∈ E is a fixed vector. Following the arguments of [3, Propositions 11.2 and 11.5] one
sees that a Radon probability measure µ on E is invariant if and only if there exists a stationary
solution V of (1.1) (on a possibly larger probability space) such that µ is the distribution of
V (t) for all t > 0. If µ has a first moment, i.e., if there exists an element m(µ) ∈ E such that
for all x∗ ∈ E∗ we have x∗ ∈ L1(E,µ) and

〈m(µ), x∗〉 =

∫

E

〈x, x∗〉 dµ(x),

then by applying x∗ on both sides of the identity

V (t) = S(t)V (0) +

∫ t

0

S(t − s)f ds +

∫ t

0

S(t − s)B dWH(s),

and taking expectations, the Hahn-Banach theorem shows that m(µ) satisfies the identity

(3.1) m(µ) = S(t)m(µ) +

∫ t

0

S(t − s)f ds = S(t)m(µ) +

∫ t

0

S(s)f ds, t > 0.

The following proposition relates invariant measures with first moments of the problem (1.1)
to the invariant measure of the homogeneous problem (2.1) with f = 0. Its proof follows
readily from the identity on [3, p. 122], which extends without change to the present Banach
space setting.
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Proposition 8. The inhomogeneous equation (1.1) admits an invariant measure with first
moment if and only if f ∈ ran (A) and the homogeneous equation (2.1) admits an invariant
measure (and then also a Gaussian one, which has first moment). Moreover, if f ∈ ran (A),
then V is a stationary solution of (1.1) if and only if V = U + a for some a ∈ D(A) with
−Aa = f and some stationary solution U of (2.1).

We proceed with a Hilbert space example which shows that even if s(A) > 0 it may happen
that the inhomogeneous problem (1.1) has an invariant measure for all choices of f ∈ E.

Example 9. We show that Example 6 displays the stated properties. For the proof we fix
B ∈ γ(H,F ), where F is the space of Example 5. Let U be a stationary solution of the problem
(2.1) in E, which exists according to the facts proved in Example 6 and the observations made
above. Let f ∈ E be arbitrary and define for c ∈ R,

(3.2) ac(x) := cx−β − x−β

∫ x

1

ξβ−1f(ξ) dξ, x > 1.

Observe that

|a0(x)| 6 x−β

(
∫ x

1

ξβ−1dξ

)1/2 (
∫ x

1

ξβ−1f(ξ)2 dξ

)1/2

6 β−1/2x−β/2

(
∫ x

1

ξβ−1f(ξ)2 dξ

)1/2

, x > 1,

so that, by integration by parts, for all T > 1 we obtain
∫ T

1

a0(x)2x−1 dx 6 β−1T−β(−β)−1

∫ T

1

ξβ−1f(ξ)2 dξ + β−2

∫ T

1

x−βxβ−1f(x)2 dx

6 β−2

∫

∞

1

x−1f(x)2 dx.

Since b(x) := x−β belongs to E it follows that ac = cb+a0 ∈ E for all c ∈ R. By an elementary
computation we check that

S(t)ac +

∫ t

0

S(s)f ds = ac.

We infer that ac ∈ D(A) and −Aac = f . This shows that f ∈ ran (A). Thus by Proposition
8, the inhomogeneous problem admits a stationary solution and hence an invariant measure.

More can be said in the above example. If µ is an invariant measure for the inhomogeneous
problem with first moment m(µ), then necessarily m(µ) is given by the right hand-side of (3.2)
for some c ∈ R. Indeed, since m(µ) satisfies (3.1) it suffices to show that the only elements
b ∈ E satisfying b − S(t)b = 0 for all t > 0 are given by b(x) = cx−β for some c ∈ R. Since
by assumption for all t > 0 we have eβtb(xet) = b(x) for almost all x > 1, it follows that for
all τ > 1 we have τβb(xτ) = b(x) for almost all x > 1. Since (x, τ) 7→ τβb(xτ) is measurable,
Fubini’s theorem yields that for almost all x > 1 the equality τβb(xτ) = b(x) holds for almost
all τ > 1. Consider a fixed x = x0 with this property. Then, with θ := x0τ , we obtain

b(θ) = cθ−β for almost all θ > x0, where c = b(x0)x
β
0 . By letting x0 ↓ 1 we infer that c is

independent of x0 and that b(x) = cx−β for almost all x > 1.
Summarizing what we proved so far, we see that for every f ∈ E the set of means of all invariant
measures having a first moment is a one-parameter family parametrized by the real parameter
c. Note that even for the homogeneous problem (2.1), invariant measures may exist whose first
moment does not exist. Indeed, any weak limit of convex combinations of invariant measures
is invariant as well. Returning to Example 6, if µ is an invariant measure of the homogeneous
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problem with mean zero and if we put µn(C) := µ(C + 2nb) and ν :=
∑

n>1 2−nµn, where

b ∈ E is defined by (2.2), then ν is an invariant measure and
∫

E

∣

∣[x, b]E
∣

∣ dν(x) >
∑

n>1

2−n
∣

∣

∣

∫

E

[x, b]E dµn(x)
∣

∣

∣
=

∑

n>1

2−n
∣

∣[2nb, b]E
∣

∣ = ∞.

Let U denote the solution of (1.1) with initial condition U(0) = 0; thus

(3.3) U(t) =

∫ t

0

S(s)f ds +

∫ t

0

S(t − s) dW (s).

For each t > 0 we denote by µ(t) the distribution of U(t). The following result is a consequence
of a standard result on weak convergence of Gaussian measures [2, Theorem 3.8.9]:

Proposition 10. The weak limit µ := lim
t→∞

µ(t) exists if and only if the limit lim
t→∞

∫ t

0

S(s)f ds

exists in E and the homogeneous problem (2.1) admits an invariant measure. In this situation,
µ is an invariant measure for the problem (1.1) and we have

m(µ) =

∫

∞

0

S(s)f ds.

If ω0(A) < 0, then this proposition shows that the measures µ(t) converge weakly to an
invariant measure µ of (1.1). We will show next that, even in the presence of invariant
measures, this convergence may fail if the semigroup has linear growth.

Example 11. We continue with Example 7 and show that for certain functions f an invariant

measure for (1.1) exists, although the integrals
∫ t

0
Sw(s)f ds fail to converge in Ew as t → ∞.

An appeal to Proposition 10 then shows that the measures µ(t) fail to converge weakly.
Consider the function

f(x) :=















x−β

(log log x) log x
for x > ee

0 for 1 < x 6 ee.

Then |f(x)| 6 x−β , so f ∈ Ew. The function

x−β

∫ x

1

ξβ−1f(ξ) dξ =

{

x−β log log log x for x > ee

0 for 1 < x 6 ee

is a member of Ew and in the same way as in Example 9 we infer that f ∈ ran (Aw). Due to
Proposition 8 and the existence of an invariant measure with first moment for the homogeneous
problem, there exists an invariant measure for (1.1) with A replaced by Aw.
For all t > e and x > 1,

∫ t

0

Sw(s)f(x) ds =

∫ t

(e−log x)+

x−β

(log(s + log x))(s + log x)
ds

= x−β log
( log(t + log x)

log((e − log x)+ + log x)

)

.

From this we infer that the integrals
∫ t

0
Sw(s)f ds diverge in Ew as t → ∞.

Acknowledgment – Proposition 3 was obtained in a discussion with Mark Veraar.
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