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Keywords: semi-Markov process; Markov chain; large deviation principle; strong topology;
bounded weak* topology.

MSC2020 subject classifications: 60K15; 60F10; 60J27.

Submitted to EJP on December 22, 2022, final version accepted on February 26, 2024.

Supersedes arXiv:2210.14454v1.

*C. J. acknowledges support from National Natural Science Foundation of China with grant No. U2230402
and grant No. 12271020. D.-Q. J. acknowledges support from National Natural Science Foundation of China
with grant No. 11871079 and grant No. 12090015.

†Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing,
China. E-mail: chenjia@csrc.ac.cn

‡LMAM, School of Mathematical Sciences, Peking University, Beijing, China. Center for Statistical Science,
Peking University, Beijing, China. E-mail: jiangdq@math.pku.edu.cn

§Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing,
China. LMAM, School of Mathematical Sciences, Peking University, Beijing, China. E-mail: wubingjie@pku.
edu.cn

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1103
https://orcid.org/0000-0002-3375-4373
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2210.14454v1
mailto:chenjia@csrc.ac.cn
mailto:jiangdq@math.pku.edu.cn
mailto:wubingjie@pku.edu.cn
mailto:wubingjie@pku.edu.cn


Large deviations of Markov renewal processes

1 Introduction

Semi-Markov processes, which can be viewed as a direct extension of discrete-time
and continuous-time Markov chains, are one of the most important classes of non-Markov
processes. They have attracted considerable attention in recent years and have found
wide applications in physics, chemistry, biology, finance, and engineering [25, 3, 34].
The embedded chain of a semi-Markov process is a discrete-time Markov chain, while
the waiting times may not be exponentially distributed. Such non-exponential waiting
time distributions have been found in many scientific problems such as molecular motors
[33, 21], enzyme kinetics [40, 42], gene networks [39, 28], and cell cycle dynmics
[26, 29]. The representation of a semi-Markov process in terms of its embedding chain
and waiting times is also called a Markov renewal process.

The mathematical theory of large deviations was initiated by Cramér [13], and
was later developed by many mathematicians and physicists. In the pioneering work
[16, 17, 18, 19], Donsker and Varadhan have established the large deviation principle
(LDP) for the empirical measure and for the empirical process associated with a large
class of discrete-time and continuous-time Markov processes. The large deviations for
the sample mean, empirical measure, and empirical processes are usually said to be at
level 1, level 2, and level 3, respectively [15]. For discrete-time and continuous-time
Markov chains, the number of jumps along each oriented edge of the transition graph
per unit time is called the empirical flow. The large deviations for the empirical flow
are often said to be at level 2.5 [31], since it is between level 2 and level 3. For a
discrete-time Markov chain (Xn)n≥0, the large deviations for the empirical flow can
be obtained directly from those for the empirical measure since the binary process
(Xn, Xn+1)n≥0 is also a discrete-time Markov chain. However, things become much more
complicated in the continuous-time case. For continuous-time Markov chains, Fortelle
[14] proved a weak joint LDP for the empirical measure and empirical flow and obtained
the corresponding rate function. Subsequently, Bertini et al. [6, 7] proposed some
Donsker-Varadhan-type compactness conditions and proved the full joint LDP for the
empirical measure and empirical flow.

Since semi-Markov processes are direct generalizations of discrete-time and continu-
ous-time Markov chains, a natural question is whether the large deviations at different
levels can be extended to semi-Markov processes. Along this line, Mariani and Zambotti
[35] proved the joint LDP for the empirical measure and empirical flow of semi-Markov
processes with a finite state space and expressed the corresponding rate function in
terms of relative entropy. The large deviations for the empirical flow of Markov and
semi-Markov processes have also been applied in statistical mechanics to study the
fluctuation relations of thermodynamical systems far from equilibrium [1, 2, 6, 27, 11,
23, 20, 9, 24, 30]. Up till now, it is still unclear whether these finite state space results
can be generalized to semi-Markov processes with a countable state space. The aim of
the present paper is to fill in this gap.

Here we investigate the joint large deviations for the empirical measure and empirical
flow of semi-Markov processes with a countable state space. When the state space has an
infinite number of states, the choice of the topology of the flow space, i.e. the value space
of all empirical flows, will become very important. Following [6, 7], we consider two
types of topology of the flow space: the bounded weak* topology and the strong topology.
Specifically, we propose two different Donsker-Varadhan-type compactness conditions for
the two types of topology, and prove the corresponding LDP for the empirical measure
and empirical flow. This is the first main contribution of this paper. In the special case of
continuous-time Markov chains, our compactness condition reduces to the one proposed
in [7] when the flow space is endowed with the bounded weak* topology. However, when
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Large deviations of Markov renewal processes

the flow space is endowed with the strong topology, our compactness condition is even
weaker than the one proposed in [6].

In [35], Mariani and Zambotti also provided the explicit expression of the marginal
rate function for the empirical measure, but they have not given the explicit expression
of the marginal rate function for the empirical flow. Here we propose two strong
compactness conditions, one for the embedded chain and one for the waiting time
distributions, and we provide a variational representation for the marginal rate function
for the empirical flow under these compactness conditions. The relationship between
these compactness conditions and the geometric ergodicity of the embedded chain is
also clarified. This is the second main contribution of this paper.

The present paper is organized as follows. In Section 2, we recall the definitions
of Markov renewal processes and semi-Markov processes, as well as the definitions
of the empirical measure and empirical flow. In Section 3, we propose two different
compactness conditions when the flow space is endowed with the bounded weak*
topology and the strong topology. Moreover, we also state the main results including
the joint and marginal LDPs for the empirical measure and empirical flow. The proof of
the LDP for the two types of topology will be given in Sections 4 and 5, respectively. In
Section 6, we derive the marginal rate function for the empirical flow.

2 Preliminaries

2.1 Markov renewal processes and semi-Markov processes

Let V be a countable set endowed with the discrete topology and the associated
Borel σ-algebra is the collection of all subsets of V . The set [0,∞] is equipped with the
topology that is compatible with the natural topology on [0,∞) so that (s,∞] is open for
any s ≥ 0. For any Polish space X , let P(X ) denote the collection of Borel probability
measures on X . For any µ ∈ P(X ) and f ∈ L1(µ), let 〈µ, f〉 or µ(f) denote the integral of
f with respect to µ. The set P(X ) is equipped with the topology of weak convergence
and the associated Borel σ-algebra.

We first recall the definition of Markov renewal processes, also called (J -X)-processes
[34]. Here, we adopt the definition in [35] and [3, Chapter VII.4].

Definition 2.1. The process (X, τ) = {(Xk)k≥0, (τk)k≥1} defined on a probability space
(Ω,F ,P) is called a Markov renewal process if

(a) X = (Xk)k≥0 is a discrete-time time-homogeneous Markov chain with countable
state space V and transition probability matrix P = (pxy)x,y∈V .

(b) τ = (τk)k≥1 is a sequence of positive and finite random variables such that condi-
tioned on (Xk)k≥0, the random variables (τk)k≥1 are independent and have distri-
bution

P (τi+1 ∈ · | (Xk)k≥0) = ψXi,Xi+1
(·),

where ψxy ∈ P(0,∞) for any x, y ∈ V . The matrix Ψ = (ψxy)x,y∈V is called the
waiting time matrix. Note that it is a matrix of probability measures. The pair
(P,Ψ) is called the transition kernel.

We next recall the definition of semi-Markov processes.

Definition 2.2. For any t ≥ 0 and n ≥ 1, let

Sn =

n∑
i=1

τi, Nt =

∞∑
n=1

1(Sn≤t) = inf {n ≥ 0 : Sn+1 > t} ,

where inf ∅ :=∞ and 1A is the indicator function of the set A. The process ξ = (ξt)t≥0

with ξt := XNt is called the semi-Markov process associated with the Markov renewal
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Large deviations of Markov renewal processes

process (X, τ). Clearly, ξ is a jump process whose trajectories are right-continuous on
the state space V .

Clearly, Sn represents the nth jump time of the semi-Markov process ξ, Nt represents
the number of jumps of ξ up to time t, and X = (Xk)k≥0 is the embedded chain of ξ. It
is easy to see that Nt = n if and only if Sn ≤ t < Sn+1. In particular, if all the waiting
times are equal to 1, i.e. ψxy = δ1 for any x, y ∈ V with δ1 being the point mass at 1, then
ξ reduces to a discrete-time Markov chain. If all the waiting times are exponentially
distributed, i.e. ψxy(dt) = qxe

−qxtdt for any x, y ∈ V , then ξ reduces to a continuous-time
Markov chain. In the following, we do not distinguish the Markov renewal process (X, τ)

and the associated semi-Markov process ξ since they are totally equivalent.
The transition diagram of the embedded chain X is a directed graph (V,E), where

the edge set

E = {(x, y) ∈ V × V : pxy > 0}

is composed of all directed edges with positive transition probabilities. Throughout this
paper, we impose the following basic assumptions on the Markov renewal process (X, τ).

Assumption 2.3. The embedded chain X is irreducible.

Assumption 2.4. The embedded chain X is recurrent.

Assumption 2.5. The waiting time distribution only depends on the current state, i.e.
ψxy = ψx for any x, y ∈ V .

Assumption 2.6. For any x ∈ V , the number of incoming edges into x of the graph
(V,E) and the number of outgoing edges from x are both finite.

Assumptions 2.3 and 2.4 are standard in the literature [3]. Assumption 2.5 is also
common in previous papers [35] which guarantees that the large deviation rate function
of the empirical measure and empirical flow has the form of relative entropy. Note that if
Assumption 2.5 does not hold for (X, τ), then the process (Y, τ) = {(Yk)k≥0, (τk)k≥1} with
Yk := (Xk, Xk+1) is also a Markov renewal process which satisfies Assumption 2.5 since

P(τk+1 ∈ · | (Xk)k≥0) = ψXk,Xk+1
(·) = ψYk(·).

Moreover, we emphasize that Assumption 2.6 is not needed if ξ is a continuous-time
Markov chain [6, 7]. Here we need this assumption in order to prove Lemma 4.10 below.
In [6, 7], the counterpart of this lemma is proved by using the classical level 3 large
deviation results of Donsker and Varadhan [19] and the contraction principle. However,
since there are no level 3 large deviation results for Markov renewal processes, we need
to impose the above assumption to overcome some technical difficulties.

Recall that the semi-Markov process ξ is called non-explosive if the explosion time
S∞ := limn→∞ Sn satisfies

Px(S∞ =∞) = 1

for all x ∈ V , where Px(·) = P(·|X0 = x). In fact, Assumptions 2.3 and 2.4 ensure that ξ
is non-explosive. The proof is similar to the one given in [38] for continuous-time Markov
chains and thus is omitted.

2.2 Empirical measure and empirical flow

Next we introduce the definitions of the empirical measure and empirical flow for
Markov renewal processes [35]. For any t > 0, the empirical measure µt : Ω →
P(V × (0,∞]) of (X, τ) is defined by

µt =
1

t

∫ t

0

δ(XNs ,τNs+1)ds, (2.1)
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where δ. denotes the Dirac delta measure. In other words, for any x ∈ V and A ⊂ (0,∞],
we have

µt({x}, A) =
1

t

∫ t

0

1(XNs=x,τNs+1∈A)ds.

Then µt is a random probability measure such that for any Borel measurable function f
on V × (0,∞],

〈µt, f〉 =
1

t

∫ t

0

f(XNs , τNs+1)ds =

Nt∑
k=1

τk
t
f(Xk−1, τk) +

t− SNt
t

f(XNt , τNt+1).

Moreover, for any t > 0, the empirical flow Qt : Ω→ [0,∞]E of (X, τ) is defined by

Qt =
1

t

Nt+1∑
k=1

δ(Xk−1,Xk).

In other words, for any x, y ∈ V , we have

Qt(x, y) =
1

t

Nt+1∑
k=1

1(Xk−1=x,Xk=y).

Intuitively, Qt(x, y) represents the number of times that ξ transitions from x to y per unit
time. For any n ≥ 0, let

Fn = σ ((Xk, τk)0≤k≤n) , F∞ = σ

( ∞⋃
n=1

Fn

)
.

be a filtration. Then Nt + 1 is an {Fn}-stopping time. It is easy to see that 〈µt, f〉 and
Qt(x, y) are FNt+1-measurable random variables.

Remark 2.7. For the semi-Markov process ξ, a more natural definition of the empirical
measure πt : Ω→ P(V ) is given by

πt(x) =
1

t

∫ t

0

1(ξs=x)ds = µt(x, (0,∞]), x ∈ V. (2.2)

Comparing (2.1) and (2.2), we can see that πt only focuses on the spatial variable and µt
focus on both the spatial and temporal variables. The reason why we use µt rather than
πt in the study of the joint LDP is that only by using µt can we obtain a concise expression
of the rate function. It is easy to verify that (Xk, τk+1)k≥0 is a Markov process and hence
(XNt , τNt+1)t≥0 is also a semi-Markov process. In fact, the empirical measure µt for the
process ξt = XNt is exactly the empirical measure πt for the process (XNt , τNt+1)t≥0.

Let L1(E) denote the set of absolutely summable functions on E and let ‖ · ‖ denote
the associated L1-norm. The set of nonnegative elements of L1(E) is denoted by L1

+(E),
which is called the flow space. An element in L1

+(E) is called a flow. Since (X, τ) is
non-explosive, it is easy to see that Qt ∈ L1

+(E) for any t > 0. For any flow Q ∈ L1
+(E),

let the exit-current Q+ : V → R and entrance-current Q− : V → R be defined by

Q+(x) =
∑

y: (x,y)∈E

Q(x, y), Q−(x) =
∑

y: (y,x)∈E

Q(y, x). (2.3)

Intuitively, the exit-current and entrance-current at x are the flows exiting from x and
entering into x, respectively. In particular, if Q+(x) = Q−(x) for any x ∈ V , then Q is
called a divergence-free flow and we define

Qx = Q+(x) = Q−(x), x ∈ V. (2.4)
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Note that both currents map L1
+(E) into L1

+(V ). Here L1
+(V ) is defined in the same way

as L1
+(E) and let ‖ · ‖ denote the associated L1-norm.

In this paper, we will consider two types of topology on L1(E): the strong topology
generated by the L1-norm and the bounded weak* topology, which is defined as follows
[7]. Let C0(E) denote the collection of continuous functions f : E → R vanishing at
infinity, i.e. for any ε > 0, there exists a finite set K ⊂ E such that

sup
(x,y)∈Kc

|f(x, y)| ≤ ε,

and it is endowed with the L∞-norm. It is well-known that the dual space of C0(E) is
L1(E) endowed with the strong topology. For any ` > 0, let B` :=

{
Q ∈ L1(E) : ‖Q‖ ≤ `

}
denote the closed ball of radius ` in L1(E). In view of the separability of C0(E) and
the Banach-Alaoglu theorem, the closed ball B` endowed with the weak* topology is a
compact Polish space. The bounded weak* topology on L1(E) is then defined by declaring
the set A ⊂ L1(E) to be open if and only if A ∩ B` is open in the weak* topology of B`
for any ` > 0. In fact, the bounded weak* topology is stronger than the weak* topology
and is weaker than the strong topology. Moreover, for each ` > 0, the closed ball B` is
compact with respect to the bounded weak* topology. In particular, the three types of
topology on L1(E) coincide only when E is finite. The proof of the above statements can
be found in [36, Section 2.7].

For both the strong topology and the bounded weak* topology, we regard L1
+(E) as

a closed subset of L1(E) and endow it with the relative topology and the associated
Borel σ-algebra. The product space V × (0,∞] is equipped with the product topology so
that V × (0,∞] is a Polish space. The set P(V × (0,∞]) of Borel probability measures on
V × (0,∞] is endowed with the topology of weak convergence. Moreover, the product
space Λ = P(V × (0,∞])× L1

+(E) is endowed with the product topology. Then for any
t > 0, the pair (µt, Qt), where µt is the empirical measure and Qt is the empirical flow,
can be viewed as a measurable map from Ω to Λ.

3 Main results

3.1 Compactness conditions

The aim of the present paper is to establish the LDP for the empirical measure and
empirical flow of semi-Markov processes. Similarly to the LDP of Markov processes
[19], we need some compactness conditions to control the convergence rate at infinity
when the state space V has an infinite number of states. For Markov processes, the
infinitesimal generator is often used to establish the compactness conditions [19]. In the
semi-Markov case, the transition kernel (P,Ψ) plays the role of the generator.

Before stating the compactness conditions, we need the following notation. Let
ζ : V → [0,∞] be the function defined by

ζ(x) = sup
{
λ ∈ R : ψx

(
eλτ
)
<∞

}
, (3.1)

where ψx(eλτ ) =
∫

(0,∞)
eλsψx(ds). For any x ∈ V , let θx : (0,∞) → (−∞,∞] be the

function defined by
θx(t) = sup

{
λ ∈ R : ψx

(
eλτ
)
≤ t
}
. (3.2)

For any f : V → (0,∞), let Pf : V → (0,∞] be the function defined by

Pf(x) =
∑

y: (x,y)∈E

pxyf(y),

and let Lf : V → (−∞,∞] be the function defined by Lf(x) = θx(f(x)).
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Lemma 3.1. Let θx be the function defined in (3.2). Then

(a) θx is an increasing continuous function. Moreover, θx is strictly increasing on
(0, ψx(eζ(x)τ )).

(b) θx(1) = 0, limt↓0 θx(t) = −∞, and limt↑∞ θx(t) = ζ(x).

(c) For any t > 0 and x ∈ V , we have

ψx

(
eθx(t)τ

)
=

ψx
(
eζ(x)τ

)
, if t > ψx

(
eζ(x)τ

)
,

t, otherwise.

Proof. For any x ∈ V , let Θx(λ) = ψx(eλτ ) be a function on R. By the dominated
convergence theorem, it is easy to see that Θx ∈ C((−∞, ζ(x))) is a strict increasing
function. Moreover, it is clear that Θx(0) = 1 and

lim
λ→−∞

Θx(λ) = 0, Θx(λ) =∞, λ > ζ(x).

Since θx is the inverse function of Θx for 0 < t < Θx(ζ(x)), we immediately obtain
(a)-(c).

In [18, 19], Donsker and Varadhan proposed a compactness condition for the genera-
tor which was then used to prove the LDP for the empirical measure of Markov processes.
In [6, 7], Bertini et al. proposed a Donsker-Varadhan-type condition which was then
used to prove the LDP for the empirical flow of continuous-time Markov chains. In what
follows, we will provide two Donsker-Varadhan-type conditions which are needed for
the joint LDP for the empirical measure and empirical flow of semi-Markov processes
when the flow space L1

+(E) is endowed with the bounded weak* topology and strong
topology. The following compactness condition is needed for the joint LDP when L1

+(E)

is endowed with the bounded weak* topology.

Condition 3.2. There exists a sequence of functions un : V → (0,∞) such that

(a) For any x ∈ V and n ≥ 0, we have Pun(x) <∞;

(b) There exists a constant c > 0 such that un(x) ≥ c for any x ∈ V and n ≥ 0;

(c) For any x ∈ V , there exists a constant Cx such that un(x) ≤ Cx for any n ≥ 0;

(d) The functions un/Pun converge pointwise to some û : V → (0,∞);

(e) For each ` ∈ R, the level set
{
x ∈ V : Lû(x) ≤ `

}
is finite;

(f) There exist σ,C > 0, η ∈ (0, 1), and a finite set K ⊂ V such that Lû(x) ≥ −σθx(η)−
C1K(x) for any x ∈ V and û(x) < ψx(eζ(x)τ ) for any x ∈ Kc.

Remark 3.3. For continuous-time Markov chains, the term C1K in item (f) can be
replaced by a constant C and the condition û(x) < ψx(eζ(x)τ ) can be removed since
ψx(eζ(x)τ ) = ∞ for any x ∈ V . In this case, Condition 3.2 reduces to the compactness
condition proposed in [7]. Moreover, it follows from Lemma 3.1 that Lû(x) = θx(û(x)) ≤
ζ(x) for any x ∈ V . Hence item (e) implies that the level sets of ζ are also finite.

Since the strong topology is stronger than the bounded weak* topology, we need to
impose a stronger compactness condition, which is essentially the Donsker-Varadhan-
type condition for discrete-time Markov chains [18]. Both the following condition and
Condition 3.2 are needed for the joint LDP when L1

+(E) is endowed with the strong
topology.

Condition 3.4. There exists a sequence of functions un : V → (0,∞) such that

(a) For any x ∈ V and n ≥ 0, we have Pun(x) <∞;
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(b) There exists a constant c > 0 such that un(x) ≥ c for any x ∈ V and n ≥ 0;

(c) For any x ∈ V , there exists a constant Cx such that un(x) ≤ Cx for any n ≥ 0;

(d) The functions un/Pun converge pointwise to some û : V → (0,∞);

(e) For each ` ∈ R, the level set
{
x ∈ V : log û(x) ≤ `

}
is finite.

It is clear that Condition 3.4 only depends on the embedded chain X of the semi-
Markov process and is independent of the waiting time distributions. When L1

+(E) is
endowed with the strong topology, Bertini et al. [6] have proposed another compact-
ness condition for continuous-time Markov chains (see Condition 7.1 below, which is
rewritten for semi-Markov process). However, that condition is more complicated than
Condition 3.4 and more difficult to verify. In fact, when X is irreducible, Condition 3.4
is not only easier to verify, but also even weaker than Condition 7.1. The proof of this
fact can be found in Section 7. This explains why we impose Condition 3.4 rather than
Condition 7.1 here.

Remark 3.5. For discrete-time Markov chains, we have Lf(x) = θx(f(x)) = log f(x) for
any f : V → (0,∞). Note that item (e) in Condition 3.4 implies that the set K = {x ∈
V : log û(x) ≤ − log η} is finite for any η ∈ (0, 1). Hence if we take σ = 1, then we can
always find C > 0 such that log û ≥ −σ log η − C1K . Furthermore, it is easy to check
that ψx(eζ(x)τ ) = eζ(x) =∞ for any x ∈ V . This shows if Condition 3.4 holds, then items
(e) and (f) in Condition 3.2 are automatically satisfied. Hence for discrete-time Markov
chains, Condition 3.2 is equivalent to Condition 3.4.

3.2 Joint LDP for the empirical measure and empirical flow

Let µ and ν be two probability measures on a measurable space (X ,F). Recall that
the relative entropy of µ with respect to ν has the following variational expression [19]:

H(µ | ν) = sup
ϕ∈Bb(X )

{〈µ, ϕ〉 − log〈ν, eϕ〉} =


∫
X

(
log

dµ

dν

)
dµ, if µ� ν ,

∞, otherwise,

(3.3)

where Bb(X ) denotes the space of bounded measurable functions on X . Moreover, if X
is a Polish space and F is the associated Borel σ-field, then (3.3) still holds when Bb(X )

is replaced by Cb(X ), the space of bounded continuous functions on X [19]. If we set
ϕ′ = ϕ− log〈ν, eϕ〉, then 〈µ, ϕ′〉 = 〈µ, ϕ〉 − log〈ν, eϕ〉 and it is easy to see that the relative
entropy H(µ | ν) can be represented as

H(µ | ν) = sup
{ϕ∈Cb(X ):〈ν,eϕ〉=1}

〈µ, ϕ〉. (3.4)

Let D be the subset of Λ = P(V × (0,∞])× L1
+(E) defined by

D =

{
(µ,Q) ∈ Λ :

∫
(0,∞]

1

t
µ(x,dt) = Q+(x) = Q−(x), ∀x ∈ V

}
, (3.5)

where Q+ and Q− are the exit-current and entrance-current of the flow Q, respectively.
For each (µ,Q) ∈ D, we introduce the transition probabilities (Q̃xy)x,y∈V and the waiting
time distributions (µ̃x)x∈V as

Q̃xy =
Q(x, y)

Qx
, µ̃x(dt) =

1

Qxt
µ(x,dt), (3.6)
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where Qx = Q+(x) = Q−(x) is defined in (2.4) and we set Q̃xy = pxy and µ̃x = ψx if
Qx = 0. Let I : Λ→ [0,∞] be the function defined by

I(µ,Q) =


∑
x∈V

[
QxH

(
Q̃x,· | px,·

)
+QxH

(
µ̃x |ψx

)
+ ζ(x)µ(x, {∞})

]
, if (µ,Q) ∈ D,

∞, otherwise.
(3.7)

We are now in a position to state the main results of the present paper. The following
theorem, whose proof can be found in Section 4, gives the joint LDP for the empirical
measure and empirical flow when L1

+(E) is endowed with the bounded weak* topology.

Theorem 3.6. Suppose that Assumptions 2.3-2.6 and Condition 3.2 hold. Let L1
+(E) be

endowed with the bounded weak* topology. Then under Px, the law of (µt, Qt) satisfies
an LDP with good and convex rate function I : Λ→ [0,∞]. In particular, for any closed
set C ⊂ Λ and open set A ⊂ Λ, we have

lim
t→∞

1

t
logPx

(
(µt, Qt) ∈ C

)
≤ − inf

(µ,Q)∈C
I(µ,Q),

lim
t→∞

1

t
logPx

(
(µt, Qt) ∈ A

)
≥ − inf

(µ,Q)∈A
I(µ,Q).

(3.8)

The following theorem, whose proof can be found in Section 5, gives the joint LDP
when L1

+(E) is endowed with the strong topology.

Theorem 3.7. Suppose that Assumptions 2.3-2.6 and Conditions 3.2 and 3.4 hold. Let
L1

+(E) be endowed with the strong topology. Then under Px, the law of (µt, Qt) satisfies
an LDP with good and convex rate function I : Λ→ [0,∞].

The joint LDP with the strong topology in the flow space allows us to obtain the
LDP of some important observables by using the contraction principle. For example,
in [6, Theorem 8.1], the authors derived the LDP for the empirical entropy production
(Gallavotti-Cohen functional) under some mild conditions.

Remark 3.8. In the above two theorems, we have established the joint LDP when the
semi-Markov process starts from a fixed initial state x ∈ V . For any initial distribution
γ ∈ P(V ), the joint LDP still holds when making some slight changes to the compactness
conditions. In fact, if items (c) in Conditions 3.2 and 3.4 are both replaced by

(c*) There exists a constant Cγ such that
∑
x∈V γ(x)un(x) ≤ Cγ for any n ≥ 0,

then the conclusions of Theorems 3.6 and 3.7 remain valid under Pγ , where Pγ(·) =∑
x∈V γ(x)Px(·) is the probability measure under initial distribution γ.

The above two theorems can be applied to obtain the joint LDP for the empirical
measure and empirical flow of discrete-time and continuous-time Markov chains with
countable state space. For discrete-time Markov chains, we have the following results.

Corollary 3.9. Let ξ be a discrete-time Markov chain satisfying Assumptions 2.3-2.6
and Condition 3.4. Let L1

+(E) be endowed with the bounded weak* topology or strong
topology. Then under Px, the law of (µt, Qt) satisfies an LDP with good and convex rate
function I : Λ→ [0,∞].

Proof. In Remark 3.5, we have shown that Conditions 3.2 and 3.4 are equivalent for
discrete-time Markov chains. Then the results follow directly from Theorems 3.6 and 3.7.

We have seen that Condition 3.2 is crucial for the joint LDP of the empirical measure
and empirical flow, no matter whether the flow space is endowed with the bounded
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weak* topology or the strong topology. In general, Condition 3.2 is difficult to verify
because we need to find a sequence of functions un satisfying both items (a)-(d), which
are related to the embedded chain, and items (e)-(f), we are related to the waiting time
distributions. In other words, the conditions imposed on the embedded chain and the
conditions imposed on waiting time distributions are intertwined with each other. Next,
we provide some novel compactness conditions which can be verified much more easily.
In the novel compactness conditions, the ones imposed on the embedded chain and the
ones imposed on waiting time distributions can be disassembled and are not intertwined
with each other.

The conditions imposed on the embedded chain are as follows.

Condition 3.10. There exists a sequence of functions un : V → (0,∞) satisfying items
(a)-(d) in Condition 3.4 and

(e) There exists a constant ` > 0 such that the level set
{
x ∈ V : log û(x) ≤ `

}
is finite.

Note that item (e) in Condition 3.10 is weaker than item (e) in Condition 3.4. The
conditions imposed on the waiting time distributions are as follows.

Condition 3.11. There exist a probability measure ψ ∈ P(0,∞) and a function q : V →
(0,∞) such that

(a) The waiting time distributions (ψx)x∈V satisfy ψx(A/qx) = ψ(A) for any x ∈ V and
any Borel set A ⊂ (0,∞), where A/qx = {t/qx : t ∈ A};

(b) The probability measure ψ satisfies ψ
(
eζτ
)

=∞, where ζ= sup
{
λ≥0 : ψ(eλτ )<∞

}
;

(c) For each ` ∈ R, the level set {x ∈ V : qx ≤ `} is finite.

Remark 3.12. It is easy to check that the following distribution families satisfy items
(a) and (b) in Condition 3.11:

(a) Exponential distribution: ψx(dt) = qxe
−qxtdt;

(b) Gamma distribution: ψx(dt) = (qαx t
α−1e−qxt/Γ(α))dt with any α > 0;

(c) Dirac distribution: ψx(dt) = δ1/qx(dt);

(d) Rayleigh distribution: ψx(dt) = (t/q2
x)e−t

2/(2q2x)dt.

In particular, items (a) and (b) in Condition 3.11 automatically hold for continuous-time
Markov chains.

The following theorem shows that the joint LDP also holds under the new compactness
conditions given above.

Theorem 3.13. Suppose that Assumptions 2.3-2.6 are satisfied.

(a) Suppose that Conditions 3.10 and 3.11 both hold. Let L1
+(E) be equipped with the

bounded weak* topology. Then under Px, the law of (µt, Qt) satisfies an LDP with
good and convex rate function I : Λ→ [0,∞].

(b) Suppose that Conditions 3.4 and 3.11 both hold. Let L1
+(E) be endowed with the

strong topology. Then under Px, the law of (µt, Qt) satisfies an LDP with good and
convex rate function I : Λ→ [0,∞].

Proof. (a) By Theorem 3.6, we only need to check Condition 3.2 for the sequence of
functions un in Condition 3.10. In fact, items (a)-(d) in Condition 3.2 are trivial. We next
prove items (e) and (f) in Condition 3.2.

Let θ : (0,∞)→ (−∞,∞] be the function defined by

θ(s) = sup
{
λ ∈ R : ψ(eλτ ) ≤ s

}
. (3.9)
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By item (b) in Condition 3.11, it is easy to see that the function θx defined in (3.2)
and the function θ defined above are related by θx(s) = qxθ(s). Lemma 3.1 implies
that θ is an increasing function. It follows from item (e) in Condition 3.10 and item
(c) in Condition 3.11 that the set K := {x ∈ V : log û(x) ≤ `} is finite and the set
{x ∈ V : qx ≤ s} is also finite for any s ∈ R. For any `′ > 0, we have{

x ∈ V : û(x) > e`
}
∩
{
x ∈ V : qx >

`′

θ(e`)

}
⊆ {x ∈ V : qxθ(û(x)) > `′} .

Then we have

{x ∈ V : Lû(x) ≤ `′} ⊆ K ∪
{
x ∈ V : qx ≤

`′

θ(e`)

}
.

This implies item (e) in Condition 3.2.
Take η = 1/2 and σ = −θ(e`)/θ(1/2). By Lemma 3.1, it is easy to check that σ > 0.

Then we have
qxθ (û(x)) ≥ −σqxθ(1/2)− C1K(x),

where C = 1 ∨maxx∈K{−qx[θ(û(x)) + σθ(1/2)]}. By item (a) in Condition 3.11, it is easy
to see that ψx(eζ(x)τ ) =∞ for any x ∈ V . This implies item (f) in Condition 3.2.

(b) Note that Condition 3.4 implies Condition 3.10. Then the proof of (b) follows
directly from Theorem 3.7.

Note that Condition 3.11 is easy to verify and we have given several examples for
it to hold in Remark 3.12. Next we will give some criterions for Condition 3.10 to hold.
Before doing this, we recall the following geometric ergodic theorem for discrete-time
Markov chains, whose proof can be found in [37, Chapter 15].

Lemma 3.14 (geometric ergodic theorem). Suppose that the embedded chain X is
irreducible and aperiodic. Then the following three conditions are equivalent:

(a) There exist a finite set K ⊂ V and constants νK > 0, ρK < 1, and MK < ∞ such
that

sup
x∈K

∣∣∣∣∣∣
∑
y∈K

pnxy

− νK
∣∣∣∣∣∣ ≤MKρ

n
K .

(b) There exist a finite set K ⊂ V and a constant κ > 1 such that

sup
x∈K

Ex
[
κTK

]
<∞,

where TK is the first hitting time of X on K (see (4.10)).

(c) There exist a finite set K ⊂ V , constants b <∞, λ < 1, and c > 0, and a function
u : V → [c,∞) satisfying the drift condition

Pu(x) ≤ λu(x) + b1K(x), x ∈ V.

The following corollary gives a simple criterion for Condition 3.10 to hold.

Corollary 3.15. If item (c) in Lemma 3.14 holds, then Condition 3.10 also holds. If the
embedded chain X is irreducible and aperiodic, then any one of the three conditions in
Lemma 3.14 implies Condition 3.10.

Proof. Let the set K, the constants λ, c, and the function u be as in (c) in Lemma 3.14.
We next check Condition 3.10 for the sequence of functions un ≡ u. Obviously, items
(a)-(d) are trivial. Let û = u/Pu and ` = −(log λ)/2 > 0. It is easy to see that

{x ∈ V : log û(x) ≤ `} ⊆ {x ∈ V : Pu(x) > λu(x)} ⊆ K.

This completes the proof of this corollary.
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The above corollary shows that geometric ergodicity of the embedded chain X implies
Condition 3.10. Hence this condition can also be easily verified by using the classical
ergodic theory of Markov chains [10, 37, 4, 43].

3.3 Marginal LDP for the empirical measure and empirical flow

Thus far, we have established the joint LDP for the empirical measure µt and empirical
flow Qt. However, as discussed in Remark 2.7, a more natural definition of the empirical
measure πt : Ω→ P(V ) is given by

πt(x) =
1

t

∫ t

0

1(ξs=x)ds = µt(x, (0,∞]), x ∈ V.

The reason why we use µt rather than πt in the study of the joint LDP is that only by
using µt can we obtain a concise expression of the rate function.

Next we focus on the marginal LDP for the empirical measure πt and for the empirical
flow Qt. By the contraction principle, the rate function of the marginal LDP can be
obtained from the rate function I : Λ→ [0,∞] of the joint LDP as defined in (3.8). In [35],
the authors gave a variational expression of the rate function I1 : P(V )→ [0,∞] for the
empirical measure πt. Here we will give the variational expression of the rate function
I2 : L1

+(E) → [0,∞] for the empirical flow Qt. More importantly, we will also give the
explicit expression of I2 when the waiting time distributions satisfy some additional
constraints.

Before stating our results, we introduce some notation. Recall that the rate function
IDV : P(V )→ [0,∞] for the empirical measure of the embedded chain X is the Donsker-
Varadhan functional [16]

IDV (ν) = sup
u∈(0,∞)V

∑
x∈V

νx log
( u

Pu
(x)
)
.

Let Gx(λ) = log(ψx(eλτ )) be a function on R and let

G∗x(a) = sup
λ∈R

(aλ−Gx(λ)), a ∈ R

be the Fenchel-Legendre transform of Gx. Moreover, let I1 : P(V ) → [0,∞] be the
functional defined by

I1(π) = inf
r>0

inf
ν∈P(V )

(
rIDV (ν) +

∑
x∈V

rνxG
∗
x

(
πx
rνx

))
.

The following proposition, whose proof can be found in Section 6, gives the marginal
LDP for the empirical measure and for the empirical flow.

Proposition 3.16. Suppose that Assumptions 2.3-2.6 and Condition 3.2 hold.

(a) Under Px, the law of πt satisfies an LDP with good and convex rate function
I1 : P(V )→ [0,∞];

(b) Let L1
+(E) be endowed with the bounded weak* topology. Then under Px, the law

of Qt satisfies an LDP with good and convex rate function

I2(Q) = inf
(µ,Q)∈D

I(µ,Q), Q ∈ L1
+(E);

(c) Let L1
+(E) be endowed with the strong topology. If Condition 3.4 is also satisfied,

then under Px, the law of Qt satisfies an LDP with good and convex rate function
I2 : L1

+(E)→ [0,∞].
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Moreover, if Condition 3.11 is also satisfied, then the rate function I2 has the following
explicit expression:

I2(Q) =


∑
x∈V

QxH
(
Q̃x,·

∣∣px,·)+ sup
λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

, if Q+ = Q− ,

∞, otherwise.
(3.10)

Note that in [5, Corollary 2.5], the authors gave a variational expression of the rate
function I2 for degenerate jump Markov processes. Our expression is very similar to
theirs.

Remark 3.17. This proposition shows that the rate function for the empirical flow has
the explicit expression (3.10) when Condition 3.11 is satisfied. In fact, (3.10) may be still
valid when Condition 3.11 is broken. For example, if V is finite and ψx(eζ(x)τ ) =∞ for
any x ∈ V , then similarly to the proof of Proposition 3.16, it can be shown that the rate
function I2 is also given by (3.10).

3.4 Examples

Our abstract theorems can be applied to many specific Markov renewal processes.
We next focus on two specific examples: birth and death processes and random walks
with confining potential and external force. These two examples can be viewed as direct
generalizations of the ones studied in [7, 6]. Here we will apply Theorems 3.6 and 3.7 to
birth and death processes and will apply Theorem 3.13 to random walks with confining
potential and external force.

3.4.1 Birth and death processes

Consider a birth and death Markov renewal process on the set of nonnegative integers
N = {0, 1, 2 · · · } with transition kernel (P = (pxy)x,y∈N,Ψ = (ψx)x∈N), where

p01 = 1, px,x+1 = px > 0, px,x−1 = qx := 1− px > 0, x ≥ 1.

In fact, Assumptions 2.3, 2.5, and 2.6 are trivial. In addition, it is well-known that
Assumption 2.4 holds if and only if [41]

∞∑
k=1

q1q2 · · · qk
p1p2 · · · pk

=∞. (3.11)

Applying Theorems 3.6 and 3.7 to the above model, we obtain the following proposition.

Proposition 3.18. Let p = limx→∞ px. Suppose that ψx(eζ(x)τ ) =∞ for any x ∈ V .

(a) Let L1
+(E) be endowed with the bounded weak* topology. Suppose that p < 1/2

and suppose that there exist constants κ < (4p(1 − p))−1/2, σ > 0, and η ∈ (0, 1)

such that
lim
x→∞

θx(κ) =∞, θx(κ) ≥ −σθx(η), x ∈ N. (3.12)

Then under Px, the law of (µt, Qt) satisfies an LDP with good and convex rate
function I : Λ→ [0,∞].

(b) Let L1
+(E) be endowed with the strong topology. Let p′x = supk≥x pk for each x.

Suppose that p = 0 and suppose that there exist constants σ > 0 and η ∈ (0, 1) such
that

lim
x→∞

θx

(
(9p′x−1)−1/2

)
=∞, θx

(
(9p′x−1)−1/2

)
≥ −σθx(η), x ∈ N. (3.13)
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Then under Px, the law of (µt, Qt) satisfies an LDP with good and convex rate
function I : Λ→ [0,∞].

Proof. (a) Since limx→∞ px < 1/2, it is easy to see that (3.11) holds. For any x ∈ N and
n ≥ 0, let un(x) = ax, where a > 1 is a constant to be chosen later. By Theorem 3.6,
we only need to check Condition 3.2 for the sequence of functions un. Since un do not
depend on n, items (a)-(d) in Condition 3.2 are automatically satisfied. Moreover, it is
clear that the set K = {x ∈ N : px > p′} is finite. Note that for any ` ∈ R,

{x ∈ N : Lû(x) ≤ `} ⊆ {x ∈ N : θx(κ) ≤ `} ∪K.

This implies item (e) in Condition 3.2. Letting C = maxx∈K(Lû(x)− σθx(η)), it is easy to
see that

Lû(x) ≥ −σθx(η)− C1K(x), x ∈ N.

On the other hand, û(x) < ∞ = ψx(eζ(x)τ ) for any x ∈ Kc. These imply item (g) in
Condition 3.2. Thus far, we have check all items in Condition 3.2 and thus the desired
result follows from Theorem 3.6.

(b) Let q′x = 1 − p′x for each x. For any n ≥ 0, let un(0) = un(1) = 1 and un(x) =

(
∏x−1
k=1(q′k/p

′
k))1/2 for any x ≥ 2. Similarly, we only need to check item (e) in Condition 3.4

and items (e) and (f) in Condition 3.2 for such un. Note that q′x−1 ≥ 1/2 for sufficiently
large x. Then we have

û(x) =
1

px(q′x/p
′
x)1/2 + qx(p′x−1/q

′
x−1)1/2

≥ 1

(q′xp
′
x)1/2 + (2p′x−1)1/2

≥ 1

3(p′x−1)1/2
.

Since limx→∞ p′x−1 = 0, item (e) in Condition 3.4 holds. Let K = {x ∈ N : q′x−1 <

1/2} ∪ {0, 1} be a finite set. The rest of the proof is similar to the proof of (a).

We emphasize that if ψx is chosen to be an exponential distribution for each x, then
Proposition 3.18 reduces to the results obtained in [6, 7]. Moreover, if ψx is chosen to be
the gamma distribution

ψx(dt) =
(
qαxx tαx−1e−qxt/Γ(αx)

)
dt

for each x, where qx, αx are parameters depending on x, then we can give the following
more specific characterizations of conditions (3.12) and (3.13).

Lemma 3.19. (a) Let κ0 = [1 + (4p(1− p))−1/2]/2. Suppose that

lim
x→∞

qx

(
1− κ−1/αx

0

)
=∞

and suppose that the parameters αx have a uniform positive lower bound, i.e.
αx ≥ c for some constant c > 0 and any x ∈ N. Then condition (3.12) holds.

(b) Let p′x = supk≥x pk for each x. Suppose that

lim
x→∞

qx

(
1− (9p′x−1)1/(2αx)

)
=∞

and suppose that the parameters αx have a uniform positive lower bound. Then
condition (3.13) holds.

Proof. Here we only give the proof of (a); the proof of (b) is similar. Taking κ = κ0 in
Proposition 3.18, straightforward computations show that

θx(t) = qx

(
1− t−1/αx

)
, t > 0.
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This shows that
lim
x→∞

θx(κ) = lim
x→∞

qx(1− κ−1/αx
0 ) =∞.

Moreover, letting σ = κ
−1/c
0 > 0 and η = 1/κ0 ∈ (0, 1), we have

θx(κ0) = qx

(
1− κ−1/αx

0

)
= −κ−1/αx

0 qx

(
1− η−1/αx

)
≥ −σθx(η).

This completes the proof of this lemma.

3.4.2 Random walks with confining potential and external force

We now apply our main theorems to a nearest neighbor random walk on Zd with confining
potential and external force, whose transition kernel (P = (pxy)x,y∈Zd , ψ = (ψx)x∈Zd) has
the form of

pxy =
1

Cx
exp

{
−1

2
(U(y)− U(x)) +

1

2
F (x, y)

}
, (x, y) ∈ E,

where E = {(x, y) ∈ Zd ×Zd : |x− y| = 1} is the collection of nearest neighbours in Zd,
U : Zd → R is a potential function satisfying

∑
y∈Zd e

−U(y) <∞, F ∈ L∞(E) represents
the external force, and

Cx =
∑

y:|x−y|=1

e−(U(y)−U(x))/2+F (x,y)/2, x ∈ Zd

are normalization constants. It is clear that U has compact level sets, i.e. for any
` ∈ R, the set {x ∈ Zd : U(x) ≤ `} is finite. We emphasize that if ψx(dt) = Cxe

−Cxtdt is
chosen to be an exponential distribution for each x, then the above model reduces to
the Markov chain model studied in [6, Section 10.2]. We next focus on general waiting
time distributions. Applying Theorem 3.13 to the above model, we obtain the following
proposition.

Proposition 3.20. Let r(x) =
∑
y:|x−y|=1 e

−(U(y)−U(x))/2.

(a) Let L1
+(E) be endowed with the bounded weak* topology. If

lim
|x|→∞

r(x) > 2de‖F‖∞ ,

then Condition 3.10 holds. Moreover, if Condition 3.11 also holds, then under Px,
the law of (µt, Qt) satisfies an LDP with good and convex rate function I : Λ →
[0,∞].

(b) Let L1
+(E) be endowed with the strong topology. If

lim
|x|→∞

r(x) =∞,

then Condition 3.4 holds. Moreover, if Condition 3.11 also holds, then under Px, the
law of (µt, Qt) satisfies an LDP with good and convex rate function I : Λ→ [0,∞].

Proof. Here we only give the proof of (a); the proof of (b) is similar. We first check
Condition 3.10. Let un(x) = eU(x)/2 for any x ∈ Zd and n ≥ 0. Since un do not depend on
n, items (a)-(d) in Condition 3.4 are automatically satisfied. Note that

û(x) =
eU(x)/2∑

y:(x,y)∈E pxye
U(y)/2

=

∑
y:|x−y|=1 e

−(U(y)−U(x))/2+F (x,y)/2∑
y:|x−y|=1 e

F (x,y)/2
≥ r(x)

2de‖F‖∞
.
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Since lim|x|→∞ û(x) > 1, there exists κ > 1 such that lim|x|→∞ û(x) ≥ κ. Letting ` =

log κ > 0, it is easy to see that the set {x ∈ Zd : log û(x) ≤ `} is finite. This implies item
(e) in Condition 3.10.

We next prove the joint LDP. It is easy to see that Assumptions 2.3, 2.5, and 2.6 are
trivial. Similarly to the above proof, we can also validate item (c) in Lemma 3.14 with
u(x) = eU(x)/2. It then follows from [37, Theorems 8.0.2 and 15.0.1] that Assumption 2.4
holds. By Theorem 3.13, we complete the proof of this lemma.

Note that if ψx(dt) = Cxe
−Cxtdt is chosen to be an exponential distribution for each

x, then the above model reduces to the continuous-time Markov chain model studied in
[6, Section 10.2]. It is easy to check that

e−‖F‖∞/2r(x) ≤ Cx ≤ e‖F‖∞/2r(x).

Then lim|x|→∞ r(x) =∞ if and only if lim|x|→∞ Cx =∞. Hence our compactness condi-
tions in item (a) exactly coincide with the ones proposed in [6] when L1

+(E) is endowed
with the bounded weak* topology. However, since we do not need to verify Condition 7.1,
our compactness conditions in item (b) is weaker than the ones proposed in [6] when
L1

+(E) is endowed with the strong topology.

Remark 3.21. When U ∈ C1(Rd), we consider the orthogonal decomposition

∇U(x) = 〈∇U(y), ŷ〉ŷ +W (y), y ∈ Rd \ {0},

where ŷ = y/|y|, 〈y,W (y)〉 = 0, and 〈·, ·〉 is the standard inner product in Rd. We say that
the potential U ∈ C1(Rd) has diverging radial variation which dominates the transversal
variation [6] if there exist α ∈ [0, 1) and C > 0 such that

lim
|x|→∞

〈∇U(y), ŷ〉 =∞, |W (y)| ≤ α

d1/2
〈∇U(y), ŷ〉+ C.

In fact, it follows from [6, Lemma 10.3] that if U ∈ C1(Rd) has diverging radial variation
which dominates the transversal variation, then lim|x|→∞ r(x) =∞.

4 Proof of Theorem 3.6

Note that L1(E) endowed with the bounded weak* topology is a locally convex,
complete linear topological space and a completely regular space, i.e. for every closed
set C ⊂ L1(E) and every element Q ∈ L1(E) \ C, there exists a continuous function
f : L1(E)→ [0, 1] such that f(Q) = 1 and f(Q′) = 0 for any Q′ ∈ C) [36, Theorem 2.7.2].

It is a well-known result that if an exponentially tight family of probability measures
satisfies a weak LDP with rate function I, then I is good and the (full) LDP holds [15,
Lemma 1.2.18]. Hence to prove Theorem 3.6, we will first prove the exponential tightness
for the empirical measure and empirical flow under Condition 3.2, and then prove the
weak joint LDP without any compactness conditions. We will directly consider the case
where ξ starts from a general initial distribution γ (see Remark 3.8).

4.1 Exponential local martingales

We start by considering the change of probability measures for Markov renewal
processes. Let Γ be the set of measurable functions (F, h) defined by

Γ =

{
(F, h) : F : E → R such that

∑
z∈V

pxz e
F (x,z) <∞,

h : V × (0,∞]→ R such that

∫
(0,∞)

esh(x,s)ψx(ds) <∞ for any x ∈ V

}
.

(4.1)
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For any (F, h) ∈ Γ, let gF,h : V → R be the function given by

gF,h(x) = log
∑
z∈V

pxze
F (x,z) + log

∫
(0,∞)

esh(x,s)ψx(ds).

To proceed, we define a new transition kernel (PF ,Ψh) as

pFxy =
pxy e

F (x,y)∑
z∈V pxz e

F (x,z)
, ψhx(du) =

euh(x,u) ψx(du)∫
(0,∞)

es h(x,s) ψx(ds)
, (4.2)

and let PF,hx be the probability measure under which (X, τ) is a Markov renewal process
with transition kernel (PF ,Ψh) and initial state X0 = x. Note that the semi-Markov
process ξ may be explosive under PF,hx . As a result, we need to consider PF,hx and Px
restricted to the set {Nt <∞}, i.e.

P
F,h
x,t (A) = PF,hx (A ∩ {Nt <∞}), Px,t(A) = Px(A ∩ {Nt <∞}), A ∈ F∞.

Moreover, we denote by PF,hx,t |FNt+1
and Px,t|FNt+1

the restrictions of PF,hx,t and Px,t to

FNt+1, respectively. It is easy to verify that PF,hx,t |FNt+1
is absolutely continuous with

respect to Px,t|FNt+1
and has the Radon-Nykodim derivative

1

t
log

dPF,hx,t |FNt+1

dPx,t|FNt+1

=
1

t

Nt+1∑
i=1

log
eF (Xi−1,Xi)∑

z∈V pXi−1,z e
F (Xi−1,z)

+
1

t

Nt+1∑
i=1

log
eτi h(Xi−1,τi)∫

(0,∞)
es h(Xi−1,s) ψXi−1

(ds)

=
∑

(x,y)∈E

Qt(x, y)

[
F (x, y)−

(
log
∑
z∈V

pxze
F (x,z) + log

∫
(0,∞)

esh(x,s)ψx(ds)

)]

+
∑
x

∫
(0,∞]

h(x, u)µt(x, du) +
τNt+1 − t+ SNt

t
h(XNt , τNt+1)

= 〈Qt, F − gF,h〉+ 〈µt, h〉+
SNt+1 − t

t
h(XNt , τNt+1) (4.3)

where 〈Qt, F 〉 =
∑

(x,y)∈E Qt(x, y)F (x, y) and 〈Qt, gF,h〉 =
∑

(x,y)∈E Qt(x, y)gF,h(x).
For convenience, for any Borel measurable function f on V × (0,∞], let

〈µ̂t, f〉 = 〈µt, f〉+
SNt+1 − t

t
f(XNt , τNt+1) =

1

t

Nt+1∑
k=1

τkf(Xk−1, τk).

Then as an immediate consequence of the Radon-Nykodim derivative (4.3), we obtain
the following result.

Lemma 4.1. For any (F, h) ∈ Γ and t ≥ 0, letMF,h
t : Ω→ (0,∞) be the function defined

by

MF,h
t = exp

{
t
[
〈Qt, F − gF,h〉+ 〈µ̂t, h〉

]}
. (4.4)

Then for each x ∈ V and t ≥ 0, we have Ex
(
MF,h

t

)
≤ 1.

Proof. Note that {Nt < ∞} ∈ FNt+1. It follows from (4.3) that Ex(MF,h
t ) = PF,hx (Nt <

∞) ≤ 1.

In fact, it is easy to check that under Px, the process MF,h is a positive local
martingale and a supermartingale with respect to (FNt+1)t≥0. The next statement can
be deduced from Lemma 4.1 by choosing specific F and h.
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Lemma 4.2. Let u : V → (0,∞) be a function satisfying Pu(x) < ∞ for any x ∈ V .
Let A ⊂ V be a set satisfying u(x)/Pu(x) ≤ ψx(eζ(x)τ ) for any x ∈ Ac. Let F (x, y) =

log[u(y)/u(x)] for any (x, y) ∈ E and

h(x, s) = hu,A(x, s) :=
log u

Pu (x)

s
1A(x) + L

u

Pu
(x)1Ac(x), (x, s) ∈ V × (0,∞]. (4.5)

For any t ≥ 0, letMu,A
t : Ω→ (0,∞) be the function defined as

Mu,A
t =

u(XNt+1)

u(X0)
exp

{
t
〈
µ̂t, h

u,A
〉}

.

Then (F, h) ∈ Γ and Ex
(
Mu,A

t

)
≤ 1 for any x ∈ V and t ≥ 0.

Proof. For any x ∈ V , it is clear that
∑
y∈V pxye

F (x,y) = Pu(x)/u(x) and∫
(0,∞)

esh(x,s)ψx(ds) =
u(x)

Pu(x)
1A(x) + ψx

(
eθx(u(x)/Pu(x))τ

)
1Ac(x).

Therefore, by item (c) in Lemma 3.1, we have
∫

(0,∞)
esh(x,s)ψx(ds) = u(x)/Pu(x). This

implies that (F, h) ∈ Γ and gF,h ≡ 0. On the other hand, it is easy to check that
〈Qt, F 〉 = u(XNt+1)/u(X0). This completes the proof of this lemma.

4.2 Exponential tightness

We will next prove the exponential tightness of the empirical measure and empirical
flow under Condition 3.2 with item (c) is replaced by item (c*) in Remark 3.8.

Let the function û, the sequence of functions un, the set K, and the constants
c, Cγ , σ, η be as in Condition 3.2 and item (c*) in Remark 3.8. Recall the definition of hu,A

in (4.5). Let hû : V × (0,∞]→ R be the function defined by

hû(x, s) = lim
n→∞

hun,K(x, s) =
log û(x)

s
1K(x) + Lû(x)1Kc(x), (x, s) ∈ V × (0,∞],

where we have used the condition that un/Pun converges pointwise to û.

Lemma 4.3. Assume Condition 3.2 to hold. Then

Eγ

(
et〈µ̂t,h

û〉
)
≤ Cγ

c
, Eγ

(
et〈µt,h

û〉
)
≤ Cγe

N

c
, (4.6)

where N = 1 ∨ (− infx∈K log û(x)).

Proof. By Fatou’s lemma, we have

Eγ

(
et〈µ̂t,h

û〉
)
≤
∑
x∈V

γ(x) lim
n→∞

Ex

(
et〈µ̂t,h

un,K〉
)
. (4.7)

For any x ∈ Kc, it follows from items (d) and (f) in Condition 3.2 that there exists nx ∈ N
such that un(x)/Pun(x) < ψx(eζ(x)τ ) for any n ≥ nx. By Lemma 4.2 and item (b) in
Condition 3.2, we have

Ex

(
et〈µ̂t,h

un,K〉
)

= Ex

(
un(X0)

un(XNt+1)
Mun,K

t

)
≤ un(x)

c
, n ≥ nx. (4.8)

Combining (4.7), (4.8), and item (c*) in Remark 3.8, we have

Eγ

(
et〈µ̂t,h

û〉
)
≤
∑
x∈V

γ(x)
un(x)

c
≤ Cγ

c
.
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Moreover, by item (f) in Condition 3.2, we obtain

hû(x, s) ≥ −N
s

1K(x)− σLη(x)1Kc(x). (4.9)

Since N > 0 and Lη(x) < 0 for any x ∈ Kc, we have

〈µ̂t, hû〉 = 〈µt, hû〉+
SNt+1 − t

t
hû(XNt , τNt+1)

≥ 〈µt, hû〉 −
SNt+1 − t

t

N

τNt+1

≥ 〈µt, hû〉 −
N

t
.

This implies the second inequality in (4.6).

For any B ⊂ V , let (T kB)k≥0 be the sequence of stopping times defined by

T 0
B = 0, T kB = inf

{
n ≥ T k−1

B + 1 : Xn ∈ B
}
, k ≥ 1. (4.10)

Clearly, T kB is the kth hitting time of (Xn)n≥0 on the set B. The first hitting time T 1
B is

always abbreviated as TB in what follows. If we only focus on the behavior of (X, τ) in
the set B, we obtain a new process (X̄, τ̄) = {(X̄k)k≥0, (τ̄k)k≥1}, which is defined by

X̄k = XTkB
, τ̄k+1 =

Tk+1
B∑

i=TkB+1

τi, k ≥ 0. (4.11)

Proposition 4.4. Suppose that (X, τ) satisfies Assumptions 2.3 and 2.4. Then {(X̄k)k≥1,
(τ̄k)k≥2} is a Markov renewal process and also satisfies Assumptions 2.3 and 2.4. In
other words, we have

(a) (X̄k)k≥1 is an irreducible and recurrent discrete-time Markov chain with state
space B and transition probability matrix (p̄xy)x,y∈B given by p̄xy = Px (XTB = y).

(b) (τ̄k)k≥2 is a sequence of positive and finite random variables such that conditioned
on (X̄k)k≥1 the random variables (τ̄k)k≥2 are independent and the waiting time
matrix (ψ̄xy)x,y∈B is given by

ψ̄xy(·) = P

(
TB∑
i=1

τi ∈ ·

∣∣∣∣∣X0 = x,XTB = y

)
, x, y ∈ B,

where the definition of the waiting time matrix can be found in Definition 2.1.

Proof. (a) Since (Xk)k≥0 is irreducible and recurrent, we have T kB <∞, Px-a.s. for any
x ∈ V and k ≥ 0. For any n ≥ 0 and x0, x1, · · · , xn+1 ∈ B,

P
(
X̄n+1 = xn+1

∣∣∣X̄n = xn, · · · , X̄0 = x0

)
= P

(
XTn+1

B
= xn+1

∣∣∣XTnB
= xn, · · · , XT 0

B
= x0

)
= Pxn (XTB = xn+1) ,

where the last step follows from the strong Markov property. In fact, we can obtain
the recurrence of (X̄k)k≥1 directly from the recurrence of (Xk)k≥0. For any x, y ∈ B,
since (Xk)k≥0 is irreducible, there exist a positive integer n ≥ 1 and a sequence of states
x0, x1, · · · , xn ∈ V with x0 = x and xn = y such that px0,x1

px1,x2
· · · pxn−1,xn > 0. Select

all states in {xk}0≤k≤n in the set B and write them as xi1 , · · · , xis with 0 = i1 < i2 <

· · · < is = n. Then

p̄xijxij+1
≥ pxijxij+1

· · · pxij+1−1xij+1
> 0, 1 ≤ j ≤ s− 1.
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This implies that (X̄k)k≥1 is irreducible.
(b) Since T kB <∞, Px-a.s. for any x ∈ V and k ≥ 0, it is easy to see that (τ̄k+1)k≥0 is a

sequence of positive and finite random variables. Note that conditioned on (Xk)k≥0 the
random variables (τk)k≥1 are independent and have distribution P (τi+1 ∈ · | (Xk)k≥0) =

ψXi,Xi+1
(·). For any f ∈ Bb(0,∞), we have

E [f(τ̄k)|(Xk)k≥0] =

∫
f

( TkB∑
i=Tk−1

B +1

ti

) TkB∏
i=Tk−1

B +1

ψXi−1Xi(dti), (4.12)

where we use the fact that (T kB)k≥0 is σ((Xk)k≥0)-measurable. For any n ≥ 2 and
f1, · · · , fn ∈ Bb(0,∞), similarly to (4.12), we have

E [f1(τ̄1) · · · fn(τ̄n)|(Xk)k≥0] =

∫
f1

( T 1
B∑

i=T 0
B+1

ti

)
· · · fn

( TnB∑
i=Tn−1

B +1

ti

) TnB∏
i=T 0

B+1

ψXi−1Xi(dti)

= E [f1(τ̄1)|(Xk)k≥0] · · ·E [fn(τ̄n)|(Xk)k≥0] .

(4.13)

Note that X̄k = XTkB
. By the strong Markov property of (Xk)k≥0, it is clear that

conditioned on {X̄k−1 = x, X̄k = y} the random variable E [f(τ̄k)|(Xk)k≥0] is indepen-
dent of (Xk)0≤k≤Tk−1

B
and (Xk)k≥TkB . Moreover, for any x, y ∈ B, the distribution of

E[f(τ̄k)|(Xk)k≥0] conditioned on {X̄k−1 = x, X̄k = y} is equal to the distribution of
E[f(τ̄1)|(Xk)k≥0] conditioned on {X̄0 = x, X̄1 = y}. It follows from (4.13) that

E
[
f1(τ̄1) · · · fn(τ̄n)

∣∣∣(X̄k)k≥0

]
= E

[
E [f1(τ̄1) · · · fn(τ̄n)|(Xk)k≥0]

∣∣∣(X̄k)k≥0

]
= E

[
f1(τ̄1)

∣∣∣(X̄k)k≥0

]
· · ·E

[
fn(τ̄n)

∣∣∣(X̄k)k≥0

]
.

Moreover, for any x, y ∈ B, we have

E
[
f(τ̄k)

∣∣∣X̄k−1 = x, X̄k = y
]

= E
[
E [f(τ̄k)|(Xk)k≥0]

∣∣∣X̄k−1 = x, X̄k = y
]

= E
[
f(τ̄1)

∣∣∣X̄0 = x, X̄1 = y
]
.

This completes the proof of this proposition.

Remark 4.5. In the above proposition, we have proved that conditioned on (X̄k)k≥0, the
random variables (τ̄k)k≥1 are independent. This implies that (X, τ) = {(X̄k)k≥0, (τ̄k)k≥1}
is a delayed Markov renewal process, whose transition probability matrix and waiting
time matrix of the first step is different from the remaining steps [25, Chapter 4.12].

Lemma 4.6. Let K be a finite subset of V . Then for any ` ∈ N, there exists a real
sequence A` ↑ ∞ such that

lim
t→∞

1

t
logPγ(〈Qt, 1K〉 > A`) ≤ −`, (4.14)

where 〈Qt, 1K〉 =
∑

(x,y)∈E Qt(x, y)1K(x).

Proof. Let (X̄, τ̄) be defined as in (4.11) with B = K. By Remark 4.5, we have seen that
(X̄, τ̄) is a delayed Markov renewal process. Similarly to Markov renewal processes,
we can also define the nth jump time S̄n, the number N̄t of jumps up to time t, and the
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empirical flow Q̄t for (X̄, τ̄). Note that
∑Nt
i=1 1K(Xi) is the number of times that ξ jumps

into the set K in the time interval (0, t]. It is easy to see that

N̄t + 1 = 1 +

Nt∑
i=1

1K (Xi) ≥
Nt+1∑
i=1

1K (Xi−1) = t 〈Qt, 1K〉 .

By the exponential Chebyshev inequality, we have

Pγ (〈Qt, 1K〉 > A`) ≤ Pγ
(
N̄t + 1 > A`t

)
= Pγ

(
S̄bA`tc ≤ t

)
≤ etEγ

(
e−S̄bA`tc

)
, (4.15)

where bA`tc denotes the integer part of A`t. By Proposition 4.4 and Remark 4.5, it is
clear that conditioned on (X̄k)k≥0, the random variables (τ̄k)k≥1 are independent. Then
we obtain

Eγ

(
e−S̄bA`tc

)
=

∑
x1,··· ,xbA`tc∈K

Pγ
(
X̄1 =x1, · · · , X̄bA`tc=xbA`tc

)
Eγ

[
e−S̄bA`tc

∣∣∣X̄1 =x1, · · · , X̄bA`tc = xbA`tc

]

=
∑

x1,··· ,xbA`tc∈K
Pγ
(
X̄1 = x1

)
Eγ

[
e−τ̄1

∣∣∣X̄1 = x1

] bA`tc∏
i=2

(
p̄xi−1xi ψ̄xi−1xi

(
e−τ

))
≤
(

sup
x,y∈K

ψ̄xy(e−τ )

)bA`tc−1

Eγ
[
e−τ̄1

]
,

(4.16)

where ψ̄xy(e−τ ) =
∫

(0,∞)
e−sψ̄xy(ds). Since K is finite, it is clear that supx,y∈K ψ̄xy(e−τ ) <

1. Combining (4.15) and (4.16), we have

lim
t→∞

1

t
logPγ(〈Qt, 1K〉 > A`) ≤ 1 + (A` − 1) logC.

This completes the proof by choosing A` = 1− (1 + `)/ logC.

The following proposition states the exponential tightness of the empirical measure
and empirical flow.

Proposition 4.7. Assume Condition 3.2 to hold. Then there exists a sequence {K`} of
compact sets in P(V × (0,∞]) and a real sequence A` ↑ ∞ such that for any ` ∈ N

lim
t→∞

1

t
logPγ

(
µt 6∈ K`

)
≤ −` , (4.17)

lim
t→∞

1

t
logPγ

(
‖Qt‖ > A`

)
≤ −` . (4.18)

In particular, the empirical measure and empirical flow are exponentially tight.

Proof. We first prove (4.18). We consider the exponential local martingale in Lemma 4.1
by choosing F ≡ 0 and

h(x, s) = hη(x, s) :=
N

σs
1K(x) + Lη(x)1Kc(x), (x, s) ∈ V × (0,∞],

where N is as in Lemma 4.3. By Lemma 3.1, it is easy to check that (F, h) ∈ Γ and
gF,h = (N/σ)1K + log η1Kc . It then follows form (4.4) that

MF,h
t = exp

{
t

[〈
Qt,−

N

σ
1K − log η1Kc

〉
+ 〈µ̂t, hη〉

]}
.
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Combining (4.9) and the first inequality in Lemma 4.3, we have

Eγ

(
et〈µ̂t,−σh

η〉
)

= Eγ

(
et〈µ̂t,−

N
s 1K−σLη1Kc 〉

)
≤ Eγ

(
et〈µ̂t,h

û〉
)
≤ Cγ

c
.

By exponential Chebyshev inequality, we obtain

Pγ
(
〈µ̂t,−σhη〉 > `

)
≤ Cγ

c
e−t` .

On the other hand, by Lemma 4.6, there exists a real sequence A′` ↑ ∞ such that

lim
t→∞

1

t
logPγ

(
〈Qt, 1K〉 > A′`

)
≤ −` . (4.19)

Hence it is enough to show that there exists a sequence A` ↑ ∞ such that for any t > 0

and ` ∈ N,

Pγ

(
‖Qt‖ > A` , 〈µ̂t,−σhη〉 ≤ ` , 〈Qt, 1K〉 ≤ A′`

)
≤ e−t ` . (4.20)

Since log η < 0, we have

Pγ (‖Qt‖ > A` , 〈µ̂t,−σhη〉 ≤ `, 〈Qt, 1K〉 ≤ A′`)

= Eγ

(
et[log η‖Qt‖+〈Qt,(Nσ −log η)1K〉−〈µ̂t,hη〉]MF,h

t 1{‖Qt‖>A`} 1{〈µ̂t,−σhη〉≤`} 1{〈Qt,1K〉≤A′`}

)
≤ exp

{
t

[
log ηA` +

(
N

σ
− log η

)
A′` +

1

σ
`

]}
,

where we have used Lemma 4.1 in the last step. The proof of (4.20) is now completed by
choosing

A` =
(N/σ − log η)A′` + (1 + 1/σ)`

− log η
.

Recall that the closed ball in L1
+(E) is compact with respect to the bounded weak*

topology. Then the exponential tightness of the empirical flow follows from (4.18).
We next prove (4.17). For a sequence of constants am ↑ ∞ to be chosen later, set

Wm = {x ∈ V : Lû(x) ≤ am} ∪K. In view of items (e) and (f) in Condition 3.2, it is clear
that Wm is a finite subset of V . Now set

K1
` =

⋂
m≥`

{
µ ∈ P(V × (0,∞]) : µ (W c

m × (0,∞]) ≤ 1

m

}
,

K2
` =

{
µ ∈ P(V × (0,∞]) :

〈
µ,

1

s

〉
≤ A`

}
,

where 〈µ, 1/s〉 =
∑
x∈V

∫
(0,∞]

µ(x, ds)/s. Then for any µ ∈ K` = K1
` ∩ K2

` , we have

µ(V × (0, ε)) =
∑
x∈V

∫
(0,ε)

s

s
µ (x,ds) ≤ ε

〈
µ,

1

s

〉
≤ εA`,

µ
((
Wm × [ε,∞]

)c) ≤ µ(W c
m × (0,∞]) + µ(V × (0, ε)) ≤ 1

m
+ εA`, m ≥ `.

Since Wm × [ε,∞] a compact subset of V × (0,∞], it follows from Prokhorov’s theorem
that K` is a compact subset of P(V × (0,∞]). Since

lim
t→∞

1

t
logPγ (µt 6∈ K`) ≤ lim

t→∞

1

t
log
(
Pγ
(
µt 6∈ K1

`

)
+ Pγ

(
µt 6∈ K2

`

))
,
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we only need to prove

lim
t→∞

1

t
logPγ

(
µt 6∈ K1

`

)
≤ −` and lim

t→∞

1

t
logPγ

(
µt 6∈ K2

`

)
≤ −`. (4.21)

Note that 〈
µt,

1

s

〉
=

1

t
Nt +

t− SNt
tτNt+1

≤ 1

t
(Nt + 1) = ‖Qt‖.

Then we can obtain the second inequality in (4.21) from (4.18), i.e.

lim
t→∞

1

t
logPγ

(
µt 6∈ K2

`

)
= lim

t→∞

1

t
logPγ

(〈
µt,

1

s

〉
> A`

)
≤ lim

t→∞

1

t
logPγ (‖Qt‖ > A`)

≤ − `.

We next prove the first inequality in (4.21). By item (f) in Condition 3.2, it is easy to see
that Lû(x) ≥ −σLη(x) ≥ 0 for any x ∈ Kc. Recall the definition of Wm, hû, and N . It is
easy to see that

hû(x, s) =
log û(x)

s
1K(x) + Lû(x)1Kc(x) ≥ −N

s
1K(x) + am1W c

m
(x).

Note that 〈
µt,

1

s
1K

〉
≤
〈
µ̂t,

1

s
1K

〉
= 〈Qt, 1K〉.

By the exponential Chebyshev inequality and Lemma 4.3, we obtain

Pγ

(
µt (W c

m × (0,∞]) >
1

m

)
≤ Pγ

(〈
µt, h

û +
N

s
1K

〉
>
am
m

)
≤ Pγ

(〈
µt, h

û
〉

+N〈Qt, 1K〉 >
am
m

)
≤ Pγ

(〈
µt, h

û
〉
>
am
2m

)
+ Pγ

(
N〈Qt, 1K〉 >

am
2m

)
≤ Cγe

N

c
exp

{
−t am

2m

}
+ Pγ

(
〈Qt, 1K〉 >

am
2Nm

)
.

(4.22)

From (4.19), the proof is now easily concluded by choosing am = 2m2 + 2NA′mm.

Remark 4.8. In fact, the empirical measure πt defined in (2.2) is also exponentially tight
and the proof is similar to the first inequality in (4.21). Moreover, at this time we only
need item (f) in Condition 3.2 with σ = 0. Note that we will not resort to the compactness
conditions anymore in the following proof of upper bound and lower bound. This means
that the marginal LDP for the empirical measure πt in Proposition 3.16 still holds under
Condition 3.2 with σ = 0.

4.3 Upper bound

We next prove the upper bound of the LDP. Since we have proved the exponential
tightness for the empirical measure and empirical flow, to prove the upper bound of the
LDP for closed sets, we only need to prove the upper bound for compact sets [15, Lemma
1.2.18]. Before stating the upper bound, we introduce the following notation. For any
Polish space X , let Cc(X ) be the collection of all continuous functions f : X → R with
compact supports. For any functions M : V → [0,∞), ϕ ∈ Cc(V × (0,∞)), and c ∈ Cc(V )
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such that 0 ≤ c ≤ ζ and c(x) < ζ(x) for any x ∈ V with ζ(x) > 0, let hϕ,c,M : V ×(0,∞]→ R

be the function defined by

hϕ,c,M (x, s) =
ϕx(s)

s
+ c(x) 1(M(x),∞](s), (x, s) ∈ V × (0,∞].

Recall the definition of Γ in (4.1). Let Γ0 be the subset of Γ defined by

Γ0 =
{

(F, h) ∈ Γ : F ∈ Cc(E), h = hϕ,c,M for some ϕ, c,M as above, and gF,h ≡ 0
}
.

For any (F, h) ∈ Γ0, let IF,h : Λ 7→ R be the functional defined by

IF,h(µ,Q) =〈Q,F 〉+ 〈µ, h〉. (4.23)

Based on the proof of Lemma 4.10, it is easy to see that IF,h is a lower semicontinuous
function on Λ. For any δ > 0, set

Cδ =

{
(µ,Q) ∈ Λ : max

x∈V
|Q+(x)−Q−(x)| ≤ δ

}
. (4.24)

Let IF,h,δ : Λ→ R be the functional defined by

IF,h,δ(µ,Q) =

{
IF,h(µ,Q), if (µ,Q) ∈ Cδ,
∞, otherwise.

(4.25)

Lemma 4.9. For any (F, h) ∈ Γ0, δ > 0, and measurable O ⊂ Λ, we have

lim
t→∞

1

t
logPγ((µt, Qt) ∈ O) ≤ − inf

(µ,Q)∈O
IF,h,δ(µ,Q). (4.26)

Proof. We first prove that for any measurable B ⊂ Λ,

lim
t→∞

1

t
logPγ

(
(µt, Qt) ∈ B

)
≤ − inf

(µ,Q)∈B
IF,h(µ,Q). (4.27)

Since c ≥ 0 and ϕ ∈ Cc(V × (0,∞)), we have

(SNt+1 − t)h(XNt , τNt+1) ≥ (SNt+1 − t)
ϕXNt (τNt+1)

τNt+1
≥ −‖ϕ‖∞, Pγ -a.s., (4.28)

where ‖ · ‖∞ denotes the standard L∞-norm. Recall the definition of the semimartingale
MF,h in Lemma 4.1. For each t > 0 and measurable set B ⊂ Λ, it follows from (4.23)
and (4.28) that

Pγ
(
(µt, Qt) ∈ B

)
= Eγ

(
exp {−t IF,h(µt, Qt)− (SNt+1 − t)h(XNt , τNt+1)} MF,h

t 1B (µt, Qt)
)

≤ exp {‖ϕ‖∞} sup
(µ,Q)∈B

exp {−t IF,h(µ,Q)} Eγ
(
MF,h

t 1B(µt, Qt)
)
.

Hence we have proved (4.27). It is easy to see that Pγ((µt, Qt) ∈ Cδ) = 1 for any t ≥ 1/δ.
Finally, taking B = O ∩ Cδ in (4.27), we obtain

lim
t→∞

1

t
logPγ((µt, Qt) ∈ O) = lim

t→∞

1

t
logPγ((µt, Qt) ∈ O ∩ Cδ)

≤ − inf
(µ,Q)∈O∩Cδ

IF,h(µ,Q)

= − inf
(µ,Q)∈O

IF,h,δ(µ,Q).

This completes the proof of this lemma.
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Lemma 4.10. Suppose that Assumption 2.6 holds. For any (F, h) ∈ Γ0 and δ > 0, IF,h,δ
is a convex and lower semicontinuous function on Λ, where L1

+(E) is endowed with the
bounded weak* topology.

Proof. Since a linear functional on L1
+(E) is continuous with respect to the bounded

weak* topology if and only if it is continuous with respect to the weak* topology [36,
Theorem 2.7.8], the weak* topology on L1(E) is the smallest topology such that the maps
Q ∈ L1(E)→ 〈Q, f〉 ∈ R with f ∈ C0(E) being continuous. Let

f1
x(y, z) = 1x(y), f2

x(y, z) = 1x(z), (y, z) ∈ E.

By Assumption 2.6, the graph (V,E) is locally finite. It is easy to check that f1
x , f

2
x ∈ C0(E)

for any x ∈ V . Note that

Cδ =
⋂
x∈V

({
(µ,Q) ∈ Λ : Q+(x)−Q−(x) ≤ δ

}⋂{
(µ,Q) ∈ Λ : Q−(x)−Q+(x) ≤ δ

})
=
⋂
x∈V

({
(µ,Q) ∈ Λ : 〈Q, f1

x − f2
x〉 ≤ δ

}⋂{
(µ,Q) ∈ Λ : 〈Q, f2

x − f1
x〉 ≤ δ

})
.

This implies that Cδ is a closed subset of Λ. Moreover, it is easy to see that Cδ is convex.
Thus we only need to prove that IF,h is a convex and lower semicontinuous function on
Λ.

Since IF,h is a linear functional, it must be convex. Since F ∈ Cc(E) ⊂ C0(E), the
map Q 7→ 〈Q,F 〉 is continuous. On the other hand, since ϕ ∈ Cc(V × (0,∞)), there
exists a finite set K ⊂ V such that ϕx ≡ 0 for x ∈ Kc and ϕx ∈ Cc(0,∞) for x ∈ K.
Then hϕ,c,M is a bounded lower semicontinuous function. For any µ ∈ P(V × (0,∞]), let
µn ∈ P(V × (0,∞]) be a sequence of probability measures such that µn weakly converges
to µ. It then follows from the Portmanteau theorem [8, Corollary 8.2.5] that

lim
n→∞

〈
µn, h

ϕ,c,M
〉
≥
〈
µ, hϕ,c,M

〉
.

Since P(V × (0,∞]) is a metric space with the topology of weak converge, it is clear
that 〈µ, h〉 is lower semicontinuous with respect to µ. This completes the proof of this
lemma.

Lemma 4.11. For any (µ,Q) ∈ Λ satisfying Q+ = Q−, we have

I(µ,Q) = sup
(F,h)∈Γ0

IF,h(µ,Q).

Proof. The proof for I(µ,Q) ≥ sup(F,h)∈Γ0
IF,h(µ,Q) is similar to [35, Proposition 2.1].

Here only prove the converse inequality

I(µ,Q) ≤ sup
(F,h)∈Γ0

IF,h(µ,Q). (4.29)

Case 1: (µ,Q) /∈ D. Then there exists x ∈ V such that

µ

(
x,

1

τ

)
:=

∫
(0,∞]

1

s
µ(x,ds) 6= Qx.

Without loss of generality, we assume that µ(x, 1/τ) < Qx. For any C > 0, (y, z) ∈ E, and
(y, s) ∈ V × (0,∞], set

FC(y, z) = C1x(y), hC(y, s) = −C
s

1x(y).
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It is easy to check that gFC ,hC ≡ 0 and

IFC ,hC (µ,Q) = C

[
Qx − µ

(
x,

1

τ

)]
.

Here (FC , hc) /∈ Γ0, but we still define IFC ,hC (µ,Q) as in (4.23). As C → ∞, we have
IFC ,hC (µ,Q)→∞. Now for any C > 0, we construct a sequence (Fn, hn) ∈ Γ0 such that

lim
n→∞

IFn,hn(µ,Q) = IFC ,hC (µ,Q). (4.30)

For any y ∈ V , it is easy to see that there exists a non-negative function gy ∈ Cc(0,∞)

such that ψy({t ∈ (0,∞) : gy(t) > 0}) > 0. Let

Fn(y, z) = C1x(y)1Kn(z), hn(y, s) =
C

s
(fn(s) + cngx(s))1x(y), (4.31)

where fn : (0,∞] → R is a sequence of continuous functions satisfying fn(s) = 0 if
s ∈ (0, 1/(n+ 1))∪ (n+ 1,∞] and fn(s) = −1 if s ∈ (1/n, n), cn is a sequence of constants
to be chosen later such that gFn,hn ≡ 0, and Kn is a sequence of finite sets such that
Kn ↑ V and 1 + (eC − 1)

∑
y∈Kn

pxy

 〈ψx, eCfn〉 ≤ 1.

Since limn→∞〈ψx, eCfn〉 = −C, such Kn must exist. It is easy to check that gFn,hn(y) = 0

for any y 6= x and

gFn,hn(x) = log

1 + (eC − 1)
∑
y∈Kn

pxy

+ log
〈
ψx, e

C(fn+cngx)
〉
. (4.32)

Note that

lim
cn→∞

gFn,hn(x) =∞, lim
cn→0

gFn,hn(x) = log

1 + (eC − 1)
∑
y∈Kn

pxy

+ log
〈
ψx, e

Cfn
〉
≤ 0.

Since gFn,hn(x) is continuous with respect to cn, by the intermediate value theorem,
there exists a sequence of constants cn such that gFn,hn(x) ≡ 0, which implies that
(Fn, hn) ∈ Γ0. Taking n→∞ on both sides of (4.32), it is easy to see that cn → 0. Thus
in the sense of pointwise convergence, we have (Fn, hn)→ (FC , hC). By the dominated
convergence theorem, we obtain (4.30). This further implies (4.29).

Case 2: (µ,Q) ∈ D. Then for any x ∈ V , we have

µ

(
x,

1

τ

)
= Qx <∞.

Recall the definition of Q̃xy and µ̃x in (3.6). Since V and (0,∞) are both Polish spaces, it
follows from (3.4) that for any x ∈ V ,

H
(
Q̃x,· | px,·

)
= sup
{Fx∈Cb(V ):

∑
y∈V pxye

Fx(y)=1}

∑
y∈V

Q̃xyFx(y),

H
(
µ̃x |ψx

)
= sup
{ϕx∈Cb(0,∞):〈ψx,eϕx 〉=1}

∫
(0,∞)

ϕx(s)µ̃x(ds).

Recall the definition of I in (3.7). Then for any F ∈ Cb(E), ϕ ∈ Cb(V × (0,∞)) satisfying∑
y∈V pxye

F (x,y) = 1 and 〈ψx, eϕx〉 = 1 for any x ∈ V , and c : V → [0,∞) satisfying
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0 ≤ c ≤ ζ and c(x) < ζ(x) for any x ∈ V with ζ(x) > 0, we only need to find a sequence
(Fn, hn) ∈ Γ0 such that

lim
n→∞

IFn,hn(µ,Q) ≥
∑
x∈V

Qx∑
y∈V

Q̃xyF (x, y) +Qx

∫
(0,∞)

ϕx(s)µ̃x(ds) + cxµ(x, {∞})

 .
(4.33)

For any (x, y) ∈ E and (x, s) ∈ V × (0,∞], let

Fn(x, y) = (F (x, y)− anx)1Kn(x)1Kn(y),

hn(x, s) =

[
1

s
(ϕnx(s)− bnxgx(s)) + cx1(n+1,∞](s)

]
1Kn(x),

where ϕnx : (0,∞] → R is a sequence of continuous functions satisfying ϕnx(s) = 0 if
s ∈ (0, 1/(n + 1)) ∪ (n + 1,∞) and ϕnx(s) = ϕx(s) if s ∈ (1/n, n), anx and bnx are two
sequences of constants satisfying

∑
y∈V pxye

Fn(x,y) = 1 as well as 〈ψx, eshn(x,s)〉 = 1, gx
is the function used in (4.31), and Kn is a sequence of finite sets such that Kn ↑ V . For
any x ∈ V and sufficiently large n that may depend on x, straightforward computations
show that

anx = log

∑
y∈Kn pxye

F (x,y)∑
y∈Kn pxy

,

∫
(0,n+1]

eϕ
n
x (s)−bnxgx(s)ψx(ds) +

∫
(n+1,∞)

ecxsψx(ds) = 1.

Moreover, it is easy to see that such sequence of constants bnx exists, and anx → 0 and
bnx → 0 as n→∞. For all x ∈ V , we have

lim
n→∞

∑
y∈V

Q(x, y)Fn(x, y) +

∫
(0,∞]

hn(x, s)µ(x, ds)


≥
∑
y∈V

Q(x, y)F (x, y) +

∫
(0,∞)

1

s
ϕx(s)µ(x, ds) + cxµ(x, {∞}).

Then (4.33) follows from Fatou’s lemma. This completes the proof of this lemma.

We are now in a position to prove the upper bound of the LDP.

Proposition 4.12. Suppose that Assumptions 2.3-2.6 are satisfied. Let L1
+(E) be en-

dowed with the bounded weak* topology. Then I is a convex and lower semicontinuous
function, and for each compact set K ⊂ Λ, we have

lim
t→∞

1

t
logPγ

(
(µt, Qt) ∈ K

)
≤ − inf

(µ,Q)∈K
I(µ,Q). (4.34)

Moreover, if Condition 3.2 is satisfied, then the above equation also holds for any closed
set K ⊂ Λ.

Proof. We first prove that I is convex and lower semicontinuous. Since we have proved
IF,h,δ is convex and lower semicontinuous in Lemma 4.10, we only need to verify that

I(µ,Q) = sup
(F,h)∈Γ0,δ>0

IF,h,δ(µ,Q), (µ,Q) ∈ Λ.

Case 1: Q+ 6= Q−. Let δ be a constant satisfying 0 < δ < maxx∈V |Q+(x) − Q−(x)|.
Since (µ,Q) ∈ Λ \ Cδ, we have

I(µ,Q) =∞ = sup
(F,h)∈Γ0,δ>0

IF,h,δ(µ,Q).
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Case 2: Q+ = Q−. By Lemma 4.11, we have

I(µ,Q) = sup
(F,h)∈Γ0

IF,h(µ,Q).

Recall the definition of Cδ in (4.24) and the definition of IF,h,δ in (4.25). It is easy to
check that for any δ > 0, we have (µ,Q) ∈ Cδ and IF,h(µ,Q) = IF,h,δ(µ,Q). Optimizing
over (F, h) ∈ Γ0 and δ > 0, we obtain

I(µ,Q) = sup
(F,h)∈Γ0

IF,h(µ,Q) = sup
(F,h)∈Γ0,δ>0

IF,h,δ(µ,Q).

We next prove (4.34). Minimizing (4.26) over (F, h) ∈ Γ0 and δ > 0, we obtain

lim
t→∞

1

t
logPγ((µt, Qt) ∈ O) ≤ − sup

(F,h)∈Γ0,δ>0

inf
(µ,Q)∈O

IF,h,δ(µ,Q).

Note that IF,h,δ is lower semicontinuous for any (F, h) ∈ Γ0 and δ > 0. For any compact
set K ⊂ Λ, it follows from the min-max lemma [32, Lemma 3.3 in Appendix 2.3] that

lim
t→∞

1

t
logPγ((µt, Qt) ∈ K) ≤ − inf

(µ,Q)∈K
sup

(F,h)∈Γ0,δ>0

IF,h,δ(µ,Q) = − inf
(µ,Q)∈K

I(µ,Q).

Finally, under Condition 3.2, it follows from Proposition 4.7 that (µt, Qt) is exponentially
tight. Hence the upper bound in (4.34) also holds for any closed set K ⊂ Λ.

4.4 Lower bound

We next prove the lower bound of the LDP. Before giving the proof, we recall the
following lemma, which can be found in [7, Lemma 5.2].

Lemma 4.13. Let {Pt} be a family of probability measures on a completely regular
topological space X and let J : X → [0,∞] be a function. Assume that for each x ∈ X ,
there exists a family of probability measures {P̃ xt } weakly convergent to δx such that

lim
t→∞

1

t
H
(
P̃ xt
∣∣Pt) ≤ J(x). (4.35)

Then the family {Pt} satisfies the large deviation lower bound with rate function sc−J .
Here sc−J is the lower semicontinuous envelope of J , i.e.

(sc−J) (x) = sup
U∈Nx

inf
y∈U

J(y),

where Nx denotes the collection of the open neighborhoods of x.

In order to prove the lower bound, we will apply Lemma 4.13 for completely regular
topological space Λ. Recall the definitions of D and Q̃ in (3.5) and (3.6), respectively. Let
D2 ⊂ D1 ⊂ D be defined by

D1 =
{

(µ,Q) ∈ D : I(µ,Q) <∞, µ(x, (0,∞)) > 0, ∀x ∈ V,
(Q̃xy)x,y∈V defines an irreducible transition matrix on V

}
,

D2 = {(µ,Q) ∈ D1 : µ(x, {∞}) = 0, ∀x ∈ V } .
Moreover, let J : Λ→ [0,∞] be the restriction of the rate function I to D2, i.e.

J(µ,Q) =

{
I(µ,Q), if (µ,Q) ∈ D2,

∞, otherwise.
(4.36)

In the following lemma, we will construct a family of probability measures {P̃ xt } on Λ

and prove (4.35) with the upper bound given by (4.36). The proof is in the spirit of that
given in [35, Proposition 5.1], but some details are supplemented.
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Lemma 4.14. Let Pt = Pγ ◦ (µt, Qt)
−1. For each (µ,Q) ∈ Λ there exists a family of

probability measures {P̃ (µ,Q)
t } on Λ weakly convergent to δ(µ,Q) such that

lim
t→∞

1

t
H
(
P̃

(µ,Q)
t

∣∣Pt) ≤ J(µ,Q).

Proof. By the definition of J in (4.36), we may restrict the proof to (µ,Q) ∈ D2. When
(µ,Q) ∈ D2, we have

Qx = µ

(
x,

1

τ

)
> 0, µ(x, {∞}) = 0, x ∈ V,

and it is easy to check that∑
x∈V

QxH
(
Q̃x,· | px,·

)
<∞,

∑
x∈V

QxH
(
µ̃x |ψx

)
<∞.

It then follows from [19, Theorem 2.1 and the remark after Theorem 2.1] that Q̃x,· � px,·,
µ̃x � ψx and ∑

(x,y)∈E

Q(x, y)

∣∣∣∣log

(
Q(x, y)

Qxpxy

)∣∣∣∣ <∞, (4.37)

∑
x∈V

∫
(0,∞)

1

s

∣∣∣∣log

(
µ(x,ds)

Qxsψx(ds)

)∣∣∣∣µ(x,ds) <∞. (4.38)

Let (F, h) ∈ Γ be defined by

F (x, y) = log

(
Q(x, y)

Qxpxy

)
, h(x, s) =

1

s
log

(
µ(x, ds)

Qxsψx(ds)

)
. (4.39)

In this way, the transition probability kernel (PF ,Ψh) defined in (4.2) are given by

pFxy =
1

Qx
Q(x, y) = Q̃xy, ψhx(ds) =

1

Qxs
µ(x, ds) = µ̃x(ds).

Let PF,hγ be the probability measure under which (X, τ) is a Markov renewal process
with transition kernel (PF ,Ψh) and initial distribution γ. Since (µ,Q) ∈ D2, it is easy to
see that pF = Q̃ is irreducible. It then follows from (3.5) that∑

x∈V
νFx p

F
xy =

1

‖Q‖
∑
x∈V

Q(x, y) =
Qy
‖Q‖

= νFy ,

where νFx = Qx/‖Q‖ for any x ∈ V . This means that νF is the unique invariant distribu-
tion for PF . Since µ(x, {∞}) = 0 for any x ∈ V , we have

E
F,h
νF

(τ1) =
∑
x∈V

νFx

∫
(0,∞)

sψhx (ds) =
∑
x∈V

Qx
‖Q‖

∫
(0,∞)

s
1

Qxs
µ(x, ds) =

1

‖Q‖
<∞. (4.40)

By the strong law of large numbers for semi-Markov processes, for any f ∈ Cb(V ×(0,∞])

and g ∈ Cb(E), we have

lim
t→∞
〈µt, f〉 =

1

E
F,h
νF

(τ1)

∑
x∈V

νFx

∫
(0,∞)

sf(x, s)ψhx(ds) = 〈µ, f〉, PF,hγ -a.s. (4.41)

lim
t→∞
〈Qt, g〉 =

1

E
F,h
νF

(τ1)

∑
(x,y)∈E

νFx p
F
xyg(x, y) = 〈Q, g〉, PF,hγ -a.s. (4.42)

We now construct the family of probability measures {P̃ (µ,Q)
t }. For any ε > 0 and

t ≥ 0, let Tt = b‖Q‖(1 + ε)tc and let Pγ,t,ε be the probability measure under which the
law of the process (X, τ) = {(Xk)k≥0, (τk)k≥1} satisfies the following requirements:
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(a) {(Xk)0≤k≤Tt , (τk)1≤k≤Tt} is a Markov renewal process with transition kernel
(PF ,Ψh) and initial distribution γ.

(b) Conditioned on XTt , the processes {(Xk)0≤k≤Tt , (τk)1≤k≤Tt} and {(Xk)k≥Tt ,

(τk)k≥Tt+1} are independent of each other. Moreover, {(Xk)k≥Tt , (τk)k≥Tt+1} is
a Markov renewal process with transition kernel (P,Ψ) and initial distribution δXTt .

Intuitively, under Pγ,t,ε, the process (X, τ) has the transition kernel (PF ,Ψh) before time
Tt and has the transition kernel (P,Ψ) after time Tt. Set P̃t,ε = Pγ,t,ε ◦ (µt, Qt)

−1 and let

ε(t) ↓ 0 to be chosen later such that P̃ (µ,Q)
t := P̃t,ε(t) weakly converges to δ(µ,Q) as t→∞.

In other words, for any G ∈ Cb(Λ), we have

lim
t→∞

∫
Λ

GdP̃t,ε(t) = G(µ,Q). (4.43)

For any ε > 0, it follows from (4.40) and the strong law of large numbers for Markov
renewal processes [34, Theorem 3.13] that

lim
t→∞

STt
t

= lim
t→∞

STt
Tt

Tt
t

= E
µ,Q
νF

(τ1)‖Q‖(1 + ε) = 1 + ε, PF,hγ -a.s.

For any t > 0, let
Dt,ε = {STt > t} = {Nt + 1 ≤ Tt} ∈ FTt ,

where FTt = σ((Xk, τk)0≤k≤Tt). It is easy to see that PF,hγ |FTt = Pγ,t,ε|FTt . Then we have

lim
t→∞

Pγ,t,ε (Dt,ε) = lim
t→∞

Pγ,t,ε (STt > t) = lim
t→∞

PF,hγ

(
STt
t

> 1

)
= 1. (4.44)

Before determining ε(t), we give an estimation of the relative entropy. We observe that
for any ε > 0,

H
(
P̃t,ε
∣∣Pt) ≤ H (Pγ,t,ε∣∣Pγ) = EF,hγ

[
log

dPF,hγ |FTt
dPγ |FTt

]

= EF,hγ

[
Tt∑
i=1

(F (Xi−1, Xi) + τih(Xi−1, τi))

]
.

(4.45)

Indeed, the first inequality follows from the variational characterization of the relative
entropy [19, Section 2] and the last equality is a straightforward computation of the
Radon-Nikodym density (similarly to (4.3)).

Combining (4.37), (4.38), and (4.39), we have 〈Q, |F |〉 <∞ and 〈µ, |h|〉 <∞. Note that
(Xk, Xk+1, τk+1)k≥0 is a Markov process. By the ergodic theorem of Markov processes,
we have

lim
t→∞

1

t
EF,hγ

[
Tt∑
i=1

(
F (Xi−1, Xi) + τih(Xi−1, τi)

)]
=(1 + ε)‖Q‖ 1

‖Q‖
[〈Q,F 〉+ 〈µ, h〉]

≤(1 + ε)I(µ,Q).

(4.46)

We next construct ε(t) ↓ 0. Let ε(t) = 1/n for any tn−1 < t ≤ tn be a step function,
where tn is an increasing sequence such that

Pγ,t,1/n
(
Dt,1/n

)
≥ 1− 1

n
and

1

t
H
(
P̃t,1/n

∣∣∣Pt) ≤ (1 +
1

n− 1

)
I(µ,Q), t > tn−1.

It follows from (4.44), (4.45), and (4.46) that such tn ↑ ∞ exist. Then we have

lim
t→∞

Pγ,t,ε(t)
(
Dt,ε(t)

)
= 1, lim

t→∞

1

t
H
(
P̃t,ε(t)

∣∣∣Pt) ≤ I(µ,Q). (4.47)
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Finally, we prove (4.43). Note that∫
Λ

GdP̃t,ε(t) =

∫
Ω

G(µt, Qt)dPγ,t,ε(t)

=

∫
Ω

G(µt, Qt)1Dt,ε(t)dPγ,t,ε(t) +

∫
Ω

G(µt, Qt)1Dc
t,ε(t)

dPγ,t,ε(t).

It thus follows from the first equality of (4.47) that∣∣∣∣∫
Ω

G(µt, Qt)1Dc
t,δ(t)

dPγ,t,δ(t)

∣∣∣∣ ≤ ‖G‖∞Pγ,t,ε(t) (Dc
t,ε(t)

)
→ 0, as t→∞.

On the other hand, since Dt,ε(t) = {Nt + 1 ≤ Tt}, we have G(µt, Qt)1Dt,ε(t) ∈ FTt . Note
that P(V ×(0,∞]) is endowed with the weak convergence topology and L1

+(E) is endowed
with the bounded weak* topology. It is a direct consequence of (4.41) and (4.42) that

lim
t→∞

G(µt, Qt) = G(µ,Q), PF,hγ -a.s.

Moreover, it follows from the first equality of (4.47) that

lim
t→∞

PF,hγ
(
Dt,ε(t)

)
= lim
t→∞

Pγ,t,ε(t)
(
Dt,ε(t)

)
= 1.

Then we obtain∫
Ω

G(µt, Qt)1Dt,ε(t)dPγ,t,ε(t) =

∫
Ω

G(µt, Qt)1Dt,ε(t)dP
F,h
γ

→
∫

Ω

G(µ,Q)dPF,hγ = G(µ,Q), as t→∞,
(4.48)

where the convergence in (4.48) follows from the dominated convergence theorem.

To prove the lower bound of the LDP, we only need to prove that the rate function
I coincides with sc−J . Before giving the desired results, we need the following two
lemmas.

Lemma 4.15. Suppose that Assumption 2.3 is satisfied. Then for any µ = (µx)x∈V ∈
P(V ) satisfying µx > 0 for any x ∈ V , there exist a constant C > 0 and an irreducible,
positive recurrent Markov chain (X̂k)k≥0 with state space V , transition probability matrix
P̂ = (p̂xy)x,y∈V , and invariant distribution ν̂ = (ν̂x)x∈V such that Ê ⊂ E and ν̂x ≤ Cµx
for any x ∈ V , where Ê = {(x, y) ∈ V × V : p̂xy > 0}.

Proof. We first construct a sequence of finite subsets Vn ↑ V by induction. Without
loss of generality, we assume that V = {zi}i≥1. Since Assumption 2.3 holds, it is clear
that (V,E) is connected. Thus, there exists a self-avoiding cycle (x1(:= z1), x2 · · · , xk0)

of elements of V such that (xi, xi+1) ∈ E when i = 1, · · · , k0 and the sum in the indices
is modulo k0 (cycle (x1, · · · , xk0) is called self-avoiding if xi 6= xj for any 1 ≤ i 6= j ≤ k0).
Set

V0 = {x1, x2, · · · , xk0}.

Suppose that we have constructed Vn and z1, · · · , zq ∈ Vn, zq+1 /∈ Vn. Since (V,E) is
connected, it is easy to see that there exist xr ∈ Vn for some 1 ≤ r ≤ kn = |Vn| and
a sequence of distinct states w1, · · · , wm1−1 ∈ V \ Vn such that (wi, wi+1) ∈ E when
i = 0, · · · ,m1 − 1, where w0 := xr and wm1 := zq+1. Similarly, there exist xl ∈ Vn and
a sequence of distinct states wm1+1, · · · , wm2

∈ V \ Vn such that (wi, wi+1) ∈ E when
i = m1, · · · ,m2, where wm2+1 := xl.

If {w1, · · · , wm1
} ∩ {wm1+1, · · · , wm2

} = ∅, let m = m2 and yi = wi for i = 1, · · · ,m.
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If {w1, · · · , wm1
} ∩ {wm1+1, · · · , wm2

} 6= ∅, let κ1 be the minimum integer such that
wκ1

∈ {wm1+1, · · · , wm2
}. Then there exists m1 + 1 ≤ κ2 ≤ m2 such that wκ1

= wκ2
.

Moreover, let m = κ1 +m2−κ2 and y1 = w1, · · · , yκ1
= wκ1

, yκ1+1 = wκ2+1, · · · , ym = wm2
,

it is clear that y1, · · · , ym is a sequence of distinct states of V \ Vn.
Set kn+1 = kn +m and

Vn+1 = {x1, · · ·xkn , xkn+1(:= y1), · · · , xkn+1
(:= ym)}.

Then we have constructed a sequence of subsets {Vn}n≥0 such that |Vn| < ∞ and
Vn ⊂ Vn+1. Moreover, following from the above constructions, it is easy to see that for
any zq ∈ V , there exists Vn such that zq ∈ Vn. This implies that ∪nVn = V .

We next construct a sequence of matrices Pn = (pnxy)x,y∈V base on the previous
construction of {Vn}n≥0. Let

p0
xi,xi+1

= 1, 1 ≤ i ≤ k0 − 1, p0
xk0 ,x1

= 1, p0
xy = 0, otherwise.

Suppose that we have constructed Pn = (pnxy)x,y∈V . Let

pn+1
xr,xkn+1

= αn+1, pn+1
xi,xi+1

= 1, kn + 1 ≤ i ≤ kn+1 − 1, pn+1
xkn+1

,xl
= 1,

pn+1
xr,y = (1− αn+1)pnxr,y, y ∈ Vn, pn+1

xy = pnxy, otherwise,
(4.49)

where xr, xl ∈ Vn are defined the same as in the above construction of {Vn}n≥0 and
αn+1 is a positive constant remaining to decide. Then the sequence of matrices Pn is
constructed by induction. It is easy to see that Pn can be considered as a transition
probability matrix with state space Vn, which corresponds to an irreducible Markov chain.
We let νn ∈ P(V ) be the invariant distribution for Pn. Now we decide {αn}n≥0 and C such
that νnx < Cµx for any n ∈ N and x ∈ V by induction. Let C = 1 + (maxx∈V0(1/µx))/k0

and α0 = 0. It is clear that

ν0
x =

1

k0
< Cµx, x ∈ V0, ν0

x = 0 < Cµx, x /∈ V0.

Suppose that we have decided (αk)0≤k≤n such that νnx < Cµx for any x ∈ V . Note that
νn+1 is continuous with respect to αn+1. In other words,

lim
αn+1↓0

νn+1
x = νnx , x ∈ V.

Since V is countable, the strong convergence of νn+1 to νn in P(V ) is equivalent to the
pointwise convergence of νn+1

x to νnx for any x ∈ V . This implies limαn+1↓0 ‖νn+1−νn‖ = 0.
Hence, there exists 0 < αn+1 ≤ 1/2n+1 such that

νn+1
x < Cµx, x ∈ Vn+1,

∥∥νn+1 − νn
∥∥ ≤ 1

2n
. (4.50)

Since νn+1
x = 0 for any x /∈ Vn+1, it is clear that νn+1

x < Cµx for any x ∈ V .
Finally, we construct P̂ . For any x ∈ V , since Vn ↑ V , there exists N such that x ∈ VN .

It follows from (4.49) that∑
y∈V

∣∣pn+1
xy − pnxy

∣∣ ≤ 2αn+1 ≤
1

2n
, n ≥ N.

This shows that P̂ can be defined as p̂xy = limn→∞ pnxy ≥ 0. By Fatou’s lemma, we have

∑
y∈V

∣∣pnxy − p̂xy∣∣ ≤ lim
m→∞

∑
y∈V

∣∣pnxy − pmxy∣∣ ≤ lim
m→∞

m−1∑
k=n

1

2k
=

1

2n−1
, n ≥ N, (4.51)
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which implies
∑
y∈V p̂xy = 1 for any x ∈ V . In other words, P̂ is a transition probability

matrix. Note that if there exists n such that pnxy > 0, then

p̂xy = lim
k→∞

pkxy ≥

[ ∞∏
k=n+1

(1− αk)

]
pnxy ≥

(
1− 1

2n

)
pnxy > 0.

Since Pn corresponds to an irreducible Markov chain with state space Vn and Vn ↑ V , it
is easy to see that P̂ is irreducible.

On the other hand, it follows from (4.50) that we can set ν̂ = limn→∞ νn. Moreover, it
is clear that ν̂ ∈ P(V ) and ν̂x ≤ Cµx for any x ∈ V . It follows from (4.51) that for any
y ∈ V and N ∈ N,∑

x∈V

∣∣νnx pnxy − ν̂xp̂xy∣∣ ≤ ∑
x∈V
|νnx − ν̂x| pnxy +

∑
x∈VN

ν̂x
∣∣pnxy − p̂xy∣∣+

∑
x∈V \VN

ν̂x
∣∣pnxy − p̂xy∣∣

≤ ‖νn − ν̂‖+
1

2n−1
+ 1−

∑
x∈VN

ν̂x, n ≥ N.

Taking n → ∞ and then taking N → ∞ on both two sides of the above inequality, we
have

ν̂y = lim
n→∞

νny = lim
n→∞

∑
x∈V

νnx p
n
xy =

∑
x∈V

ν̂xp̂xy, y ∈ V.

Obviously, we have Ê ⊂ E. Then we finish the proof of this lemma.

Lemma 4.16. Suppose that Assumptions 2.3-2.6 are satisfied. Then D1 6= ∅.

Proof. We first construct a transition kernel (P̂ = (p̂xy)x,y∈V , Ψ̂ = (ψ̂x)x∈V ) satisfying
the following four requirements:

(a) P̂ is an irreducible transition probability matrix with an unique invariant probability
measure ν̂.

(b) ψ̂x � ψx and p̂x,· � px,· for any x ∈ V .
(c)

∑
x∈V ν̂x

∫
(0,∞)

sψ̂x(ds) <∞.

(d)
∑
x∈V ν̂x[H(p̂x,·|px,·) +H(ψ̂x|ψx)] <∞.

Without loss of generality, we assume that V = N is the set of nonnegative integers.
Let mx = sup{c ≥ 0 : ψx((0, c)) = 0}, Ax = [mx,mx + 1], and ψ̂x(ds) = ψx(ds|Ax) :=

1Ax(s)ψx(ds)/ψx(Ax). Then Ax is a bounded Borel subset of (0,∞) satisfying ψx(Ax) > 0

and ∫
(0,∞)

sψ̂x(ds) ≤ mx + 1, H(ψ̂x|ψx) = − logψx(Ax), x ∈ N. (4.52)

For any x ∈ N, let Cx = −
∑
y∈N log pxy. By Assumption 2.6, it is clear that 0 ≤ Cx <∞.

Let µ ∈ P(N) be defined by

µx =
1

M

2−x

max{mx + 1,− logψx(Ax), Cx}
, x ∈ N, (4.53)

where

M =
∑
y∈N

2−y

max{my + 1,− logψy(Ay), Cy}

is a normalization constant. By Lemma 4.15, there exist a constant C > 0 and a Markov
chain X̂ with transition probability matrix P̂ and invariant distribution ν̂ such that Ê ⊂ E
(i.e. p̂x,· � px,· for any x ∈ N) and ν̂x ≤ Cµx for any x ∈ N. Note that

H(p̂x,·|px,·) =
∑
y∈N

p̂xy log
p̂xy
pxy
≤

∑
y:(x,y)∈E

log
1

pxy
≤ Cx. (4.54)
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Combining (4.52), (4.53), and (4.54), it is clear that (P̂ , Ψ̂) satisfies items (a)-(d) of the
above requirements.

Finally, let Z =
∑
x∈V ν̂x

∫
(0,∞)

sψ̂x(ds) and

µ0(x,ds) =
ν̂x s ψ̂x(ds)

Z
, Q0(x, y) =

ν̂x p̂xy
Z

.

It is easy to check that (µ0, Q0) ∈ D1. This completes the proof of this lemma.

We are now in a position to finish the proof of the lower bound of the LDP.

Proposition 4.17. Suppose that Assumptions 2.3-2.6 are satisfied. Let L1
+(E) be en-

dowed with the bounded weak* topology. Then under Pγ , the law of (µt, Qt) ∈ Λ satisfies
an LDP lower bound with convex rate function I. Moreover, if Condition 3.2 is satisfied,
then I is a good rate function.

Proof. Let J be the functional defined in (4.36). By Lemmas 4.13 and 4.14, we only need
to prove I = sc−J . By Proposition 4.12, I is convex and lower semicontinuous on Λ. It is
then easy to see that sc−J ≥ I.

We next prove the converse inequality. In fact, we only need to prove that for
any (µ,Q) ∈ Λ with I(µ,Q) < ∞, there exists a sequence (µn, Qn)n≥0 in D2 such that
(µn, Qn)→ (µ,Q) in Λ and

lim
n→∞

I(µn, Qn) ≤ I(µ,Q). (4.55)

Here, we only prove that there exists a sequence (µn, Qn)n≥0 in D1 such that (µn, Qn)→
(µ,Q) in Λ and (4.55) holds. The rest of the proof is similar to [35, Lemma 2.5].

By Lemma 4.16, there exists (µ0, Q0) ∈ D1. For any (µ,Q) ∈ D with I(µ,Q) <∞, let

µn =

(
1− 1

n

)
µ +

1

n
µ0, Qn =

(
1− 1

n

)
Q+

1

n
Q0, n ≥ 1.

Obviously, (µn, Qn)→ (µ,Q) in Λ in the sense of the strong topology. Since I is convex
on Λ, we have

I(µn, Qn) ≤
(

1− 1

n

)
I(µ,Q) +

1

n
I
(
µ0, Q0

)
.

Then it is easy to see that (µn, Qn) ∈ D1 and (4.55) holds. This completes the proof of
the lower bound.

Finally, under Condition 3.2, it follows from Proposition 4.7 that (µt, Qt) is exponen-
tially tight. This fact, together with the lower bound of the LDP implies that I is a good
rate function [15, Lemma 1.2.18].

Remark 4.18. In fact, we can further prove that for any (µ,Q) ∈ D with I(µ,Q) < ∞,
there exists a sequence (µn, Q)n≥0 in Λ such that µn(x, ·) = µ(x, ·) whenever Qx = 0, and
µn(x, {∞}) = 0 whenever Qx > 0, (µn, Q)→ (µ,Q) in Λ, and

lim
n→∞

I(µn, Q) ≤ I(µ,Q).

The proof is similar to that given in [35, Lemma 2.5].

5 Proof of Theorem 3.7

Next we will prove the joint LDP for the empirical measure and empirical flow when
L1

+(E) is endowed with the strong topology. Note that the bounded weak* topology
is weaker than the strong topology [36, Theorem 2.7.2]. In other words, any open
(closed) subset of L1

+(E) under the bounded weak* topology is also open (closed) under

EJP 29 (2024), paper 46.
Page 34/49

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1103
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations of Markov renewal processes

the strong topology. Since we have established the joint LDP when L1
+(E) is endowed

with the bounded weak* topology in Section 4, we only need to prove the exponential
tightness of the empirical flow when L1

+(E) is endowed with the strong topology [15,
Corollary 4.2.6]. Before proving the exponential tightness, we introduce some notation.

Recall the definition of exit-current and entrance-current in (2.3). For any t > 0, we
define the associate empirical currents Q+

t : Ω→ [0,∞]V and Q−t : Ω→ [0,∞]V as

Q+
t (x) =

∑
y∈V

Qt(x, y) =
1

t

Nt+1∑
k=1

1(Xk−1=x), Q−t (x) =
∑
y∈V

Qt(y, x) =
1

t

Nt+1∑
k=1

1(Xk=x).

(5.1)

It is clear that Q+
t , Q

−
t ∈ L1

+(V ), Pγ-a.s. For any J ∈ L1
+(V ) and f : V → R, we set

〈J, f〉 =
∑
x∈V J(x)f(x).

The exponential tightness of the empirical currents is stated in the following propo-
sition. Here we also consider the case where the semi-Markov process starts from the
general initial distribution γ (see Remark 3.8).

Proposition 5.1. Assume Conditions 3.2 and 3.4 to hold. Then there exists a sequence
{K`} of compact sets in L1

+(V ) such that for any ` ∈ N,

lim
t→∞

1

t
logPγ

(
Q+
t 6∈ K`

)
≤ −`, (5.2)

where L1
+(V ) is endowed with the strong topology. In particular, the empirical exit-

current is exponentially tight.

Proof. We first construct the compact sets in L1
+(V ) under the strong topology. Let

Wm ↑ V be an invading sequence of finite subsets of V , for any positive integer `, we let

K` =

{
J ∈ L1

+(V ) : ‖J‖ ≤ A` ,
〈
J, 1W c

m

〉
≤ 1

m
, ∀m ≥ `

}
.

where A` is defined as in Proposition 4.7. Similarly to the proof in [6, Theorem 5.2], it is
easy to prove that K` ⊂ L1

+(V ) is compact under the strong topology.

Now we prove (5.2). It is easy to see that

Pγ(Q+
t 6∈ K`) ≤ Pγ

(
‖Q+

t ‖ ≥ A`) +
∑
m≥`

Pγ

(〈
Q+
t , 1W c

m

〉
>

1

m

)
. (5.3)

Note that ‖Qt‖ =
∑
x,y∈V Qt(x, y) =

∑
x∈V Q

+
t (x) = ‖Q+

t ‖ = (Nt + 1)/t. It thus follows
from (4.18) that

lim
t→∞

1

t
logPγ

(
‖Q+

t ‖ ≥ A`) = lim
t→∞

1

t
logPγ

(
‖Qt‖ ≥ A`) ≤ −`.

On the other hand, let the function û, the sequence of functions un, and the constants
c, Cγ be as in Condition 3.4 and item (c*) in Remark 3.8. Taking A = V in Lemma 4.2,
we obtain the local martingale

Mun,V
t =

un(XNt+1)

un(X0)
exp

{
t
〈
µ̂t, h

un,V
〉}

=
un(XNt+1)

un(X0)
exp

{
t

〈
Q+
t , log

un
Pun

〉}
. (5.4)
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Note that un/Pun converges pointwise to û. By Fatou’s lemma, we have

Eγ

(
exp

{
t
〈
Q+
t , log û

〉})
≤
∑
x∈V

γ(x) lim
n→∞

Ex

(
exp

{
t

〈
Q+
t , log

un
Pun

〉})
=
∑
x∈V

γ(x) lim
n→∞

Ex

(
un(X0)

un(XNt+1)
Mun,V

t

)
≤
∑
x∈V

γ(x)
un(x)

c
≤ Cγ

c
,

where the second inequality follows from item (b) in Condition 3.4 and the last inequality
follows from item (c*) in Remark 3.8.

Let {am}m≥0 be a sequence of constants with am ↑ ∞ to be chosen later and let
Wm = {x ∈ V : log û(x) ≤ am} be an invading sequence of V . In view of item (e) in
Condition 3.4, Wm are finite sets. Let

C = 1 ∨ (− inf
x∈V

log û(x)) <∞.

It is easy to see that log û ≥ am1W c
m
− C. By the exponential Chebyshev inequality, we

obtain

Pγ

(〈
Q+
t , 1W c

m

〉
>

1

m

)
≤ Pγ

(〈
Q+
t , log û

〉
+ C‖Q+

t ‖ >
am
m

)
≤ Pγ

(〈
Q+
t , log û

〉
>
am
2m

)
+ Pγ

(
C‖Qt‖ >

am
2m

)
≤ Cγ

c
exp

{
−t am

2m

}
+ Pγ

(
‖Qt‖ >

am
2Cm

)
.

By choosing am = 2m2 + 2CmAm, the proof is now easily concluded from (5.3).

Corollary 5.2. Assume Conditions 3.2 and 3.4 to hold. Then the empirical entrance-
current Q−t with L1

+(V ) endowed with the strong topology is exponentially tight.

Proof. For any η > 0, it is easy to see that

lim
t→∞

1

t
logPγ(‖Q+

t −Q−t ‖ > η) = −∞.

The result of this corollary now immediately follows from [22, Lemma 3.13].

We are now in a position to prove Theorem 3.7.

Proof of Theorem 3.7. Let (Z, τ) = {(Zk)k≥0, (τk)k≥1} be a Markov renewal process with
the initial distribution γZ , where Zk = (Xk−1, Xk) and X−1 can be any random variables
such that γZ ∈ P(E). Note that the empirical entrance-current for (Z, τ) is exactly the
empirical flow for (X, τ), i.e.

Qt(x, y) =
1

t

Nt+1∑
k=1

1(Xk−1=x,Xk=y) =
1

t

Nt+1∑
k=1

1(Zk=(x,y)) = Q−,Zt (x, y).

Next we will apply Corollary 5.2 to (Z, τ). It is easy to verify that (Z, τ) satisfies As-
sumptions 2.3-2.6. In order to apply Corollary 5.2, we need to prove that (Z, τ) satisfies
Conditions 3.2 and 3.4. Here we only verify Condition 3.2 for (Z, τ) and the proof of
Condition 3.4 is similar.

Let the functions û, the sequence of functions un, the set K, and the constants
c, σ, C, η, Cγ be as in Condition 3.2 and item (c*) in Remark 3.8. By choosing uZn (x, y) =
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un(y), we immediately obtain item (b). Note that Z has the transition probability
pZ(x,y),(z,w) = δy(z)pzw. Then for any (x, y) ∈ E and n ≥ 0, we have

PZuZn (x, y) =
∑

(z,w)∈E

δy(z)pzwu
Z
n (z, w) =

∑
w∈V

pywun(w) = Pun(y) <∞,

which implies item (a). For any n ≥ 0, we have∑
(x,y)∈E

γZ(x, y)uZn (x, y) =
∑

(x,y)∈E

γZ(x, y)un(y) =
∑
y∈V

γ(y)un(y) ≤ Cγ .

By choosing CZγ = Cγ , we obtain item (c). Note that

lim
n→∞

uZn (x, y)

PZuZn (x, y)
= lim
n→∞

un(y)

Pun(y)
= û(y).

By choosing ûZ(x, y) = û(y), we obtain item (d). It is easy to check that LZ ûZ(x, y) =

Lû(y). Then for each ` ∈ R, we have{
(x, y) ∈ E : LZ ûZ(x, y) ≤ `

}
= {(x, y) ∈ E : Lû(y) ≤ `} .

Since (V,E) is locally finite, item (e) also holds. Note that ψZ(x,y) = ψy and ζZ(x, y) = ζ(y).

By choosing σZ = σ, CZ = C, ηZ = η, and KZ = (V × K) ∩ E, we obtain ûZ(x, y) <

ψZ(x,y)(e
ζZ(x,y)τ ) for any (x, y) ∈ (KZ)c and

LZ û(x, y) = Lû(y) ≥ −σLη(y)− C1K(y) ≥ −σZLZηZ(x, y)− CZ1KZ (x, y).

This completes the proof of item (f).

6 Proof of Proposition 3.16

Here we consider the marginal LDP for the empirical flow Qt. Before giving the proof
of Proposition 3.16, we need some notation and lemmas. Let µ and ν be two positive
σ-finite measures on a measurable space (X ,F). For any sequence of non-negative
measurable functions (fi)i≥1 on X and any sequence of non-negative constants (bi)i≥0

satisfying 0 < g := b0 +
∑∞
i=1 bifi < ∞, µ-a.s., let the generalized relative entropy

between µ and ν be defined by

Hg(µ|ν) =


∫
X
g

(
log

dµ

dν

)
dµ, if µ� ν,

∞, otherwise.

Similarly to the maximum entropy principle [12, Theorem 12.1.1], we have the following
lemma.

Lemma 6.1. Suppose that there exists a positive σ-finite measure µ∗ satisfying µ∗ � ν,
ν � µ∗, and

g log
dµ∗

dν
= λ0 +

∞∑
i=1

λifi, (6.1)

where the sequence of constant (λi)i≥0 are chosen so that µ∗ satisfies the following
constraints:

µ(X ) = a0,

∫
X
fidµ = ai, i ≥ 1, (6.2)
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where (ai)i≥0 is a sequence of constants satisfying 0 <
∑∞
i=0 aibi <∞. Then µ∗ uniquely

minimizes Hg(·|ν) over all positive σ-finite probability measures satisfying (6.2). More-
over, the minimum is given by

Hg(µ
∗|ν) =

∞∑
i=0

aiλi.

Proof. Let µ be a positive σ-finite measure satisfying (6.2). Note that
∫
X gdµ =

∫
X gdµ∗ =∑∞

i=0 aibi <∞. Then we have∫
X
g

(
log

dµ

dν

)
dµ =

∫
X
g

(
log

dµ

dµ∗

)
dµ+

∫
X
g

(
log

dµ∗

dν

)
dµ

=

(∫
X
gdµ

)
H

(
gdµ∫
X gdµ

∣∣∣∣ gdµ∗∫
X gdµ∗

)
+

∫
X
g

(
log

dµ∗

dν

)
dµ

≥
∫
X
g

(
log

dµ∗

dν

)
dµ,

(6.3)

where the last inequality follows from the nonnegativity of the relative entropy. It then
follows from (6.1) that∫

X
g

(
log

dµ∗

dν

)
dµ =

∫
X

(
λ0 +

∞∑
i=1

λifi

)
dµ =

∞∑
i=0

λiai =

∫
X

(
λ0 +

∞∑
i=1

λifi

)
dµ∗

=

∫
X
g

(
log

dµ∗

dν

)
dµ∗.

Hence we have proved that Hg(µ|ν) ≥ Hg(µ
∗|ν). Here the equality holds if and only if

dµ/dµ∗ = 1. This shows that except for a set of measure zero, µ∗ is unique.

Recall the definition of ζ(x) in (3.1). We also need the following lemma.

Lemma 6.2. For any x ∈ V , let Gx(λ) = log(ψx(eλτ )) and Fx(λ) = ψx(τeλτ )/ψx(eλτ ),
where ψx(τeλτ ) =

∫
(0,∞)

seλsψx(ds). Suppose that Gx(ζ(x)) = ∞ for any x ∈ V . Then

Gx ∈ C2(−∞, ζ(x)) is a strictly increasing function, Fx = dGx/dλ is an increasing
function, and

lim
λ→−∞

Fx(λ) = mx := sup {λ ≥ 0 : ψx(0, λ) = 0} , (6.4)

lim
λ→ζ(x)

Fx(λ) = Mx := inf {λ ≥ 0 : ψx(λ,∞) = 0} . (6.5)

Moreover, if ψx is not a Dirac measure, then Fx is strictly increasing.

Proof. Without loss of generality, we can drop the dependence on x in the proof. We
first prove that G ∈ C1((−∞, ζ)) and dG/dλ = F . Note that fε(s) := (e(λ+ε)s − eλs)/ε
converge pointwise to seλs as ε→ 0, |fε(s)| ≤ h(s) := eλs(eηs − 1)/η for every ε ∈ (−η, η),
and 〈ψ, |h|〉 < ∞ for η > 0 small enough. By dominated convergence theorem, we
immediately obtain the results. Moreover, since F > 0, it is easy to see that G is strictly
increasing.

We next prove that F ∈ C1((−∞, ζ) is increasing. The proof of differentiability is
similar to the above. Direct computations show that

dF

dλ
(λ) =

ψ(τ2eλτ )ψ(eλτ )− (ψ(τeλτ ))2

(ψ(eλτ ))2
≥ 0,

where the last inequality follows from Cauchy-Schwarz inequality. Moreover, the above
equality holds if and only if ψ is a Dirac measure.
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Finally, we prove (6.4) and (6.5). We only prove (6.5) and the proof of (6.4) is similar.
Note that F is an increasing function. Let L = limλ→ζ F (λ).

Case 1: ζ <∞. It is easy to see that M =∞. For any 0 ≤ λ ≤ ζ and N > 1, we have

ψ
(
eλτ
)

=

∫
(0,N ]

eλsψ(ds) +

∫
(N,∞)

eλsψ(ds) ≤ eλN +

∫
(N,∞)

eλsψ(ds). (6.6)

Note that limλ→ζ ψ(eλτ ) = eG(ζ) =∞. Taking λ→ ζ on both sides of (6.6), we obtain

lim
λ→ζ

∫
(N,∞)

eλsψ(ds) =∞.

On the other hand, we have

F (λ) =
ψ(τeλτ )

ψ(eλτ )
≥

∫
(N,∞)

seλsψ(ds)

eλN +
∫

(N,∞)
eλsψ(ds)

≥
N
∫

(N,∞)
eλsψ(ds)

eλN +
∫

(N,∞)
eλsψ(ds)

. (6.7)

Taking λ→ ζ on both sides of (6.7), we obtain L ≥ N . Since N > 1 is arbitrary, it is clear
that L =∞ = M .

Case 2: ζ =∞. Note that

F (λ) =

∫
(0,M ]

seλsψ(ds)∫
(0,M ]

eλsψ(ds)
≤

∫
(0,M ]

Meλsψ(ds)∫
(0,M ]

eλsψ(ds)
= M. (6.8)

Taking λ→∞ on both sides of (6.8), we obtain L ≤M .
If M <∞, for any 0 < ε < M/2 and λ > 0, we have

1

F (λ)
=

∫
(0,M−2ε]

eλsψ(ds) +
∫

(M−2ε,M ]
eλsψ(ds)∫

(0,M ]
seλsψ(ds)

≤

∫
(0,M−2ε]

eλsψ(ds)∫
(M−ε,M ]

seλsψ(ds)
+

∫
(M−2ε,M ]

eλsψ(ds)∫
(M−2ε,M ]

seλsψ(ds)

≤ eλ(M−2ε)

(M − ε)eλ(M−ε)ψ((M − ε,M ])
+

∫
(M−2ε,M ]

eλsψ(ds)∫
(M−2ε,M ]

(M − 2ε)eλsψ(ds)

=
e−λε

(M − ε)ψ((M − ε,M ])
+

1

M − 2ε
.

(6.9)

Taking λ → ∞ on both sides of (6.9), we obtain L ≥ M − 2ε. Since 0 < ε < M/2 is
arbitrary, it is clear that L ≥M .

If M =∞, for any ε > 0, N > 1, and λ > 0, we have

1

F (λ)
=

∫
(0,N ]

eλsψ(ds) +
∫

(N,∞)
eλsψ(ds)∫

(0,∞)
seλsψ(ds)

≤

∫
(0,N ]

eλsψ(ds)∫
(N+ε,∞)

seλsψ(ds)
+

∫
(N,∞)

eλsψ(ds)∫
(N,∞)

seλsψ(ds)

≤ eλN

(N + ε)eλ(N+ε)ψ((N + ε,∞))
+

∫
(N,∞)

eλsψ(ds)∫
(N,∞)

Neλsψ(ds)

=
e−λε

(N + ε)ψ((N + ε,∞))
+

1

N
.

(6.10)

Taking λ → ∞ on both sides of (6.10), we obtain L ≥ N . Since N > 1 is arbitrary, it is
clear that L =∞ = M .
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By Lemma 6.2, we immediately obtain the following corollary.

Corollary 6.3. For any Q ∈ L1
+(E) satisfying Q+ = Q− and V+ := {x ∈ V : Qx > 0} 6= ∅,

let GQ(λ) =
∑
x∈V QxGx(λ) and FQ(λ) =

∑
x∈V QxFx(λ). Suppose that GQ(ζQ) = ∞.

Then GQ ∈ C2(−∞, ζQ) is a strictly increasing function, FQ = dGQ/dλ is an increasing
function, and

lim
λ→−∞

FQ(λ) = mQ :=
∑
x∈V

Qxmx, lim
λ→ζQ

FQ(λ) = MQ :=
∑
x∈V

QxMx, (6.11)

where ζQ = sup{λ ≥ 0 : GQ(λ) < ∞}. Moreover, if mQ < MQ, then FQ is strictly
increasing.

Proof. We only prove the second equality of (6.11). The proof of the first equality is
similar.

Case 1: ζQ =∞. By the monotone convergence theorem, we immediately obtain the
desired result.

Case 2: ζQ < ∞. Note that ζQ ≤ ζ(x) for any x ∈ V+. By Lemma 6.2, we have
Fx(ζQ) ≤ Fx(ζ(x)) = Mx. It then follows from the monotone convergence theorem that

lim
λ→ζQ

FQ(λ) = lim
λ→ζQ

∑
x∈V+

QxFx(λ) ≤
∑
x∈V+

QxMx.

On the other hand, it is easy to see that

GQ(ζQ) ≤ FQ(ζQ)ζQ +GQ(0).

Since GQ(ζQ) =∞, we have FQ(ζQ) =∞. This completes the proof of this corollary.

For any Q ∈ L1
+(E) satisfying Q+ = Q− and V+ 6= ∅, let X = V+ × (0,∞) be

endowed with the product topology and let F be the associated Borel σ-field. Let
ν(x,ds) = sQxψx(ds) be a σ-finite measure on (X ,F). Here we take the sequence of
functions (fx)x∈V+ and the sequence of constants (b0, (bx)x∈V+) as

fx(y, s) = δx(y)
1

s
, (y, s) ∈ X , b0 = 0, bx = 1.

Then the associated function g is given by g(y, s) = b0 +
∑
x∈V+

bxfx(y, s) = 1/s and the
associated generalized relative entropy is given by

Hg(µ|ν) =
∑
x∈V+

∫
(0,∞)

1

s

(
log

µ(x,ds)

sQxψx(ds)

)
µ(x, ds).

Lemma 6.4. Let a > 0 be a constant and let Q ∈ L1
+(E) be a flow satisfying Q+ = Q−

and V+ 6= ∅. If GQ(ζQ) =∞, then we have

inf
µ
Hg(µ|ν) = G∗Q(a) =



aλ∗ −GQ(λ∗), if mQ < a < MQ,

−
∑
x∈V

Qx logψx({mx}), if a = mQ,

−
∑
x∈V

Qx logψx({Mx}), if a = MQ,

∞, otherwise,

where µ in the infimum ranges over all positive σ-finite measures on (X ,F) satisfying

µ(X ) =
∑
x∈V+

µ(x, (0,∞)) = a,

∫
X
fxdµ =

∫
(0,∞)

1

s
µ(x, ds) = Qx, x ∈ V+, (6.12)

λ∗ is any solution of the equation FQ(λ) = a, and G∗Q(a) = supλ∈R{aλ−GQ(λ)}, a ∈ R is
the Fenchel-Legendre transform of GQ.
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Proof. We will prove this lemma in three different cases.
Case 1: mQ < a < MQ. Let λ0=λ∗ and λx=−Gx(λ∗). Let µ∗(x, ds) = sQxe

λ∗s+λxψx(ds)

be a σ-finite measure µ∗ on (X,F). Then (6.1) holds and

1

s
log

µ∗(x, ds)

sQxψx(ds)
= λ∗ + λx

1

s
, (x, s) ∈ X .

Moreover, it is easy to check that µ∗ satisfies (6.12). By Lemma 6.1, we have

inf
µ
Hg(µ|ν) = aλ∗ +

∑
x∈V+

λxQx = aλ∗ −GQ(λ∗).

On the other hand, it follows from Corollary 6.3 and the intermediate value theorem
that there exists a solution λ∗ ∈ (−∞, ζQ) of the equation FQ(λ) = a. Straightforward
computations show that

sup
λ∈R
{aλ−GQ(λ)} = aλ∗ −GQ(λ∗).

Case 2: a = mQ or a = MQ. Here we only consider the case of a = mQ. The proof
in the case of a = MQ is similar. Let µ be a σ-finite measure satisfying (6.12). Then we
have

a = mQ =
∑
x∈V+

mx

∫
[mx,∞)

1

s
µ(x, ds) ≤ µ(X) = a.

The above equality hold if and only if µ(x, ds) = Qxmxδmx(ds) for any x ∈ V+. Thus we
have

inf
µ
Hg(µ|ν) = −

∑
x∈V+

Qx logψx({mx}).

On the other hand, direct computations show that

sup
λ∈R
{aλ−GQ(λ)} = lim

λ→−∞
{aλ−GQ(λ)}

= lim
λ→−∞

∑
x∈V+

Qx log
eλmx

eλmxψx({mx}) +
∫

(mx,∞)
eλsψ(ds)

.

By the dominated convergence theorem, it is easy to see that

lim
λ→−∞

∫
(mx,∞)

eλ(s−mx)ψx(ds) = 0

for any x ∈ V+. This implies that

sup
λ∈R
{aλ−GQ(λ)} = −

∑
x∈V+

Qx logψx({mx}).

Case 3: a < mQ or a > MQ. Here we only consider the case of a < mQ. The proof in
the case of a > MQ is similar. Note that there is no σ-finite measure µ satisfying (6.12).
Then we have infµHg(µ|ν) =∞. On the other hand, take a sequence of constants ax such
that 0 < ax < mx for any x ∈ V+ and a =

∑
x∈V+

Qxax. Straightforward computations
show that

sup
λ∈R
{aλ−GQ(λ)} = lim

λ→−∞
{aλ−GQ(λ)}

= lim
λ→−∞

∑
x∈V+

Qx log
1∫

[mx,∞)
eλ(s−ax)ψ(ds)

=∞,

where the last equality follows from the dominated convergence theorem.
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The following lemma gives the properties of G∗Q.

Lemma 6.5. Let Q ∈ L1
+(E) be a flow satisfying Q+ = Q− and V+ 6= ∅. If mQ < MQ and

GQ(ζQ) =∞, then G∗Q ∈ C2(mQ,MQ), λ∗ = dG∗Q/da is a strictly increasing function, and

lim
a→mQ

λ∗(a) = −∞, lim
a→MQ

λ∗(a) = ζQ. (6.13)

where λ∗(a) is any solution of the equation FQ(λ) = a.

Proof. It follows from Lemma 6.3 that FQ ∈ C1(−∞, ζQ) is strictly increasing. Hence
λ∗ = dG∗Q/da is the inverse function of FQ. Moreover, λ∗ ∈ C1(mQ,MQ) is strictly
increasing and (6.13) follows from (6.11). By Lemma 6.4, it is easy to see that G∗Q ∈
C2(mQ,MQ) and

dG∗Q
da

(a) = λ∗(a) + a
dλ∗

da
(a)− dλ∗

da
(a)FQ(λ∗(a)) = λ∗(a).

This completes the proof of this lemma.

Finally, we also need the following lemma to ensure GQ(ζQ) =∞.

Lemma 6.6. Let Q ∈ L1
+(E) be a flow satisfying Q+ = Q− and V+ 6= ∅. If Condition 3.11

is satisfied, then we have ζQ = infx∈V+
ζ(x) and GQ(ζQ) =∞.

Proof. Let ψ, ζ, and qx be as in Condition 3.11. It is easy to see that

ζ(x) = qxζ, Gx(λ) = G

(
λ

qx

)
,

where G(λ) = logψ(eλτ ). By item (c) in Condition 3.11, it is easy to see that there exists
y ∈ V+ such that qy = infx∈V+ qx > 0. By Lemma 6.2, it is clear that G is increasing. Then
for any λ0 < infx∈V+ ζ(x) = qyζ, we have

GQ(λ0) =
∑
x∈V+

QxG

(
λ0

qx

)
≤
∑
x∈V+

QxG

(
λ0

qy

)
<∞.

By the definition of ζQ, it is easy to see that ζQ ≥ λ0. Since λ0 < infx∈V+ ζ(x) is arbitrary,
we have ζQ ≥ infx∈V+ ζ(x). On the other hand, we have

lim
λ→infx∈V+ ζ(x)

GQ(λ) ≥ Qy lim
λ→qyζ

Gy(λ) = Qy lim
λ→qyζ

G

(
λ

qy

)
=∞.

This implies the proof of this lemma.

We are now in a position to prove Proposition 3.16.

Proof of Proposition 3.16. The proof of the marginal LDP for the empirical measure πt
is similar to that given in [35, Proposition 1.2]. Here we only focus on the marginal LDP
for the empirical flow Qt. Note that (µ,Q) 7→ Q is a continuous map from Λ to L1

+(E).
By the contraction principle [15, Theorem 4.2.1], the law of Qt ∈ L1

+(E) satisfies an LDP
with good rate function

Î2(Q) = inf{I(µ,Q) : (µ,Q) ∈ D}.

We next prove Î2 = I2 under Condition 3.11. By Remark 4.18, we obtain

Î2(Q) = inf{I(µ,Q) : (µ,Q) ∈ E(Q)},
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where E(Q) = {(µ,Q) ∈ D : µ(x, {∞}) = 0 for any x ∈ V+}. Recall the definition of I
in (3.7). For any Q ∈ L1

+(E) satisfying Q+ = Q−, we have

Î2(Q) =
∑
x∈V

QxH
(
Q̃x,·

∣∣px,·)+ inf
(µ,Q)∈E(Q)

∑
x∈V

[QxH (µ̃x|ψx) + ζ(x)µ(x, {∞})]

=
∑
x∈V

QxH
(
Q̃x,·

∣∣px,·)+ inf
(µ,Q)∈E(Q)

∑
x∈V+

QxH (µ̃x|ψx) +
∑
x/∈V+

ζ(x)µ(x, {∞})

 .

If V+ = ∅, then we have

inf
(µ,Q)∈E(Q)

∑
x∈V+

QxH (µ̃x|ψx) +
∑
x/∈V+

ζ(x)µ(x, {∞})

 = inf∑
x∈V µ(x,{∞})=1

ζ(x)µ(x, {∞})

= inf
x∈V

ζ(x),

which implies (3.10). If V+ 6= ∅, then we have

E(Q) =
⋃

0<a≤1

E(Q, a),

where E(Q, a) = {(µ,Q) ∈ E(Q) :
∑
x∈V+

µ(x, (0,∞)) = a and
∑
x/∈V+

µ(x, {∞}) = 1− a}.
It then follows from Lemmas 6.4 and 6.6 that

inf
(µ,Q)∈E(Q)

∑
x∈V+

QxH (µ̃x|ψx) +
∑
x/∈V+

ζ(x)µ(x, {∞})


= inf

0<a≤1
inf

(µ,Q)∈E(Q,a)

∑
x∈V+

QxH (µ̃x|ψx) +
∑
x/∈V+

ζ(x)µ(x, {∞})


= inf

0<a≤1

 inf
(µ,Q)∈E(Q,a)

∑
x∈V+

∫
(0,∞)

1

s

(
log

µ(x, ds)

sQxψx(ds)

)
µ(x,ds)

+ (1− a) inf
x/∈V+

ζ(x)


= inf

0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
.

We next calculate the last term of the above equation in five different cases.
Case 1: mQ > 1. Since G∗Q(a) =∞ for any 0 < a ≤ 1, we have

inf
0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
=∞.

On the other hand, similarly to the proof of Case 3 in Lemma 6.4, we have

sup
λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

= lim
λ→−∞

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

=∞.

Case 2: mQ ≤ 1 < MQ and λ∗(1) ≤ infx/∈V+
ζ(x). Straightforward computations show

that

inf
0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
= G∗Q(1).

On the other hand, it follows from Lemma 6.5 that

λ∗(1) < lim
a→MQ

λ∗(a) = inf
x∈V+

ζ(x).
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This implies that λ∗(1) ≤ infx∈V ζ(x). Direct computations show that

sup
λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

= λ∗(1)−
∑
x∈V

Qx logψx

(
eλ
∗(1)τ

)
= G∗Q(1).

Case 3: mQ ≤ 1 < MQ and λ∗(1) > infx/∈V+
ζ(x). It follows from Lemma 6.5 that there

exists η ∈ (mQ, 1) such that λ∗(η) = infx/∈V+
ζ(x). Straightforward computations show

that

inf
0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
= G∗Q(η) + (1− η) inf

x/∈V+

ζ(x)

= ηλ∗(η)−
∑
x∈V

Qx logψx

(
eλ
∗(η)τ

)
+ (1− η)λ∗(η)

= λ∗(η)−
∑
x∈V

Qx logψx

(
eλ
∗(η)τ

)
= sup

λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

.

(6.14)

Note that infx/∈V+
ζ(x) < λ∗(1) ≤ lima→MQ

λ∗(a) = infx∈V+
ζ(x). Then the last equability

in (6.14) follows from the fact that infx∈V ζ(x) = infx/∈V+
ζ(x) = λ∗(η).

Case 4: MQ ≤ 1 and infx/∈V+
ζ(x) = ∞. Since MQ < ∞, it is easy to see that

infx∈V+
ζ(x) =∞. Then we have infx∈V ζ(x) =∞ and

inf
0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
= G∗(1) = sup

λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

.

Case 5: MQ ≤ 1 and infx/∈V+
ζ(x) <∞. Note that G∗Q(a) =∞ for any a > MQ. Then

we have

inf
0<a≤1

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
= inf

0<a≤MQ

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
.

By Lemma 6.5, we have λ∗(MQ) =∞. Since infx∈V+
ζ(x) =∞, there exists η ∈ (mQ,MQ)

such that λ∗(η) = infx/∈V+
ζ(x). Similarly to the proof in Case 3, we have

inf
0<a≤MQ

[
G∗Q(a) + (1− a) inf

x/∈V+

ζ(x)

]
= G∗Q(η) + (1− η) inf

x/∈V+

ζ(x)

= sup
λ<infx∈V ζ(x)

{
λ−

∑
x∈V

Qx logψx
(
eλτ
)}

.

This completes the proof of this proposition.

7 Another compactness condition

In [6], the authors imposed an alternative compactness condition, which is different
from Condition 3.4 proposed in the present paper, and proved the joint LDP for the
empirical measure and empirical flow of continuous-time Markov chains when L1

+(E)

is endowed with the strong topology. In fact, we can also prove the joint LDP for semi-
Markov processes under a similar compactness condition. To see this, we introduce
some notation. For any set Ê ⊂ E, we define an Ê-dependent function R : V → R by

R(y) =
∑

z:(y,z)∈Ê

pyz, y ∈ V. (7.1)
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Condition 7.1. Suppose there exists a set Ê ⊂ E satisfying the following three require-
ments:

(a) For any y ∈ V , there exists z ∈ V such that (y, z) ∈ Ê;

(b) The function R : V → (0,∞) defined in (7.1) vanishes at infinity;

(c) For any x ∈ V , there exist constants a0, λ > 0 such that for any a < a0 one can find
a set W = W (x, a) ⊂ E satisfying the following properties:

(i) The complement E \W is finite;
(ii) If (y, z) ∈W , then R(y) < a;

(iii) For each path exiting from x, the number of edges in Ê ∩W is at least λ-times
the total number of edges in W . In other words, for any path x0, x1, . . . , xk
with x0 = x and (xi, xi+1) ∈ E, we have

]
{
i : (xi−1, xi) ∈ Ê ∩W, 1 ≤ i ≤ k

}
≥ λ ]

{
i : (xi−1, xi) ∈W, 1 ≤ i ≤ k

}
.

Obviously, we have λ < 1.

Note that both Conditions 3.4 and 7.1 only depend on the embedded chain X of the
semi-Markov process. The following proposition shows that Condition 3.4 is weaker than
Condition 7.1. Due to this reason, we impose the former rather than the latter in Section
3.1.

Proposition 7.2. Suppose that Assumption 2.3 and Condition 7.1 are satisfied. Then
Condition 3.4 holds.

Proof. Let the constants a0, λ > 0 be as in item (c) of Condition 7.1. For any x0 ∈ V and
m ∈ N satisfying 1/m < a0, we will next construct the sequence of functions un, n ≥ m
such that Condition 3.4 holds. We first construct auxiliary functions Fn : E → (0,∞) by
induction. Let Wn ⊂ E be the sequence of sets defined as

Wm = W

(
x0,

1

m

)
, Wn = W

(
x0,

1

n

)
∩
(
Wn−1 ∪ Ê

)
, n ≥ m+ 1.

It is easy to see that Wn also satisfies item (c) in Condition 7.1 for each n ≥ m. Set

Fm(y, z) =


m1−λ, if (y, z) ∈ Ê ∩Wm ,

m−λ, if (y, z) ∈ Êc ∩Wm ,

1, if (y, z) ∈ E \Wm ,

and for n ≥ m+ 1, set

Fn(y, z) =


n1−λ, if (y, z) ∈ Ê ∩Wn ,

n−λ, if (y, z) ∈ Êc ∩Wn ,

Fn−1(y, z), if (y, z) ∈ E \Wn .

Obviously, Fn(x, y) ≤ n1−λ for any (x, y) ∈ E. For any x ∈ V , let Gx be the collection of
all paths in (V,E) with initial state x0 and terminal state x, i.e.

Gx = {(x0, x1, · · · , xk) : k ∈ N, xk = x, xi ∈ V, and (xi, xi+1) ∈ E} .

It then follows from Assumption 2.3 that (V,E) is connected. This implies that Gx 6= ∅
for any x ∈ V . For each n ≥ m, let un : V → (0,∞) be the function defined by

un(x) = inf
x∈Gx

k∏
i=1

Fn(xi−1, xi), x ∈ V.
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Now we verify Condition 3.4 for the sequence of functions un.
(a) Obviously, if (y, z) ∈ E, then we have un(z) ≤ un(y)Fn(y, z) ≤ un(y)n1−λ. For any

x ∈ V and n ≥ m, we obtain

Pun(x) =
∑

y:(x,y)∈E

pxyun(y) ≤
∑

y:(x,y)∈E

pxyun(x)n1−λ = un(x)n1−λ <∞.

(b) Recall the definition of auxiliary functions Fn given above. For any path x =

(x0, x1, · · · , xk) ∈ Gx, it follows from item (c)-(iii) in Condition 7.1 that

k∏
i=1

Fm(xi−1, xi) = m[(1−λ)#{i:(xi−1,xi)∈Ê∩Wm,1≤i≤k}−λ#{i:(xi−1,xi)∈Êc∩Wm,1≤i≤k}]

= m[#{i:(xi−1,xi)∈Ê∩Wm,1≤i≤k}−λ#{i:(xi−1,xi)∈Wm,1≤i≤k}] ≥ 1.

(7.2)

Similarly, for n ≥ m+ 1, we have

k∏
i=1

Fn(xi−1, xi)

Fn−1(xi−1, xi)
=

∏
i:(xi−1,xi)∈Ê∩Wn

n1−λ

Fn−1(xi−1, xi)

∏
i:(xi−1,xi)∈Êc∩Wn

n−λ

Fn−1(xi−1, xi)

≥ (
n

n− 1
)[(1−λ)#{i:(xi−1,xi)∈Ê∩Wn,1≤i≤k}−λ#{i:(xi−1,xi)∈Êc∩Wn,1≤i≤k}] ≥ 1.

(7.3)

Indeed, Êc ∩Wn = Êc ∩W (x0, 1/n) ∩Wn−1, which implies the first inequality in (7.3).
For any x ∈ V , optimizing over Gx on both sides of (7.2), we have um(x) ≥ 1. Similarly,
it follows from (7.3) that un(x) ≥ un−1(x) for n ≥ m + 1. This implies that un is an
increasing sequence of functions and un(x) ≥ 1 for any x ∈ V and n ≥ m.

(c) For any y ∈ V , it follows from item (a) in Condition 7.1 that R(y) > 0. For
any x ∈ V , since Gx 6= ∅, there exists x = (x0, x1 · · · , xk) ∈ Gx. Hence, we can let
N = m ∨ (1 + max0≤i≤kb1/R(xi)c). By item (c)-(ii) in Condition 7.1, it is easy to see that
(xi−1, xi) /∈WN for any 0 ≤ i ≤ k. Then for any n ≥ N , we have

un(x) ≤
k∏
i=1

Fn(xi−1, xi) =

k∏
i=1

FN (xi−1, xi) ≤ N (1−λ)k.

Obviously, N and k only depend on x.
(d) For any x ∈ V , let x and N be defined as in (c). Since R(x) > 1/N , it is easy to

see that (x, y) /∈WN for any (x, y) ∈ E. Then for any n ≥ N , we have

Pun(x) ≤
∑

y:(x,y)∈E

pxyun(x)Fn(x, y) =
∑

y:(x,y)∈E

pxyun(x)FN (x, y) ≤ N1−λun(x). (7.4)

Note that un is an increasing sequence of functions with an upper bound. Then we define
u∗(x) = limn→∞ un(x). It follows from (7.4) and the monotone convergence theorem that

Pu∗(x) = lim
n→∞

Pun(x) ≤ N1−λu∗(x).

Thus un/Pun converges pointwise to the function û = u∗/Pu∗ : V → (0,∞).
(e) Let Vn and V ′n be two sequences of subsets of V defined by

Vn = {x ∈ V : (x, y) ∈ E implies (x, y) ∈Wn for any y ∈ V } ,

V ′n =

{
x ∈ V : R(x) <

1

n

}
, n ≥ m.
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Obviously, we have Vn ⊂ V ′n. For any x ∈ Vj ⊂ V ′j = ∪∞i=j(V ′i \ V ′i+1), there exists i ≥ j

such that x ∈ V ′i \ V ′i+1. If (x, y) ∈ E, it is easy to see that (x, y) /∈Wn for n ≥ i+ 1. This
implies that Fn(x, y) = Fi(x, y) for n ≥ i. Then we have

u∗(y) = lim
n→∞

un(y) ≤ lim
n→∞

un(x)Fn(x, y) = u∗(x)Fi(x, y).

Note that for any (x, y) ∈ E, we have (x, y) ∈Wj . Then we have

Pu∗(x)

u∗(x)
≤

∑
y:(x,y)∈E

pxyFi(x, y) =
∑

y:(x,y)∈Ê

pxyFi(x, y) +
∑

y:(x,y)∈Êc
pxyFi(x, y)

≤ R(x)i1−λ + j−λ ≤ i−λ + j−λ ≤ 2j−λ.

This means that log û(x) ≥ log(jλ/2) for any x ∈ Vj . By item (c)-(i) in Condition 7.1, it is
easy to see that

V \ Vj = {x ∈ V : ∃ y such that (x, y) ∈ E \Wj}

is a finite set. For any ` > 0, select j such that log(jγ/2) > `. Then {x ∈ V : log û(x) ≤
`} ⊂ V \ Vj is a finite set.

Corollary 7.3. Suppose that Assumptions 2.3-2.6 and Conditions 3.2 and 7.1 are satis-
fied. Then the results of Theorem 3.7 remain valid.

Proof. The results follow directly from Theorem 3.7 and Proposition 7.2.
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