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Abstract

Here we propose the Donsker-Varadhan-type compactness conditions and prove the
joint large deviation principle for the empirical measure and empirical flow of Markov
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671 (2016)]. In particular, our results hold when the flow space is endowed with either
the bounded weak* topology or the strong L' topology. Even for continuous-time
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expression of the marginal rate function of the empirical flow.
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Large deviations of Markov renewal processes

1 Introduction

Semi-Markov processes, which can be viewed as a direct extension of discrete-time
and continuous-time Markov chains, are one of the most important classes of non-Markov
processes. They have attracted considerable attention in recent years and have found
wide applications in physics, chemistry, biology, finance, and engineering [25, 3, 34].
The embedded chain of a semi-Markov process is a discrete-time Markov chain, while
the waiting times may not be exponentially distributed. Such non-exponential waiting
time distributions have been found in many scientific problems such as molecular motors
[33, 21], enzyme kinetics [40, 42], gene networks [39, 28], and cell cycle dynmics
[26, 29]. The representation of a semi-Markov process in terms of its embedding chain
and waiting times is also called a Markov renewal process.

The mathematical theory of large deviations was initiated by Cramér [13], and
was later developed by many mathematicians and physicists. In the pioneering work
[16, 17, 18, 19], Donsker and Varadhan have established the large deviation principle
(LDP) for the empirical measure and for the empirical process associated with a large
class of discrete-time and continuous-time Markov processes. The large deviations for
the sample mean, empirical measure, and empirical processes are usually said to be at
level 1, level 2, and level 3, respectively [15]. For discrete-time and continuous-time
Markov chains, the number of jumps along each oriented edge of the transition graph
per unit time is called the empirical flow. The large deviations for the empirical flow
are often said to be at level 2.5 [31], since it is between level 2 and level 3. For a
discrete-time Markov chain (X, ),>0, the large deviations for the empirical flow can
be obtained directly from those for the empirical measure since the binary process
(X, Xn+1)n>o is also a discrete-time Markov chain. However, things become much more
complicated in the continuous-time case. For continuous-time Markov chains, Fortelle
[14] proved a weak joint LDP for the empirical measure and empirical flow and obtained
the corresponding rate function. Subsequently, Bertini et al. [6, 7] proposed some
Donsker-Varadhan-type compactness conditions and proved the full joint LDP for the
empirical measure and empirical flow.

Since semi-Markov processes are direct generalizations of discrete-time and continu-
ous-time Markov chains, a natural question is whether the large deviations at different
levels can be extended to semi-Markov processes. Along this line, Mariani and Zambotti
[35] proved the joint LDP for the empirical measure and empirical flow of semi-Markov
processes with a finite state space and expressed the corresponding rate function in
terms of relative entropy. The large deviations for the empirical flow of Markov and
semi-Markov processes have also been applied in statistical mechanics to study the
fluctuation relations of thermodynamical systems far from equilibrium [1, 2, 6, 27, 11,
23, 20, 9, 24, 30]. Up till now, it is still unclear whether these finite state space results
can be generalized to semi-Markov processes with a countable state space. The aim of
the present paper is to fill in this gap.

Here we investigate the joint large deviations for the empirical measure and empirical
flow of semi-Markov processes with a countable state space. When the state space has an
infinite number of states, the choice of the topology of the flow space, i.e. the value space
of all empirical flows, will become very important. Following [6, 7], we consider two
types of topology of the flow space: the bounded weak* topology and the strong topology.
Specifically, we propose two different Donsker-Varadhan-type compactness conditions for
the two types of topology, and prove the corresponding LDP for the empirical measure
and empirical flow. This is the first main contribution of this paper. In the special case of
continuous-time Markov chains, our compactness condition reduces to the one proposed
in [7] when the flow space is endowed with the bounded weak* topology. However, when
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the flow space is endowed with the strong topology, our compactness condition is even
weaker than the one proposed in [6].

In [35], Mariani and Zambotti also provided the explicit expression of the marginal
rate function for the empirical measure, but they have not given the explicit expression
of the marginal rate function for the empirical flow. Here we propose two strong
compactness conditions, one for the embedded chain and one for the waiting time
distributions, and we provide a variational representation for the marginal rate function
for the empirical flow under these compactness conditions. The relationship between
these compactness conditions and the geometric ergodicity of the embedded chain is
also clarified. This is the second main contribution of this paper.

The present paper is organized as follows. In Section 2, we recall the definitions
of Markov renewal processes and semi-Markov processes, as well as the definitions
of the empirical measure and empirical flow. In Section 3, we propose two different
compactness conditions when the flow space is endowed with the bounded weak*
topology and the strong topology. Moreover, we also state the main results including
the joint and marginal LDPs for the empirical measure and empirical flow. The proof of
the LDP for the two types of topology will be given in Sections 4 and 5, respectively. In
Section 6, we derive the marginal rate function for the empirical flow.

2 Preliminaries

2.1 Markov renewal processes and semi-Markov processes

Let V be a countable set endowed with the discrete topology and the associated
Borel o-algebra is the collection of all subsets of V. The set [0, oc] is equipped with the
topology that is compatible with the natural topology on [0, o0) so that (s, o] is open for
any s > 0. For any Polish space X, let P(X) denote the collection of Borel probability
measures on X. For any ;4 € P(X) and f € L'(u), let (i, f) or u(f) denote the integral of
f with respect to u. The set P(X) is equipped with the topology of weak convergence
and the associated Borel o-algebra.

We first recall the definition of Markov renewal processes, also called (J-X)-processes
[34]. Here, we adopt the definition in [35] and [3, Chapter VII.4].

Definition 2.1. The process (X, 7) = {(Xk)r>0, (7x)x>1} defined on a probability space
(Q, F,P) is called a Markov renewal process if

(a) X = (Xy)k>0 is a discrete-time time-homogeneous Markov chain with countable
state space V' and transition probability matrix P = (pyy)zyev -

(b) T = (7x)r>1 is a sequence of positive and finite random variables such that condi-
tioned on (X})r>o, the random variables (1,),>1 are independent and have distri-
bution

P (Ti-‘rl € - | (Xk)kzo) = ¢X17X1,+1(')7

where ¢, € P(0,00) for any z,y € V. The matrix ¥ = (¢, ) yev is called the
waiting time matrix. Note that it is a matrix of probability measures. The pair
(P, W) is called the transition kernel.

We next recall the definition of semi-Markov processes.
Definition 2.2. Foranyt > 0andn > 1, let

Sn:ZTia Ntzzl(snﬁt):inf{n20:5”+1>t}’
i—1 n=1

where inf () := oo and 14 is the indicator function of the set A. The process & = (§;)i>0
with & := Xy, is called the semi-Markov process associated with the Markov renewal
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process (X, 7). Clearly, £ is a jump process whose trajectories are right-continuous on
the state space V.

Clearly, S,, represents the nth jump time of the semi-Markov process £, N; represents
the number of jumps of £ up to time ¢, and X = (Xj)r>o is the embedded chain of €. It
is easy to see that N; = n if and only if S, <t < S,41. In particular, if all the waiting
times are equal to 1, i.e. 1, = ¢; for any x,y € V with J; being the point mass at 1, then
¢ reduces to a discrete-time Markov chain. If all the waiting times are exponentially
distributed, i.e. 1, (dt) = g,e%'dt for any z,y € V, then ¢ reduces to a continuous-time
Markov chain. In the following, we do not distinguish the Markov renewal process (X, 7)
and the associated semi-Markov process ¢ since they are totally equivalent.

The transition diagram of the embedded chain X is a directed graph (V, E), where
the edge set

E:{(x,y)GVxV :pzy>0}

is composed of all directed edges with positive transition probabilities. Throughout this
paper, we impose the following basic assumptions on the Markov renewal process (X, 7).

Assumption 2.3. The embedded chain X is irreducible.
Assumption 2.4. The embedded chain X is recurrent.

Assumption 2.5. The waiting time distribution only depends on the current state, i.e.
Yoy = Yy foranyxz,y € V.

Assumption 2.6. For any © € V, the number of incoming edges into x of the graph
(V, E) and the number of outgoing edges from x are both finite.

Assumptions 2.3 and 2.4 are standard in the literature [3]. Assumption 2.5 is also
common in previous papers [35] which guarantees that the large deviation rate function
of the empirical measure and empirical flow has the form of relative entropy. Note that if
Assumption 2.5 does not hold for (X, 7), then the process (Y, 7) = {(Yx)r>0, (Tk)x>1} with
Y: := (Xg, Xp41) is also a Markov renewal process which satisfies Assumption 2.5 since

P41 € - | (Xi)kz0) = ¥xp x40 () = ¥y (0)-

Moreover, we emphasize that Assumption 2.6 is not needed if £ is a continuous-time
Markov chain [6, 7]. Here we need this assumption in order to prove Lemma 4.10 below.
In [6, 7], the counterpart of this lemma is proved by using the classical level 3 large
deviation results of Donsker and Varadhan [19] and the contraction principle. However,
since there are no level 3 large deviation results for Markov renewal processes, we need
to impose the above assumption to overcome some technical difficulties.

Recall that the semi-Markov process ¢ is called non-explosive if the explosion time
S := lim,,_, S,, satisfies

Py(Seoc =00) =1

for all x € V, where P,(-) = P(:|X¢ = z). In fact, Assumptions 2.3 and 2.4 ensure that £
is non-explosive. The proof is similar to the one given in [38] for continuous-time Markov
chains and thus is omitted.

2.2 Empirical measure and empirical flow

Next we introduce the definitions of the empirical measure and empirical flow for
Markov renewal processes [35]. For any ¢t > 0, the empirical measure pu; : Q —
P(V x (0,00]) of (X, 7) is defined by

1 t
e = ;/0 O(Xn. 1) S, (2.1)
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where §. denotes the Dirac delta measure. In other words, for any € V and A C (0, oo,
we have

1 t
Mt({x}vA) = %/O 1(XNs:m7TNs+1€A)dS'

Then p; is a random probability measure such that for any Borel measurable function f
onV x (0,00],

1/t S, t— S
<Mt,f>:¥/ f(XNS7TNS+1)d3:Z%f(kath)*" ; M F(X Ny T )-
0 k=1

Moreover, for any ¢ > 0, the empirical flow Q; : Q — [0, 00]F of (X, 7) is defined by

Ni+1

1
Qt = ? Z 5(Xk—17Xk)'
k=1

In other words, for any z,y € V, we have

Ni+1

Qt(xay) = ; Z 1(XA-,—1:30,Xk::y)'
k=1
Intuitively, Q:(x,y) represents the number of times that ¢ transitions from x to y per unit

time. For any n > 0, let

fn:U((Xk7Tk)0§k§n)a -Foo:0—<U Fn)
n=1

be a filtration. Then N; + 1 is an {F, }-stopping time. It is easy to see that (u, f) and
Q¢(x,y) are Fn,+1-measurable random variables.

Remark 2.7. For the semi-Markov process ¢, a more natural definition of the empirical
measure m; : Q@ — P(V) is given by

t
() = %A L¢,=z)ds = pe(, (0,00]), ze€V. (2.2)
Comparing (2.1) and (2.2), we can see that 7; only focuses on the spatial variable and p;
focus on both the spatial and temporal variables. The reason why we use y,; rather than
m; in the study of the joint LDP is that only by using u; can we obtain a concise expression
of the rate function. It is easy to verify that (X, 7k+1)x>0 is @ Markov process and hence
(Xn,, TN, +1)t>0 is also a semi-Markov process. In fact, the empirical measure i, for the
process & = Xy, is exactly the empirical measure 7, for the process (Xu,, Tn,+1)t>0-

Let L!(E) denote the set of absolutely summable functions on E and let || - | denote
the associated L'-norm. The set of nonnegative elements of L'(E) is denoted by L! (E),
which is called the flow space. An element in L (E) is called a flow. Since (X,7) is
non-explosive, it is easy to see that Q; € L (E) for any ¢ > 0. For any flow Q € L} (E),
let the exit-current Q7 : V — R and entrance-current Q~: V — R be defined by

QT (x)= > Qy), Q@@= > Quna). (2.3)
y: (z,y)€E y: (y,z)€EE

Intuitively, the exit-current and entrance-current at = are the flows exiting from z and
entering into z, respectively. In particular, if QT (z) = Q~ () for any z € V, then Q is
called a divergence-free flow and we define

Q. =Q () =Q (), reV. (2.4)
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Note that both currents map L1 (F) into L} (V). Here L1 (V') is defined in the same way
as L (E) and let || - || denote the associated L!-norm.

In this paper, we will consider two types of topology on L!(E): the strong topology
generated by the L'-norm and the bounded weak* topology, which is defined as follows
[7]. Let Cy(FE) denote the collection of continuous functions f : E — R vanishing at
infinity, i.e. for any e > 0, there exists a finite set K C E such that

sup [f(z,y)] <,
(z,y)EK®

and it is endowed with the L*>°-norm. It is well-known that the dual space of Cy(F) is
L'(E) endowed with the strong topology. For any ¢ > 0, let B, := {Q € L'(E) : ||Q|| < ¢}
denote the closed ball of radius ¢ in L'(E). In view of the separability of Cy(E) and
the Banach-Alaoglu theorem, the closed ball B, endowed with the weak* topology is a
compact Polish space. The bounded weak* topology on L!(E) is then defined by declaring
the set A C L'(F) to be open if and only if AN B, is open in the weak* topology of B,
for any ¢ > 0. In fact, the bounded weak* topology is stronger than the weak* topology
and is weaker than the strong topology. Moreover, for each ¢ > 0, the closed ball By is
compact with respect to the bounded weak* topology. In particular, the three types of
topology on L!(E) coincide only when E is finite. The proof of the above statements can
be found in [36, Section 2.7].

For both the strong topology and the bounded weak* topology, we regard L}r(E) as
a closed subset of L!(E) and endow it with the relative topology and the associated
Borel o-algebra. The product space V' x (0, 0] is equipped with the product topology so
that V' x (0, o] is a Polish space. The set P(V x (0, oc]) of Borel probability measures on
V x (0, 00] is endowed with the topology of weak convergence. Moreover, the product
space A = P(V x (0,0¢]) x L% (E) is endowed with the product topology. Then for any
t > 0, the pair (u, Q;), where p; is the empirical measure and Q; is the empirical flow,
can be viewed as a measurable map from ) to A.

3 Main results

3.1 Compactness conditions

The aim of the present paper is to establish the LDP for the empirical measure and
empirical flow of semi-Markov processes. Similarly to the LDP of Markov processes
[19], we need some compactness conditions to control the convergence rate at infinity
when the state space V has an infinite number of states. For Markov processes, the
infinitesimal generator is often used to establish the compactness conditions [19]. In the
semi-Markov case, the transition kernel (P, V) plays the role of the generator.

Before stating the compactness conditions, we need the following notation. Let
¢ : V — [0, 0] be the function defined by

C(m)zsup{)\ER: Uy (e”) <oo}, (3.1)

where 1, (e’7) = J0.00) e, (ds). For any x € V, let 6, : (0,00) — (—00, <] be the
function defined by
0, (t) = sup {)x eER: Y, (e)‘T) < t} . (3.2)

Forany f:V — (0,00), let Pf : V — (0, 00| be the function defined by
Pf(x)=" Y puyl)
y: (z,y)€E
andlet Lf : V — (—o0, 0] be the function defined by Lf(z) = 0,.(f(z)).
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Lemma 3.1. Let 6, be the function defined in (3.2). Then

(a) 0, is an increasing continuous function. Moreover, 0, is strictly increasing on
(0, %2 (e5)7)).

(b) 6,(1) =0, limy ¢ 6,(t) = —o0, and limsoe 05 (t) = ().

(c) Foranyt > 0 andx €V, we have

" (eem(t)7.> _ Uy (ec‘(w)r) L ift > 1, (ec(m)7> ’

t, otherwise.

Proof. For any = € V, let ©,()\) = v,(e*") be a function on R. By the dominated
convergence theorem, it is easy to see that ©, € C((—o0,((z))) is a strict increasing
function. Moreover, it is clear that ©,(0) = 1 and
lim ©,(\) =0, O,(\) =00, A>((x).
A——o00
Since 6, is the inverse function of O, for 0 < ¢t < ©,({(x)), we immediately obtain
(a)-(c). O

In [18, 19], Donsker and Varadhan proposed a compactness condition for the genera-
tor which was then used to prove the LDP for the empirical measure of Markov processes.
In [6, 7], Bertini et al. proposed a Donsker-Varadhan-type condition which was then
used to prove the LDP for the empirical flow of continuous-time Markov chains. In what
follows, we will provide two Donsker-Varadhan-type conditions which are needed for
the joint LDP for the empirical measure and empirical flow of semi-Markov processes
when the flow space L}r(E) is endowed with the bounded weak* topology and strong
topology. The following compactness condition is needed for the joint LDP when LL(E)
is endowed with the bounded weak* topology.

Condition 3.2. There exists a sequence of functions u,: V — (0,00) such that

(a) For any x € V and n > 0, we have Pu,(z) < co;

(b) There exists a constant ¢ > 0 such that u,(z) > ¢ foranyxz € V and n > 0;

(c) For any x € V, there exists a constant C,, such that u,(x) < C, for anyn > 0;
(d) The functions u,,/Pu, converge pointwise to some 4 : V — (0,00);

(e) For each{ € R, the level set {x eV : Li(x) < E} is finite;

(f) There exist 0,C >0, n € (0,1), and a finite set K C V such that Liu(x) > —o6,(n) —
Clk(z) for any x € V and (z) < ,(e¢®)7) for any x € K°.

Remark 3.3. For continuous-time Markov chains, the term C1lg in item (f) can be
replaced by a constant C' and the condition 4(x) < 1,(e¢(*)7) can be removed since
zbz(eg(m)T) = oo for any x € V. In this case, Condition 3.2 reduces to the compactness
condition proposed in [7]. Moreover, it follows from Lemma 3.1 that Li(z) = 0, (4(z)) <
¢(x) for any = € V. Hence item (e) implies that the level sets of { are also finite.

Since the strong topology is stronger than the bounded weak* topology, we need to
impose a stronger compactness condition, which is essentially the Donsker-Varadhan-
type condition for discrete-time Markov chains [18]. Both the following condition and
Condition 3.2 are needed for the joint LDP when LY (E) is endowed with the strong
topology.

Condition 3.4. There exists a sequence of functions u,: V — (0,00) such that

(a) For any x € V and n > 0, we have Pu,(z) < co;
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(b) There exists a constant ¢ > 0 such that u,,(z) > ¢ foranyx € V and n > 0;
(c) For any x € V, there exists a constant C,, such that u,(x) < C, for any n > 0;
(d) The functions u,,/Pu, converge pointwise to some i : V — (0,00);

(e) Foreach (! € R, the level set {z € V : loga(z) < ¢} is finite.

It is clear that Condition 3.4 only depends on the embedded chain X of the semi-
Markov process and is independent of the waiting time distributions. When L’ (E) is
endowed with the strong topology, Bertini et al. [6] have proposed another compact-
ness condition for continuous-time Markov chains (see Condition 7.1 below, which is
rewritten for semi-Markov process). However, that condition is more complicated than
Condition 3.4 and more difficult to verify. In fact, when X is irreducible, Condition 3.4
is not only easier to verify, but also even weaker than Condition 7.1. The proof of this
fact can be found in Section 7. This explains why we impose Condition 3.4 rather than
Condition 7.1 here.

Remark 3.5. For discrete-time Markov chains, we have Lf(z) = 6,(f(x)) = log f(x) for
any f : V — (0,00). Note that item (e) in Condition 3.4 implies that the set K = {x €
V :logd(x) < —logn} is finite for any n € (0,1). Hence if we take o = 1, then we can
always find C' > 0 such that loga > —ologn — C'lk. Furthermore, it is easy to check
that 1, (e$(®)7) = e¢(*) = o for any = € V. This shows if Condition 3.4 holds, then items
(e) and (f) in Condition 3.2 are automatically satisfied. Hence for discrete-time Markov
chains, Condition 3.2 is equivalent to Condition 3.4.

3.2 Joint LDP for the empirical measure and empirical flow

Let 1 and v be two probability measures on a measurable space (X, F). Recall that
the relative entropy of u with respect to v has the following variational expression [19]:

p .
1Og) d:u? lf/’('<<V7
H(plv)= sup {{u,¢) —log(v,e?)} = /X ( dv (3.3)
$EB(X) 00, otherwise,

where B,(X') denotes the space of bounded measurable functions on X'. Moreover, if X
is a Polish space and F is the associated Borel o-field, then (3.3) still holds when 5, (X)
is replaced by C,(X), the space of bounded continuous functions on X [19]. If we set
¢ =@ —log(v,e?), then (u, ¢’) = (1, ) — log{r, e¥) and it is easy to see that the relative
entropy H(u|v) can be represented as

H(plv) = sup {1, ). (3.4)
{PECH(X):(v,e0) =1}

Let D be the subset of A = P(V x (0,00]) x L% (E) defined by

D:{(M,Q)EA:/(O ]1u(m,dt):Q+(x):Q_(x),Va:€V}, (3.5)

where Q1 and @~ are the exit-current and entrance-current of the flow (), respectively.
For each (p, @) € D, we introduce the transition probabilities (Qzy)s,yev and the waiting
time distributions (fi;)zcv as

Q(w,y)

1
0. iz (dt) = w(z,dt), (3.6)

Qat

Qazy =
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where Q, = QT (z) = Q () is defined in (2.4) and we set sz = pay and fi, = ¢, if
Q. =0.LetI: A — [0,00] be the function defined by

> [QuH (Qu 1p2.) + QuH (e | 02) + C(2)ule, {o0})] s if (1,Q) € D,
I, Q) = { zev
o0, otherwise.
3.7)
We are now in a position to state the main results of the present paper. The following
theorem, whose proof can be found in Section 4, gives the joint LDP for the empirical
measure and empirical flow when L! (E) is endowed with the bounded weak* topology.
Theorem 3.6. Suppose that Assumptions 2.3-2.6 and Condition 3.2 hold. Let L’ (E) be
endowed with the bounded weak* topology. Then under P, the law of (i, Q) satisfies
an LDP with good and convex rate function I : A — [0, c0]. In particular, for any closed
set C C A and open set A C A, we have

1

— 1 “ SR

Jm Slog e ((u, Q) €C) < — it I(1,Q) -
. .

lim —logP, , ceA)l>— inf I(u Q).

Jlim - log ((Nt Q1) ) ot (1, Q)

The following theorem, whose proof can be found in Section 5, gives the joint LDP
when L} (F) is endowed with the strong topology.

Theorem 3.7. Suppose that Assumptions 2.3-2.6 and Conditions 3.2 and 3.4 hold. Let
L% (E) be endowed with the strong topology. Then under P, the law of (u;, Q) satisfies
an LDP with good and convex rate function I : A — [0, oc].

The joint LDP with the strong topology in the flow space allows us to obtain the
LDP of some important observables by using the contraction principle. For example,
in [6, Theorem 8.1], the authors derived the LDP for the empirical entropy production
(Gallavotti-Cohen functional) under some mild conditions.

Remark 3.8. In the above two theorems, we have established the joint LDP when the
semi-Markov process starts from a fixed initial state € V. For any initial distribution
~ € P(V), the joint LDP still holds when making some slight changes to the compactness
conditions. In fact, if items (c) in Conditions 3.2 and 3.4 are both replaced by

(c*) There exists a constant C, such that ), v(z)u,(x) < C, for any n > 0,

then the conclusions of Theorems 3.6 and 3.7 remain valid under P
> wev V(@)P.(-) is the probability measure under initial distribution ~.

~+, where P, () =

The above two theorems can be applied to obtain the joint LDP for the empirical
measure and empirical flow of discrete-time and continuous-time Markov chains with
countable state space. For discrete-time Markov chains, we have the following results.

Corollary 3.9. Let ¢ be a discrete-time Markov chain satisfying Assumptions 2.3-2.6
and Condition 3.4. Let L}r(E) be endowed with the bounded weak* topology or strong
topology. Then under P, the law of (u, ;) satisfies an LDP with good and convex rate
function I : A — [0, 00].

Proof. In Remark 3.5, we have shown that Conditions 3.2 and 3.4 are equivalent for
discrete-time Markov chains. Then the results follow directly from Theorems 3.6 and 3.7.
O

We have seen that Condition 3.2 is crucial for the joint LDP of the empirical measure

and empirical flow, no matter whether the flow space is endowed with the bounded
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weak* topology or the strong topology. In general, Condition 3.2 is difficult to verify
because we need to find a sequence of functions u,, satisfying both items (a)-(d), which
are related to the embedded chain, and items (e)-(f), we are related to the waiting time
distributions. In other words, the conditions imposed on the embedded chain and the
conditions imposed on waiting time distributions are intertwined with each other. Next,
we provide some novel compactness conditions which can be verified much more easily.
In the novel compactness conditions, the ones imposed on the embedded chain and the
ones imposed on waiting time distributions can be disassembled and are not intertwined
with each other.
The conditions imposed on the embedded chain are as follows.

Condition 3.10. There exists a sequence of functions u,, : V — (0, 00) satisfying items
(a)-(d) in Condition 3.4 and

(e) There exists a constant { > 0 such that the level set {z € V : loga(x) < ¢} is finite.

Note that item (e) in Condition 3.10 is weaker than item (e) in Condition 3.4. The
conditions imposed on the waiting time distributions are as follows.

Condition 3.11. There exist a probability measure v € P(0,00) and a functionq: V —
(0, 00) such that

(a) The waiting time distributions (v,,)zecv satisty 1, (A/q.) = ¢(A) for any x € V and
any Borel set A C (0,00), where A/q, = {t/q, : t € A};

(b) The probability measure v satisfies 1 (¢5™) = oo, where (=sup {A\>0: ¢(e*")<oo};
(c) For each ! € R, the level set {x € V : q, < ¢} is finite.

Remark 3.12. It is easy to check that the following distribution families satisfy items
(a) and (b) in Condition 3.11:

(a) Exponential distribution: 1, (dt) = q,e~9=tdt;

(b) Gamma distribution: 1, (dt) = (¢2t* te~ 9! /T'(«))dt with any « > 0;
(c) Dirac distribution: v, (dt) = d; /g, (dt);

(d) Rayleigh distribution: ¢, (dt) = (t/q2)e~" /%)t

In particular, items (a) and (b) in Condition 3.11 automatically hold for continuous-time
Markov chains.

The following theorem shows that the joint LDP also holds under the new compactness
conditions given above.

Theorem 3.13. Suppose that Assumptions 2.3-2.6 are satisfied.

(a) Suppose that Conditions 3.10 and 3.11 both hold. Let L} (E) be equipped with the
bounded weak* topology. Then under P,, the law of (u:, Q;) satisfies an LDP with
good and convex rate function I : A — [0, o).

(b) Suppose that Conditions 3.4 and 3.11 both hold. Let L}r(E) be endowed with the
strong topology. Then under ., the law of (u;, Q:) satisfies an LDP with good and
convex rate function I : A — [0, 00].

Proof. (a) By Theorem 3.6, we only need to check Condition 3.2 for the sequence of
functions u,, in Condition 3.10. In fact, items (a)-(d) in Condition 3.2 are trivial. We next
prove items (e) and (f) in Condition 3.2.

Let 0 : (0,00) — (—00, 0] be the function defined by

0(s) =sup{A e R: (M) < s}. (3.9)
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By item (b) in Condition 3.11, it is easy to see that the function 6, defined in (3.2)
and the function 6 defined above are related by 6,(s) = ¢.0(s). Lemma 3.1 implies
that 6 is an increasing function. It follows from item (e) in Condition 3.10 and item
(c) in Condition 3.11 that the set K := {z € V : loga(z) < ¢} is finite and the set
{z € V : q, < s} is also finite for any s € R. For any ¢ > 0, we have

/

{meV:ﬁ(m)>eé}ﬁ{x€V:qx>9(€eZ)

} Clz eV :qb(i(x)) >},

Then we have

{er:Lﬂ(m)Sf’}gKU{mGV:qxga(iz)}.

This implies item (e) in Condition 3.2.

Take n = 1/2 and o = —6(e’)/6(1/2). By Lemma 3.1, it is easy to check that o > 0.
Then we have

420 (4(z)) = —0q,0(1/2) — Clk (),

where C = 1V maxgzex{—q¢z[0(i(x)) + 06(1/2)]}. By item (a) in Condition 3.11, it is easy
to see that 1, (¢¢(*)7) = oo for any 2 € V. This implies item (f) in Condition 3.2.

(b) Note that Condition 3.4 implies Condition 3.10. Then the proof of (b) follows
directly from Theorem 3.7. O

Note that Condition 3.11 is easy to verify and we have given several examples for
it to hold in Remark 3.12. Next we will give some criterions for Condition 3.10 to hold.
Before doing this, we recall the following geometric ergodic theorem for discrete-time
Markov chains, whose proof can be found in [37, Chapter 15].

Lemma 3.14 (geometric ergodic theorem). Suppose that the embedded chain X is
irreducible and aperiodic. Then the following three conditions are equivalent:

(a) There exist a finite set K C V and constants v > 0, px < 1, and Mg < oo such
that

sup Zpﬁl, —vg| < Mgpk.
reK yek ’
(b) There exist a finite set K C V and a constant k > 1 such that
sup E, [/{TK} < 00,
zeK

where Tk is the first hitting time of X on K (see (4.10)).
(c) There exist a finite set K C V, constants b < oo, A < 1, and ¢ > 0, and a function
u:V — [c,00) satisfying the drift condition

Pu(z) < Au(z) + blg(z), zeV.

The following corollary gives a simple criterion for Condition 3.10 to hold.

Corollary 3.15. Ifitem (c) in Lemma 3.14 holds, then Condition 3.10 also holds. If the
embedded chain X is irreducible and aperiodic, then any one of the three conditions in
Lemma 3.14 implies Condition 3.10.

Proof. Let the set K, the constants A, ¢, and the function « be as in (c¢) in Lemma 3.14.
We next check Condition 3.10 for the sequence of functions u,, = u. Obviously, items
(a)-(d) are trivial. Let 4 = u/Pu and £ = —(log A)/2 > 0. It is easy to see that

{reV:logi(z) <} C{zxeV:Pu(zx)> uz)} CK.

This completes the proof of this corollary. O
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The above corollary shows that geometric ergodicity of the embedded chain X implies
Condition 3.10. Hence this condition can also be easily verified by using the classical
ergodic theory of Markov chains [10, 37, 4, 43].

3.3 Marginal LDP for the empirical measure and empirical flow

Thus far, we have established the joint LDP for the empirical measure u; and empirical
flow Q;. However, as discussed in Remark 2.7, a more natural definition of the empirical
measure 7; :  — P(V) is given by

1t
m(x) = ;/0 Lie,=ayds = pe(2,(0,00]), z€V.

The reason why we use p; rather than 7; in the study of the joint LDP is that only by
using p; can we obtain a concise expression of the rate function.

Next we focus on the marginal LDP for the empirical measure 7; and for the empirical
flow @);. By the contraction principle, the rate function of the marginal LDP can be
obtained from the rate function I : A — [0, oo] of the joint LDP as defined in (3.8). In [35],
the authors gave a variational expression of the rate function I : P(V)) — [0, oo] for the
empirical measure ;. Here we will give the variational expression of the rate function
I, : L1 (E) — [0,00] for the empirical flow @;. More importantly, we will also give the
explicit expression of I, when the waiting time distributions satisfy some additional
constraints.

Before stating our results, we introduce some notation. Recall that the rate function
Ipy : P(V) — [0, 0] for the empirical measure of the embedded chain X is the Donsker-
Varadhan functional [16]

Ipy(v) = sup Z v, log (Piu(m)) .

u€(0,00)V zeV
Let G()\) = log(t.(e*")) be a function on R and let

Gi(a) = /S\telﬁ(a)\ —Gz(N), a€eR

be the Fenchel-Legendre transform of G,. Moreover, let I; : P(V) — [0,00] be the
functional defined by

m
I = inf inf 1 LG —— .
1(m) 20 uelg(V) (T ov(V) + Z et (m/w))

zeV

The following proposition, whose proof can be found in Section 6, gives the marginal
LDP for the empirical measure and for the empirical flow.

Proposition 3.16. Suppose that Assumptions 2.3-2.6 and Condition 3.2 hold.

(a) Under P,, the law of w; satisfies an LDP with good and convex rate function
I : P(V) = [0,00];

(b) Let L}r(E) be endowed with the bounded weak* topology. Then under P, the law
of (), satisfies an LDP with good and convex rate function

— 3 1 .
IQ(Q) - (u,lél)feDI(M’Q)7 Q € L+(E)v

(c) Let L}r(E) be endowed with the strong topology. If Condition 3.4 is also satisfied,
then under IP,, the law of Q; satisfies an LDP with good and convex rate function
I : LY (E) — [0, 0]
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Moreover; if Condition 3.11 is also satisfied, then the rate function I, has the following
explicit expression:

Z Q.H (Qw‘p;v) +  sup {)\ - Z Q. log 1, (e)‘T)} , ifQT=Q,

L(Q) =1 & A<infgev ¢((2) €V

00, otherwise.
(3.10)
Note that in [5, Corollary 2.5], the authors gave a variational expression of the rate
function I for degenerate jump Markov processes. Our expression is very similar to
theirs.

Remark 3.17. This proposition shows that the rate function for the empirical flow has
the explicit expression (3.10) when Condition 3.11 is satisfied. In fact, (3.10) may be still
valid when Condition 3.11 is broken. For example, if V' is finite and v, (¢¢(*)7) = oo for
any z € V, then similarly to the proof of Proposition 3.16, it can be shown that the rate
function I, is also given by (3.10).

3.4 Examples

Our abstract theorems can be applied to many specific Markov renewal processes.
We next focus on two specific examples: birth and death processes and random walks
with confining potential and external force. These two examples can be viewed as direct
generalizations of the ones studied in [7, 6]. Here we will apply Theorems 3.6 and 3.7 to
birth and death processes and will apply Theorem 3.13 to random walks with confining
potential and external force.

3.4.1 Birth and death processes

Consider a birth and death Markov renewal process on the set of nonnegative integers
N ={0,1,2---} with transition kernel (P = (pzy)s yen, ¥ = (¢z)zen), where

por =1, Prat1=02>0, Pro-1=¢:=1-p>0, z=>1

In fact, Assumptions 2.3, 2.5, and 2.6 are trivial. In addition, it is well-known that
Assumption 2.4 holds if and only if [41]

o0

Zw:m_ (3.11)
= P12 Pk

Applying Theorems 3.6 and 3.7 to the above model, we obtain the following proposition.
Proposition 3.18. Let p = lim,_,, p,. Suppose that 1, (e*(*)7) = oo forany z € V.

(a) Let LY (E) be endowed with the bounded weak* topology. Suppose thatp < 1/2
and suppose that there exist constants x < (4p(1 —p))~"/2, 0 > 0, and n € (0,1)
such that

lim 0,(k) = oo, 0:(k) > —00,(n), x €. (3.12)

r—00

Then under P,, the law of (u:, Q;) satisfies an LDP with good and convex rate
function I : A — [0, c0].

(b) Let L' (E) be endowed with the strong topology. Let p/, = sup,, pj for each .
Suppose that p = 0 and suppose that there exist constants o > 0 and n € (0,1) such
that

lim 4, ((9p;_1)71/2) = 00, 0, ((9p;_1)71/2> > —00,(n), zeN. (3.13)

Tr—r00
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Then under P,, the law of (u:, Q;) satisfies an LDP with good and convex rate
function I : A — [0, c0].

Proof, (a) Since lim,_, pe < 1/2, it is easy to see that (3.11) holds. For any z € IN and
n > 0, let u,(x) = a®, where a > 1 is a constant to be chosen later. By Theorem 3.6,
we only need to check Condition 3.2 for the sequence of functions w,,. Since u,, do not
depend on n, items (a)-(d) in Condition 3.2 are automatically satisfied. Moreover, it is
clear that the set K = {x € N : p, > p'} is finite. Note that for any ¢ € R,

{reN:Li(x) <t} C{zr eN:0,(r) <I{}UK.

This implies item (e) in Condition 3.2. Letting C' = max,cx (Li(x) — 06,(n)), it is easy to
see that
Li(x) > —00,(n) — Clg(x), x €.

On the other hand, i(z) < co = 9,(e¢(*)7) for any = € K°. These imply item (g) in
Condition 3.2. Thus far, we have check all items in Condition 3.2 and thus the desired
result follows from Theorem 3.6.

(b) Let ¢/, = 1 — p/, for each z. For any n > 0, let u,(0) = u,(1) = 1 and u,(z) =
(TTeZ1 (q4/,.))Y/? for any = > 2. Similarly, we only need to check item (e) in Condition 3.4
and items (e) and (f) in Condition 3.2 for such u,. Note that ¢,,_; > 1/2 for sufficiently
large . Then we have

1 1 1
u(x) = > > .
@) = I T e )~ @r ) R T @ ) - 3 )

Since lim,; ,00 p,_; = 0, item (e) in Condition 3.4 holds. Let K = {x ¢ N : ¢/, _; <
1/2} U{0,1} be a finite set. The rest of the proof is similar to the proof of (a). O

We emphasize that if ¢,, is chosen to be an exponential distribution for each z, then
Proposition 3.18 reduces to the results obtained in [6, 7]. Moreover, if 1, is chosen to be
the gamma distribution

Y (dt) = (q2=t* e =" T (ay)) dt
for each z, where ¢,, a, are parameters depending on x, then we can give the following
more specific characterizations of conditions (3.12) and (3.13).
Lemma 3.19. (a) Let xo = [1 + (4p(1 — p))~'/?]/2. Suppose that
lim ¢, (1 - H(Tl/a’> =0

T—r 00

and suppose that the parameters o, have a uniform positive lower bound, i.e.
ay > ¢ for some constant ¢ > 0 and any x € IN. Then condition (3.12) holds.

(b) Let p), = supy.>, px for each x. Suppose that

lim ¢, (1 - (9p;71)1/(2%)) =00

T—> 00

and suppose that the parameters o, have a uniform positive lower bound. Then
condition (3.13) holds.

Proof. Here we only give the proof of (a); the proof of (b) is similar. Taking x = k¢ in
Proposition 3.18, straightforward computations show that

0.(t) = qu (1 - t—l/%) . t>0.
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This shows that

lim 0,(x) = lim ¢, (1 _%71/%) = 00.

T—00 T—00

Moreover, letting o = ngl/“ >0andn=1/ko € (0,1), we have

0 (ko) = qx (1 — /@51/%) = —/@al/aqu (1 — 77_1/0‘”) > —00.(n).

This completes the proof of this lemma. O

3.4.2 Random walks with confining potential and external force

We now apply our main theorems to a nearest neighbor random walk on Z? with confining
potential and external force, whose transition kernel (P = (psy), yezd, ¥ = (Vz)zeza) has
the form of

pes = g o0 { -3 (U0) - V@) + 3P | (e € B,

where E = {(x,y) € Z¢ x Z* : |x — y| = 1} is the collection of nearest neighbours in Z¢,
U : Z% — R is a potential function satisfying Y, .. e~V < 0o, F € L*(E) represents
the external force, and

Co= Y e WW-VE/2F@)2 g zd

yilz—y|=1

are normalization constants. It is clear that U has compact level sets, i.e. for any
¢ € R, the set {x € Z¢ : U(x) < ¢} is finite. We emphasize that if 1, (dt) = C,e~“=tdt is
chosen to be an exponential distribution for each z, then the above model reduces to
the Markov chain model studied in [6, Section 10.2]. We next focus on general waiting
time distributions. Applying Theorem 3.13 to the above model, we obtain the following
proposition.

Proposition 3.20. Let 7(z) = > UW)=U())/2,

yile—y|=1¢

(a) Let L}r(E) be endowed with the bounded weak* topology. If

lim r(z) > 2delFlle
|z] =00
then Condition 3.10 holds. Moreover, if Condition 3.11 also holds, then under PP,
the law of (u:, Q) satisfies an LDP with good and convex rate function I : A —
[0, ).
(b) Let L (E) be endowed with the strong topology. If
lim r(z) = oo,
|z]| =00
then Condition 3.4 holds. Moreover, if Condition 3.11 also holds, then under P, the
law of (ut, Q:) satisfies an LDP with good and convex rate function I : A — [0, o).

Proof. Here we only give the proof of (a); the proof of (b) is similar. We first check
Condition 3.10. Let u,(z) = eV(*)/2 for any = € Z? and n > 0. Since u,, do not depend on
n, items (a)-(d) in Condition 3.4 are automatically satisfied. Note that

o) oU(2)/2 _ Y ifomyiet € U V@24 F @ y)/2 (o)
Zy:(m,y)GEpmyeU(y)/2 Zy:|mfy\:1 elf'(z.y)/2 = 2dell Fll
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Since lim, |, @(z) > 1, there exists £ > 1 such that lim ,_,  4(z) > . Letting ¢ =
log k > 0, it is easy to see that the set {z € Z¢ : logd(z) < ¢} is finite. This implies item
(e) in Condition 3.10.

We next prove the joint LDP. It is easy to see that Assumptions 2.3, 2.5, and 2.6 are
trivial. Similarly to the above proof, we can also validate item (c) in Lemma 3.14 with
u(z) = eV(®)/2_ It then follows from [37, Theorems 8.0.2 and 15.0.1] that Assumption 2.4
holds. By Theorem 3.13, we complete the proof of this lemma. O

Note that if 1, (dt) = C,e~“=!dt is chosen to be an exponential distribution for each
x, then the above model reduces to the continuous-time Markov chain model studied in
[6, Section 10.2]. It is easy to check that

e*HFHoc/QT(x) <C, < eHFHoc/QT(I).

Then lim|,|_,o 7(7) = oo if and only if lim;|_,, C; = co. Hence our compactness condi-
tions in item (a) exactly coincide with the ones proposed in [6] when L}r(E) is endowed
with the bounded weak* topology. However, since we do not need to verify Condition 7.1,
our compactness conditions in item (b) is weaker than the ones proposed in [6] when
L% (E) is endowed with the strong topology.

Remark 3.21. When U € C*(R%), we consider the orthogonal decomposition
VU(z) = (VU(y),9)§ + W(y), ye R\ {0},

where § = y/|y|, (y,W(y)) =0, and (-,-) is the standard inner product in R?. We say that
the potential U € C'(R9) has diverging radial variation which dominates the transversal
variation [6] if there exist « € [0,1) and C > 0 such that

lim (VU(y),9) =00,  |W(y)| < —r5

Jim_ 5 (VU(),5) +C.

In fact, it follows from [6, Lemma 10.3] that if U € C'(R¢) has diverging radial variation
which dominates the transversal variation, then lim ;| r(z) = oco.

4 Proof of Theorem 3.6

Note that L!(E) endowed with the bounded weak* topology is a locally convex,
complete linear topological space and a completely regular space, i.e. for every closed
set C C L'(F) and every element Q € L'(E) \ C, there exists a continuous function
f:LY(E) — [0,1] such that f(Q) =1 and f(Q') = 0 for any Q’ € C) [36, Theorem 2.7.2].

It is a well-known result that if an exponentially tight family of probability measures
satisfies a weak LDP with rate function I, then I is good and the (full) LDP holds [15,
Lemma 1.2.18]. Hence to prove Theorem 3.6, we will first prove the exponential tightness
for the empirical measure and empirical flow under Condition 3.2, and then prove the
weak joint LDP without any compactness conditions. We will directly consider the case
where ¢ starts from a general initial distribution v (see Remark 3.8).

4.1 Exponential local martingales

We start by considering the change of probability measures for Markov renewal
processes. Let T' be the set of measurable functions (F, h) defined by

I'= {(F,h) :F: E — R such that meeF(w’Z) < 00,
zeV

h:V x (0,00] — R such that /

eSh(I’S)wm(dS) < oo forany z € V}.
(0,00)

(4.1)
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For any (F,h) €T, let gr, : V — R be the function given by

gen(@) =log 3 pare’ 9 log [ ey, (ds).
zeV (0,00)

To proceed, we define a new transition kernel (P, ") as

Dy eF'(zy)

pF B et h(z,u) Vy (du)
W Sy e )

h _
’(/}:D (du) - j‘(o,oo) es h(w)s) '(/Jm(ds)7 (4-2)

and let PZ*" be the probability measure under which (X, ) is a Markov renewal process
with transition kernel (P, ¥") and initial state X, = z. Note that the semi-Markov
process ¢ may be explosive under Pf*". As a result, we need to consider P£** and P,
restricted to the set {N; < oo}, i.e.

PIM(A) = PEMAN{N, < 0}), Pui(A) =P (AN{N; < 00}), A€ Fu.

F. P
Moreover, we denote by IPL’th| Fn,4a @and Py 4|7, ., the restrictions of ]Pi th and P, , to

Fn,+1, respectively. It is easy to verify that ]Pg th |Fx,,. is absolutely continuous with
respect to P, +|7,, ., and has the Radon-Nykodim derivative
Fh
1 log dIP:v,t |]'_N,,+1
t dPy ¢| 7y, s
Netl eF (Xi1,X5) Netl eTi M(Xi—1,7i)

1 1
- log + - log
¢ ; ZZEVpXi*hZ eF(Xiz12) ¢ ; f(O,oc) es h(Xiz1:9) in—l (dS)

Z Qt(xay) F(l‘,y) - <1Og przeF(x7z) + log/ BSh(x’s)ww(dS>>]

(z.y)ek % (0,00)

—t+ S
+Z/ ]h(x7u)ut(:u,du)+ Mh(XN“TNﬂrl)
T o0

S —t
=(Qt, F — grn) + (e, h) + %h(XNﬁTNHLl) (4.3)

where <Qt7F> = Z(w,y)eE Qt(x,y)F(x,y) and <Qt7gF,h> = Z(m,y)EE Qt($7y)gF7h('r)'
For convenience, for any Borel measurable function f on V x (0, o0, let

X B Sny+1 -t b _ & b
<,ut,f>—<ﬂtaf>+ff( NtaTNtJrl)—Zkz::lka( lc7177'k>-

Then as an immediate consequence of the Radon-Nykodim derivative (4.3), we obtain
the following result.
Lemma 4.1. For any (F,h) € T and t > 0, let MI™" : Q — (0, 0) be the function defined
by

ME" = exp {t[(Qe, F = grn) + (e, )] |- (40)

Then for each z € V and t > 0, we have E,, (./\/lfh) < 1.

Proof. Note that {N, < co} € Fu,11. It follows from (4.3) that E,(M"") = PER(N, <
o0) < 1. O

In fact, it is easy to check that under P,, the process MF" is a positive local
martingale and a supermartingale with respect to (Fu,+1)¢>0. The next statement can
be deduced from Lemma 4.1 by choosing specific F' and h.
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Lemma 4.2. Let u: V — (0,00) be a function satisfying Pu(z) < oo for any x € V.
Let A C V be a set satisfying u(z)/Pu(z) < 1,(e$®)7) for any x € A°. Let F(z,y) =
log[u(y)/u(z)] for any (z,y) € E and

log 5= ()
s

h(z,s) = k"4 (z,s) := 1a(z) + L%(m)lAc (), (z,8) €V x(0,00]. (4.5)

For anyt > 0, let M : Q — (0, 00) be the function defined as

u X t ~ u
/\/lt’A = U(u(;\[(()—sl)e){p {t <,ut,h ’A> }

Then (F,h) € T and E,(M}"*) <1 foranyz € V and t > 0.

Proof. For any x € V, it is clear that ZyevpzyeF(I’y) = Pu(z)/u(z) and

shizs)y, (gs) = &) ¢ (e (ul@)/Pu)T 1 .
/(o,oof Uelds) = T Tale) + v (¢ ) L (@)

Therefore, by item (c) in Lemma 3.1, we have [, _, es(@9)q) (ds) = u(x)/Pu(z). This
implies that (F,h) € T and gr; = 0. On the other hand, it is easy to check that
(Qt, F) = uw(Xn,+1)/u(Xo). This completes the proof of this lemma. O

4.2 Exponential tightness

We will next prove the exponential tightness of the empirical measure and empirical
flow under Condition 3.2 with item (c) is replaced by item (c*) in Remark 3.8.

Let the function 4, the sequence of functions u,, the set K, and the constants
¢, Cy,0,n be as in Condition 3.2 and item (c*) in Remark 3.8. Recall the definition of huwA
in (4.5). Let A% : V x (0, 00] — R be the function defined by

@ . e K log ii(x) .
h*(z,s) = lim A"" (z,s) = 1 (x) + La(x)1ge(z), (z,8) €V x (0,00],

n— 00 S

where we have used the condition that w,,/Pu, converges pointwise to .
Lemma 4.3. Assume Condition 3.2 to hold. Then

) ) N
E, (et<ﬂt7hu>) < g7 E, (etwf,,h“}) < Cye (4.6)

~c

where N = 1V (—inf,cx log (z)).

Proof. By Fatou’s lemma, we have

B, () < 37 (o) lim By (0, .7

For any x € K¢, it follows from items (d) and (f) in Condition 3.2 that there exists n, € IN
such that u,,(z)/Pu,(z) < 1,(e$®7) for any n > n,. By Lemma 4.2 and item (b) in
Condition 3.2, we have

~ Uy, X

Combining (4.7), (4.8), and item (c*) in Remark 3.8, we have

B, (e0h) < 37 v(x)—“"c(x) <&

C
zeV
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Moreover, by item (f) in Condition 3.2, we obtain
5 N
ht(x,s) > —?IK(x) —oLn(x)lge(x). (4.9
Since N > 0 and Ln(z) < 0 for any « € K¢, we have

~ 7 I St —t 4
(s B%) = (s h7) + =0 (X, v, 1)

N S -t N
> (g, by — L
t TNt+1
N N
> <Uta hu> -
t
This implies the second inequality in (4.6). O

Forany B C V, let (Tg);@o be the sequence of stopping times defined by
Th=0, Tp=inf{n>T5"'+1:X,€B}, k>1 (4.10)

Clearly, T% is the kth hitting time of (X,,),>0 on the set B. The first hitting time T} is
always abbreviated as T in what follows. If we only focus on the behavior of (X, 7) in
the set B, we obtain a new process (X, 7) = {(Xy)x>0, (7x)k>1}, which is defined by

— Tg+l
Xp=Xpg,  Thyr = > om, kx>0 (4.11)
i=Tk+1

Proposition 4.4. Suppose that (X, 7) satisfies Assumptions 2.3 and 2.4. Then {(Xy)x>1,
(Tk)rk>2} is a Markov renewal process and also satisfies Assumptions 2.3 and 2.4. In
other words, we have

(a) (X k)k>1 is an irreducible and recurrent discrete-time Markov chain with state
space B and transition probability matrix (pyy)e,yen given by p., = P, (X1, = y).

(b) (Tr)k>2 is a sequence of positive and finite random variables such that conditioned
on (Xk)kzl the random variables (7y),>2 are independent and the waiting time
matrix (Yuy) s yep is given by

T
ﬁa:y() =P <Z7—i c -

where the definition of the waiting time matrix can be found in Definition 2.1.

X0:£U7XTB:Z/>7 xayEB’

Proof. (a) Since (Xj)r>o is irreducible and recurrent, we have Tg < oo, P;-a.s. for any
r€Vandk >0. Foranyn > 0and xg,x1, - ,Tnt1 € B,

IP (Xn+1 = 1177l+1 Xn =Tp," " ,XQ = QZ()) = IP (XTngl = In+1 XT]SL =Tp," " ,XT](; = $0>
=P, (XTB = Tn41),

where the last step follows from the strong Markov property. In fact, we can obtain
the recurrence of (X}),>1 directly from the recurrence of (X;)x>o. For any z,y € B,
since (Xj)r>o is irreducible, there exist a positive integer n > 1 and a sequence of states
Z0,T1, - , Ty € V with g = x and z,, = y such that p, 4, Pz1 .00 Pan_1,2, > 0. Select
all states in {zj}o<k<n in the set B and write them as x;,,--- ,x;, with 0 = i; < iy <
.-+ < 1ig =n. Then

Paijai Z Paijwijin " Poijyyamiyy, = 0, l=sj=s—1
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This implies that (X3) k>1 is irreducible.

(b) Since Tg < 00, Py-a.s. forany x € V and k > 0, it is easy to see that (Tx+1)k>0 is a
sequence of positive and finite random variables. Note that conditioned on (X})x>o the
random variables (7;)x>1 are independent and have distribution P (7,11 € - | (X)r>0) =
Yx, x4, (). Forany f € B,(0,00), we have

E[f(fkﬂ(Xk)kzo]/f( ZB: ti) ﬁ Ux, 1 x; (dt), (4.12)
+1

i=TE ! i=TE '+1

where we use the fact that (T%)x>0 is o((Xy)k>0)-measurable. For any n > 2 and
fi, s fn € By(0, 00), similarly to (4.12), we have

Ty g Ty
E[fi(71) -+ fu (7o) [(Xk) k0] —/fl( > t7;> fn< > tz‘) IT ¥x._.x.(dt)
+1

i=TH+1 i=Tp~ ! i=TH+1

= E [fi(7)|(Xk)kz0] - E [fu (7o) (Xk)k>0] -
(4.13)

Note that X, = XT§~ By the strong Markov property of (Xj)i>o, it is clear that
conditioned on {X;_; = z, X}, = y} the random variable E [f(7)|(Xk)x>o0] is indepen-
dent of (Xk)OSkST}l;—l and (X’f)kZTg' Moreov?r, for any z,y € B, the distribution of
E[f(7x)|(Xk)k>0] conditioned on {X;_1 = z, X, = y} is equal to the distribution of

E[f(71)|(Xk)k>0] conditioned on {Xy = x, X1 = y}. It follows from (4.13) that

E [fl(%l) T f’rb(fn)

(Kikzo] = B [BIA1(71) - fulm)l (Xidizol | (Xi)izo)

= E [/1(7)|(X)izo0] -+ E [£a(7)| (Kidizo) -

Moreover, for any z,y € B, we have

E [£(70)| X1 = 2, X = y] = B [EF(R0I (X0 | Kno1 = 2, X = 1]
= [f(ﬂ)‘)_(o =z,X; = y} .
This completes the proof of this proposition. O

Remark 4.5. In the above proposition, we have proved that conditioned on (X},) k>0, the
random variables (7;)>1 are independent. This implies that (X, 7) = {(Xx)k>0, (Tx)k>1}
is a delayed Markov renewal process, whose transition probability matrix and waiting
time matrix of the first step is different from the remaining steps [25, Chapter 4.12].

Lemma 4.6. Let K be a finite subset of V. Then for any ¢ € NN, there exists a real
sequence Ay T oo such that

tm %1ogIP,Y(<Qt,1K> > Ay) < -4, (4.14)
— 00

where (Q,1x) = Z(z,y)EE Qi(z,y)1x(x).

Proof. Let (X, 7) be defined as in (4.11) with B = K. By Remark 4.5, we have seen that
(X,7) is a delayed Markov renewal process. Similarly to Markov renewal processes,
we can also define the nth jump time S,,, the number N, of jumps up to time ¢, and the
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empirical flow Q; for (X, 7). Note that Zf\il 1k (X;) is the number of times that £ jumps
into the set K in the time interval (0, ¢]. It is easy to see that

Ny Ni+1

Nt+1:1+ZIK( ZIK i—1 _t<Qt71K>

=1

By the exponential Chebyshev inequality, we have
P, ((Qe, k) > Ag) <Poy (Ny + 1> Agt) =P, (Sjap <t) <e'E, (e‘%”) , (4.15)

where | A,t| denotes the integer part of Ay¢. By Proposition 4.4 and Remark 4.5, it is
clear that conditioned on (X})x>o, the random variables (74);>1 are independent. Then
we obtain

E, (efgmm)

=Y R (s Kt B [
Ty T A €K

Xllev"' 7XLA(tJ = T Agt]

[Aet]

Xl = 1‘1} H (pw¢71$i1;m7195i (e_T))

= > P (Ki=m)B e

Ty, T A, €K i=2
B [Aet]—1 B
< ( sup wxy(eT)) E, [67“] ,
z,ye K
(4.16)

where ¥, (e fo 00) “*1)ay(ds). Since K is finite, it is clear that sup,, , ¢ e Yzy(e™7) <
1. Combining (4 15) and (4 16), we have

— 1

tlim n log P, ((Q+,1x) > Ap) <1+ (Ar—1)logC.
This completes the proof by choosing A, =1 — (1 +¢)/logC. O

The following proposition states the exponential tightness of the empirical measure
and empirical flow.

Proposition 4.7. Assume Condition 3.2 to hold. Then there exists a sequence {K,;} of
compact sets in P(V x (0,]) and a real sequence Ay T oo such that for any ¢ € IN

— 1
tllglo n logIP, (/Jt & IC@) < -/, (4.17)
— 1
Jim = log P (@i > Ar) < —¢. (4.18)

In particular, the empirical measure and empirical flow are exponentially tight.

Proof. We first prove (4.18). We consider the exponential local martingale in Lemma 4.1
by choosing F = 0 and

h(z,s) = h'(z,s) := %11((95) + Ln(z)lge(z), (x,8) €V x(0,00],

where N is as in Lemma 4.3. By Lemma 3.1, it is easy to check that (F,h) € T' and
grh = (N/o)1lg +lognlke. It then follows form (4.4) that

N N
Mf’h = exp {t |:<Qt; *;11( — log 771K“> + (/e hn>] } :
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Combining (4.9) and the first inequality in Lemma 4.3, we have
T N q._ Lopa C
E (e fie,—o )) =F (et(ut, s 1K 0L771K0>) <E (etWhh )) < T,
gl v > By =7

By exponential Chebyshev inequality, we obtain

P, ({fie, —oh™) > £) < G p-ue

c

On the other hand, by Lemma 4.6, there exists a real sequence A} 1 oo such that
— 1
tll>rgo n logP7(<Qt, 1k) > A}) < /. (4.19)

Hence it is enough to show that there exists a sequence A, 1 oo such that for any ¢t > 0
and / € IN,

P (1Qull > Ae, {fu, —oh") < £, (Qu 1) < A7) < et (4.20)
Since logn < 0, we have

Py (1Qull > Ae, (i, —oh") <€, (Qr; 1ie) < AY)
~-E, (et[logant\|+<Qt,<%flogn>1K>f<m,m>} M

N 1
exp {t [lognAg + (0 — 10g77> v+ 06] } ,

where we have used Lemma 4.1 in the last step. The proof of (4.20) is now completed by
choosing

h
LiiQen>aey Lan—onm <oy 1{<Qt,1k>§Az})

IN

N/o —logn)A, + (1+1/0)t
—logn '

Recall that the closed ball in L! (E) is compact with respect to the bounded weak*
topology. Then the exponential tightness of the empirical flow follows from (4.18).

We next prove (4.17). For a sequence of constants a,, 7 co to be chosen later, set
Wy ={xz €V : Li(z) < a,} UK. In view of items (e) and (f) in Condition 3.2, it is clear
that W,, is a finite subset of V. Now set

Azz(

k= () {ie P07 x 0,000 w5 0 <

KC? :"’{“iee P(V x (0,00]) : <ui> < Ae},

where (i, 1/s) =32 ey [ o #(x,ds)/s. Then for any p € K; = Ki N K2, we have

WV x 0= [ Zutwag <e(ut) < e

x€eEV (076) §

u((Wm X [6700])(:) < p(We, % (0,00]) + u(V x (0,¢)) < %—i—cAg, m > L.

Since W,,, x [¢, 0] a compact subset of V' x (0, 0], it follows from Prokhorov’s theorem
that K, is a compact subset of P(V x (0, o0]). Since

1 =— 1
tliglo EIOng (e €K6)§tlgglo glog(Pn, (e € K3) + Py (e € K7))
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we only need to prove

—_— 1 1 . 1 2
tliglo n log P, (/At =4 ’Ce) < —¢ and tlinalo n log P, (Mt o4 ICe) < —4. (4.21)
Note that

1 1 t— SN 1
SV=CN L< (N 4+ 1) = Q.
<Ht’s> P t+ ———— t( ¢+ 1) = [Ql

Then we can obtain the second inequality in (4.21) from (4.18), i.e.

o — 1 1
tliglo ;logIPW (,ut ¢IC3): lim Zlog]Py (<,U/t73>>Ag>

t—o0

IN

— 1
i  log P, (| Qil| > A)

t—o00

< -4

We next prove the first inequality in (4.21). By item (f) in Condition 3.2, it is easy to see
that Li(x) > —oLn(x) > 0 for any z € K. Recall the definition of W,,, h%, and N. It is
easy to see that

Rz, s) = %1;{@) + Li(x)1ge(x) > —glK(x) + amlwe ().

<ut,11K> < <m, 11K> — (Qu. 1x0).
S S

By the exponential Chebyshev inequality and Lemma 4.3, we obtain

. 1 o N Ay,
IP'Y </’Lt (Wﬂ:L X (0,00D > m) < PA/ (<,u/tvh + 51K> > m)

Note that

<P, (<Mt, h*) + N(Qi, 1) > %)

. an, a, (4.22)
<P, (<Mt,h > > %) + P, (N<Qt71K> > %)
< Cﬂ,eN

et e, (@) > ).

From (4.19), the proof is now easily concluded by choosing a,, = 2m? + 2N A/ m. O

Remark 4.8. In fact, the empirical measure 7; defined in (2.2) is also exponentially tight
and the proof is similar to the first inequality in (4.21). Moreover, at this time we only
need item (f) in Condition 3.2 with ¢ = 0. Note that we will not resort to the compactness
conditions anymore in the following proof of upper bound and lower bound. This means
that the marginal LDP for the empirical measure m; in Proposition 3.16 still holds under
Condition 3.2 with o = 0.

4.3 Upper bound

We next prove the upper bound of the LDP. Since we have proved the exponential
tightness for the empirical measure and empirical flow, to prove the upper bound of the
LDP for closed sets, we only need to prove the upper bound for compact sets [15, Lemma
1.2.18]. Before stating the upper bound, we introduce the following notation. For any
Polish space X, let C.(X) be the collection of all continuous functions f : X — R with
compact supports. For any functions M : V — [0,00), ¢ € C.(V x (0,00)), and ¢ € C.(V)
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such that 0 < ¢ < ¢ and ¢(z) < ((z) forany z € V with {(z) > 0, let h**M: V'x(0,00] = R
be the function defined by

he oM (g s) = SDIT(S) +¢(®) L(m(a),00)(8),  (x,8) € V x (0,00].
Recall the definition of I" in (4.1). Let I'y be the subset of I' defined by
Iy = {(F7 h) €T : F € C.(E),h = h?*M for some ¢, c, M as above, and grh = 0} .
For any (F,h) € I'y, let I : A — R be the functional defined by

Ien(p, Q) =(Q, F) + (u, h). (4.23)

Based on the proof of Lemma 4.10, it is easy to see that Ir, is a lower semicontinuous
function on A. For any § > 0, set

Cs = {(M,Q) eA:glea&<|Q+(x)—Q_(x)| S(S}. (4.24)
Let Ir .5 : A — R be the functional defined by
IF,h(,an)7 if (M?Q) € 057
Irns(n, @) = { : (4.25)
00, otherwise.
Lemma 4.9. For any (F,h) € Ty, § > 0, and measurable O C A, we have
— 1
Tm - log P (1, Q) € O) < — inf I Q). 4.26
Jfim S 108 Py ((u, Q) € 0) < = if Irns(p, Q) (4.26)

Proof. We first prove that for any measurable B C A,

— 1
i — < — i . .
Jim < log P, ((u,Q0) € B) < Lnt T, Q) (4.27)
Since ¢ > 0 and ¢ € C.(V x (0,00)), we have
) X (TN +1)

(Sn+1 —)h(Xn,, TN +1) = (Snp41 — t
TN, +1

> —|lolloo, Py-a.s., (4.28)

where || - || denotes the standard L°>°-norm. Recall the definition of the semimartingale
MFMin Lemma 4.1. For each ¢ > 0 and measurable set B C A, it follows from (4.23)
and (4.28) that

P, ((u, Q:) € B)
= ]E“/ (exp {_t IF,h(:u'h Qt) - (SNt+1 - t)h(XNt7TNt+1)} Mf’h 13 (/J‘h Qt))

< exp gl sup exp{—tlrnlu Q)} By (M 15011, Q1)) -
(1,Q)eB

Hence we have proved (4.27). It is easy to see that P, ((u,Q¢) € C5) = 1 forany t > 1/0.
Finally, taking B = O NCs in (4.27), we obtain

— 1 — 1
tlglolo leng((Htht) €0)= tlggo ElogIP'y((MmQt) €0NCy)

< — inf 1 ,
>~ (1,Q)€0NCs F,h(,u Q)
=— inf Ipps(p, Q).
(n.Q)e0 77 ( )
This completes the proof of this lemma. O
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Lemma 4.10. Suppose that Assumption 2.6 holds. For any (F,h) € Ty and ¢ >0, Ir s
is a convex and lower semicontinuous function on A, where L}r(E) is endowed with the
bounded weak* topology.

Proof. Since a linear functional on L} (F) is continuous with respect to the bounded
weak* topology if and only if it is continuous with respect to the weak* topology [36,
Theorem 2.7.8], the weak* topology on L!(E) is the smallest topology such that the maps
Q€ LY(E) = (Q, f) € Rwith f € Cy(FE) being continuous. Let

f;(yaz)zlw(y)v me(ywz):lz(Z)v (y,z) c L.

By Assumption 2.6, the graph (V, E) is locally finite. It is easy to check that £}, f2 € Cy(E)
for any x € V. Note that

CG= ) ({(N»Q) EA:QT(2)—Q (2) < 6}(}{%@) EA:Q (2) - QF(z) < 5})

zeV

- N ({m@er@a-m<sfN{wmQer:@r -1 <sy).

zeV

This implies that Cs is a closed subset of A. Moreover, it is easy to see that Cs is convex.
Thus we only need to prove that Ir, is a convex and lower semicontinuous function on
A.

Since Iy, is a linear functional, it must be convex. Since F' € C.(E) C Cy(FE), the
map @ — (Q,F) is continuous. On the other hand, since ¢ € C.(V x (0,00)), there
exists a finite set K C V such that ¢, = 0 for x € K¢ and ¢, € C.(0,00) for z € K.
Then h#M is a bounded lower semicontinuous function. For any p € P(V x (0,00]), let
tn € P(V x (0,00]) be a sequence of probability measures such that p,, weakly converges
to p. It then follows from the Portmanteau theorem [8, Corollary 8.2.5] that

lim (g, R2MY > (p, 2N

n—oo

Since P(V x (0,00]) is a metric space with the topology of weak converge, it is clear
that (u, h) is lower semicontinuous with respect to u. This completes the proof of this
lemma. O

Lemma 4.11. For any (u, Q) € A satisfying QT = Q~, we have

I(p, Q) = sup Ipn(p,Q).
(Fah)EFO

Proof. The proof for I(u,Q) > SUP(ph)eT, Ir (1, @) is similar to [35, Proposition 2.1].
Here only prove the converse inequality

I(p, Q) < sup Ipn(p, Q). (4.29)
(F,h)€Ty

Case 1: (i, @) ¢ D. Then there exists « € V such that

1 1
2 (.’E, T> = /(0700] gu(xads) 7& Qm

Without loss of generality, we assume that p(z,1/7) < Q,. Forany C >0, (y,2) € F, and
(y,s) € V x (0,00, set

Foly.2) = OLG),  holy,s) =~ Lu(y).
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It is easy to check that gr, 1., = 0 and

Iro e (1, Q) =C |:Qz - <x, i)} .

Here (Fc,h.) ¢ Ty, but we still define I, . (1, Q) as in (4.23). As C — oo, we have
Ip he (14, Q) — 0co. Now for any C > 0, we construct a sequence (F,, hy,) € I'g such that

Tim I, (1, Q) = Tre o (1 Q). (4.30)

For any y € V, it is easy to see that there exists a non-negative function g, € C.(0, o)
such that ¢, ({t € (0,00) : g4(t) > 0}) > 0. Let

Fa3:2) = CL@)i, (), ha(:9) = S (fals) 4 eaga (L), @3D)

where f,, : (0,00] — R is a sequence of continuous functions satisfying f,(s) = 0 if
s€(0,1/(n+1))U(n+1,00] and fr(s) = —1if s € (1/n,n), ¢, is a sequence of constants
to be chosen later such that gf, , = 0, and K, is a sequence of finite sets such that
K, TV and

1+ (EC - 1) Z Pzxy W:c,ecf") <1
yeK,

Since lim,, o0 (¥, e€77) = —C, such K,, must exist. It is easy to check that gr, 5, (y) =0
for any y # x and

9r . () =log [ 14 (€ =1) > puy | +1log <wx,ec<fn+c"gw>>. (4.32)
yeEK,

Note that

. . C C n
lim gg, ,(z) = oo, cggogF"’h"(gc) =log |1+ (¥ - 1) Z Pay | +10g (thy, € f ) <0.

Cp —> 00
" yeEK,

Since g, », (z) is continuous with respect to ¢,, by the intermediate value theorem,
there exists a sequence of constants ¢, such that gg, ,(z) = 0, which implies that
(Fy, hy) € Ty. Taking n — oo on both sides of (4.32), it is easy to see that ¢,, — 0. Thus
in the sense of pointwise convergence, we have (F,,, h,,) — (F¢, hc). By the dominated
convergence theorem, we obtain (4.30). This further implies (4.29).

Case 2: (i, @) € D. Then for any = € V, we have

u(z,l) =@z < 00.
T

Recall the definition of sz and /i, in (3.6). Since V and (0, c0) are both Polish spaces, it
follows from (3.4) that for any x € V,

H(Qu, |ps) = sup > QuyFaly),

{Fz ech(v):Zer pmyer(y):l} yev

H(fie | ) = sup /( | Eela(as).

{02 €Cb(0,00): (g ePz) =1}

Recall the definition of I in (3.7). Then for any F' € Cy(E), ¢ € Cp(V x (0,0)) satisfying
ZyevpxyeF(””’y) = 1and (¢y,e?*) = 1forany ¢ € V, and ¢ : V — [0,00) satisfying
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0 <c¢<(andc(z) < ((z) for any z € V with {(x) > 0, we only need to find a sequence
(Fy, hy) € Tg such that

lim Ip, 5, (1,Q) 2 Y | Qu D QuyFla,y) + Qu /( ey P (I (08) o, 20))

n—roo zeV yeVv

(4.33)
For any (x,y) € F and (z,s) € V x (0,00], let

Fo(z,y) = (F(z,y) — ap)lk, (0)1k, (y),

(2, 8) = E(@Q(S) — bg.(s)) + Cm1<n+1,oo1(s)} L, (2),
where ¢7 : (0,00] — R is a sequence of continuous functions satisfying ¢ (s) = 0 if
s € (0,1/(n4+ 1)) U (n+ 1,00) and ¢2(s) = @u(s) if s € (1/n,n), a and b are two
sequences of constants satisfying ZyGV pmyeF"(I’y) =1 as well as (¢, es""(x’s)> =1, 9
is the function used in (4.31), and K, is a sequence of finite sets such that K, 1 V. For
any x € V and sufficiently large n that may depend on z, straightforward computations
show that

€T, eF(:v,y) n n
Cl: _ log ZyEKn Pzy , / egpm (s)—bzgm(s)¢m(d8) +/ eCmSwm(dS) - 1.
ZyeKn Dzy (0,n+1] (n+1,00)

Moreover, it is easy to see that such sequence of constants b} exists, and a; — 0 and
b — 0asn — oo. For all x € V, we have

lim |3 Qa,y)Fula,y) + /( RRACRIERD

> Y Qe+ [ Sealouods) + conlz (o).

yev (0,00) S
Then (4.33) follows from Fatou’s lemma. This completes the proof of this lemma. O

We are now in a position to prove the upper bound of the LDP.

Proposition 4.12. Suppose that Assumptions 2.3-2.6 are satisfied. Let L}r(E) be en-
dowed with the bounded weak* topology. Then I is a convex and lower semicontinuous
function, and for each compact set KL C A, we have

nf  T(p, Q). (4.34)

1
Tm -1 JP( : /c)<_ i
Jm, glogPy (e, Q) eX) < = i

Moreover, if Condition 3.2 is satisfied, then the above equation also holds for any closed
set I C A.

Proof. We first prove that I is convex and lower semicontinuous. Since we have proved
I s is convex and lower semicontinuous in Lemma 4.10, we only need to verify that

I(IU’7Q) = sup IF,h,5(/1'7Q)7 (MJQ) S A
(F,h)ETy,6>0

Case 1: QT # @Q~. Let ¢ be a constant satisfying 0 < § < max,cy |QT(z) — Q™ (z)|.
Since (u, Q) € A\ Cs, we have

I(,an) =00 = sup IF,h,(S(,ua Q)
(F,h)€T(,6>0
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Case 2: QT = Q. By Lemma 4.11, we have

I(p, Q) = sup Ipn(p,Q).
(F,h)€Tq

Recall the definition of Cs in (4.24) and the definition of Iz} s in (4.25). It is easy to
check that for any § > 0, we have (i, Q) € Cs and Ip (1, Q) = Ip (1, Q). Optimizing
over (F,h) € 'y and § > 0, we obtain

I(p, Q)= sup Ipp(p, Q)=  sup  Ipns(p, Q).
(F,h)€To (F,h)€ET,6>0

We next prove (4.34). Minimizing (4.26) over (F,h) € 'y and 6 > 0, we obtain

— 1
lim - logIP ,Q) e0) < — sup inf Tpps(p,@).
t—oo s 7((% t) ) (F,h)€ly,6>0 (1,Q)EO '(l )

Note that I, s is lower semicontinuous for any (F, k) € I'y and § > 0. For any compact
set KL C A, it follows from the min-max lemma [32, Lemma 3.3 in Appendix 2.3] that

— 1
lim —log P , e ) <— inf su 1 ,Q)=— inf I(u,Q).
oy g Py ((pe, Qt) ) (“’Q)GK(F,h)eFIZ,6>O Fohs (1, Q) (nQ)ek (1, Q)

Finally, under Condition 3.2, it follows from Proposition 4.7 that (u:, Q¢) is exponentially
tight. Hence the upper bound in (4.34) also holds for any closed set K C A. O

4.4 Lower bound

We next prove the lower bound of the LDP. Before giving the proof, we recall the
following lemma, which can be found in [7, Lemma 5.2].

Lemma 4.13. Let {P;} be a family of probability measures on a completely regular
topological space X and let J: X — [0, 00| be a function. Assume that for each x € X,
there exists a family of probability measures { P’} weakly convergent to o, such that

— 1 ~

Jim ;H(Pt |P) < J(x). (4.35)
Then the family { P,} satisfies the large deviation lower bound with rate function sc™J.
Here sc™J is the lower semicontinuous envelope of J, i.e.

(s¢”J) (x) = sup inf J(y),
UeN, yeU

where N, denotes the collection of the open neighborhoods of x.

In order to prove the lower bound, we will apply Lemma 4.13 for completely regular
topological space A. Recall the definitions of D and @ in (3.5) and (3.6), respectively. Let
Dy C Dy C D be defined by

Dy ={(1,Q) € D: I(1,Q) < 00, p(x,(0,00)) >0, Y €V,

(Qazy)m,yev defines an irreducible transition matrix on V},

Dy = {(11,Q) € Dy : p(z,{oc}) =0, Yz € V}.
Moreover, let J : A — [0, 00] be the restriction of the rate function I to D, i.e.
I(p, Q), if (1, Q) € Do,
J(1, Q) = { : (4.36)

0, otherwise.

In the following lemma, we will construct a family of probability measures {ﬁf} on A
and prove (4.35) with the upper bound given by (4.36). The proof is in the spirit of that
given in [35, Proposition 5.1], but some details are supplemented.
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Lemma 4.14. Let P, = P, o (u4,Q;)"*. For each (u,Q) € A there exists a family of
probability measures {Ist(“ ’Q)} on A weakly convergent to 0, q) such that

im H (P(" Q)|P) < J(1, Q).

t—oo t

Proof. By the definition of J in (4.36), we may restrict the proof to (i, Q) € Dy. When
(4, Q) € Dy, we have

1
Q. —u<x,7> >0, ple e} =0, weV,
and it is easy to check that

> QeH(Qu.lps) <00, Y QuH(jia|¥s) <

zeV zeV

It then follows from [19, Theorem 2.1 and the remark after Theorem 2.1] that Q~z < P,

[y < Y, and
Z Q(z,y) (log (CM>’ < o0, (4.37)
(Z,y)GE szzy
1 u(x,ds) >’
~log{ 57— ,d : 4.38
m;//(O,oc) s o8 (Qx8¢z(d8) u(x S) <0 ( )
Let (F,h) € T be defined by
B Q(x,y) 1 p(z,ds)
F(z,y) = log (Qmpzy ) , h(z,5) = _log (st%(dsJ . (4.39)

In this way, the transition probability kernel (P, \Ilh) defined in (4.2) are given by

Q( ) Qxyv wh(ds) (x,ds) = ﬂac(ds)-

Fo_
P = Q. Qw
Let IP,‘? '" be the probability measure under which (X, 7) is a Markov renewal process

with transition kernel (P*, ") and initial distribution v. Since (1, Q) € Dy, it is easy to
see that pf" = () is irreducible. It then follows from (3.5) that

L _ Qv _r

zeV

where v!" = Q,./||Q|| for any = € V. This means that v’ is the unique invariant distribu-
tion for P. Since w(x, {oo}) = 0 for any = € V, we have

Qq
F (r s hd — ds 0. .
B#(n) =2 v / v () = 2 o o sgah(ens) = gy <o (440

zeV eV

By the strong law of large numbers for semi-Markov processes, for any f € Cy(V x (0, o0])
and g € Cy(F), we have

hm (p,t, = Z / f(x, 8)(ds) = (u, f), IPFh -a.s. (4.41)
VF IGV 0,00)
. F,h
Jlim (Qr,9) = IEFh S vEphg(ry) =(Qg), PHlas. (4.42)
l/F 1 (z,y)EE
We now construct the family of probability measures {Pt(”’Q)}. For any ¢ > 0 and
t>0,let Ty = |[|Q|/(1+ €)t] and let P, ; . be the probability measure under which the

law of the process (X, 7) = {(Xk)k>0, (7x)r>1} satisfies the following requirements:
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(@) {(Xr)o<k<m,, (Tk)1<k<m,} is a Markov renewal process with transition kernel
(P¥, ") and initial distribution ~.

(b) Conditioned on Xr,, the processes {(Xi)o<w<my, (Tk)i<k<r,} and {(Xp)r>1,,
(Tk)k>T,+1} are independent of each other. Moreover, {(Xy)i>1,, (Tk)k>T 41} 1S
a Markov renewal process with transition kernel (P, ¥) and initial distribution dx,, .

Intuitively, under P , ., the process (X, 7) has the transition kernel (P, ¥") before time
T; and has the transition kernel (P, ¥) after time 7;. Set 15@6 =P, 10 (1, Q)" and let
€(t) | 0 to be chosen later such that Pt(“’Q) = ]5t7€(t) weakly converges to 6, o) ast — oo.
In other words, for any G € C(A), we have

lim / GdP; .1y = G(1, Q). (4.43)
t—00 A ’
For any € > 0, it follows from (4.40) and the strong law of large numbers for Markov
renewal processes [34, Theorem 3.13] that

St, Ty

: STt S K _ Q@ — F.h
Jim 2t = Jim S =B (r)QI(I+ e =146 P,

For any t > 0, let
Dt,e:{STt >t}={Nt+1§Tt}€th,

where Fr, = o((Xk, Tk)o<k<T,). It is easy to see that IPff’h|]:Tt =P,

Fr,- Then we have

S
. BT T F,h Ty _
thm Pyte(Dye) = thm Pyie (S, >1t) = th_{n P (t > 1) 1. (4.44)

Before determining €(t), we give an estimation of the relative entropy. We observe that
for any € > 0,

F.h
dPF

Fr,
dIP’Y ‘-7:7}

H (Pr|P) < H (P [P.) = B o

(4.45)

_ mF.h
= E’Y

Tt
Z (F(Xl;l, Xz) + Tih(Xifl, Tl))‘| .
i=1
Indeed, the first inequality follows from the variational characterization of the relative
entropy [19, Section 2] and the last equality is a straightforward computation of the
Radon-Nikodym density (similarly to (4.3)).

Combining (4.37), (4.38), and (4.39), we have (Q, |F|) < co and {y, |h|) < co. Note that
(Xk, Xk+1, T+1)k>0 is @ Markov process. By the ergodic theorem of Markov processes,
we have

1
o L@ P+ hl e
<(1+I(n, Q).

We next construct €(t) | 0. Let ¢(t) = 1/n for any ¢,_; <t < ¢, be a step function,
where t,, is an increasing sequence such that

1
lim ~EH"
t—oo t Y

Tt
3 (F(Xi,l,Xi) + 7ih(Xi-1, Ti))] =1+ QI

i=1

1 1 ~
Poii/m (Deajm) >1— - and ZH (Pt,l/n

n—1

Pt) < (1 n 1) 1(6,Q), t>tn_1.

It follows from (4.44), (4.45), and (4.46) that such ¢,, T co exist. Then we have

. — 1 ~
Jim Py oty (Dren) =1, lim —H (P e(t) Pt) < I(p, Q)- (4.47)
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Finally, we prove (4.43). Note that
/ det,e(t) = / G(,Ut; Qt)d]P'y,t,e(t)
A Q

=/G(ut,Qt)lD,qe(t)lew,e(t)+/G(ut,Qt)lpg_emd]Py,t,e(t)-
Q Q ’

It thus follows from the first equality of (4.47) that

G(pe, @)pg APy s50)

<UGlIoePy ety (Diuy) 20, s £ o0,

On the other hand, since Dy ;) = {N; + 1 < T;}, we have G(ut,Q¢)1p, ., € Fr,. Note
that P(V x (0, 0o]) is endowed with the weak convergence topology and L’ (E) is endowed
with the bounded weak* topology. It is a direct consequence of (4.41) and (4.42) that

: _ F,h_
tll>r£<> G(,U/t? Qt) - G(,LL7 Q)a IP,Y a.s.
Moreover, it follows from the first equality of (4.47) that
: F.h T _
Jim P (Dy ) = lim Py ety (Drey) = 1

Then we obtain

/G(,u'taQt)lDt,E(t)dIP'y,t,e(t) :/G(,utht)lDt,e(t)dIPsyh
@ @ (4.48)

-+ | GQURE = Gu.Q),  as 1o,
Q

where the convergence in (4.48) follows from the dominated convergence theorem. [

To prove the lower bound of the LDP, we only need to prove that the rate function
I coincides with sc™J. Before giving the desired results, we need the following two
lemmas.

Lemma 4.15. Suppose that Assumption 2.3 is satisfied. Then for any p = (pz)zecv €
P(V) satisfying u, > 0 for any x € V, there exist a constant C' > 0 and an irreducible,
p051t1ve recurrent Markov chain (X k)k>0 With state space V, transition probability matrix
P = (Pay)e,yev, and invariant distribution ¥ = (¥).cyv such that ECEandp, < Clig
for any x € V, where E = {(x,y) € V X V : ppy > 0}.

Proof. We first construct a sequence of finite subsets V,, T V by induction. Without
loss of generality, we assume that V' = {z;};>1. Since Assumption 2.3 holds, it is clear
that (V, F) is connected. Thus, there exists a self-avoiding cycle (z1(:= z1), 22+ ,Zk,)
of elements of V' such that (z;,z;41) € F wheni=1,---,ky and the sum in the indices
is modulo k¢ (cycle (z1,--- , xk,) is called self-avoiding if z; # x; forany 1 < # j < ko).
Set

V() = {,’El, Lo,y 7$k0}.

Suppose that we have constructed V,, and z1,--- ,24 € Vi, 2441 ¢ V,,. Since (V,E) is
connected, it is easy to see that there exist =, € V,, for some 1 < r < k,, = |V,| and
a sequence of distinct states wy, - ,wm,—1 € V \ V,, such that (w;,w;+1) € E when
t=0,---,m; — 1, where wy := z, and w,,, := 24+1. Similarly, there exist z; € V,, and
a sequence of distinct states wy, 41, ,Wm, € V \ V;, such that (w;, w;+1) € E when
it =mq, -, Mg, where wy,,+1 = ;.

If {wy, -y wmy } NV {Wim g1, Wyt =0, letm =my and y; = w; fori=1,--- ,m.
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If {wi, Wiy } N {Wmyt1, -+, Wy b # 0, let k1 be the minimum integer such that
Wi, € {Wm,+1,° " ,Wm,}. Then there exists m; + 1 < ko < mgy such that w,, = w,,.
Moreover, let m = k1 +mo—re and y1 = w1, , Yy, = Wey, Yri+1 = Wiot+1s " > Ym = Wy,
it is clear that y1,- - - , ¥, is a sequence of distinct states of V' \ V,.

Set k41 = ky, +m and

Vn+1 - {x17 t "Ijk'n)zkn-i-l(:: yl)a T 7xl€n,+1(:: ym)}

Then we have constructed a sequence of subsets {V,,},>0 such that |V,,|] < oo and
V., C Vh4+1. Moreover, following from the above constructions, it is easy to see that for
any z, € V, there exists V,, such that z, € V,,. This implies that U,V,, = V.

We next construct a sequence of matrices P" = (pgy)z,yev base on the previous
construction of {V,, },,>0. Let

Poraiy =1 1<i<ko—1,  pf o =1, py, =0, otherwise.

Suppose that we have constructed P" = (p, ). yev- Let

+1 +1 - +1 —
pg,,ailwﬁrl Apt1, pg JTigl 17 kn +1 S 1 S kn+1 - 17 p;'kn+1>wl - 17 (4 49)
1 1 . : :
Pty =0 —any)p o YEVa,  phtt=ph,, otherwise,

where z,,z; € V,, are defined the same as in the above construction of {V,,},>o and
an+1 1S a positive constant remaining to decide. Then the sequence of matrices P" is
constructed by induction. It is easy to see that P™ can be considered as a transition
probability matrix with state space V,,, which corresponds to an irreducible Markov chain.
We let v™ € P(V) be the invariant distribution for P". Now we decide {a,, }»>0 and C such
that v < Cp, for any n € IN and z € V by induction. Let C = 1 + (maxgev, (1/p2))/ko
and ag = 0. It is clear that

o 1

e =g < Cpgz, x €V, W0=0<Cuy, z¢Vp.
0

Suppose that we have decided (ay)o<k<n such that v < Cu, for any x € V. Note that
v"*1 is continuous with respect to Qp+1. In other words,

lim vt =" zeV.
ant140
Since V is countable, the strong convergence of v"*! to v™ in P(V) is equivalent to the
pointwise convergence of v to v for any z € V. This implies lim,,, ,, o [[v" T "] = 0.
Hence, there exists 0 < a,+1 < 1/2”+1 such that

1
vt <Cpyy w€Vop, =0 < o (4.50)
Since vt = 0 for any = ¢ V,,,1, it is clear that v *! < Cp, forany z € V.

Finally, we construct P. For any « € V, since V,, T V, there exists N such that x € V.

It follows from (4.49) that

1
E 1
|pn+ 7p’ry < 2a71+1 < 2"7 n Z N.
yev

This shows that P can be defined as Dry = liMy 00 pgy > 0. By Fatou’s lemma, we have

Z |pzy Day| < hm Z |pxy Doy | < hm Z = onoi n >N, (4.51)
yev X yev
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which implies ZyEV Dzy = 1 for any x € V. In other words, P is a transition probability
matrix. Note that if there exists n such that py, > 0, then

o0

1

~ BT k

Pay = lim pg, > [ IT a- ak)] Dy = (1 - 2) Pay > 0.
k=n-+1

Since P" corresponds to an irreducible Markov chain with state space V,, and V,, TV, it

is easy to see that P is irreducible.

On the other hand, it follows from (4.50) that we can set v = lim,,_, o, ™. Moreover, it
is clear that © € P(V) and ¥, < Cp, for any « € V. It follows from (4.51) that for any
yeVand N € N,

Z ’V;Lpgy - ﬁLﬁJiy| < Z vy — ﬁL|p:y + Z 28 ’p;ly _ﬁ1y| + Z Uy ’p:y — Day

zeV zeV z€EVN zeV\VN

1 .
2n—1+1_ Z Uy, m>N.
z€VN

< [l =2l +

Taking n — oo and then taking N — oo on both two sides of the above inequality, we
have
= i = i St = 3 bt 0V
zeV zeV

Obviously, we have E C E. Then we finish the proof of this lemma. O

Lemma 4.16. Suppose that Assumptions 2.3-2.6 are satisfied. Then D; # ).

Proof. We first construct a transition kernel (13’ = (Poy)zyevs U = (V) zev) satisfying
the following four requirements:

(a) P is an irreducible transition probability matrix with an unique invariant probability
measure ».

b) ¥, < ¢, and ﬁzm<< P, forany xz € V.

©) Yoey Vo f(O,oo) s1),(ds) < oco.

(D Xsev ValH (Do, Pe,) + H(Yzlths)] < oo.

Without loss of generality, we assume that V' = N is the set ofAnonnegative integers.
Let m, = sup{c > 0 : ¥,((0,¢)) = 0}, Ay = [my, my + 1], and ¥, (ds) = 1, (ds|A;) =
1a,(8)0:(ds) /1, (A,). Then A, is a bounded Borel subset of (0, c0) satisfying ¢, (A;) > 0
and

| sha@s) Sma vl HGw) = -logtu(d,), c€N. @52
(0,00)
Forany z € N, let C, = — Zye]N log pyy. By Assumption 2.6, it is clear that 0 < C, < oo.
Let 1 € P(IN) be defined by
1 277
Ly x €N, (4.53)

- M max{m, + 1, —log ¥, (A,),C,}’

where

92—y
M =
y%\l max{my + 1, —logy(4y), Cy}

is a normalization constant. By Lemma 4.15, there exist a constant C' > 0 and a Markov
chain X with transition probability matrix P and invariant distribution © such that £ C F
(i.e. Pg,. € pg,. for any z € IN) and 7, < Cp, for any 2 € IN. Note that

o R Do 1
H(po lpo) = Y paylog 2 < 3" log— < O, (4.54)
yEN Py yi(z,y)EE Py
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Combining (4.52), (4.53), and (4.54), it is clear that (]5, \i/) satisfies items (a)-(d) of the
above requirements. K
Finally, let Z = 3~ oy 7 [ o) 5% (ds) and

0 Dy Sy (ds) 0 Uy Dy
d - = —
0, ds) = 220D oy = P E
It is easy to check that (u°, Q) € D;. This completes the proof of this lemma. O

We are now in a position to finish the proof of the lower bound of the LDP.

Proposition 4.17. Suppose that Assumptions 2.3-2.6 are satisfied. Let L}F(E) be en-
dowed with the bounded weak* topology. Then under P.,, the law of (u, Q);) € A satisfies
an LDP lower bound with convex rate function I. Moreover, if Condition 3.2 is satisfied,
then I is a good rate function.

Proof. Let J be the functional defined in (4.36). By Lemmas 4.13 and 4.14, we only need
to prove I = sc™J. By Proposition 4.12, I is convex and lower semicontinuous on A. It is
then easy to see that sc™J > 1.

We next prove the converse inequality. In fact, we only need to prove that for
any (u, Q) € A with I(p, Q) < oo, there exists a sequence (fn,, @n)n>0 in Dy such that
(Hn; @n) = (1, Q) in A and o

T T, @n) < T(1, Q). (4.55)

Here, we only prove that there exists a sequence (i, @n)n>0 in Dy such that (p,, Q) —
(4, Q) in A and (4.55) holds. The rest of the proof is similar to [35, Lemma 2.5].
By Lemma 4.16, there exists (u°, Q") € D;. For any (u, Q) € D with I(i,Q) < oo, let

1 1 1 1
Mn(1>ﬂ+ﬂoa Q71<1>Q+Q07 TlZl
n n n n

Obviously, (pn, @n) — (1, Q) in A in the sense of the strong topology. Since I is convex
on A, we have

Hoo @) < (1= 1) 100Q) 4 21 (.0°).

Then it is easy to see that (u,,@,) € D; and (4.55) holds. This completes the proof of
the lower bound.

Finally, under Condition 3.2, it follows from Proposition 4.7 that (u, Q;) is exponen-
tially tight. This fact, together with the lower bound of the LDP implies that I is a good
rate function [15, Lemma 1.2.18]. O

Remark 4.18. In fact, we can further prove that for any (¢, Q) € D with I(p, Q) < oo,
there exists a sequence (f,,, Q)n>0 in A such that p,(z,-) = p(z, -) whenever @, = 0, and
tn(x,{o0}) = 0 whenever Q, > 0, (in, Q) — (1, Q) in A, and

Tim I(pn, Q) < (1, Q).

The proof is similar to that given in [35, Lemma 2.5].

5 Proof of Theorem 3.7

Next we will prove the joint LDP for the empirical measure and empirical flow when
L}r(E) is endowed with the strong topology. Note that the bounded weak* topology
is weaker than the strong topology [36, Theorem 2.7.2]. In other words, any open
(closed) subset of L}r(E) under the bounded weak* topology is also open (closed) under
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the strong topology. Since we have established the joint LDP when Lj_(E) is endowed
with the bounded weak* topology in Section 4, we only need to prove the exponential
tightness of the empirical flow when LL(E) is endowed with the strong topology [15,
Corollary 4.2.6]. Before proving the exponential tightness, we introduce some notation.
Recall the definition of exit-current and entrance-current in (2.3). For any ¢ > 0, we
define the associate empirical currents Q; : Q — [0,00]" and Q; : Q — [0,00]" as

Ne+1 Ne+1

1 1

Q?—(ZL’) - Z Qt(xvy) = E Z 1(Xk,1=x)7 Qt_(x) - Z Qt(ya‘r) - E Z 1(Xk=x)'
yev k=1 yeV k=1

(5.1)

It is clear that Q,Q, € L1 (V), P,-as. Forany J € L} (V) and f : V — R, we set
(L. f) = 2wev J(@) ().

The exponential tightness of the empirical currents is stated in the following propo-
sition. Here we also consider the case where the semi-Markov process starts from the
general initial distribution v (see Remark 3.8).

Proposition 5.1. Assume Conditions 3.2 and 3.4 to hold. Then there exists a sequence
{K¢} of compact sets in L1+(V) such that for any ¢ € N,

— 1
Jim - log Py (@) ¢ Ke) < =, (5.2)

where L}r(V) is endowed with the strong topology. In particular, the empirical exit-
current is exponentially tight.

Proof. We first construct the compact sets in L}r(V) under the strong topology. Let
W,, TV be an invading sequence of finite subsets of V, for any positive integer ¢, we let

1
Ke= {JG LL(V) ||| € Ag, (J1we ) < —, szﬂ}.
m m
where A, is defined as in Proposition 4.7. Similarly to the proof in [6, Theorem 5.2], it is
easy to prove that Iy C L}r(V) is compact under the strong topology.

Now we prove (5.2). It is easy to see that

PQ7 #K) < Po(I0F1 2 A0+ LB ((@w)> 2 ). 6

m>/

Note that [|Q:]| = 3, ,ev Qt(x,9) = X ey QF () = Q|| = (N; + 1)/t. Tt thus follows
from (4.18) that

— 1 — 1
Jim log P, (|Q/ || > A0) = Fm S log P, (|Qu]l > 4¢) < 2.
On the other hand, let the function 4, the sequence of functions u,,, and the constants

¢, Cy be as in Condition 3.4 and item (c*) in Remark 3.8. Taking A = V in Lemma 4.2,
we obtain the local martingale

“ Un (X N, O un (X, Up,
Mt"’v = 75 (;V(J)l) exp {t <,ut,h V>} = 715 (J)V(OT) exp {t<Q?‘,10g Pu >} (5.4)
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Note that u,,/Pu,, converges pointwise to @. By Fatou’s lemma, we have

e, (o {10 0x)}) < 3 260) 1 (oo o (0 10w 1))
zeV nreo "
=3 (@) lim E, (u“" Xo) ?”’V>

eV n—)oo n XNt+1
un(z) _ C,
< < —
<Y )T <
zeV

where the second inequality follows from item (b) in Condition 3.4 and the last inequality
follows from item (c*) in Remark 3.8.

Let {am}m>0 be a sequence of constants with a,, 1 oo to be chosen later and let
W, ={x € V: logi(z) < a,} be an invading sequence of V. In view of item (e) in
Condition 3.4, W,,, are finite sets. Let

C=1v (- zlg‘f/ logi(x)) < oo.

It is easy to see that logd > a,,1we — C. By the exponential Chebyshev inequality, we
obtain

p, (@ 1) > ) <Py ((@Fdoga) + ClQF] > 22)
( (Qf loga) > T) + P, (CHQtH > %)

<P,
<ot} o, (j0ul> 5.

By choosing a,, = 2m? + 2CmA,,, the proof is now easily concluded from (5.3). O

Corollary 5.2. Assume Conditions 3.2 and 3.4 to hold. Then the empirical entrance-
current ), with L}r(V) endowed with the strong topology is exponentially tight.

Proof. For any n > 0, it is easy to see that

— 1 _
Jim —log Py (|QF — Q7 [l > 1) = —ox.
The result of this corollary now immediately follows from [22, Lemma 3.13]. O
We are now in a position to prove Theorem 3.7.

Proof of Theorem 3.7. Let (Z,7) = {(Z)k>0, (Tk)x>1} be a Markov renewal process with
the initial distribution vZ, where Z;, = (Xk—1,Xk) and X_; can be any random variables
such that y# € P(E). Note that the empirical entrance-current for (Z, 7) is exactly the
empirical flow for (X, 1), i.e.

Nt+1 Nt+1

Z L(Xy y=a,Xp=y) = z U z=(@) = Q7 Z (2, y).

Next we will apply Corollary 5.2 to (Z,7). It is easy to verify that (Z, ) satisfies As-
sumptions 2.3-2.6. In order to apply Corollary 5.2, we need to prove that (Z, ) satisfies
Conditions 3.2 and 3.4. Here we only verify Condition 3.2 for (Z,7) and the proof of
Condition 3.4 is similar.

Let the functions 4, the sequence of functions u,, the set K, and the constants
¢,0,C,n,C, be as in Condition 3.2 and item (c*) in Remark 3.8. By choosing uZ(z,y) =
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un(y), we immediately obtain item (b). Note that Z has the transition probability
Ple) (20) = Oy(2)Pzw. Then for any (z,y) € E and n > 0, we have

PPuZ(z,y) = > 6y(2)pawul =Y pywtin(w) = Puy(y) < o0,
(z,w)EE weV

which implies item (a). For any n > 0, we have

Yo Ayul@y) = Y V@ yuay) =Y v(@ualy) < .

(z,y)€E (z,y)€E yev

By choosing C’f = C,, we obtain item (c). Note that

nh—>o<> W(zy) B ”1—>°° Puy,(y) )

By choosing @4 (z,y) = (y), we obtain item (d). It is easy to check that LZ4%(z,y) =
Lu(y). Then for each ¢ € R, we have

{(x,y) € B: L%4% (2,y) < 0} = {(z,y) € E: Lu(y) < (}.

Since (V, E) is locally finite, item (e) also holds. Note that z/)(Zz ,) = ¥y and % (x,y) = C(y).
By choosing 0Z = o, C% = C, n? =7, and K = (V x K) N E, we obtain 4Z(z,y) <
Wi, y)(egz(z’y)T) for any (z,y) € (K%)¢ and

L?a(z,y) = Li(y) = —oLn(y) — Clk(y) > —0?L?n?(z,y) — C¥1gz(z,y).

This completes the proof of item (f). O

6 Proof of Proposition 3.16

Here we consider the marginal LDP for the empirical flow @Q);. Before giving the proof
of Proposition 3.16, we need some notation and lemmas. Let ; and v be two positive
o-finite measures on a measurable space (X, F). For any sequence of non-negative
measurable functions (f;);>1 on X’ and any sequence of non-negative constants (b;);>o
satisfying 0 < ¢g := by + Eiil b;fi < oo, p-a.s., let the generalized relative entropy
between p and v be defined by

dp
10g) dp, ifp <,
H, () = /x < d

0, otherwise.

Similarly to the maximum entropy principle [12, Theorem 12.1.1], we have the following
lemma.

Lemma 6.1. Suppose that there exists a positive o-finite measure p* satisfying p* < v,
v L p*, and

d/.t* o'}
1 = > Aifi 1
glog dv AO + )\zfu (6 )

i=1

where the sequence of constant (\;);>o are chosen so that y* satisfies the following
constraints:

X) = ay, /fid,u:aia t>1, (6.2)
X
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where (a;);>0 is a sequence of constants satisfying 0 < »_.° a;b; < co. Then p* uniquely
minimizes H,(-|v) over all positive o-finite probability measures satisfying (6.2). More-
over, the minimum is given by

Hg(u*|u) = Zai)\i.
=0

Proof. Let u be a positive o-finite measure satisfying (6.2). Note that fx gdp = fx gdp* =
> aib; < oo. Then we have

d d dp*
/g log—'u dp /g log a du+/g log a du
X dl/ X d‘LL* X dl/
gdp | gdp” dp*
= gdu) H( ) +/ g <log )du (6.3)
(/X S 9dpe] [y gdu pe dv

/ g9 <log du) du,
X dl/

where the last inequality follows from the nonnegativity of the relative entropy. It then
follows from (6.1) that

d,LL*) / 0 o / 00 X
/Xg< T X( 0 ;:1 f) iz ;:O mE ;:1 fi | du

:/ g <log du >d,u*.
X dv

Hence we have proved that H,(u|v) > Hy(u*|v). Here the equality holds if and only if
dp/dp* = 1. This shows that except for a set of measure zero, p* is unique. O

v

Recall the definition of {(z) in (3.1). We also need the following lemma.
Lemma 6.2. For any z € V, let G, ()\) = log(v.(e*7)) and F,.(\) = 1.(1e’7) /1. (e*7),
where 1, (1e’7) = J0.00) se*$1,(ds). Suppose that G,(¢(x)) = oo for any z € V. Then
G, € C?(—c0,((x)) is a strictly increasing function, F, = dG,/d\ is an increasing
function, and

)\lir7n Fy(A) = my :=sup{X > 0:1,(0,\) =0}, (6.4)
)\li?(l )Fx()\) =M, :=inf {\A>0:¢,(A 00) =0}. (6.5)

Moreover; if 1, is not a Dirac measure, then F is strictly increasing.

Proof. Without loss of generality, we can drop the dependence on x in the proof. We
first prove that G € C'((—o0,(¢)) and dG/d\ = F. Note that f.(s) := (e — %) /e
converge pointwise to se** as € — 0, | f.(s)| < h(s) := e**(e" — 1) /n for every ¢ € (—n,n),
and (¢, |h]) < oo for n > 0 small enough. By dominated convergence theorem, we
immediately obtain the results. Moreover, since F' > 0, it is easy to see that G is strictly
increasing.

We next prove that F' € C!((—oo,() is increasing. The proof of differentiability is
similar to the above. Direct computations show that

dF (e )y(e) — (Y(1er))?
T =

W) =0

where the last inequality follows from Cauchy-Schwarz inequality. Moreover, the above
equality holds if and only if ¢ is a Dirac measure.
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Finally, we prove (6.4) and (6.5). We only prove (6.5) and the proof of (6.4) is similar.
Note that F' is an increasing function. Let L = limy_,¢ F'(\).
Case 1: ( < oo. Itis easy to see that M = oco. Forany 0 < A < (and N > 1, we have

AT — As d As d AN As d . )
b () /(O’N]e o S”/W,oo)e v <V s [ O 60

(N,00)
Note that limy_,¢ ¢(e*7) = ¢“(©) = co. Taking A\ — ¢ on both sides of (6.6), we obtain
lim eMip(ds) =
)\—>C (N,OO)
On the other hand, we have
W(redT) N f(N,oo) serh(ds) - N f(N’oo) e )(ds) .
PET) T AN [y o e u(ds) T AN+ [y evi(ds)

Taking A — ¢ on both sides of (6.7), we obtain L > N. Since N > 1 is arbitrary, it is clear
that L = oo = M.
Case 2: ( = co. Note that

f(07M1 se*h(ds) - f(07M] Mersap(ds)

(6.7)

F()) =

e f(o,M] ersy(ds) f(o,M] Asp(ds) M ©8
Taking A — oo on both sides of (6.8), we obtain L < M.
If M < oo, forany 0 < e < M/2 and A > 0, we have
1 f(OM 26]6 “i(ds) +f(M 2¢, M) e**(ds)
F(\) Jio.an 5620 (ds)
< f(O,M725] e (ds) f(JV172e,M] e**(ds)
B f(Mfe,JV[] se**yp(ds) f(JV[72e,M] seA*p(ds) (6.9)
B AN M —2¢) . f(M726’M] e Mh(ds)
= L= 90T TG = M1) [y 0.2 (M — 2655(d5)
e 1

(M — (M —e, M) T M—2¢

Taking A — oo on both sides of (6.9), we obtain L > M — 2e. Since 0 < € < M/2 is
arbitrary, it is clear that L > M.
If M =00, foranye >0, N > 1, and A > 0, we have

1 Jome e**(ds) +fNoo) ey (ds)
F(\) f(o sersih(ds)
Jom ’\W(ds) N Jivo0) e (ds)
T Jvteno) SEFV(AS) [y o) €0 (d) (6.10)
- eAN f(N,oo) e**1)(ds)
= VT 9PN +65) | [y Nerp(ds)
—Xe 1

T INFoU(N+ex)) N

Taking A — oo on both sides of (6.10), we obtain L > N. Since N > 1 is arbitrary, it is
clear that L = oo = M. O
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By Lemma 6.2, we immediately obtain the following corollary.
Corollary 6.3. For any Q € L! (E) satisfying Q* = Q~ and V; :={z € V : Q, > 0} # 0,

let Go(A) = > ey Q2G2(N) and Fo(A) = > oy Q2 F:(\). Suppose that Gq((q) = oc.
Then Gg € C?%(—00,(q) is a strictly increasing function, F = dGg/d\ is an increasing
function, and

lim Fo(A) =mg := =M, lim Fp(\) = Mg = My, (6.11)
Jim Fo(h) =mq ;/Q i Q(A) = Mq ;Q
where (g = sup{A > 0 : Gg(\) < c0}. Moreover, if mg < Mg, then Fy is strictly
increasing.

Proof. We only prove the second equality of (6.11). The proof of the first equality is
similar.

Case 1: (o = co. By the monotone convergence theorem, we immediately obtain the
desired result.

Case 2: (g < oo. Note that (¢ < ((z) for any z € V,. By Lemma 6.2, we have
F,(¢g) < Fy(¢(x)) = M,. It then follows from the monotone convergence theorem that

lim F = lim
i Jim. ;Qz v gf%

On the other hand, it is easy to see that

Go(Ce) < Follo)ta + Gql0).
Since Gg({g) = oo, we have F({g) = co. This completes the proof of this corollary. O
For any Q € L} (F) satisfying Q* = Q~ and Vy # 0, let X = V, x (0,00) be
endowed with the product topology and let F be the associated Borel o-field. Let

v(z,ds) = sQ95(ds) be a o-finite measure on (X, F). Here we take the sequence of
functions (f).cv, and the sequence of constants (bo, (b;)zcv, ) as

1
o9 = 00)5, (5) X, bo=0, b=1.

Then the associated function g is given by ¢(y, s) = b + Zzew by fz(y,s) = 1/s and the
associated generalized relative entropy is given by

9= 3 Jomy s (o800 e

Lemma 6.4. Let a > 0 be a constant and let QQ € LEF(E) be a flow satisfying QT = Q~
and Vi # 0. If Go({g) = oo, then we have

—Go(\), ifmg <a < Mg,
- ZQIlngz({mm})7 ifa:mQ,
zeV
inf Hy(pl|v) = Gé(a) _ x€
n — ZleOg'(/}I({Mx})a jfa:MQ’
zeV
00, otherwise,

where p in the infimum ranges over all positive o-finite measures on (X, F) satisfying
1
w(X) = Z w(zx, (0,00) fxdu S,u(a:,ds) =Q. z€Vy, (6.12)
zeVy )

A\* is any solution of the equation Fg(\) = a, and G’é(a) =supycr{ar — Gg(N\)}, ae Ris
the Fenchel-Legendre transform of Gg,.
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Proof. We will prove this lemma in three different cases.
Case 1: mg < a < Mg. Let \g=\* and \,=—G,(\*). Let p*(z,ds) = sQ e *tr24),(ds)
be a o-finite measure p* on (X, F). Then (6.1) holds and
1 p*(x,ds)
Zlog =~
$Qz 1z (ds)
Moreover, it is easy to check that u* satisfies (6.12). By Lemma 6.1, we have

1an o(plv) = aX* + Z AeQz = aX® — Gqo(\").

reVi

1

On the other hand, it follows from Corollary 6.3 and the intermediate value theorem
that there exists a solution \* € (—o0,(g) of the equation F(\) = a. Straightforward
computations show that

sup {aX — Go(A)} = aX" — Ggo(\").

AER

Case 2: a = mg or a = Mg. Here we only consider the case of a = mg. The proof
in the case of a = M is similar. Let i be a o-finite measure satisfying (6.12). Then we
have
a—mQ—ngC/ p(z,ds) < p(X) = a.
zeVy m,,oo

The above equality hold if and only if p(z,ds) = QM40 (ds) for any x € V.. Thus we
have

lan /.L| Z Q.L IOg'(/JI {mﬁ})

zeVy

On the other hand, direct computations show that

sup {aA — Go(A)} = lim {aX —Go(A)}

AER
>
= lim Q. log o )\s .
Ao o({ma}) + fin, ,00) €9 (ds)
By the dominated convergence theorem, it is easy to see that
lim e/\(sfmz)zbm(ds) =0
A——00 (mz’oo)

for any « € V... This implies that

sup {aA — Go(\)} = — Z Qz log s ({m2}).

AER eV

Case 3: a < mg or a > Mg. Here we only consider the case of a < mq. The proof in
the case of a > My is similar. Note that there is no o-finite measure p satisfying (6.12).
Then we have inf,, H,(u|v) = co. On the other hand, take a sequence of constants a, such
that0 < a, < m, forany x € V; and a = erw Q. a,. Straightforward computations
show that

sup {aX ~ Go(\)} = lim_{aX~ Go(N)}

AER
1
= lim > Q. log = 0o
7 A(s—az) )
AT e zeVy Mg ,00) ¢ w(ds)
where the last equality follows from the dominated convergence theorem. O
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The following lemma gives the properties of Gg,.
Lemma 6.5. Let Q € L! (E) be a flow satisfying Q* = Q™ and V; # (). If m¢g < Mg and

Gq(le) = oo, then Gy € C*(mq, Mg), \* = dG,/da is a strictly increasing function, and
lim \*(a) = —o0, lim A*(a) = (o. (6.13)

a—mgq a—Mg
where \*(a) is any solution of the equation Fg(\) = a.

Proof. It follows from Lemma 6.3 that Fy € C'(—o0,(p) is strictly increasing. Hence
A* = dGy/da is the inverse function of F. Moreover, \* € C'(mg, Mg) is strictly
increasing and (6.13) follows from (6.11). By Lemma 6.4, it is easy to see that G, €
02(mQ, MQ) and

Gy, i} d\* d\* e
9 (a) = N (a) + (@) = Lo (@) Fg(\(0) = M (a).

This completes the proof of this lemma. O

Finally, we also need the following lemma to ensure G ({g) = c©.
Lemma 6.6. Let Q € L1 (E) be a flow satisfying Q* = Q~ and V,; # (. If Condition 3.11
is satisfied, then we have (g = inf,cv, ((r) and Go((g) = cc.
Proof. Let 1, ¢, and ¢, be as in Condition 3.11. It is easy to see that

A
R t]
where G()\) = log¢)(e*™). By item (c) in Condition 3.11, it is easy to see that there exists
y € V4 such that ¢, = inf,cv, ¢, > 0. By Lemma 6.2, it is clear that G is increasing. Then
for any \g < inf,cv, ((z) = ¢,¢, we have

Go(ho) = Y Q.G (A°> <> Q.G (A°> < oo
zEV,L o TEV, dy

By the definition of (g, it is easy to see that (g > \¢. Since A\ < inf,cy, ((z) is arbitrary,
we have (g > inf,cy, ((x). On the other hand, we have

lim  Go(\)>Q, lim G,(\)=Q, lim G<>\> = 0.

A—infrev, ((2) A—qyC A—=qy¢ dy
This implies the proof of this lemma. O
We are now in a position to prove Proposition 3.16.

Proof of Proposition 3.16. The proof of the marginal LDP for the empirical measure 7
is similar to that given in [35, Proposition 1.2]. Here we only focus on the marginal LDP
for the empirical flow @,. Note that (1, Q) — Q is a continuous map from A to L} (E).
By the contraction principle [15, Theorem 4.2.1], the law of Q; € L}r(E) satisfies an LDP
with good rate function

1(Q) = nf{I(11,Q) : (1.Q) € D}

We next prove I, = I, under Condition 3.11. By Remark 4.18, we obtain

L(Q) = nf{I(1,Q) : (1, Q) € E(Q)},
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where £(Q) = {(¢,Q) € D : p(z,{oc}) = 0for any z € V;}. Recall the definition of I
in (3.7). For any Q € L% (E) satisfying Q™ = Q~, we have

B(Q) = 30 QuH (Qulpe.) + ik, 37 [QuH (fslthe) + ()l {o0})]

oy #,Q)Gf(Q)zGV

= > QuH (Qulpe )+t | D0 Qe (ki) + D (i, (o))
reVy

= mQ)EE(Q) ol

If Vi = 0, then we have

. _ _ .
(1 @)EE(@) g% Quolf (el v x§+ C@u@Aeod) | =ty (@ {ood)
= inf ¢(z),

which implies (3.10). If V. # (), then we have

£Q = U €@a),

0<a<l

where £(Q.a) = {(1,Q) € £(Q) : ey, n(x.(0,00)) = aand 3y, p(z, {oc}) = 1 - a}.
It then follows from Lemmas 6.4 and 6.6 that

i S Qe () + 3 @t o))

zeVy gV

D QuH (fiz|ta) + Y ((2)ulw, {o0})

inf inf
0<a<l (p,Q)e€(Q,a) veVy oGV

_ ) 1 p(z,ds) ) ,
= inf f - (1 ,ds) | +(1— f ¢
in in xg‘; /(0700) S (log w(z,ds) (1 —a) inf ((x)

0<a<1 | (1,Q)EE(Qa) 5Qu e (ds) 2E Vs
1, |60+ 1=t )

We next calculate the last term of the above equation in five different cases.
Case 1: mq > 1. Since Gf)(a) = oo for any 0 < a < 1, we have

nt [Gof) + (1-0) i <) =

On the other hand, similarly to the proof of Case 3 in Lemma 6.4, we have

sup {)\ — Z Q. log ., (e”)} = )\EIP {)\ — Z Q. log v, (e”)} = 0.

A<infzev () eV 00 =

Case 2: mg < 1 < Mg and A\*(1) < inf ¢y, ((z). Straightforward computations show
that

inf {G*Q(a) + (1 —a) inf C(x)] = Go(1).

0<a<l ¢V

On the other hand, it follows from Lemma 6.5 that

A*(1) < GHS\I}Q A*(a) = zlenvf+ ((x).
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This implies that A*(1) < inf,cy ((z). Direct computations show that

sup A— Z Q2 log v, (6/\7) = A*(l) - Z Qz log v, (eA*(l)T) = G*Q(l)
A<infzev ¢((z) eV eV
Case 3: mg <1 < Mg and A\*(1) > inf,¢y, ((x). It follows from Lemma 6.5 that there
exists 1 € (mgq, 1) such that \*(n) = inf,¢y, ((x). Straightforward computations show
that

it Gl + (1= a) int )] = Gon) + (L) i ()

=\ () = > Qulog ¢y (e”"”) + (L =m)A*(n)

zeV

=N () = Y Qulog, (007

zeV

= sup {)\ — Z Q. log 1, (e”)} .

A<infzev ((z) zeV
(6.14)

Note that inf ¢y, ((z) < A*(1) < limg a7, A*(a) = infrev, ((x). Then the last equability
in (6.14) follows from the fact that inf,cy ((x) = inf gy, ((z) = A*(n).

Case 4: Mg < 1 and inf,¢y, ((z) = co. Since Mg < oo, it is easy to see that
inf,cv, ((x) = co. Then we have inf,cy ((z) = oo and

inf [Ga(a) +(1—a) inf C(m)} =G*(1) = sup {)\ - Z Qz log v, (e)‘T)} .

0<a<1 zEVy A<infzev () zEV

Case 5: Mg < 1 and inf ¢y, ((#) < co. Note that G§,(a) = oo for any a > Mg. Then
we have

inf [Gg(a)+(1—a) inf C(x)} = inf {Gg(a)ﬂl—a) inf C(x)].

0<a<l ¢V 0<a<Mq gV

By Lemma 6.5, we have \*(Mg) = co. Since inf ey, ((2) = oo, there exists n € (mq, Mq)
such that A\*(n) = inf,¢y, ((x). Similarly to the proof in Case 3, we have

inf {Ga(a) +(1—a) wigén‘ir ((:c)] =GH(m) + (1 —n) inf ((z)

0<a<Mq @ Vy

= sup {A—Zleogwx<e”)}.

A<infzev ((2) zeV

This completes the proof of this proposition. O

7 Another compactness condition

In [6], the authors imposed an alternative compactness condition, which is different
from Condition 3.4 proposed in the present paper, and proved the joint LDP for the
empirical measure and empirical flow of continuous-time Markov chains when L (E)
is endowed with the strong topology. In fact, we can also prove the joint LDP for semi-
Markov processes under a similar compactness condition. To see this, we introduce
some notation. For any set E C E, we define an E-dependent function R: V — R by

Ry)= > py yeV. (7.1)

z:(y,2)€E

EJP 29 (2024), paper 46. https://www.imstat.org/ejp
Page 44/49


https://doi.org/10.1214/24-EJP1103
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Large deviations of Markov renewal processes

Condition 7.1. Suppose there exists a set ECE satisfying the following three require-
ments:

(a) For anyy € V, there exists z € V such that (y, z) € E;
(b) The function R : V — (0,00) defined in (7.1) vanishes at infinity;
(c) For any x € V, there exist constants ag, A > 0 such that for any a < a¢g one can find
aset W = W(x,a) C F satisfying the following properties:
(i) The complement E \ W is finite;

(i) If (y,z) € W, then R(y) < a; R
(iii) For each path exiting from x, the number of edges in ENW is at least \-times

the total number of edges in W. In other words, for any path zg,x1,...,Tk
with o = z and (z;,x,11) € E, we have

ﬁ{i:(azi,l,xi) eEﬂW,lgigk} > Aﬁ{i:(mi,l,xi) EW,lgigk}.

Obviously, we have A < 1.

Note that both Conditions 3.4 and 7.1 only depend on the embedded chain X of the
semi-Markov process. The following proposition shows that Condition 3.4 is weaker than
Condition 7.1. Due to this reason, we impose the former rather than the latter in Section
3.1.

Proposition 7.2. Suppose that Assumption 2.3 and Condition 7.1 are satisfied. Then
Condition 3.4 holds.

Proof. Let the constants ag, A > 0 be as in item (c) of Condition 7.1. For any xy € V and
m € IN satisfying 1/m < ag, we will next construct the sequence of functions u,, n > m
such that Condition 3.4 holds. We first construct auxiliary functions F,, : E — (0, c0) by
induction. Let W,, C E be the sequence of sets defined as

1 1 )
Wm—W<xo,m>, Wn—W<xo,n)ﬂ<Wn_1UE), n>m+l.

It is easy to see that W,, also satisfies item (c) in Condition 7.1 for each n > m. Set

mtA, if (y,2) € ENW,,,
Fo(y,z) = ¢m™, if (y,2) € ECNW,,,

1, if (y,2) e E\ W,
and forn > m + 1, set
nt=2, if (y, 2) ceEnw,,
Fu(y,2) = {n™*, if (y,2) € ECNW,,

Fn—l(yaz)a lf (y,Z) € E\Wn

Obviously, F,,(x,y) < n'=> for any (z,y) € E. For any = € V, let G, be the collection of
all paths in (V] E) with initial state z; and terminal state z, i.e.

G, ={(xo, 21, ,21) : k€ Nyzy =z, 2; € V, and (x;,z;41) € E}.

It then follows from Assumption 2.3 that (V| F) is connected. This implies that G, # (
for any x € V. For each n > m, let u,, : V — (0, 00) be the function defined by
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Now we verify Condition 3.4 for the sequence of functions u,,.
(a) Obviously, if (y, z) € E, then we have u,(2) < u,(y)Fn(y, 2) < u,(y)n'~>. For any
xz € V and n > m, we obtain

Pun(@) = > Poyun@) < Y Payun(@)n'™ = un(@)n' ™t < oo
y:(z,y)E€E y:(z,y)EE

(b) Recall the definition of auxiliary functions F;, given above. For any path x =
(xo,x1, -+ ,x) € Gy, it follows from item (c)-(iii) in Condition 7.1 that

k

HF (zi1,2;) = mlA=N#{i(@i1,2) EENWin 1<i <k} =Mt {ix(i—1,2:) EE Wi 1<i<k}]
m =1y —

=1

(7.2)
_ m[#{i:(zi_l,zi)eEﬁWm,lgigk}fk#{i:(m,;_l,mi)EWm,lgigk}] > 1.
Similarly, for n > m + 1, we have
ﬁ Fn(Ii—la zi) _ H nl=2 H n=>
: anl(xiflyxi) Fn71($i717$i) anl(xiflaxi)

i:(wi,l,xi)eEA'ﬂWn i:(w,i,l,a:i)EEA'CﬁWn
> (nﬁ 1)[(17)\)#{1':(:“,1@i)eEﬂW,,L,lgigk}f)\#{i:(zi,l,wi)eECﬂW,L,lgigk}] > 1.
(7.3)

Indeed, ECNW,, = E<N W(zg,1/n) N W,,_1, which implies the first inequality in (7.3).
For any = € V, optimizing over GG, on both sides of (7.2), we have w,,(z) > 1. Similarly,
it follows from (7.3) that u,(x) > u,—1(z) for n > m + 1. This implies that w,, is an
increasing sequence of functions and w,(z) > 1 for any x € V and n > m.

(c) For any y € V, it follows from item (a) in Condition 7.1 that R(y) > 0. For
any r € V, since G, # 0, there exists x = (zg,z1 -+ ,7;) € G,. Hence, we can let
N =mV (1 4+ maxo<;<x|1/R(x;)]). By item (c)-(ii) in Condition 7.1, it is easy to see that
(xi—1,2;) ¢ Wy for any 0 < i < k. Then for any n > N, we have

k k
up(z) < HFn(fEiflvxi) = HFN(wi—laiﬂi) < NU=Mk,
i=1 i=1

Obviously, N and k only depend on =.
(d) For any « € V, let x and N be defined as in (c). Since R(x) > 1/N, it is easy to
see that (z,y) ¢ Wy for any (x,y) € E. Then for any n > N, we have

Pun(x) < > peytn(2)Fu(z,y) = Y Paytn(@)Fx(@,y) < N'up(z). (7.4)
y:(z,y)EE y:(z,y)EE

Note that u,, is an increasing sequence of functions with an upper bound. Then we define
u*(x) = limy,— 00 up (). It follows from (7.4) and the monotone convergence theorem that

Pu*(z) = lim Pu,(z) < N7 u*(z).

n—oo

Thus u,,/Pu, converges pointwise to the function & = v*/Pu* : V — (0, 0).
(e) Let V,, and V! be two sequences of subsets of V' defined by

Vi={x €V :(x,y) € E implies (z,y) € W,, foranyy € V},

Vé{xGV:R(x)<1}, n>m.

n
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Obviously, we have V,, C V. For any z € V; C V] = UZ (V] \ V), there exists i > j
such that x € V/\ V/,,. If (z,y) € E, it is easy to see that (z,y) ¢ W, for n > i 4 1. This
implies that F,(z,y) = F;(z,y) for n > i. Then we have

u(y) = m un(y) < Mm u,(2)F (2, y) = u*(2) Fi(2,y).

n—o0 n—00

Note that for any (z,y) € E, we have (z,y) € W;. Then we have

w < Z pzsz’(m> y) = Z pmyFi(xa y) + Z pwyFi(w7 y)

yi(z,y)EE yi(z,y)EE yi(z.y)€Be
SRy <A A <257

This means that log 4 (x) > log(j*/2) for any x € V;. By item (c)-(i) in Condition 7.1, it is
easy to see that
V\V,; ={z € V:3ysuchthat (z,y) € E\ W;}

is a finite set. For any ¢ > 0, select j such that log(j7/2) > ¢. Then {z € V : logi(z) <
£} C V'\'V; is a finite set. O
Corollary 7.3. Suppose that Assumptions 2.3-2.6 and Conditions 3.2 and 7.1 are satis-
fied. Then the results of Theorem 3.7 remain valid.

Proof. The results follow directly from Theorem 3.7 and Proposition 7.2. O
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