ON THE QUADRATIC WIENER FUNCTIONAL ASSOCIATED WITH THE MALLIAVIN DERIVATIVE OF THE SQUARE NORM OF BROWNIAN SAMPLE PATH ON INTERVAL

SETSUO TANIGUCHI ${ }^{1}$
Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
email: taniguch@math.kyushu-u.ac.jp

Submitted 17 April 2005, accepted in final form 11 January 2006
AMS 2000 Subject classification: 60H07, 60E10, 60E05
Keywords: stochastic oscillatory integral, Brownian sample path, density function

Abstract

Exact expressions of the stochastic oscillatory integrals with phase function $\int_{0}^{T}\left(\int_{t}^{T} w(s) d s\right)^{2} d t$, $\{w(t)\}_{t \geq 0}$ being the 1-dimensional Brownian motion, are given. As an application, the density function of the distribution of the half of the Wiener functional is given.

1 Introduction and statement of result

The study of quadratic Wiener functionals, i.e., elements in the space of Wiener chaos of order 2, goes back to Cameron-Martin [1, 2] and Lévy [8]. While a stochastic oscillatory integral with quadratic Wiener functional as phase function has a general representation via CarlemanFredholm determinant $([3,6,10])$, in our knowledge, a few examples, where the integrals are represented with more concrete functions like the ones used by Cameron-Martin and Lévy, are available. See $[1,2,8,6,10]$ and references therein. In this paper, we study a new quadratic Wiener functional which admits a concrete expression of stochastic oscillatory integral, and apply the expression to compute the density function of the Wiener functional.
Let $T>0, \mathcal{W}$ be the space of all \mathbf{R}-valued continuous functions w on $[0, T]$ with $w(0)=0$, and P be the Wiener measure on \mathcal{W}. The Wiener functional investigated in this paper is

$$
q(w)=\int_{0}^{T}\left(\int_{t}^{T} w(s) d s\right)^{2} d t, \quad w \in \mathcal{W}
$$

The functional q interests us because it is a key ingredient in the study of asymptotic theory on \mathcal{W}. Namely, recall the Wiener functional

$$
q_{0}(w)=\int_{0}^{T} w(t)^{2} d t, \quad w \in \mathcal{W}
$$

[^0]which was studied first by Cameron-Martin [1, 2, 8]. As is well-known ([15]), the stochastic oscillatory integral
$$
\int_{\mathcal{W}} \exp \left(\zeta q_{0} / 2\right) \delta_{y}(w(T)) d P
$$
where $\delta_{y}(w(T))$ is Watanabe's pull back of the Dirac measure δ_{y} concentrated at $y \in \mathbf{R}$ via $w(T)$, relates to the fundamental solution to the heat equation associated with the Schrödinger operator $(1 / 2)\left\{(d / d x)^{2}+\zeta x^{2}\right\}$, which describes the quantum mechanics of harmonic oscillator. If we denote by \mathcal{H} the Cameron-Martin subspace of \mathcal{W} (\equiv the subspace of all absolutely continuous $h \in \mathcal{W}$ with square integrable derivative \dot{h}) and set $\langle h, g\rangle_{\mathcal{H}}=\int_{0}^{T} \dot{h}(t) \dot{g}(t) d t$ and $\|h\|_{\mathcal{H}}^{2}=\langle h, h\rangle_{\mathcal{H}}$ for $h, g \in \mathcal{H}$, then it is straightforward to see that
$$
q=\frac{1}{4}\left\|\nabla q_{0}\right\|_{\mathcal{H}}^{2}
$$
where ∇ denotes the Malliavin gradient. Thus q determines the stationary points of q_{0}. It should be noted that, in the context of the Malliavin calculus, the set of stationary points of q_{0}, i.e. the set $\left\{\nabla q_{0}=0\right\}=\{q=0\}$ is determined uniquely up to equivalence of quasi-surely exceptional sets. On account of the stationary phase method on finite dimensional spaces (cf.[4]), q would play an important role in the study of asymptotic behavior of the stochastic oscillatory integral $\int_{\mathcal{W}} \exp \left(\zeta q_{0}\right) \psi d P$ with amplitude function ψ (cf. [9, 11, 12], in particular [13, 14]).
The aim of this paper is to show
Theorem 1. (i) For sufficiently small $\lambda>0$, the following identities hold.
\[

$$
\begin{align*}
& \int_{\mathcal{W}} \exp (\lambda q / 2) d P=\left\{\frac{1}{\cosh \left(\lambda^{1 / 4} T\right) \cos \left(\lambda^{1 / 4} T\right)}\right\}^{1 / 2}, \tag{1}\\
& \int_{\mathcal{W}} \exp (\lambda q / 2) \delta_{0}(w(T)) d P \\
& \quad=\frac{\lambda^{1 / 8}}{\sqrt{\pi}\left\{\sin \left(\lambda^{1 / 4} T\right) \cosh \left(\lambda^{1 / 4} T\right)+\sinh \left(\lambda^{1 / 4} T\right) \cos \left(\lambda^{1 / 4} T\right)\right\}^{1 / 2}} . \tag{2}
\end{align*}
$$
\]

(ii) Define $\theta(u ; x)$ and $p_{T}(x)$ for $u \in[0, \pi / 2]$ and $x \geq 0$ by

$$
\begin{aligned}
& \theta(u ; x)=\sum_{k=-\infty}^{\infty}(-1)^{k} \frac{\{u+(2 k+1) \pi\}^{3} e^{-x\{u+(2 k+1) \pi\}^{4} / T^{4}}}{\sqrt{\cosh (u+(2 k+1) \pi)}}, \\
& p_{T}(x)=\frac{4}{\pi T^{4}} \int_{0}^{\pi / 2} \frac{\theta(u ; x)}{\sqrt{\cos u}} d u
\end{aligned}
$$

Then p_{T} is the density function of the distribution of $q / 2$ on \mathbf{R};

$$
\begin{equation*}
P(q / 2 \in d x)=p_{T}(x) \chi_{[0, \infty)}(x) d x, \tag{3}
\end{equation*}
$$

where $\chi_{[0, \infty)}$ denotes the indicator function of $[0, \infty)$.
The assertion (i) of Theorem 1 will be shown in Section 2 and (ii) will be proved in Section 3.

2 Proof of Theorem 1 (i)

In this section, we shall show the identities (1) and (2). The proof is broken into several steps, each being a lemma. We first show

Lemma 1. Define the Hilbert-Schmidt operator $A: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
A h(t)=\int_{0}^{t} d s \int_{s}^{T} d u \int_{0}^{u} d v \int_{v}^{T} d a h(a), \quad h \in \mathcal{H}, t \in[0, T] .
$$

Then it holds that

$$
\begin{equation*}
q=Q_{A}+\frac{T^{4}}{6} \tag{4}
\end{equation*}
$$

where $Q_{A}=\left(\nabla^{*}\right)^{2} A, \nabla^{*}$ being the adjoint operator of the Malliavin gradient ∇. Moreover, A is of trace class and $\operatorname{tr} A=T^{4} / 6$. In particular, $q=Q_{A}+\operatorname{tr} A$.

Proof. Due to the integration by parts on $[0, T]$, it is easily seen that

$$
\begin{equation*}
\left\langle\nabla^{2} q, h \otimes k\right\rangle_{\mathcal{H} \otimes 2}=2 \int_{0}^{T}\left(\int_{t}^{T} h(s) d s\right)\left(\int_{t}^{T} k(s) d s\right) d t=2\langle A h, k\rangle_{\mathcal{H}} \tag{5}
\end{equation*}
$$

for $h, k \in \mathcal{H}$, where $\mathcal{H}^{\otimes 2}$ denotes the Hilbert space of all Hilbert-Schmidt operators on \mathcal{H}, and $\langle\cdot, \cdot\rangle_{\mathcal{H} \otimes 2}$ does its inner product. Hence

$$
\begin{equation*}
\nabla^{2} q=2 A \tag{6}
\end{equation*}
$$

Let \mathfrak{C}_{2} be the space of Wiener chaos of order 2. Since

$$
w(s) w(u)-s=w(s)^{2}-s+w(s)\{w(u)-w(s)\} \in \mathfrak{C}_{2} \quad \text { for } u \geq s
$$

we have that

$$
q-\frac{T^{4}}{6}=2 \int_{0}^{T} \int_{t}^{T} \int_{s}^{T}(w(s) w(u)-s) d u d s d t \in \mathfrak{C}_{2}
$$

From this and (6), we can conclude the identity (4).
Let $\left\{h_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of \mathcal{H}, and define $k_{t} \in \mathcal{H}, t \in[0, T]$, by

$$
k_{t}(s)=\int_{0}^{s}(T-\max \{t, u\}) d u, \quad s \in[0, T]
$$

Since $\int_{t}^{T} h_{n}(s) d s=\left\langle k_{t}, h_{n}\right\rangle_{\mathcal{H}}$, due to (5), we obtain that

$$
\sum_{n=1}^{\infty}\left\langle A h_{n}, h_{n}\right\rangle_{\mathcal{H}}=\int_{0}^{T} \sum_{n=1}^{\infty}\left\langle k_{t}, h_{n}\right\rangle_{\mathcal{H}}^{2} d t=\int_{0}^{T}\left\|k_{t}\right\|_{\mathcal{H}}^{2} d t=\frac{T^{4}}{6}
$$

Thus A is of trace class and $\operatorname{tr} A=T^{4} / 6$.
We next recall the following assertion achieved in $[5,7]$.

Lemma 2. Let $U: \mathcal{H} \rightarrow \mathcal{H}$ be a Hilbert-Schmidt operator admitting a decomposition $U=$ $U_{V}+U_{F}$ with a Volterra operator $U_{V}: \mathcal{H} \rightarrow \mathcal{H}$ and a bounded operator $U_{F}: \mathcal{H} \rightarrow \mathcal{H}$ possessing the finite-dimensional range $R\left(U_{F}\right)$.
(i) For sufficiently small $\lambda \in \mathbf{R}$, it holds that

$$
\begin{equation*}
\int_{\mathcal{W}} \exp \left(\lambda Q_{U} / 2\right) d P=\left\{\operatorname{det}\left(I-\lambda U_{F}\left(I-\lambda U_{V}\right)^{-1}\right)\right\}^{-1 / 2} e^{-(\lambda / 2) \operatorname{tr} U_{F}} \tag{7}
\end{equation*}
$$

(ii) Let E be a subspace of $R\left(U_{F}\right)$ and $\left\{\eta_{1}, \ldots, \eta_{d}\right\}$ be a basis of E. Define the Wiener functional $\eta: \mathcal{W} \rightarrow \mathbf{R}^{d}$ by $\eta=\left(\nabla^{*} \eta_{1}, \ldots, \nabla^{*} \eta_{d}\right)$. Then, for sufficiently small $\lambda \in \mathbf{R}$, it holds that

$$
\begin{align*}
\int_{\mathcal{W}} \exp \left(\lambda Q_{U} / 2\right) \delta_{0}(\eta) d P & \\
& =\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} C(\eta)}}\left\{\operatorname{det}\left(I-\lambda U_{1}^{\natural}\left(I-\lambda U_{V}\right)^{-1}\right)\right\}^{-1 / 2} e^{-(\lambda / 2) \operatorname{tr} U_{F}} \tag{8}
\end{align*}
$$

where $U_{1}^{\natural}=-\pi_{E} U_{V}+\left(I-\pi_{E}\right) U_{F}, \pi_{E}: \mathcal{H} \rightarrow \mathcal{H}$ being the orthogonal projection onto E, and $C(\eta)=\left(\left\langle\eta_{i}, \eta_{j}\right\rangle_{\mathcal{H}}\right)_{1 \leq i, j \leq d}$.

Proof. The essential part of the proof can be found in [5, 7]. For the completeness, we give the proof.
Due to the splitting property of the Wiener measure, it holds that

$$
\int_{\mathcal{W}} \exp \left(\lambda Q_{U} / 2\right) d P=\left\{\operatorname{det}_{2}(I-\lambda U)\right\}^{-1 / 2}
$$

where det_{2} denotes the Carleman-Fredholm determinant. For example, see [3, 7]. Observe that, for Hilbert-Schmidt operators $C, D: \mathcal{H} \rightarrow \mathcal{H}$ such that C is of trace class, it holds that

$$
\begin{equation*}
\operatorname{det}_{2}(I+C)(I+D)=\operatorname{det}(I+C) \operatorname{det}_{2}(I+D) e^{-\operatorname{tr} C(I+D)} \tag{9}
\end{equation*}
$$

Since $\operatorname{det}_{2}\left(I-\lambda U_{V}\right)=1$, substituting $C=-\lambda U_{F}\left(I-\lambda U_{V}\right)^{-1}$ and $D=-\lambda U_{V}$ into (9), we obtain that

$$
\operatorname{det}_{2}(I-\lambda U)=\operatorname{det}\left(I-\lambda U_{F}\left(I-\lambda U_{V}\right)^{-1}\right) e^{\lambda \operatorname{tr} U_{F}}
$$

Thus (7) has been shown.
Put $U_{0}=\left(I-\pi_{E}\right) U\left(I-\pi_{E}\right)$ and $U_{1}=\pi_{E} U \pi_{E}$. Then it holds $([7,12])$ that

$$
\int_{\mathcal{W}} \exp \left(\lambda Q_{U} / 2\right) \delta_{0}(\eta) d P=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} C(\eta)}}\left\{\operatorname{det}_{2}\left(I-\lambda U_{0}\right)\right\}^{-1 / 2} e^{-(\lambda / 2) \operatorname{tr} U_{1}}
$$

Setting $U^{\natural}=\left(I-\pi_{E}\right) U$, and substituting $C=-\lambda U_{1}^{\natural}\left(I-\lambda U_{V}\right)^{-1}$ and $D=-\lambda U_{V}$ into (9), we see that

$$
\operatorname{det}_{2}\left(I-\lambda U_{0}\right)=\operatorname{det}_{2}\left(I-\lambda U^{\natural}\right)=\operatorname{det}\left(I-\lambda U_{1}^{\natural}\left(I-\lambda U_{V}\right)^{-1}\right) e^{\lambda \operatorname{tr} U_{1}^{\natural}}
$$

Since $\operatorname{tr} U_{1}^{\natural}+\operatorname{tr} U_{1}=\operatorname{tr} U_{F}$, we obtain (8).

It is not known if, by just watching specific shape of quadratic Wiener functional, one can tell that the associated Hilbert-Schmidt operator admits a decomposition as a sum of a Volterra operator and a bounded operator with finite dimensional range. However, in our situation, we know a priori that the operator A admits such a decomposition. Namely, the Hilbert-Schmidt operator B associated with q_{0} admits such a decomposition ([7]). Being equal to the square of B (see Remark 1 below), so does A. The following lemma gives the concrete expression of the decomposition of A.
Lemma 3. Define $\mathcal{I}, A_{V}, A_{F}: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
\begin{aligned}
& \mathcal{I} h(t)=\int_{0}^{t} h(s) d s, \quad t \in[0, T] \\
& A_{V} h=\mathcal{I}^{4} h, \quad A_{F} h=\left\{\frac{T^{2}}{2} \mathcal{I} h(T)-\mathcal{I}^{3} h(T)\right\} \eta_{1}-\frac{1}{6} \mathcal{I} h(T) \eta_{2}, \quad h \in \mathcal{H}
\end{aligned}
$$

where $\eta_{j}(t)=t^{2 j-1}, t \in[0, T], j=1,2$. Then (i) $A=A_{V}+A_{F}$, (ii) A_{V} is a Volterra operator, (iii) $R\left(A_{F}\right)=\left\{a \eta_{1}+b \eta_{2} \mid a, b \in \mathbf{R}\right\}$, (iv) $\operatorname{tr} A_{F}=\operatorname{tr} A$, and (v) for $\lambda>0$, it holds that

$$
\begin{align*}
&\left(I-\lambda A_{V}\right)^{-1} h(t)=\frac{1}{2} \int_{0}^{t} \dot{h}(s)\left\{\cosh \left(\lambda^{1 / 4}(t-s)\right)+\cos \left(\lambda^{1 / 4}(t-s)\right)\right\} d s \\
& h \in \mathcal{H}, t \in[0, T] \tag{10}
\end{align*}
$$

Proof. The assertions (i) and (ii) follow from the very definitions of A and A_{V}. The assertion (iv) is an immediate consequence of these and Lemma 1. By the definition of A_{F}, the inclusion $R\left(A_{F}\right) \subset\left\{a \eta_{1}+b \eta_{2} \mid a, b \in \mathbf{R}\right\}$ is obvious. To see the converse inclusion, it suffices to notice that $A_{F} \eta_{1}=\left(5 T^{4} / 24\right) \eta_{1}-\left(T^{2} / 12\right) \eta_{2}$ and $A_{F} \eta_{2}=\left(7 T^{6} / 60\right) \eta_{1}-\left(T^{4} / 24\right) \eta_{2}$. Thus (iii) has been verified.
To see (v), let $\left(I-\lambda A_{V}\right) g=h$ and $f=\mathcal{I}^{4} g$. It then holds that $f^{(4)}-\lambda f=h$, where $f^{(n)}=(d / d t)^{n} f$. This leads us to the ordinary differential equation;

$$
\frac{d}{d t}\left(\begin{array}{c}
f \\
f^{(1)} \\
f^{(2)} \\
f^{(3)}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\lambda & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
f \\
f^{(1)} \\
f^{(2)} \\
f^{(3)}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
h
\end{array}\right), \quad\left(\begin{array}{c}
f(0) \\
f^{(1)}(0) \\
f^{(2)}(0) \\
f^{(3)}(0)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

It is then easily seen that

$$
f^{(3)}(t)=\frac{1}{2} \int_{0}^{t} h(s)\left\{\cosh \left(\lambda^{1 / 4}(t-s)\right)+\cos \left(\lambda^{1 / 4}(t-s)\right)\right\} d s
$$

Since $g=f^{(4)}$, this implies the identity (10).
Lemma 4. The identity (1) holds.
Proof. Let $\eta_{1}, \eta_{2} \in \mathcal{H}$ be as described in Lemma 3, and put $f_{j}=\left(I-\lambda A_{V}\right)^{-1} \eta_{j}, j=1,2$. By virtue of Lemma 3, we have that

$$
\begin{aligned}
& \mathcal{I} f_{1}(t)=\frac{\lambda^{-1 / 2}}{2}\left\{\cosh \left(\lambda^{1 / 4} t\right)-\cos \left(\lambda^{1 / 4} t\right)\right\} \\
& \mathcal{I}^{3} f_{1}(t)=\frac{\lambda^{-1}}{2}\left\{\cosh \left(\lambda^{1 / 4} t\right)+\cos \left(\lambda^{1 / 4} t\right)-2\right\} \\
& \mathcal{I} f_{2}(t)=3 \lambda^{-1}\left\{\cosh \left(\lambda^{1 / 4} t\right)+\cos \left(\lambda^{1 / 4} t\right)-2\right\} \\
& \mathcal{I}^{3} f_{2}(t)=3 \lambda^{-3 / 2}\left\{\cosh \left(\lambda^{1 / 4} t\right)-\cos \left(\lambda^{1 / 4} t\right)\right\}-3 \lambda^{-1} t^{2}
\end{aligned}
$$

Hence, if we set $\alpha_{\lambda}=\cosh \left(\lambda^{1 / 4} T\right)$ and $\beta_{\lambda}=\cos \left(\lambda^{1 / 4} T\right)$, then

$$
\begin{aligned}
(I & \left.-\lambda A_{F}\left(I-\lambda A_{V}\right)^{-1}\right) \eta_{1} \\
& =\left\{-\frac{T^{2} \lambda^{1 / 2}}{4}\left(\alpha_{\lambda}-\beta_{\lambda}\right)+\frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)\right\} \eta_{1}+\frac{\lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right) \eta_{2} \\
(I & \left.-\lambda A_{F}\left(I-\lambda A_{V}\right)^{-1}\right) \eta_{2} \\
& =\left\{-\frac{3 T^{2}}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)+3 \lambda^{-1 / 2}\left(\alpha_{\lambda}-\beta_{\lambda}\right)\right\} \eta_{1}+\frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right) \eta_{2}
\end{aligned}
$$

Thus, by virtue of (iii), it holds that

$$
\begin{aligned}
& \operatorname{det}\left(I-\lambda A_{F}\left(I-\lambda A_{V}\right)^{-1}\right) \\
& \quad=\operatorname{det}\left(\begin{array}{cc}
-\frac{T^{2} \lambda^{1 / 2}}{4}\left(\alpha_{\lambda}-\beta_{\lambda}\right)+\frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right) & \frac{\lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right) \\
-\frac{3 T^{2}}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)+3 \lambda^{-1 / 2}\left(\alpha_{\lambda}-\beta_{\lambda}\right) & \frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)
\end{array}\right)=\alpha_{\lambda} \beta_{\lambda} .
\end{aligned}
$$

This implies the identity (1), because Lemmas 1, 2, and 3 yield that

$$
\int_{\mathcal{W}} \exp (\lambda q / 2) d P=\left\{\operatorname{det}\left(I-\lambda A_{F}\left(I-\lambda A_{V}\right)^{-1}\right)\right\}^{-1 / 2}
$$

Lemma 5. The identity (2) holds.
Proof. Let $\eta_{j}, j=1,2$, be as in Lemma 3 (iii), and $E=\left\{c \eta_{1} \mid c \in \mathbf{R}\right\}$. Define A_{1}^{\natural} as described in Lemma 2 with $U=A, U_{V}=A_{V}$, and $U_{F}=A_{F}$. Since $\pi_{E} h=(h(T) / T) \eta_{1}$ for any $h \in \mathcal{H}$, we have that

$$
A_{1}^{\natural} h=\left\{-\frac{1}{T} \mathcal{I}^{4} h(T)+\frac{T^{2}}{6} \mathcal{I} h(T)\right\} \eta_{1}-\frac{1}{6} \mathcal{I} h(T) \eta_{2} .
$$

Let f_{1}, f_{2} be as in the proof of Lemma 4. Then we see that

$$
\begin{aligned}
& \mathcal{I}^{4} f_{1}(t)=\frac{\lambda^{-5 / 4}}{2}\left\{\sinh \left(\lambda^{1 / 4} t\right)+\sin \left(\lambda^{1 / 4} t\right)\right\}-\lambda^{-1} t \\
& \mathcal{I}^{4} f_{2}(t)=3 \lambda^{-7 / 4}\left\{\sinh \left(\lambda^{1 / 4} t\right)-\sin \left(\lambda^{1 / 4} t\right)\right\}-\lambda^{-1} t^{3}
\end{aligned}
$$

Hence, if we put $\sigma_{\lambda}=\sinh \left(\lambda^{1 / 4} T\right)$ and $\tau_{\lambda}=\sin \left(\lambda^{1 / 4} T\right)$, then

$$
\begin{aligned}
(I & \left.-\lambda A_{1}^{\natural}\left(I-\lambda A_{V}\right)^{-1}\right) \eta_{1} \\
& =\left\{\frac{\lambda^{-1 / 4}}{2 T}\left(\sigma_{\lambda}+\tau_{\lambda}\right)-\frac{T^{2} \lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right)\right\} \eta_{1}+\frac{\lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right) \eta_{2} \\
(I & \left.-\lambda A_{1}^{\natural}\left(I-\lambda A_{V}\right)^{-1}\right) \eta_{2} \\
& =\left\{\frac{\lambda^{-3 / 4}}{T}\left(\sigma_{\lambda}-\tau_{\lambda}\right)-\frac{T^{2}}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)\right\} \eta_{1}+\frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right) \eta_{2}
\end{aligned}
$$

Since $R\left(A_{1}^{\natural}\right) \subset R\left(A_{F}\right)$, by Lemma 3 (ii), this yields that

$$
\begin{aligned}
& \operatorname{det}\left(I-\lambda A_{1}^{\natural}\left(I-\lambda A_{V}\right)^{-1}\right) \\
& \quad=\operatorname{det}\left(\begin{array}{cc}
\frac{\lambda^{-1 / 4}}{2 T}\left(\sigma_{\lambda}+\tau_{\lambda}\right)-\frac{T^{2} \lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right) & \frac{\lambda^{1 / 2}}{12}\left(\alpha_{\lambda}-\beta_{\lambda}\right) \\
\frac{\lambda^{-3 / 4}}{T}\left(\sigma_{\lambda}-\tau_{\lambda}\right)-\frac{T^{2}}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right) & \frac{1}{2}\left(\alpha_{\lambda}+\beta_{\lambda}\right)
\end{array}\right) \\
& \quad=\frac{\lambda^{-1 / 4}}{2 T}\left\{\sigma_{\lambda} \beta_{\lambda}+\tau_{\lambda} \alpha_{\lambda}\right\} .
\end{aligned}
$$

The identity (2) follows from this, because Lemmas 1,2 , and 3 imply that

$$
\begin{aligned}
\int_{\mathcal{W}} \exp (\lambda q / 2) \delta_{0}(w(T)) d P & =\int_{\mathcal{W}} \exp \left(\lambda Q_{A} / 2\right) \delta_{0}\left(\nabla^{*} \eta_{1}\right) d P e^{(\lambda / 2) \operatorname{tr} A} \\
& =\frac{1}{\sqrt{2 \pi T}}\left\{\operatorname{det}\left(I-\lambda A_{1}^{\natural}\left(I-\lambda A_{V}\right)^{-1}\right)\right\}^{-1 / 2} .
\end{aligned}
$$

Remark 1. It may be interesting to see that (1) is also shown by using the infinite product expression. Namely, define $B: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
B h(t)=\int_{0}^{t} \int_{s}^{T} h(u) d u d s, \quad h \in \mathcal{H}, t \in[0, T] .
$$

Then there exists an orthonormal basis $\left\{h_{n}\right\}_{n=0}^{\infty}$ of \mathcal{H} so that

$$
B=\sum_{n=0}^{\infty}\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{2} h_{n} \otimes h_{n} .
$$

See [10]. Since $A=B^{2}$, it holds that

$$
\begin{equation*}
A=\sum_{n=0}^{\infty}\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{4} h_{n} \otimes h_{n} . \tag{11}
\end{equation*}
$$

In conjunction with Lemma 1, this implies that

$$
q=Q_{A}+\operatorname{tr} A=\sum_{n=0}^{\infty}\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{4}\left(\nabla^{*} h_{n}\right)^{2} .
$$

Due to the splitting property of the Wiener measure, we then obtain that

$$
\begin{aligned}
\int_{\mathcal{W}} \exp (\lambda q / 2) d P= & \left(\prod_{n=0}^{\infty}\left\{1-\lambda\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{4}\right\}\right)^{-1 / 2} \\
& =\left(\prod_{n=0}^{\infty}\left\{1+\lambda^{1 / 2}\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{2}\right\} \prod_{n=0}^{\infty}\left\{1-\lambda^{1 / 2}\left(\frac{T}{\left(n+\frac{1}{2}\right) \pi}\right)^{2}\right\}\right)^{-1 / 2} .
\end{aligned}
$$

Due to the infinite product expressions of $\cosh x$ and $\cos x$, this implies (1).

3 Proof of Theorem 1 (ii)

In this section, we shall show Theorem 1 (ii).
We first describe how we realize $\{\cosh z \cos z\}^{1 / 2}$ for complex number z. Represent $z \in \mathbf{C}$ as $z=r e^{i \theta}$ with $r \geq 0$ and $-\frac{1}{2} \pi \leq \theta<\frac{3}{2} \pi$ to define $\sqrt{z}=r^{1 / 2} e^{i \theta / 2}$, where $i^{2}=-1$. The

Riemann surface of the 2 -valued function $z^{1 / 2}$ is realized by switching \sqrt{z} and $-\sqrt{z}$ on the half line consisting of $i \xi, \xi<0$. Set

$$
G(z)= \begin{cases}\sqrt{\cos z}, & \text { if } a)|\operatorname{Re} z|<\frac{\pi}{2}, \text { or } \\ & \text { b) } \operatorname{Im} z>0,-\frac{3 \pi}{2}+4 k \pi \leq \operatorname{Re} z<\frac{\pi}{2}+4 k \pi(k \in \mathbf{Z}), \text { or } \\ & \text { c) } \operatorname{Im} z<0,-\frac{\pi}{2}+4 k \pi \leq \operatorname{Re} z<\frac{3 \pi}{2}+4 k \pi(k \in \mathbf{Z}), \\ -\sqrt{\cos z}, & \text { if } a) \operatorname{Im} z>0, \frac{\pi}{2}+4 k \pi \leq \operatorname{Re} z<\frac{5 \pi}{2}+4 k \pi(k \in \mathbf{Z}), \text { or } \\ \text { b) } \operatorname{Im} z<0, \frac{3 \pi}{2}+4 k \pi \leq \operatorname{Re} z<\frac{7 \pi}{2}+4 k \pi(k \in \mathbf{Z}) .\end{cases}
$$

Then G is holomorphic on $\mathbf{C} \backslash\left\{\xi|\xi \in \mathbf{R},|\xi| \geq \pi / 2\}\right.$, and realizes $\{\cos z\}^{1 / 2}$. Hence $G(z) G(i z)$ is holomorphic on $D_{0} \equiv \mathbf{C} \backslash\left\{\xi, i \xi|\xi \in \mathbf{R},|\xi| \geq \pi / 2\}\right.$ and does not vanish in D_{0}. Recalling that $\cosh z=\cos (i z)$, we write $\{\cosh z \cos z\}^{1 / 2}$ for $G(z) G(i z)$.
We next extend the identity (1) holomorphically. Since there exists $\delta>0$ such that $\exp (\delta q / 2)$ is integrable with respect to P and $q \geq 0$, the mapping

$$
\{z \in \mathbf{C} \mid \operatorname{Re} z<\delta\} \ni z \mapsto \int_{\mathcal{W}} \exp (z q / 2) d P
$$

is holomorphic. $\{\cosh (z T) \cos (z T)\}^{-1 / 2}$ being holomorphic in D_{0}, we can find a domain $D \subset \mathbf{C}$ such that

$$
\begin{align*}
& D \supset\left\{r e^{i \theta} \mid r \geq 0, \theta \in \bigcup_{k=0}^{3}\left[\frac{\pi}{8}+\frac{k \pi}{2}, \frac{3 \pi}{8}+\frac{k \pi}{2}\right]\right\}, \quad \text { and } \\
& \int_{\mathcal{W}} \exp \left(z^{4} q / 2\right) d P=\frac{1}{\{\cosh (z T) \cos (z T)\}^{1 / 2}} \quad \text { for every } z \in D \tag{12}
\end{align*}
$$

By (11) and Lemma 1, as an easy application of the Malliavin calculus, we see that the distribution of $q / 2$ on \mathbf{R} admits a smooth density function $p_{T}(x)$ ([14, Lemma 3.1]). Since $q \geq 0, p_{T}(x)=0$ for $x \leq 0$. Hence, in what follows, we always assume that $x>0$. By the inverse Fourier transformation, we have that

$$
\begin{equation*}
p_{T}(x)=\frac{1}{2 \pi} \int_{\mathbf{R}} e^{-i x t} I(t) d t, \quad \text { where } I(t)=\int_{\mathcal{W}} \exp (i t q / 2) d P \tag{13}
\end{equation*}
$$

For $R>0$, let $\Gamma_{+}(R)\left(\right.$ resp. $\left.\Gamma_{-}(R)\right)$ be the directed line segment in \mathbf{C} starting at the origin and ending at $R e^{i \pi / 8}$ (resp. Re $e^{-i \pi / 8}$). Then, parameterizing $\Gamma_{ \pm}(R)$ by $t^{1 / 4} e^{ \pm i \pi / 8}, t \in\left[0, R^{4}\right]$, we have that

$$
\int_{\Gamma_{ \pm}(R)} f\left(z^{4}\right) z^{3} d z= \pm \frac{i}{4} \int_{0}^{R^{4}} f(\pm i t) d t
$$

for any piecewise continuous function f on $i \mathbf{R}$, where and in the sequel, the symbol \pm takes + or - simultaneously. Plugging this into (13), and then substituting (12), we obtain that

$$
\begin{align*}
2 \pi p_{T}(x)= & \lim _{R \rightarrow \infty}\left\{4 i \int_{\Gamma_{-}(R)} \frac{z^{3} e^{-x z^{4}}}{\{\cosh (z T) \cos (z T)\}^{1 / 2}} d z\right. \\
& \left.-4 i \int_{\Gamma_{+}(R)} \frac{z^{3} e^{-x z^{4}}}{\{\cosh (z T) \cos (z T)\}^{1 / 2}} d z\right\} \tag{14}
\end{align*}
$$

Thanks to the estimation that

$$
|\cosh (u+i v) \cos (u+i v)|^{2} \geq \sinh ^{2} u \max \left\{\cos ^{2} u, \sinh ^{2} v\right\}
$$

it is a routine exercise of complex analysis to show that

$$
\begin{align*}
& \lim _{R \rightarrow \infty} \int_{\Gamma_{ \pm}(R)} \frac{z^{3} e^{-x z^{4}}}{\{\cosh (z T) \cos (z T)\}^{1 / 2}} d z \\
&=\int_{0}^{\infty} \frac{u^{3} e^{-x u^{4}}}{\lim _{h \downarrow 0}\{\cosh (u T \pm i h) \cos (u T \pm i h)\}^{1 / 2}} d u \tag{15}
\end{align*}
$$

Moreover, by the definition of $\{\cosh z \cos z\}^{1 / 2}$, we have that

$$
\begin{aligned}
\lim _{h \downarrow 0} & \{\cosh (u T \pm i h) \cos (u T \pm i h)\}^{1 / 2} \\
& = \begin{cases}\sqrt{\cosh (u T) \cos (u T),} & \text { if }-\pi-\left(\pm \frac{\pi}{2}\right)+4 k \pi \leq u T<\pi-\left(\pm \frac{\pi}{2}\right)+4 k \pi, \\
-\sqrt{\cosh (u T) \cos (u T)}, & \text { if } \pi-\left(\pm \frac{\pi}{2}\right)+4 k \pi \leq u T<3 \pi-\left(\pm \frac{\pi}{2}\right)+4 k \pi,\end{cases}
\end{aligned}
$$

Substitute this and (15) into (14) to see that

$$
2 \pi p_{T}(x)=8 i \sum_{k=0}^{\infty} \int_{\{(\pi / 2)+2 k \pi\} / T}^{\{(3 \pi / 2)+2 k \pi\} / T} \frac{(-1)^{k} u^{3} e^{-x u^{4}}}{\sqrt{\cosh (u T) \cos (u T)}} d u
$$

This implies Theorem 1 (ii), because

$$
\begin{aligned}
& \int_{\{(\pi / 2)+2 k \pi\} / T}^{\{(3 \pi / 2)+2 k \pi\} / T} \frac{u^{3} e^{-x u^{4}}}{\sqrt{\cosh (u T) \cos (u T)}} d u \\
& =\frac{1}{i T^{4}} \int_{0}^{\pi / 2} \frac{\{v+(2 k+1) \pi\}^{3} e^{-x\{v+(2 k+1) \pi\}^{4} / T^{4}}}{\sqrt{\cosh \{v+(2 k+1) \pi\} \cos v}} d v \\
& \quad-\frac{1}{i T^{4}} \int_{0}^{\pi / 2} \frac{\{v-(2 k+1) \pi\}^{3} e^{-x\{v-(2 k+1) \pi\}^{4} / T^{4}}}{\sqrt{\cosh \{v-(2 k+1) \pi\} \cos v}} d v .
\end{aligned}
$$

References

[1] R. H. Cameron and W. T. Martin, The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Jour. Math. Phys. Massachusetts Inst. Technology, 23 (1944), $195-209$.
[2] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc., 58 (1945), 184-219.
[3] T. Hida, Quadratic functionals of Brownian motion, Jour. Multivar. Anal. 1 (1971), 58-69.
[4] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin, 1990.
[5] N. Ikeda, S. Kusuoka, and S.Manabe, Lévy's stochastic area formula for Gaussian processes, Comm. Pure Appl. Math., 47 (1994), 329-360.
[6] N. Ikeda and S. Manabe, Asymptotic formulae for stochastic oscillatory integrals, in "Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics", 136155, Ed. by K.D.Elworthy and N.Ikeda, Longman, 1993.
[7] N. Ikeda and S. Manabe, Van Vleck-Pauli formula for Wiener integrals and Jacobi fields, in "Itô's stochastic calculus and probability theory", Ed. by N. Ikeda, S. Watanabe, M. Fukushima, and H. Kunita, pp.141-156, Springer-Verlag, 1996.
[8] P. Lévy, Wiener's random function, and other Laplacian random functions, in "Proc. Second Berkeley Symp. Math. Stat. Prob. II", pp.171-186, U.C. Press, Berkeley, 1950.
[9] Malliavin, P. and Taniguchi, S., Analytic functions, Cauchy formula and stationary phase on a real abstract Wiener space, J. Funct. Anal. 143 (1997), 470-528.
[10] H. Matsumoto and S. Taniguchi, Wiener functionals of second order and their Lévy measures, Elec. Jour. Prob. 7, No. 7, 1-30.
[11] H. Sugita and S. Taniguchi, Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal. 155 (1998), 229-262.
[12] H. Sugita and S. Taniguchi, A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure, Kyushu J. Math. 53 (1999), 151 - 162.
[13] S. Taniguchi, Lévy's stochastic area and the principle of stationary phase, J. Funct. Anal. 172 (2000), 165-176.
[14] S. Taniguchi, Stochastic oscillatory integrals: Asymptotics and exact expressions for quadratic phase function, in "Stochastic analysis and mathematical physics (SAMP/ANESTOC 2002)", ed. R. Rebolledo, J. Resende, and J.-C. Zambrini, pp.165181, World Scientific, 2004.
[15] S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Prob. 15 (1987), 1-39.

[^0]: ${ }^{1}$ RESEARCH SUPPORTED IN PART BY GRANT-IN-AID FOR SCIENTIFIC RESEARCH (A) 14204010, JSPS

