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Abstract

We improve the upper bounds of disconnection exponents for planar Brownian motion that
we derived in an earlier paper. We also give a plain proof of the lower bound 1/(2π) for the
disconnection exponent for one path.

1 Introduction

The first purpose of this paper is to improve the upper bounds of Brownian critical exponents
derived in Werner [14]. The basic ideas and tools of the proof are similar to those used in [14].
We refer to this paper for a detailed introduction and definitions of disconnection exponents
for planar Brownian motion and for more references. Recall that, if B1, . . . , Bn denote n
independent planar Brownian motions started from (1, 0), the disconnection exponent ηn (for
n ≥ 1) describes the asymptotical decay of the probability

IP{∪j=nj=1B
j [0, t] does not disconnect 0 from infinity},

when t → ∞, which is logarithmically equivalent to t−ηn/2 (we say that a compact set K
disconnects 0 from infinity if it contains a closed loop around 0). We are going to show that:

Theorem 1

ηn ≤
n

2
− 1

8π2n

∑
i∈ZZ

2i ln

(∑
k∈ZZ

exp(−k22i)

)
<
n

2
− .03125

n

In particular η1 < .469 and η2 < .985 (the upper bound in [14] was ηn < n/2−.0243/n). Lawler
[10] recently showed that the Hausdorff dimension h of the ‘frontier’ of planar Brownian motion
is exactly 2−η2. Combined with our estimate, this implies that h > 1.0156 (see also Bishop et
al. [2], Burdzy-Lawler [3]). Let us just recall that it has been conjectured that η1 = 1/4 and
η2 = 2/3 (see e.g. Duplantier et al. [5], Puckette-Werner [12]). These conjectures have been
confirmed by simulations [12]. One of the motivations of this paper is to understand why the
upper bounds in [14] are so far from the conjectured value.
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The second result of this paper is the lower bound

Theorem 2

η1 ≥
1

2π
.

This result has been anounced by Burdzy and Lawler (see e.g. in Lawler [6]) but (to our
knowledge) it has never been written up. Proofs of the fact that η1 ≥ 1/π2 can be found
in [3], [6]. We supply a short proof of Theorem 2 to fill in this gap in the literature. This
result has consequences for the Hausdorff dimension of the frontier of planar Brownian motion,
and also for the Hausdorff dimension of the set of cut-points of planar Brownian motion (see
Burdzy-Lawler [3], Lawler [7], Lawler [10]). For random walk counterparts, see e.g. Puckette-
Lawler [11], Lawler [8]; see also Lawler [9] and Werner [16] for some other related results on
disconnection exponents and non-intersection exponents.

The paper is structured as follows. We first derive Theorem 2 in Section 2; in section 3, we
derive some results concerning extremal distance and we finally prove Theorem 1 in Section 4.

2 Lower bound

We will often identify IR2 and IC. Let B denote a complex Brownian motion started from 1. If
TR denotes the hitting time of the circle {z, |z| = R} by B, then the disconnection exponent
η1 is defined by

η1 = lim
R→∞

− ln IP{B[0, TR] does not disconnect 0 from ∞}
lnR

;

see e.g. [14] and the references therein for more details. We want to derive a lower bound for
η1, i.e. upper bounds for (R > 1)

IP{B[0, TR] does not disconnect 0 from ∞}.

Using the exponential mapping and conformal invariance of planar Brownian motion, one can
notice that this is the same as finding an upper bound for the probabilities (r = logR > 0)

Qr = IP{∀(s, t) ∈ [0, T̃r]
2, Zs − Zt 6= 2iπ and Zs − Zt 6= −2iπ}

where Z = (X, Y ) is a two-dimensional Brownian motion started from 0 and

T̃r = inf{t > 0; Xt = r}.

More precisely,

η1 = lim
r→∞

− lnQr
r

. (1)

We now put down some notation: For all r > 0, define

T̃+
r = inf{t > 0, Xt > r}

and
hr = T̃+

r − T̃r.
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hr’s are the lengths of the excursions of X below its maximae. For u ∈ [0, hr], we define

Er(u) = E1
r (u) + iE2

r (u) = ZT̃r+u.

Lévy’s identity (see e.g. Revuz-Yor [13], Chapter VI, Theorem (2.3)) shows that (r−E1
r (.), r ≥

0) is identical to the excursion process of reflected linear Brownian motion. Put also Hr =
supu∈[0,hr](r − E1

r(u)).
Note that

Fr(.) = E2
r(.)− E2

r(0)

is a linear Brownian motion started from 0, which is independent from X, E1 and also from
Fr′ , r

′ 6= r.

It is easy to check that:

Qr ≤ IP{∀v ∈ [0, r] such that Hv < v and ∀u ∈ [0, hv], ∀t < T̃u,

Ev(u) 6= Zt ± 2iπ}.

Proposition 2 in Werner [15] (which is in some sense a slightly improved version of Beurling’s
Theorem), readily implies that for all v ∈ [0, r], conditional on {Xt, t ≥ 0} and {Yt, t ≤ T̃v},
such that 0 < Hv < v (this depends only on X), one has:

IPFv{∀u ∈ [0, hv], ∀t < T̃v, Ev(u) 6= Zt ± 2iπ}
≤ IPFv{∀u ∈ [0, hv], |Fv(u)| < 2π},

where IPFv denotes the probability measure corresponding to {Fv(u), 0 ≤ u ≤ hv}. Let us put

Av = {∀u ∈ [0, hv], |Fv(u)| < 2π}.

For v 6= v′, the strong Markov property shows that Av and Av′ are independent. Hence,

Qr ≤ IP{∀v ∈ [0, r] such that Hv < v,Av}.

It is well-known (see e.g. Chung [4], page 206) that:

IPFv{Av} =
4

π

∞∑
k=0

(−1)k

2k + 1
exp

[
−(2k + 1)2hv

32

]
.

We define:

a(hv) = 1− IPFv{Av} =
4

π

∞∑
k=0

(−1)k

2k + 1

(
1− exp

[
−(2k + 1)2hv

32

])
.

Let {e(u), 0 ≤ u ≤ h} denote an Brownian excursion under the Itô measure n. Let H =
sup{e(u), 0 ≤ u ≤ h} and

A = {∀u ∈ [0, h], |F (u)|< 2π},
where F is an independent linear Brownian motion started from 0 under the probability
measure IPF . Fix ε > 0 and put r0 = 1/ε. so that n(H > r0) = ε (see Revuz-Yor [13],
Chapter XII, Exercice (2.10)). For all r > r0, one has

Qr ≤ IP{∀v ∈ [r0, r], Av or {Hv > r0}}
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and as the Excursion process of Brownian motion is a Poisson point process,

Qr ≤ exp

[
−
∫ r

r0

dv IEF {n((A ∪ {H > r0})c)}
]

≤ exp
[
−(r − r0)IE

F {n(Ac)) − n({H > r0}}
]

≤ exp

[
−(r − r0)

((∫ ∞
0

dh

h3/2(2π)1/2
a(h)

)
− ε
)]

.

We now state the following technical lemma:

Lemma 1
2
√

2

π3/2

∫ ∞
0

dh

h3/2

∞∑
k=0

(−1)k

2k + 1

(
1− exp[−(2k + 1)2h/32]

)
=

1

2π
.

This lemma yields immediately that

Qr ≤ exp [−(r − r0)(1/(2π) − ε)]

and completes the proof of Theorem 2.

Proof of Lemma 1: There are various ways of deriving this identity. Let c denote the integral
on the left-hand side of the identity in Lemma 1. It is very easy, using a reflection argument,
to check that for all n > 0,

lim
h→0

h−na(h) ≤ lim
h→0

4h−nIP{Fh > 2π} = 0.

Hence, integrating by parts yields:

c =
4
√

2

32π3/2

∫ ∞
0

dh√
h

∞∑
k=0

(−1)k(2k + 1) exp[−(2k + 1)2h/32]. (2)

Define g(x) = x exp(−x2/32). Note that:∑
k≥0

{
g(4k
√
h) − g((4k + 4)

√
h)
}

= 0.

We put

d(k, h) =

(
g((4k + 1)

√
h)− g((4k + 3)

√
h) − g(4k

√
h)− g((4k + 4)

√
h)

2

)
.

We can rewrite (2) as follows:

c =
1

4
√

2π3/2

∫ ∞
0

dh

h

∞∑
k=0

d(k, h).

It is an easy exercice that we safely leave to the reader to check that for some fixed constants
c′, c′′ and for all k > 0,∫ ∞

0

dh

h
d(k, h) ≤

∫ ∞
0

dh

h
c′h sup

[4k
√
h,(4k+4)

√
h]

|g′′| ≤ c′′

k2
.
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Hence, by dominated convergence,

c =
1

4
√

2π3/2

∞∑
k=0

∫ ∞
0

dh

h
d(k, h).

For all n > 0, ∫ ∞
0

dh

h
g(n
√
h) =

∫ ∞
0

dx

x
g(
√
x) =

√
32

∫ ∞
0

dx√
x
e−x = 4

√
2π.

Hence, for all k ≥ 1, ∫ ∞
0

dhh−1d(k, h) = 0,

and as g(0) = 0,

c =
1

4π3/2
√

2

∫ ∞
0

dh

h
d(0, h) =

1

4π3/2
√

2

4
√

2π

2
=

1

2π

which concludes the proof.

3 Extremal distance estimates

Let us fix a > 0 and an integer N > 0. Put r = Na. Define (ϕ1, . . . , ϕN) ∈ (−π/2, π/2)N and
the continuous odd function f on [−r, r] charaterized by

f ′(x) = tanϕj for x ∈ [(j − 1)a, ja],

for all j ∈ {1, . . . , N}. We consider the strip S := S(f) of the complex plane

S = {(x, y); y ∈ (f(x) − π, f(x) + π), x ∈ (−r, r)} (3)

and we put:
U = {(x, f(x) + π); x ∈ (−r, r)} ⊂ ∂S (4)

L = {(x, f(x)− π); x ∈ (−r, r)} ⊂ ∂S. (5)

We are going to evaluate the extremal distance dS(U, L) between U and L in S. Let us just
recall that dS(U, L) is the only value d, such that there exists a conformal mapping φ of S onto
the rectangle (−1, 1)×(−d, d), which maps the four corners (−r+i(f(−r)−π)), (−r+i(f(−r)+
π)), (r+i(f(r)+π)), (r+i(f(r)−π)) onto the four corners (−1−id), (−1+id), (1+id), (1−id)
respectively. Note that by symmetry and uniqueness of φ, φ(0) = 0.
Recall also briefly the following alternative definition of dS(U, L): Let Γ denote the set of all
rectifiable arcs γ in S, which join U to L. For all Borel measurable function ρ in S, we define
the ρ-length of γ in Γ by lρ(γ) =

∫
γ
ρ|dz|. Then,

d = sup
ρ

inf
γ∈Γ

(lρ(γ))
2, (6)

where the supremum is taken over all positive measurable functions ρ such that
∫
S
ρ2dxdy =

1. (see e.g. Ahlfors [1], chapter IV for definition, properties and more details on extremal
distance).
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Proposition 1

1

dS(U, L)
≤ aN

π
+
a

π

N∑
j=1

(tanϕj)
2. (7)

Proof: For all x, we define j(x) ∈ IN such that |x| ∈ [(j(x)−1)a, j(x)a). Consider the function
ρ in S defined by:

ρ(x, y) =
1

cosϕj(x)
.

We now show that the ρ-distance of any continuous path joing L to U in S is greater or equal
to 2π. Take a C1 path (x(s), y(s))s∈[0,l] in S, joining L to U (s is the euclidean arclength
parameter and l the euclidean length of the path), that is such that y(0) = f(x(0)) − π and
y(l) = f(x(l)) + π. Define Ys = y(s) − f(x(s)). It is easy to notice that

dYs cosϕj(x(s)) ≤ ds.

As
∫ l

0
dYs = 2π, one has:∫ l

0

dsρ(x(s), y(s)) =

∫ l

0

ds/ cosϕj(x(s)) ≥
∫ l

0

dYs = 2π.

The ρ-area A of S is

A =

∫ ∫
S

ρ(x, y)2dx dy = 2π2a
N∑
j=1

1

(cosϕj)2
= 4πa(N +

N∑
j=1

(tanϕj)
2).

Hence, (6) yields (considering the function ρ/
√
A)

dS(U, L) ≥ (2π)2

A
and the proposition follows.

Note that for a C1 odd function f on (−r, r) and S,U , L defined as in (3), (4) and (5), the
same method shows that (in fact, this can also be viewed as a corollary of Proposition 1, using
approximations of f by piecewise linear functions),

1

dS(U, L)
≤ 1

π

∫ r

0

(1 + f ′(x)2)dx, (8)

which generalizes (7) in [14] and Proposition 1.

Let us now just recall the following observation from [14]. If B denotes a planar Brownian
motion started from 0 and τ its exit time from the domain S, then:

IP{<(Bτ ) = aN} =
1

2
IP{Bτ /∈ U ∪ L}

=
1

2
IP{|<(φ(Bτ))| = 1}

=
1

2
IP{|<(B)| hits 1 before |=(B)| hits dS(U, L)}

≥ 1

π
exp

[
−π

2dS(U, L)

]
, (9)
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where the first equality is a consequence of the symmetry of S, the third follows from conformal
invariance of B under φ, and the last inequality is a consequence of properties of hitting times
by reflected linear Brownian motion. Hence, with the same notation than in (8),

IP{<(Bτ ) = r} ≥ 1

π
exp

[
−r
2
− 1

2

∫ r

0

f ′(x)2dx

]
. (10)

4 Upper bound

We very briefly recall some notation and results from [14]. We want to derive an upper bound
for η1. We define for r > 0,

qr = IP{∃f : (−∞, r]→ IR, continuous , ∀t ∈ [0, T̃r), |Yt − f(Xt)| < π}

where (as in the previous section) X and Y are two independent linear Brownian motions
started from 0 and

T̃r = inf{t > 0; Xt = r}.

For all r > 0, it is easy to see that qr ≤ Qr (with Qr defined as at the beginning of the previous
section). Combining this with (1) shows that

η1 ≤ lim inf
r→∞

− ln qr
r

. (11)

As in [14], we are going to consider a family of functions f such that the events:

Arf = {∀t ∈ [0, T̃r), |Yt − f(Xt)| < π}

are disjoint. We will use (10) to evaluate each probability IP{Arf} and then sum over all
functions f in this family.

We define the sets:
I = {(i, j) ∈ IN2; i ≥ 1 and j ∈ {1, . . . , 2i−1}},

I′ = I ∪ {(0, 1)},

J = ZZI and J ′ = ZZI
′
.

We also define:

J ′′ = {K = (ki,j)(i,j)∈I′ ∈ J ′; for all but finitely many (i, j) ∈ I′, ki,j = 0}.

For K = (ki,j)(i,j)∈I′ ∈ J ′′ with

i0 = i0(K) = sup{i, ∃j ∈ {1, . . . , 2i−1}, k(i,j) 6= 0}

(we put i0(0) = 0), we define the function fK on [−r, r] as follows:

1. fK is odd and continuous

2. For all 1 ≤ j ≤ 2i0 , fK is linear on the interval [r(j − 1)2−i0 , rj2−i0].

3. fK(r) = 2k0,1π
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4. If i0(K) 6= 0: For all 1 ≤ i ≤ i0 and 1 ≤ j ≤ 2i−1,

fK

(
j
r

2i−1
− r

2i

)
= 2ki,jπ +

1

2

[
f

(
jr

2i−1

)
+ f

(
(j − 1)r

2i−1

)]
.

Note that Condition 2 implies that Condition 4 holds for all i ≥ 1 and j ∈ {1, . . . , 2i−1}. Also
if K = (ki,j) 6= K′ = (k′i,j) in J ′′, then for

i1 = inf{i ≥ 0; ∃j, ki,j 6= k′i,j}

and
j1 = inf{j ≥ 1; ki1,j 6= k′i1,j},

the definition of fK yields

|fK((2j1 − 1)r/2i1)− fK′((2j1 − 1)r/2i1)| ≥ 2π

and consequently ArfK ∩A
r
fK′

= ∅. Hence,

qr ≥
∑
K∈J′′

IP{ArfK}. (12)

We now evaluate
∫ r

0
(f ′K(x))2dx. An easy induction (over i0) shows that∫ r

0

(f ′K (x))2dx =
4π2k2

0,1

r
+

8π2

r

∑
(i,j)∈I

2i(ki,j)
2. (13)

Hence, using (10),

IP{Arfk} ≥
1

π
exp

−r
2
−

2π2k2
0,1

r
− 4π2

r

∑
(i,j)∈I

2i(ki,j)
2

 .
Combining with (12) yields:

qr ≥
e−r/2

π

∑
K∈J′′

exp

−2π2k2
0,1

r
− 4π2

r

∑
(i,j)∈I

2i(ki,j)
2

 .
For K ∈ J ′ \ J ′′,

exp[−
∑

(i,j)∈I
2i(ki,j)

2] = 0.

Hence,

qr ≥ e−r/2

π

∑
K∈J′

exp

−2π2k2
0,1

r
− 4π2

r

∑
(i,j)∈I

2i(ki,j)
2


=

e−r/2

π

(∑
k∈ZZ

e−2π2k2/r

) ∏
(i,j)∈I

(∑
k∈ZZ

exp[−4π2k22i/r]

)
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and eventually

qr ≥
e−r/2

π
θ

(
2π2

r

) ∞∏
i=1

θ

(
4π22i

r

)(2i−1)

, (14)

where θ(x) =
∑
k∈ZZ exp(−k2x) is the usual Theta function. We now put b = 8π2/r and define

the function:

g(b) =
b

8π2

[
ln θ(b/4) +

∞∑
i=0

2i ln(θ(b2i))

]

=
1

r

[
ln(θ(2π2/r)) +

∞∑
i=0

2i ln(8π22i/r)

]
.

We rewrite (14) as follows

qr ≥
1

π
(exp[−1/2 + g(b)])r .

It remains to study the behaviour of g(b) when b → 0+. It actually turns out that the
maximum M of g is obtained at the limit b → 0+, which is not surprising. Considering the
sequence bn = 2−n, one can express M = g(0+) as follows:

M = lim
n→∞

2−n

8π2

∞∑
i=0

2i ln θ(2i−n) =
1

8π2

∑
i∈ZZ

2i ln(θ(2i)).

Finally,

η1 ≤
1

2
−M =

1

2
− 1

8π2

∑
i∈ZZ

2i ln(θ(2i)).

Numerically, M > .03125, which completes the proof of Theorem 1 for one walk.

As in [14], exactly the same technique provides an upper bound for the disconnection exponent
for n > 1 Brownian motions. One just has to consider the sum

∑
IP{Arf}n. The upshot is

Theorem 1. Exactly as in [14], this result has some consequences for non-intersection exponents
that we leave to the reader.

Remarks.

In Werner [14], the estimates obtained have at least three reasons for being far from the
conjectured values. We try to remove one in the present paper (allowing Brownian motion to
wind quickly from time to time).
One would expect to obtain better estimates for instance considering a family of functions F
such that for some f 6= g in F , the events Arf and Arg are not disjoint, and then estimating
the sum ∑

f∈F
(IP{Arf} −

1

2

∑
g 6=f

IP{Arf ∩Arg}).

But to do this, we would need more precise estimates of IP{Arf} and IP{Arf ∩Arg} (the latter
is more difficult) than those derived in this paper.
The other estimation loss occurs while restricting ourselves to study the asymptotics of qr. It
is in fact likely that qr and Qr do have different asymptotic behaviours. This gap seems even
more difficult to lift using our type of approach.

Acknowledgements. I express many thanks to Antoine Chambert-Loir and Pierre Colmez for
their kind and expert assistance on Theta and Zeta functions.
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