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Abstract

We provide a many-to-few formula in the general setting of non-local branching
Markov processes. This formula allows one to compute expectations of k-fold sums
over functions of the population at k different times. The result generalises [13] to
the non-local setting, as introduced in [11] and [8]. As an application, we consider the
case when the branching process is critical, and conditioned to survive for a large
time. In this setting, we prove a general formula for the limiting law of the death
time of the most recent common ancestor of two particles selected uniformly from the
population at two different times, as t → ∞. Moreover, we describe the limiting law
of the population sizes at two different times, in the same asymptotic regime.
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1 Introduction

1.1 Main results

Our main result, the so called many-to-few formula, is a way to rewrite the expectation
of a general k-fold sum, depending on the entire configuration of a branching Markov
process at k different times, as an expectation with respect to the behaviour of k
distinguished lines of descent under a tilted measure. We generalise the original and
well cited main result of [13], by allowing for non-local branching, and not requiring the
k individuals to be sampled at the same time.
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Many-to-few

The many-to-few formula generalises the role of the classical spine decomposition
for spatial branching processes, which converts expectation identities for additive
functionals of spatial branching processes to Feynman-Kac formulae for a single Markov
particle trajectory. The latter has proved to be an important tool in analysing the growth
and spread of a rich variety of branching Markov processes and related models; see for
example the monographs [1, 6, 17, 14, 2] among a wide base of research literature that
is too extensive to exhaustively list here. The many-to-few formula has already played an
important and similar role to the classical spine decomposition as a tool to interrogate
various questions pertaining to particle correlation that arise in e.g. genealogical
coalescent structure, [12], martingale convergence, [10], maximal displacement of
extreme particles, [16], the structure of level sets for branching Brownian motion, [4]
and the analysis of certain models from the theory of stochastic genetics, [7]. We further
remark that the many-to-few formula is related to recent work pertaining to asymptotic
moment convergence in [8].

We refrain from attempting to give a precise statement of the many-to-few formula
here, deferring instead to Lemma 3.1 below, as we will need to introduce several
objects in order for the formula to be understood in a meaningful way. We note that,
simultaneously to the results we present here a general branching Markov process
setting, similar ideas have been developed in [7].

Our main motivating application is to understand the limiting genealogy of a so-called
critical branching Markov process, when conditioned to survive for an arbitrarily long
time. Our second main result, Proposition 4.3, is a general statement in this direction.
More precisely, for a critical non-local branching Markov process conditioned to survive
until a large time t, we provide a precise asymptotic for the death time of the most
recent common ancestor of two individuals sampled uniformly from the population at two
different times. In Proposition 4.6, we also describe the limiting law of the population
sizes at two different times, in the same asymptotic regime.

1.2 Set-up and assumptions

Let E be a Lusin space. Throughout, will write B(E) for the Banach space of bounded
measurable functions on E with norm ‖·‖, B+(E) for non-negative bounded measurable
functions on E and B+

1 (E) for the subset of functions in B+(E) which are uniformly
bounded by unity.

We consider a spatial branching process in which, given their point of creation,
particles evolve independently according to a Markov process, (ξ,P), which can be
characterised via the semigroup Pt[f ](x) = Ex[f(ξt)], for x ∈ E, t ≥ 0 and f ∈ B+

1 (E).
In an event which we refer to as ‘branching’, particles positioned at x die at rate β(x)

where β ∈ B+(E) and instantaneously, new particles are created in E according to a
point process. The configurations of these offspring are described by random counting
measures of the form

Z(A) =

N∑
i=1

δxi(A), (1.1)

for Borel A in E. The law of the aforementioned point process may depend on x, the
point of death of the parent, and we denote it by Px, x ∈ E, with associated expectation
operator given by Ex, x ∈ E. This information is captured in the so-called branching
mechanism

G[f ](x) := β(x)Ex

[
N∏
i=1

f(xi)− f(x)

]
, x ∈ E, f ∈ B+

1 (E). (1.2)
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Many-to-few

Without loss of generality we can assume that Px(N = 1) = 0 for all x ∈ E by viewing a
branching event with one offspring as an extra jump in the motion. On the other hand,
we do allow for the possibility that Px(N = 0) > 0 for some or all x ∈ E.

Moreover, we do not need P to have the Feller property, and it is not necessary that P
is conservative. That said, if so desired, we can append a cemetery state {†} to E, which
is to be treated as an absorbing state, and regard P as conservative on the extended
space E ∪ {†}, which can also be treated as a Lusin space. Equally, we can extend G to
E ∪ {†} by defining it to be zero on {†}, that is no branching activity on the cemetery
state.

Henceforth we refer to this spatial branching process as a (P, G)-branching Markov
process. In order to fully describe our branching Markov process, we introduce the set
of Ulam-Harris labels,

Ω := {∅} ∪
⋃
n≥1

Nn.

For v, w ∈ Ω, we write v � w to mean that v is an ancestor of w, which means there
exists u ∈ Ω such that vu = w. Moreover, we write v ≺ w to mean that v � w in the strict
sense, that is, the possibility that v = w is excluded. We say that v, w ∈ Ω are siblings if
there exists u ∈ Ω and i 6= j such that v = ui and w = uj.

With this notation in hand, if {x1(t), . . . , xNt(t)} is an ordering of the particles at time
t (where Nt denotes the number of particles alive at time t), then {v1(t), . . . , vNt(t)} are
their associated Ulam-Harris labels.

The branching Markov process can be described via the co-ordinate process X =

(Xt, t ≥ 0) in the space of counting measures on E × Ω with non-negative integer total
mass, denoted by M(E × Ω), where

Xt(·) =

Nt∑
i=1

δ(xi(t),vi(t))(·), t ≥ 0.

In particular, X is Markovian in M(E×Ω). Its probabilities will be denoted P := (Pδx , x ∈
E) where for x ∈ E, Pδx denotes the law of the process starting from δ(x,∅) ∈M(E × Ω).

Using the notation

〈f, µ〉 :=

∫
E

f(x)µ(dx), f ∈ B(E), µ ∈M(E),

where M(E) is the set of finite measures on E and under the additional assumption
that supx∈E Ex(N) < ∞, where we recall that N is the (random) number of offspring
produced at a branching event, we define the linear semigroup

Tt[f ](x) := Eδx [〈f,Xt〉] = Eδx

[
Nt∑
i=1

f(xi(t))

]
, f ∈ B+(E).

Now let us introduce an assumption, that we will use throughout the article unless
stated otherwise.

Assumption 1.1. The Markov process (ξ,P) admits a càdlàg modification.

The above assumption is a regularity assumption on the Markov process (ξ,P), which
ensures that we can use the theory of martingale changes of measure.
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1.3 Outline

The many-to-few formula, Lemma 3.1, will ultimately allow us to express expectations
of general k-fold sums depending on the entire branching process under P, in terms
of an expectation with respect to k so-called spine particles under a different measure
Qk. In Section 2, we define this measure Qk, introduce the notion of spines, and give
an explicit expression for the Radon-Nikodym derivative of Qk, with respect to the
original law of our branching process plus some uniformly chosen marked lines of
descent (we call this measure Pk). We then state and prove our main result, the many-
to-few formula, in Section 3. We also explain some special cases in which the formula
simplifies nicely. Section 4 is devoted to our main application, which is to derive some
two-point asymptotics for the geneologies of critical branching processes, when they are
conditioned to survive for a large time t. More precisely, we provide an asymptotic (as
t→∞) for the death time of the most recent common ancestor of two particles sampled
uniformly from the population at two different times.

2 Spines, martingales and changes of measure

In this section, we introduce two measures under which our class of branching
Markov process additionally identifies k distinguished genealogical lines of descent,
or spines. The first of these two measures is a simple adaptation of the original law.
The second measure is identified via a change of measure with respect to a certain
multiplicative martingale. In order to define this measure, we will need the additional
assumption that

sup
x
Ex(Nk) <∞, (2.1)

and we will work with an arbitrary positive and bounded function

h ∈ B+(E), (2.2)

which, from now on, we assume to be fixed unless otherwise stated. Throughout the rest
of this section, unless otherwise stated, we assume that (2.1) and (2.2) hold.

2.1 Definition of the measures Pk and Qk

2.1.1 Definition of Pk

We first introduce a measure Pk on the set of processes taking values in M(E ×
Ω × P({1, . . . , k})), the space of counting measures on E × Ω × P({1, . . . , k}), where
P({1, . . . , k}) is the set of subsets of {1, . . . , k}. We can associate with X a branching
process X̃ on the space M(E × Ω× P({1, . . . , k})) via

X̃t =

Nt∑
i=1

δ(xi(t),vi(t),bi(t)),

where bi(t) ∈ P({1, . . . , k}) denotes the set of marks carried by the i-th particle alive
at time t. Whenever bi(t) 6= ∅, we refer to the individual i as a spine. In that case, we
say that the spine carries |bi(t)| marks. Given X̃, define X to be its projection onto
M(E × Ω). With this notation in hand, we let (Ft, t ≥ 0) denote the natural filtration
generated by X and (Fkt , t ≥ 0) denote the natural filtration generated by X̃.assumption

Then, we have the following description of the measure Pk.

Definition 2.1. The construction of X̃ under Pk goes as follows.

1. We start with a single particle at x ∈ E which carries k ≥ 1 marks.
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2. All particles move according to the semigroup P, independently of each other given
their birth times and configurations.

3. Let ξit denote the position of the particle that carries the mark 1 ≤ i ≤ k at time
t ≥ 0. Note that it is possible to have ξit = ξjt for i 6= j.

4. A particle at y ∈ E carrying j marks b = {b1, . . . , bj}, dies at rate β(y) and simul-
taneously produces a random number of new particles according to (Z,Py). The
j marks each choose a particle to follow independently and uniformly from the
N = 〈1,Z〉 available offspring.

5. In the event that a particle carrying j > 0 marks dies and is replaced by 0 offspring,
it is sent to the cemetery state, along with its marks.

Note that the above definition of Pk is such that X has the same law under both Pk

and P.

2.1.2 The measure Qk

We will now introduce a second measure, Qk, under which particles not carrying any
marks evolve in the same manner as particles under P, while spines (that is, particles
carrying marks) evolve differently. In the next section we will show that Qk can be
defined via a change of measure of Pk. In this section we will give a pathwise description
of the process under Qk, but in order to do this, we first need to introduce some more
notation.

Let Ω[0,t] denote the set of paths ξ : [0, t]→ E satisfying Assumption 1.1 and suppose
that we are given a functional ζ(·, t) : Ω[0,t] → R.

Assumption 2.2. We assume that (ζ(ξ, t))t≥0 is a non-negative unit-mean martingale
with respect to the natural filtration of the Markov process (ξt, t ≥ 0) with semigroup
(Pt, t ≥ 0). We will set ζ(ξ, t) = 0 whenever ξt = †.

Then, for k, n ∈ N define

〈h,Z〉k,n = 1(n≤N)

∑
[k1,...,kN ]nk

(
k

k1, . . . , kN

) ∏
i:ki>0

h(xi), (2.3)

where (xi, i = 1, . . . , N) are as in (1.1) and [k1, . . . , kN ]nk is the set of non-negative integer
N -tuples (k1, . . . , kN ) such that k1 + · · · + kN = k and exactly n of the kis are positive.
If Z corresponds to the offspring of a particle carrying k marks, one can think of a
single term in the sum 〈h,Z〉k,n as a weight associated to the event that the k marks are
distributed among the offspring, by giving exactly ki marks to the ith offspring particle,
i = 1, . . . , N (see below for a more precise interpretation). With this notation in hand,
now define

〈h,Z〉k(x) :=
∑

(1≤n≤k)

h(x)−n〈h,Z〉k,n (2.4)

and set mk(x) = Ex(〈h,Z〉k(x)). Note that for ease of notation, we will often write
mk(x) = Ex(〈h,Z〉k)

Remark 2.3. Note that (2.3) could alternatively be written as

〈h,Z〉k,n = S(n, k)1(n≤N)

∑
ANn

n∏
i=1

h(ai)

 ,

where ANn := {(a1, . . . , an) : 1 ≤ a1 < · · · < an ≤ N} and the S(n, k) denote the Stirling
numbers of the second kind. Note also that in the case of local branching, 〈h,Z〉k ≡ Nk

for any x ∈ E.
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Definition 2.4. The construction of X̃ under Qk goes as follows.

1. Again, we begin with one particle at x ∈ E carrying all the marks {1, . . . , k}. In
what follows, particles carrying marks are referred to as spines.

2. Any spine (that is, any particle carrying any number of marks) moves according to
the semigroup

Pt[g](x) :=
1

ζ(ξ, 0)
Ex [ζ(ξ, t)g(ξt)] , x ∈ E, (2.5)

where (ξs, s ≥ 0) denotes the motion.

3. Suppose a spine carries marks b = {b1, . . . , bj}. Then for each 1 ≤ n ≤ j, an
independent exponential clock rings at rate β(x)mj,n(x),

mj,n(x) := h(x)−nEx(〈h,Z〉j,n), x ∈ E.

When the first of these clocks rings, a branching event occurs, and if it is the nth
clock, the j marks carried by the parent will be given to exactly n distinct offspring
particles.

More precisely, if the first clock to ring is the nth one, the positions of the offspring
are described by Z with law P(j,n)

x defined by

dP(j,n)
x

dPx
:=

〈h,Z〉j,n
Ex(〈h,Z〉j,n)

. (2.6)

Then given Z, for each (k1, . . . , kN ) ∈ [k1, . . . , kN ]nj , the probability that the ith
offspring particle receives exactly ki marks for each 1 ≤ i ≤ N , is given by(

k
k1,...,kN

)∏
i:ki>0 h(xi)

〈h,Z〉j,n
.

On this event, the way that the marks b1, . . . , bj are distributed among the offspring
is such that any valid configuration (that is, satisfying the constraint that exactly ki
marks are given to offspring particle i for each 1 ≤ i ≤ N ) has the same probability:

1(
k

k1,...,kN

) .
4. Particles that do not carry marks issue independent copies of (X,P). Marked

particles then continue from Step 2.

Remark 2.5. There are other variants of the measure Qk that we could have described,
that would also be related to Pk by a martingale change of measure, and would also lead
to a many-to-few type formula. For example, an alternative description of the third step
above, is in terms of the total branching rate. Namely, suppose a spine carries marks
b = {b1, . . . , bj}. Then it branches at rate β(x)mj(x), and on such a branching event, the
offspring positions are described by

dP̃nx
dPx

:=
〈h,Z〉j
mj(x)

.

Moreover, given Z (and the position x of the spine before branching), any particular
allocation of the marks b1, . . . , bj among the N offspring has probability equal to

〈h,Z〉−1
j

∏
i:|Si|>0(h(xi)/h(x)),
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where S1, . . . , SN are disjoint sets such that their union is equal to {b1, . . . , bj}. Our
specific choice of Qk is motivated by our main application: describing the genealogical
structure of the branching process when it is conditioned on survival. In particular, when
we use our many-to-few formula for this purpose, we get an extremely simple structure -
see (3.6). Note that in the case of local branching, this measure Qk is identical to that
which appears in [13]. When k = 1, and we make a particular choice for ζ, this also
agrees with the “spine decomposition” given in [11].

2.2 The martingale change of measure

We will now explain how the measures Pk and Qk are connected via a change of
measure. Let us first introduce some further notation.

Given v ∈ Ω, note that Xt(E × {v}) = 0 except on some unique (possibly empty)
interval [σv, τv), on which Xt(E × {v}) = 1. We will often use the notation τ−v for the left
limit of τv. If t ∈ [σv, τv), there exists a unique Xv(t) ∈ E such that Xt(Xv(t)× {v}) = 1

and a unique bv ∈ P({1, . . . , k}) such that X̃t(E × {v} × bv) = 1 for all t ∈ [σv, τv).
Heuristically, σv and τv are the birth and death times of particle v, respectively, Xv(t)

represents its position at time t during its lifetime, and bv represents the set of marks it
carries. We further set Dv = |bv| to be the number of marks carried by the particle with
label v. For each v ∈ Ω, let Nv denote the number of offspring produced by Xv(τv).

Set Nt := {v ∈ Ω : t ∈ [σv, τv)} so that Nt = |Nt|. For each t ≥ 0 and j = 1, . . . , k, let
ψjt and ξjt denote the unique elements of Ω and E, respectively, such that there exists
b ∈ P({1, . . . , k}) with j ∈ b and X̃t(ξ

j
t ×{ψ

j
t }×b) = 1. Finally, let us define the skeleton

at time t to be Sk(t) := {ψ1
s , . . . , ψ

k
s : s ≤ t}, so that Sk(t) is a subset of labels in the tree.

For v ∈ Sk(t), let Mv denote the number of distinct offspring of v that are given a mark
(that is, the number of distinct spine offspring).

Definition 2.6. Define the Fkt -adapted process (W k
t , t ≥ 0) by

W k
t :=

∏
v∈Sk(t)

ζ(Xv, τ
−
v ∧ t)

ζ(Xv, σv)

∏
v∈Sk(t)

e−
∫ τv∧t
σv

β(Xv(s))(mDv (Xv(s))−1)ds

×
∏

v∈Sk(t)\{∅}

h(Xv(σv))
∏

v∈Sk(t)\Nt

NDv
v

h(Xv(τ
−
v ))Mv

. (2.7)

Remark 2.7. Henceforth, for s ≤ t and x, y ∈ E, we set ζ(x, t)/ζ(y, s) = 1 whenever
ζ(x, t) = ζ(y, s) = 0.

Remark 2.8. We emphasise that when a branching event occurs and the spines all
choose the same particle to follow, this event is still recorded in the skeleton, Sk(t), since
a spine’s label changes at a birth event.

Remark 2.9. Note that we may equivalently write

W k
t =

∏
v∈Sk(t)

ζ(Xv, τ
−
v ∧ t)

ζ(Xv, σv)

×
∏

v∈Sk(t)\Nt

mDv (Xv(τ
−
v ))e−

∫ τv
σv

β(Xv(s))(mDv (Xv(s))−1)ds

×
∏
v∈Nt

e−
∫ t
σv
β(Xv(s))(mDv (Xv(s))−1)ds

×
∏

v∈Sk(t)\Nt

〈h,Zv〉Dv (Xv(τ
−
v ))

mDv (Xv(τ
−
v ))
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Many-to-few

×
∏

v∈Sk(t)\Nt

NDv
v

〈h,Zv〉Dv (Xv(τ
−
v ))

∏
v∈Sk(t)\{∅} h(Xv(σv))∏

v∈Sk(t)\Nt h(Xv(τ
−
v ))Mv

.

Using Remark 2.5, one can see that each of the terms above describes a change of
measure with respect to Pk for, in order: the motion; branch rate; offspring distribution;
and selection of the spine particles immediately after a branching event. These changes
of measure account for the differences between the pathwise constructions of the
measures Pk and Qk. Indeed, we have the following result.

Proposition 2.10. For x ∈ E, (W k
t , t ≥ 0) is a martingale. Define

dQ̃kδx
dPkδx

∣∣∣∣∣
Fkt

= W k
t , t ≥ 0, x ∈ E. (2.8)

Then for all x ∈ E, Qkδx = Q̃kδx .

Proof. The fact that (W k
t , t ≥ 0) is a martingale follows from rewriting it as in Remark 2.9.

This decomposition shows that (W k
t , t ≥ 0) can be written as a product of sequential

changes of measure along the paths of the spines.
Turning to the change of measure, in the spirit of [3], and the proofs of Proposition

11 and Theorem 12 in [9], it suffices to demonstrate that the change of measure holds
for the behaviour of the initial particle, up to and including the first branching event.
Thereafter, the Markov property ensures that the result is true in general.

To this end, let us suppose that T1 is the first branch time. Since, under Qkδx , a particle
carrying k spines branches at rate βmk, it follows that for x ∈ E, t ≥ 0 and any bounded
measurable H,

Qkδx [H(ξs, s ≤ t); t < T1] = Qkδx

[
H(ξs, s ≤ t)e−

∫ t
0
β(ξs)mk(ξs)ds

]
= Ex

[
ζ(ξ, t)

ζ(ξ, 0)
H(ξs, s ≤ t)e−

∫ t
0
β(ξs)mk(ξs)ds

]
,

where on the left-hand side, ξ = ξ1 = · · · = ξk (i.e. ξ tracks the motion of the initial
particle, which carries all of the marks up to the first branch time by definition), and on
the right-hand side under Ex it denotes the single particle motion. Similarly, under Pkδx ,
particles branch at rate β, yielding

Pkδx [H̃(ξs, s ≤ t); t < T1] = Ex

[
H̃(ξs, s ≤ t)e−

∫ t
0
β(ξs)ds

]
, t ≥ 0.

Thus, setting

H̃(ξs, s ≤ t) =
ζ(ξ, t)

ζ(ξ, 0)
H(ξs, s ≤ t)e−

∫ t
0
β(ξs)(mk(ξs)−1)ds,

it follows that

Qkδx [H(ξs, s ≤ t); t < T1] = Pkx

[
ζ(ξ, t)

ζ(ξ, 0)
H(ξs, s ≤ t)e−

∫ t
0
β(ξs)(mk(ξs)−1)ds; t < T1

]
, t ≥ 0,

which agrees with (2.8) on {t < T1}. By the same reasoning (or by differentiation), we
deduce that for t ≥ 0,

Qkδx [H(ξs, s≤t);T1 ∈ dt] = Pkδx

[
ζ(ξ, t)

ζ(ξ, 0)
H(ξs, s ≤ t)

β(ξt)mk(ξt)

β(ξt)
e−

∫ t
0
β(ξs)(mk(ξs)−1)ds;T1 ∈ dt

]
= Pkδx

[
ζ(ξ, t)

ζ(ξ, 0)
H(ξs, s ≤ t)mk(ξt)e

−
∫ t
0
β(ξs)(mk(ξs)−1)ds;T1 ∈ dt

]
.

Next, we extend this to include what happens to the offspring at the first branch
event. Let t > 0, x ∈ E, H and ξ be as before, and also set:
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• M ∈ N (for the number of distinct particles given a mark, i.e. spines, at the first
branching event);

• i = (i1, . . . , ik) ∈ Nk such that |{i1, . . . , ik}| = M (for the labels of particles carrying
marks 1 to k);

• f ∈ B(E) (that will be tested against the position Z of the N offspring at the first
branching time); and

• Li := {l ∈ N s.t. ij = l for some 1 ≤ j ≤ k} (for the set of distinct labels of spine
particles at the first branching event).

Recalling the description of Qkδx , the motion of the initial particle is biased by the
martingale ζ, it branches at rate βmk, the k marks choose M distinct particles to follow
with probability βmk,M/βmk, and offspring is produced according to the law P(k,M)

· . Thus,
we have

Qkδx

[
H(ξs, s ≤ t)e−〈f,Z〉1{T1∈dt}1{i1,...,ik∈{1,...,N}}1{|(i1,...,ik)|=M}1{ψ1

t=i1,...,ψkt =ik}
]

= Ex

[
H(ξs, 0 ≤ s ≤ t)

ζ(ξ, t)

ζ(ξ, 0)
β(ξt)mk(ξt)e

−
∫ t
0
β(ξs)mk(ξs)ds

× β(ξt)mk,M (ξt)

β(ξt)mk(ξt)
E(k,M)
ξt

[∏
l∈Li

h(xl)e
−f(x`)

]]
dt

= Ex

[
H(ξs, 0 ≤ s ≤ t)

ζ(ξ, t)

ζ(ξ, 0)
β(ξt)mk,M (ξt)e

−
∫ t
0
β(ξs)mk(ξs)ds

× Eξt

[
〈h,Z〉k,M

Eξt(〈h,Z〉k,M )

∏
l∈Li

h(xl)e
−f(x`)

〈h,Z〉k,M

]]
dt

= Ex

[
H(ξs, 0 ≤ s ≤ t)

ζ(ξ, t)

ζ(ξ, 0)
β(ξt)mk,M (ξt)e

−
∫ t
0
β(ξs)mk(ξs)ds

× Eξt

[∏
l∈Li

h(xl)e
−f(x`)

]]
dt.

Similarly, using the description of Pkδx , we have

Pkδx

[
H̃(ξs, 0 ≤ s ≤ t)e−〈f̃ ,Z〉1{T1∈dt}1{i1,...,ik∈{1,...N}}1{|(i1,...,ik)|=M}1{ψ1

t=i1,...,ψkt =ik}

]
(2.9)

= Eδx

[
H̃(ξs, 0 ≤ s ≤ t)β(ξt)e

−
∫ t
0
β(ξs)dsEξt

[
e−〈f̃ ,Z〉

Nk

]]
dt. (2.10)

Observe that on {T1 ∈ dt}: Sk(t)\Nt = {∅}; the set Sk(t)\{∅}, agrees with the offspring
of ∅; ϕ(X∅(τ

−
∅ )) = ϕ(ξt); M∅ = n; and N∅ = k. Thus, choosing H̃ and f̃ appropriately in

the above expression, it follows that on the event {T1 ∈ dt}, the change of measure (2.8)
is valid.

Since H, t,M, f, i1, . . . , ik, Li were arbitrary, this proves that the laws Qkδx and Q̃kδx
agree up to and including what happens on the first branching event. The Markov
property then implies the general result.

2.3 Spines at different times

We would also like to consider the “skeleton at different times”. To this end, fix k ≥ 1,
suppose 0 ≤ sk ≤ · · · ≤ s1 and write s = (s1, . . . , sk). We write

Sk(s) := {w ∈ Ω : w � ψisi for some 1 ≤ i ≤ k}
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for the skeleton generated by the ancestors of the spines ψisi up to time si for i = 1, . . . , k.
We also write

∂Sk(s) = {v ∈ Sk(s) such that @w ∈ Sk(s) with v ≺ w}

for the “leaves” of this skeleton.
Finally, for v = ψisi ∈ ∂Sk(s) we define

sv := sup{si : v = ψisi}. (2.11)

Now fix t ≥ s1 and let Fkt,s denote the σ-algebra generated by:

• {ξis : s ≤ si, 1 ≤ i ≤ k} (the motion of the spine with mark i up to time si for each i);

• {ψis : s ≤ si, 1 ≤ i ≤ k} (the Ulam-Harris labels associated to the the spine with
mark i up to time si for each i);

• {bψis : s ≤ si, 1 ≤ i ≤ k} (the collection of marks carried by the spine with mark i
up to time si for each i);

• the subtree rooted at each w ∈ Ω that does not carry any marks and is a sibling of
some v ∈ Sk(s),1 considered up until (global) time t.

Note that the collection of random variables in the third bullet point above will not
always be measurable with respect to the collection in the second. For example, let us
consider the case with k = 2 and where the spine carrying mark 1 also carries mark 2

at time s ∈ (s2, s1). Then, since {ψis : s ≤ si, i = 1, 2} does not tell us about the labels
associated to the spine with mark 2 after time s2, bψ1

s
is not measurable with respect to

it.

We will also use the notation
Fks := Fks1,s.

Fix h ∈ B+(E). For each s, we define an Fks -measurable random variable

W k
s :=

∏
v∈Sk(s)

ζ(Xv, τ
−
v ∧ sv)

ζ(Xv, σv)
e−

∫ τv∧sv
σv

β(Xv(s))(mDv (Xv(s))−1)ds

×
∏

v∈Sk(s)\{∅}

h(Xv(σv))
∏

v∈Sk(s)\∂Sk(s)

NDv
v

h(Xv(τ
−
v ))Mv

, (2.12)

where we have used the notation sv defined in (2.11) for v = ψisi ∈ ∂Sk(s) (and set
sv =∞ otherwise).

Recalling Lemma 2.10, restricting instead to Fks yields the following result.

Lemma 2.11. For each k ≥ 1, 0 ≤ sk ≤ . . . ≤ s1, x ∈ E and h ∈ B+(E), we have

dQkδx
dPkδx

∣∣∣∣∣
Fks

= W k
s . (2.13)

Proof. Fix k ≥ 1, 0 ≤ sk ≤ · · · ≤ s1 ≤ t, x ∈ E and h ∈ B+(E). Then, due to the structure
of W k

t , we may write

W k
t = W k

s ×
∏

v∈Sk(t)\Sk(s)

ζ(Xv, τ
−
v ∧ t)

ζ(Xv, σv)
e−

∫ τv∧t
σv

β(Xv(s))(mDv (Xv(s))−1)du

1Where by subtree we mean the subprocess started at time σw with root label w.
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ψ2

ψ3

ψ1

s3 s2 s1

Figure 1: The left-hand side figure shows the tree up to time s1 with three spines
marked in black. The right-hand side shows the information from the filtration F3

s1,s,
with s = (s1, s2, s3), with dashed lines denoting information that is not included.

×
∏

v∈∂Sk(s)

ζ(Xv, τ
−
v ∧ t)

ζ(Xv, sv)
e−

∫ τv∧t
sv

β(Xv(s))(mDv (Xv(s))−1)du

×
∏
v∈Vs,t

NDv
v

h(Xv(τ
−
v ))Mv

∏
v∈Sk(t)\Sk(s)

h(Xv(σv)), (2.14)

where Vs,t := (Sk(t) \ Sk(s) ∪ Nt) ∪ ∂Sk(s) (in words, the difference of the skeletons at
times t and s, minus the boundary at time t, but plus the boundary at time s). Now write
∂̂Sk(s) for the elements of Sk(t) \ Sk(s) that are siblings of some element of Sk(s). So
v ∈ ∂̂Sk(s) must be of the form v = ψiσv for some i with si < σv < s1. Notice that every
element of Sk(t) \ Sk(s) is either a descendant of an element of ∂Sk(s), an element of
∂̂Sk(s), or a descendant of an element of ∂̂Sk(s).

Now, let us consider the collection of subprocesses initiated at times rv := sv for each
v ∈ ∂Sk(s), and rv := σv for each v ∈ ∂̂Sk(s). The branching Markov property implies
that these are independent of each other and of Fks . Moreover, reorganising the terms
on the right hand side of (2.14) gives that

Pkδx

[
W k
t

∣∣∣∣Fks ] = W k
s × Pkδx

[ ∏
v∈∂̂Sk(s)∪∂Sk(s)

W
(v)
t−rv

∣∣∣∣Fks ],
where for each v ∈ ∂Sk(s) ∪ ∂̂Sk(s), W (v)

t−rv is a copy of the martingale WDv associated to
the subprocess rooted at v and t− rv. In particular,

Pkδx

[ ∏
v∈∂̂Sk(s)∪∂Sk(s)

W
(v)
t−rv

∣∣∣∣Fks ] =
∏

v∈∂̂Sk(s)∪∂Sk(s)

Pkδx [W
(v)
t−rv ] = 1,

which gives the result.
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3 Many-to-few lemma

3.1 Statement and proof of the many-to-few lemma

We are now ready to formulate and prove our main result, which is a many-to-few
lemma for general non-local branching Markov processes at a collection of different
times. This generalises the result of [13] in two ways: firstly, it holds for non-local
branching mechanisms; and secondly, it allows us to deal with sums over the population
at different times. Throughout, we will use the notation

Ns := {(v1, . . . , vk) : vi ∈ Nsi 1 ≤ i ≤ k}

where s = (s1, . . . , sk) with k ≥ 1 fixed and 0 ≤ sk ≤ · · · ≤ s1.

Lemma 3.1 (Many-to-few at different times). Let x ∈ E, h ∈ B+(E), k ≥ 1 and 0 ≤ sk ≤
· · · ≤ s1 be fixed. Suppose that the offspring distribution under P has finite kth moment,
i.e. (2.1) holds, and let Qk be as defined in the previous section. Suppose that

Y =
∑

vi∈Nsi , i=1,...,k

Y (v1, . . . , vk)1{ψisi=vi, 1≤i≤k}
= Y (ψ1

s1 , . . . , ψ
k
sk

)

is non-negative and Fks -measurable, where Y (v1, . . . , vk) is Fs1 -measurable2 for every
(v1, . . . , vk) ∈ Ns.

Then it holds that

Pδx

[ ∑
vi∈Nsi
i=1,...,k

Y (v1, . . . , vk)

]
= Qkδx

[
Y

W k
s

k∏
i=1

∏
∅�v≺ψisi

Nv

]

Proof. Starting with the right-hand side of the expression in the lemma, we have

Qkδx

[
Y

W k
s

k∏
i=1

∏
∅�v≺ψisi

Nv

]
= Pkδx

[
Y

k∏
i=1

∏
∅�v≺ψisi

Nv

]

= Pkδx

[ ∑
ui∈Nsi , 1≤i≤k

Y (u1, . . . , uk)1{ψisi=ui 1≤i≤k}

k∏
i=1

∏
∅�v≺ui

Nv

]
(3.1)

where the first equality holds thanks to the change of measure (2.13).

Conditioning on Fs1 , we have

Pkδx

(
ψisi = ui, i = 1, . . . , k

∣∣∣∣Fs1) =

k∏
i=1

∏
∅�v≺ui

N−1
v ,

and thus, by the properties of conditional expectation, we can rewrite (3.1) as

Pkδx

[ ∑
ui∈Nsi , 1≤i≤k

Y (u1, . . . , uk)

k∏
i=1

∏
∅�v≺ui

Nv
∏

∅�v≺ui

N−1
v

]
=Pδx

[ ∑
vi∈Nsi , 1≤i≤k

Y (v1, . . . , vk)

]
,

as required.

2By this we mean that we have a collection (Y (v1, . . . , vk), v1, . . . , vk ∈ Ω) of Fs1 -measurable random
variables such that Y (v1, . . . , vk) = 0 unless vi ∈ Nsi for all i = 1, . . . , k.
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Recalling the definition of W k
s , one may ask if

∏
v∈Sk(s)\∂Sk(s)

NDv
v =

k∏
i=1

∏
∅�v≺ψisi

Nv, (3.2)

where the left-hand term appears in (2.12) and the right-hand term appears in the
statement of Lemma 3.1, thus resulting in a cancellation of terms in the many-to-few
formula. To show that this is not always the case, recall that

Sk(s)\∂Sk(s) = {w ∈ Ω : ∅ � w ≺ ψisi for some 1 ≤ i ≤ k}.

Also recall that the mark carried by an individual (spine) v is bv with cardinality Dv = |bv|
(that is the number of marks carried by v) and Mv is the number of offspring of v that
inherit a mark from v. As a consequence,

|{i ∈ {1, . . . , k} : ∅ � v ≺ ψisi}| ≤ Dv. (3.3)

The inequality in (3.3) can be strict when, for example, ∅ � v = ψjsj ≺ ψ
i
si for some pair

i 6= j.
However, if we take (s1, . . . , sk) = (t, . . . , t) then v = ψjt ≺ ψit cannot occur and the

inequality in (3.3) is an equality. In that case,

k∏
i=1

∏
∅�v≺ψisi

Nv =
∏

v∈Sk(s)\∂Sk(s)

NDv
v ,

Note that if s = (t, t, . . . , t) we have that

∏
v∈Sk(s)\∂Sk(s)

NDv
v =

k∏
i=1

∏
∅≤v<ψisi

Nv,

which yields the following corollary (as a special case), and can also be seen as a
generalisation of [13, Lemma 1] to include non-local branching.

Corollary 3.2 (Many-to-few). Let x ∈ E, h ∈ B+(E), k ≥ 1 and t ≥ 0 be fixed. Suppose
that

Y =
∑

vi∈Nt, i=1,...,k

Y (v1, . . . , vk)1{ψit=vi, 1≤i≤k}

is Fkt -measurable with Y (v1, . . . , vk) Ft-measurable for vi ∈ Nt for i = 1, . . . k. Then

Pδx

[ ∑
vi∈Nt
i=1,...,k

Y (v1, . . . , vk)

]
= Qkδx

[
Y

∏
v∈Sk(t)

ζ(Xv, σv)

ζ(Xv, τ
−
v ∧ t)

e
∫ τv∧t
σv

β(Xv(s))(mDv (Xv(s))−1)ds

×
∏
v∈Sk(t)\Nt h(Xv(τ

−
v ))Mv∏

v∈Sk(t)\{∅} h(Xv(σv))

]
.

3.2 Natural choice of ζ and separated skeletons

We will now consider a specific example of the many-to-few formula given in Lemma 3.1
by choosing a particular form for the martingale ζ and a particular test function h. For
this section, we assume the following.

Assumption 3.3. There exists an eigenvalue λ ∈ R and a corresponding right eigen-
function ϕ ∈ B+(E) and finite left eigenmeasure ϕ̃, with the normalisation 〈ϕ, ϕ̃〉 = 1,
such that, for f ∈ B+(E), µ ∈M(E) and t ≥ 0,

〈Tt[ϕ], µ〉 = eλt〈ϕ, µ〉 and 〈Tt[f ], ϕ̃〉 = eλt〈f, ϕ̃〉.
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The above is a Perron Frobenius assumption that ensures the existence of the leading
eigenvalue and corresponding eigenfunctions. Using the fact that ϕ is the right eigen-
function for the MBP, (X,P), with corresponding eigenvalue λ, it isn’t too difficult to
show that under Px

ζ(ξ, t) =
ϕ(ξt)

ϕ(x)
exp

(∫ t

0

β(ξs)(m1[ϕ](ξs)− 1)ds

)
, t ≥ 0, (3.4)

is a martingale.

Using this particular form of ζ, setting h = ϕ and writing mi[ϕ] = mi, we have that

W k
t =

1

ϕ(x)

∏
v∈Sk(t)

e−
∫ τv∧t
σv

β(Xv(s))(mDv (Xv(s))−m1(Xv(s)))ds

×
∏

v∈Sk(t)∩Nt

ϕ(Xv(t))
∏

v∈Sk(t)\Nt

NDv
v

ϕ(Xv(τ
−
v ))Mv−1

. (3.5)

We now restrict ourselves to the event on which each of the nodes ψisi ∈ Nsi , i =

1, . . . , k, that make up the skeleton Sk(s), are distinct. We refer to a skeleton with this
property as a separated skeleton. This implies that at time si, node ψisi only carries
one mark for each i = 1, . . . , k. Recalling again the discussion just after the proof of
Lemma 3.1, we thus have the advantage of writing

∏
v∈Sk(s)\Ns

N−Dvv =

k∏
i=1

∏
∅≤v<ψisi

N−1
v .

Applying the many-to-few formula with this martingale, for the special choice of ζ,
and in the case of separated skeletons, we get

Pkδx

[ ∑
vi∈Nt distinct

Y (v1, . . . , vk)

]

= ϕ(x)Qkδx

[
Y 1{{ψit}1≤i≤k distinct}

k∏
j=1

ϕ(ξjt )
−1

×
∏

v∈Sk(t)

e
∫ τv∧t
σv

β(Xv(s))(mDv (Xv(s))−m1(Xv(s)))ds
∏

v∈Sk(t)\Nt

ϕ(Xv(τ
−
v ))Mv−1

]
.

(3.6)

Remark 3.4. Note that the notion of separated skeletons holds for general test functions,
h, that are not necessarily the eigenfunction, ϕ and in this case, one recovers the formula
in Corollary (3.2)

4 Application to genealogies in the critical case

In this section, we restrict ourselves to the setting where h = ϕ and ζ is given
by (3.4). We will henceforth suppress the dependency of mi on ϕ by writing mi in place of
mi[ϕ]. As an application, we determine the asymptotic law of the death time of the most
recent common ancestor, henceforth referred to as split time, of two particles sampled
uniformly from a critical population at two different times. The limit is taken as t→∞,
when we have conditioned on survival of the process up to time t.

We assume in this section that the measures Qk and Pk are as defined in section 3.2.
We remind the reader of the notation ξ1, . . . , ξk for the motion of the k spines under Qk

and Pk, and ψ1, . . . , ψk for the Ulam-Harris labels that they carry.
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We assume throughout the section that our branching process satisfies the following
additional criticality requirement.

Assumption 4.1. The following criticality assumptions hold.

2.1 Assumption 3.3 holds with λ = 0.

2.2 Define ∆t := supx∈E,f∈B+
1 (E) |ϕ(x)−1Tt[f ](x)− 〈f, ϕ̃〉|. Then

sup
t≥0

∆t <∞ and lim
t→∞

∆t = 0.

2.3 The number of offspring produced at a branching event is bounded above by
nmax <∞.

2.4 There exists a constant C > 0 such that for all g ∈ B+(E),

Σ :=〈βV[g], ϕ̃〉 ≥ C〈g, ϕ̃〉2,

where V[g](x) := Ex[〈g,Z〉2,2] and where the notation 〈g,Z〉k,n was defined in (2.3).

2.5 For all x ∈ E, Pδx(∃t > 0 such that Nt = 0) = 1.

Remark 4.2. We note that the assumptions above are inherited from [11, 8], where
asymptotic results concerning criticality and moment growth were considered. Whereas
the Assumption 2.1 is clearly a standard criticality assumption, the remaining assump-
tions 2.2 - 2.5 can be interpreted as follows. Roughly speaking, Assumption 2.2 describes
the uniform stability of the mean semigroup. In particular, by taking f ≡ 1, Assump-
tion 2.2 ensures that the first moment of the process settles down to a stationary value.
Assumption 2.3 rather obviously requires the random number of offspring to be deter-
ministically bounded. Assumption 2.4 can be thought of as an irreducibility condition
written in terms of the two-point correlation (or variance) functional V[g] and ensures
a minimal level of spatial mixing occurring for second order effects associated to the
semigroup assumption in Assumption 2.2. Finally Assumption 2.5 guarantees extinction
occurs almost surely, even though Assumption 2.1 only ensures the process is critical.
Assumption 2.5 is automatically satisfied e.g. for a branching Brownian motion in a
compact domain with killing on the boundary, or the category of neutron branching
process considered in [15, 10, 5].

Let us now present our main application. Here and in the rest of this section ⇒
means convergence in distribution.

Proposition 4.3. Let 0 < a < 1 and let x ∈ E be fixed. Let Tt have the Pδx(·|Nt > 0) law
of the split time of two particles: one chosen uniformly from those alive at time t and
one chosen uniformly from those alive at time at. Then

Tt
t
⇒ T as t→∞

where T has density

fa(u) :=
2a

1− a
2(a− u) log(1− u

a )− (2− u− u
a ) log(1− u)

u3

with respect to Lebesgue measure du on [0, a].

Remark 4.4. Note that

lim
a↗1

2a

1− a
2(a− u) log(1− u

a )− (2− u− u
a ) log(1− u)

u3
= 2(−2u+ (u− 2) log(1− u))

This agrees with the density in the case a = 1 (for critical GW processes) calculated in
[12].

EJP 29 (2024), paper 41.
Page 15/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1098
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Many-to-few

Remark 4.5. It is not obvious a priori that fa is the density function of a random variable.
However, this is indeed the case, since we can calculate that

2a

1− a

∫ a

0

2(a− u) log(1− u
a )− (2− u− u

a ) log(1− u)

u3
du

=
2

a(1− a)

∫ 1

0

2a(1− u) log(1− u)− (2− ua− u) log(1− au)

u3
du

=
2

a(1− a)

[
(1− u)

u2
(a(u− 1) log(1− u) + (1− au) log(1− au))

]1

0

=− 2

a(1− a)
lim
u→0

a(u− 1)(−u− u2

2 + o(u2)) + (1− au)(−au− a2u2

2 + o(u2))

u2

=1.

Note that a similar calculation also gives the distribution function of T .

We also have the following result concerning the joint convergence of the (normalised)
population size at two different times under Q1. Recall from Assumption 4.1.3 that
Σ := 〈βV[ϕ], ϕ̃〉.
Proposition 4.6. Under Q1

δx
,(
Nat
t
,
Nt
t

)
⇒ (Z, Ẑ), as t→∞,

where Z is equal in law to a Gamma(2, (aΣ〈1, ϕ̃〉/2)−1) random variable and, conditionally
on Z, the law of Ẑ is that of a Gamma(2 +K, (Σ(1− a)〈1, ϕ̃〉/2)−1) random variable where
K ∼ Poisson(((1− a)Σ〈1, ϕ̃〉/2)−1Z).

Equivalently, under Pδx(·|Nt > 0), we have the joint convergence of (Nat/t,Nt/t) to
(Y, Ŷ ), where the joint law of (Y, Ŷ ) is that of (Z, Ẑ) weighted by 1/Ẑ.

Remark 4.7. The joint law of (Z, Ẑ) described above is that of (aΣ〈1, ϕ̃〉/2) times a
3-dimensional Bessel process evaluated at times a and 1. This should not be surprising.
Indeed, consider a critical Feller diffusion, the scaling limit of the population size for
a critical Galton-Watson process. When conditioned to survive until time one and then
weighted by its value at time one, it has exactly the law of a 3-d Bessel process.

Before moving on to the proofs of the above two propositions, we first state a lemma
that will be used throughout the aforementioned proofs.

Lemma 4.8. In what follows, we suppose that (gt, t ≥ 0) are a collection of functions
with gt ∈ B+

1 (E) for each t > 0, and such that gt → g ∈ B+
1 (E) pointwise as t→∞. For

any x ∈ E, the following hold.

(a) tPδx(Nt > 0)→ 2ϕ(x)
Σ as t→∞, supt,x |tPδx(Nt > 0)| <∞ and inft |tPδx(Nt > 0)| >

0.
(b) The joint law of (

Xt[gt]

t
,
Nt
t

)
under Pδx(·|Nt > 0)

converges to that of (〈g, ϕ̃〉Z, 〈1, ϕ̃〉Z) as t→∞, where Z ∼ Exponential(2/Σ).
(c) The joint law of (

Xt[gt]

t
,
Nt
t
, ξt

)
under Q1

δx (4.1)

converges to that of (〈g, ϕ̃〉Z, 〈1, ϕ̃〉Z, ξ̄) as t→∞, where Z ∼ Gamma(2, 2/Σ) and ξ̄
is independent of Z, with law given by

P (ξ̄ ∈ A) = 〈1Aϕ, ϕ̃〉 (4.2)
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Proof. (a) follows from [11, Theorem 1.2], [11, Lemma 7.4] and [11, Lemma 7.2]. For the
proof of (b), first note that the joint convergence of (Xt[g]/t,Nt/t) under Pδx(·|Nt > 0)

follows from [11, Theorem 1.3], together with the fact that t−1[Xt[f ]− 〈f, ϕ̃〉Xt[ϕ]]→ 0

in probability as t→∞ for any bounded f (see the proof of [11, Theorem 1.3]). Writing

Xt[gt] = Xt[g] +Xt[gt − g],

it thus suffices to show that Xt[gt− g]/t→ 0 in Pδx(·|Nt > 0)-probability. For this, we will
show that we actually have L1 convergence. Setting ft = |gt − g| (which is bounded by 2

since gt, g ∈ B+
1 (E)), we have

1

t
Eδx [|Xt[gt − g]||Nt > 0] ≤ 1

tPδx(Nt > 0)
Eδx [Xt[ft]]

≤ 1

tPδx(Nt > 0)
(|Eδx [Xt[ft]]− ϕ(x)〈ft, ϕ̃〉|+ ϕ(x)〈ft, ϕ̃〉).

From Lemma 4.8(a), it follows that (tPδx(Nt > 0))−1 is uniformly bounded. By the first
part of Assumption 4.1, the first term in the parentheses on the right-hand side above
converges to 0 uniformly. Finally, by dominated convergence (since ϕ̃ is a finite measure),
the second term in the parentheses also converges to 0.

For (c), note that if W 1
t is the martingale from (2.13) (in the classical case of one

spine),
Pδx [W 1

t |Ft] = Xt[ϕ], (4.3)

so that for any bounded, continuous function F ,

Q1
δx

[
F

(
Xt[gt]

t
,
Nt
t

)]
=
tPδx(Nt > 0)

ϕ(x)
Pδx

[
F

(
Xt[gt]

t
,
Nt
t

)
Xt[ϕ]

t

∣∣∣∣Nt > 0

]
. (4.4)

Taking F to be of the form F (x, y) = e−θx−µy, for θ, µ ≥ 0 and using (a) and (b) yields
the convergence of the first two components of the triple under Q1

δx
. The marginal

convergence in law of ξt to ξ under Qδx follows from [11, section 5].

To see the joint convergence in law of the triple in (4.1), note that due to the
aforementioned marginal convergence of ξ and the first two components, we immediately
have tightness. Moreover, any subsequential limit has the form (〈g, ϕ̃〉Z, 〈1, ϕ̃〉Z, ξ̄), where
the marginals of Z and ξ̄ are as desired. Thus it remains to show that for any such
subsequential limit, Z and ξ̄ (or equivalently 〈1, ϕ̃〉Z and ξ̄) are independent.

For this, define N∗t to be the contribution to Nt of all descendants branching off the
(single) spine particle before time t− t1/3. Then Nt −N∗t behaves like Nt1/3 under Q1.
Applying the Markov property at time t− t1/3, it follows that t−1/3(Nt −N∗t ) converges in
law to 〈1, ϕ̃〉Z, where Z ∼ Gamma(2, 2/Σ), thanks to the discussion following (4.4). Thus,
for ε > 0, we have that Q1

δx
(Nt −N∗t ≥ t1−ε)→ 0 as t→∞. We also have that Q1

δx
(Nt ≥

t1−ε/2)→ 0, uniformly in x, thanks to the Markov inequality and Assumption 4.1.2.
Now note that, on the one hand, N∗t /Nt ≤ 1. On the other hand, 1 − (N∗t /Nt) =

(Nt −N∗t )/Nt = t−1(Nt −N∗t )/(t−1Nt). In the final equality, the numerator tends to zero
in Q1-probability, and the denominator converges under Q1 to a Gamma distributed
random variable. It follows that N∗t /Nt → 1 under Q1

δx
as t → ∞. Next note that

the part of the spatial branching tree consisting of all descendants branching off the
spine particle before time t − t1/3 is conditionally independent (given the position of
the spine at time t − t1/3) of descendants branching off the spine particle after time
t − t1/3. This implies that any subsequential distributional limit of (Nt/t, ξt) as t → ∞
under Q1

δx
, say (〈1, ϕ̃〉Z, ξ̄), can be extended to a subsequential limit (Y ∗, 〈1, ϕ̃〉Z, ξ̄) of
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(N∗t /t,Nt/t, ξ̄) satisfying Y ∗ = 〈1, ϕ̃〉Z almost surely. On the other hand, ergodicity of the
spine motion [11, section 5] implies that Y ∗ and ξ̄ are independent. That is to say, Z and
ξ̄ are independent.

Remark 4.9. Observe that a slight variant of the proof of (c) given above, implies that
for any c ∈ (0, 1), the joint law of (Xt[gt]/t,Nt/t, ξct, ξt) under Q1

δx
also converges to that

of (〈g, ϕ̃〉Z, 〈1, ϕ̃〉Z, ξ̄, ξ̄′) as t → ∞, where (ξ̄, ξ̄′, Z) are mutually independent and ξ̄, ξ̄′

both have law (4.2).

We are now ready to prove Proposition 4.3. However, let us first give a sketch proof,
which (roughly) describes the main steps of the argument (although some details look
slightly different in the final version, in order to deal with technicalities that arise).

Sketch proof of Proposition 4.3. For v, w ∈ Ω, let τv,w be the split time of v and w. That
is, the death time of the most recent common ancestor of v and w.

• We first show that the asymptotic probability of selecting w ∈ Nat and v ∈ Nt with
w � v is zero. This is because the probability that any specific individual at time at
has any descendants at time t, tends to 0 as t→∞. This means that to obtain the
asymptotic law of the split time, it is enough to provide an asymptotic for

Pδx

[ ∑
w∈Nat,v∈Nt,w�v

1

NatN̂w
t

F
(τv,w
t

) ∣∣∣∣Nt > 0

]

when F is an arbitrary bounded continuous function, and where for w ∈ Nat, N̂w
t is

the size of the population at time t without counting the descendants of w. (This
corresponds to Step 1 in the full proof below).

• The many-to-two lemma at times at, t allows the above expectation to be written as

ϕ(x)

Pδx(Nt > 0)
Q2
δx

[
F (
τ

t
)1{τ≤at}

ϕ(ξ1
τ−)

ϕ(ξ1
t )ϕ(ξ2

at)

1

NatN̂t
e
∫ τ
0
β(ξ1s)(m2(ξ1s)−m1(ξ1s)) ds

]
where τ is the split time of the two spines under Q2

δx
and N̂t is the population size

at time t, not counting descendants of the second spine at time at. (This roughly
corresponds to Step 3 in the full proof below).

• Next we consider Q̂2
δx

obtained by reweighting Q2
δx

by

(β(ξ1
τ−)(m2(ξ1

τ−)− m1(ξ1
τ−)))−1e

∫ τ
0
β(ξ1s)(m2(ξ1s)−m1(ξ1s))ds−τ .

This change of measure alters the rate at which the spine particles split into two
distinct spines (from rate β(m2 − m1) to rate 1) but doesn’t affect the rate at which
branching events occur that don’t result in the spines splitting. Combining this with
a change of variables and conditioning on τ (which has an exponential 1 distribution
under Q̂2

δx
), we rewrite our expectation again, as

ϕ(x)

tPδx(Nt > 0)

∫ a

0

duF (u)Q̂2
δx

[
β(ξ1

ut)ϕ(m2(ξ1
ut)− m1(ξ1

ut))

ϕ(ξ1
t )ϕ(ξ2

at)

t2

NatN̂t

∣∣∣∣ τ = ut

]
.

Here the law Q̂2
δx

[·|τ = ut] makes rigorous sense: the system has a single spine and
in fact evolves as under Q1

δx
until time ut, where some (biased) branching event

occurs, two spines are selected, and each of these initiates an independent Q1

process. (This roughly corresponds to Step 4 in the full proof below).
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at t

ψ1

ψ2

ut

Figure 2: Suppose the two spines split from each other at time τ = ut. The population at
time at can be broken up into those individuals that have branched off the first spine
before time at (depicted in orange) and those individuals that have branched off the
second spine between times ut and at (depicted in green). Given the population at time
at, the size of the population at time t (without the descendants of the second spine,
that is, N̂t) can again be broken up into two subpopulations: those that branch off the
first spine between times at and t (depicted in black) and those that are descendants of
non-spine particles at time at (depicted in blue).

• Now, we know by Lemma 4.8 that ϕ(x)(tPδx(Nt > 0))−1 → Σ/2 as t→∞. Moreover,
under Q̂2

δx
, similar arguments to those in the proof of Lemma 4.8 (in particular, due

to ergodicity of the spine motion) imply that the positions ξ1
ut, ξ

1
t , ξ

2
at of the spines

are asymptotically independent of each other and of Nat, N̂t as t→∞, with limiting
laws described by P (ξ ∈ A) = 〈1Aϕ, ϕ̃〉 for A ⊂ E.

Furthermore, the limiting law of Nat/t as t → ∞ is described by aZ + (a − u)Z ′,
where (Z,Z ′) are a pair of independent Gamma(2, 2/Σ〈1, ϕ̃〉) random variables; this
is because of the explicit description of the process under Q̂2

δx
(·|τ = ut) and item (c)

of Lemma 4.8. In Figure 2, aZ and (a− u)Z ′ correspond to the sizes of the orange
and green populations respectively (after rescaling by t).

Finally, the conditional limiting law of N̂t/t given Nat/t is that of a Gamma random
variable with parameter (2 + K, 2/Σ(1− a)〈1, ϕ̃〉), where
K ∼ Poisson(2N/(1− a)Σ〈1, ϕ̃〉) is itself random. This is because, given the col-
lection of particles alive at time at, the first spine particle will have a number of
offspring at time t which is asymptotically like t times a Gamma(2, 2/Σ(1− a)〈1, ϕ̃〉)
random variable (Lemma 4.8(c) again; this corresponds to the population depicted
in black in Figure 2). Then, independently, each of the non-spine particles alive will
have some descendant alive at time t with probability asymptotically proportional
to t−1 times ϕ of their positions. Using (essentially) the Poisson approximation
of the binomial distribution, this results in a total number of non-spine particles
with some descendant alive at time t having asymptotic conditional distribution
given by a Poisson(2N/(1− a)Σ〈1, ϕ̃〉) random variable. By Lemma 4.8 (b), the
number of offspring of each of these will approximately t times an independent
Exponential(2/Σ(1− a)〈1, ϕ̃〉), that is, a Gamma(1, 2/Σ(1− a)〈1, ϕ̃〉) random variable.
This corresponds to the population depicted in blue in Figure 2. The additivity prop-
erty of independent Gamma distributions completes the argument. (This roughly
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corresponds to Step 5 in the full proof below).

• Plugging these asymptotics into the Q̂2
δx

expectation, and performing some simple
explicit computations, we obtain the desired formula. (This roughly corresponds to
Steps 6 and 7 in the full proof below).

Proof of Proposition 4.3. Fix 0 < a < 1 and for w ∈ Nat and v ∈ Nt, write τv,w for the
split time of v and w (as in the sketch proof). It suffices to show that, for each continuous
F : [0,∞)→ [0, 1],

Pδx

 1

NatNt

∑
v∈Nt,w∈Nat

F (τv,w/t)

∣∣∣∣Nt > 0

→ ∫ a

0

F (u)fa(u)du (4.5)

as t→∞.

Step 1 In order to apply the many-to-two lemma, we first write the left-hand side
of (4.5) in a slightly different form (that is asymptotically equivalent). Namely, we claim
that

Pδx

[
1

NatNt

∑
v∈Nt,w∈Nat

F (τv,w/t)

∣∣∣∣Nt > 0

]
∼ Pδx

[ ∑
v∈Nt,w∈Nat

w�v

1

NatN̂w
t

F (τv,w/t)

∣∣∣∣Nt > 0

]
(4.6)

as t→∞ where N̂w
t = Nt −Nw

t and Nw
t = |{v ∈ Nt : w � v}|.

To see this, we note that because F is bounded by one, the difference between the
two quantities in (4.6) is bounded above in absolute value by

2Pδx

[
1

Nat

∑
w∈Nat

1{Nwt 6=∅}

∣∣∣∣Nt > 0

]
.

Conditioning on Fat, it is straightforward to see that this is bounded by an absolute
constant times

Pδx

[
1

Nat

∑
w∈Nat

PδXw(at)

[
N(1−a)t > 0

] ∣∣∣∣Nat > 0

]
,

which in turn, by Lemma 4.8 (a) and (b), tends to 0 as t→∞.

It therefore suffices to prove that

Pδx

[ ∑
v∈Nt,w∈Nat

w�v

1

NatN̂w
t

F (τv,w/t)

∣∣∣∣Nt > 0

]
→
∫ a

0

F (u)fa(u)du, as t→∞ (4.7)

This will be the new goal for the remainder of the proof.

Step 2 In order to apply some bounded convergence results, it is convenient to define
the following event for δ > 0. Namely, we write Aδv,w for the event that

ϕ(Xv(t)) ≥ δ , ϕ(Xw(at)) ≥ δ , ϕ(Xv(τ
−
v,w)) = ϕ(Xw(τ−v,w)) ≥ δ ,

Nat
t
≥ δ and

N̂w
t

t
≥ δ.

We claim that it suffices to show that for each δ > 0 and continuous F : [0,∞)→ [0, 1],

Pδx

[ ∑
v∈Nt,w∈Nat

w�v

1Aδv,w

NatN̂w
t

F (τv,w/t)

∣∣∣∣Nt > 0

]
→ cδ
〈1, ϕ̃〉2Σ

∫ a

0

F (u)fδa(u)du (4.8)
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as t→∞, where
cδ := 〈1{ϕ≥δ}, ϕ̃〉2〈βϕ2(m2 − m1)1{ϕ≥δ}, ϕ̃〉 (4.9)

and for some fδa(u)↗ fa(u) as δ ↘ 0, pointwise on [0, a]. To see why (4.8) suffices, note
that using the definitions of V and mk,

〈βϕ2(m2 − m1)1{ϕ≥δ}, ϕ̃〉 = 〈βV[ϕ]1{ϕ≥δ}, ϕ̃〉.

Thus, using the boundedness of ϕ̃, ϕ, β and Assumption 4.1.2, it follows that cδ ↑ 〈1, ϕ̃〉2Σ

as δ ↓ 0. Moreover, since we know by Remark 4.4 that fa(u) integrates to 1 over [0, a],
we can take F ≡ 1 in (4.8) to see that

lim
δ→0

lim
t→∞

Pδx

[ ∑
v∈Nt,w∈Nat

w�v

1(Aδv,w)c

NatN̂w
t

∣∣∣∣Nt > 0

]

= lim
δ→0

lim
t→∞

(
1− Pδx

[ ∑
v∈Nt,w∈Nat

w�v

1Aδv,w

NatN̂w
t

∣∣∣∣Nt > 0

])
= 0.

Thus, given (4.8), we can take t→∞ and then δ ↓ 0 to deduce that the right-hand side
of (4.6) converges to the right-hand side of (4.5) as t→∞.

The remaining steps will focus on the proof of (4.8) for an appropriate choice of fδa
and with cδ defined in (4.9).

Step 3 We may apply the many-to-two formula, Lemma 3.2, with s1 = t, s2 = at, to
write

Pδx

[ ∑
v∈Nt,w∈Nat,w�v

1Aδv,w

NatN̂w
t

F (τv,w/t)

∣∣∣∣Nt > 0

]

=
ϕ(x)

Pδx(Nt > 0)
Q2
δx

[
F (τ/t)1{τ≤at}

ϕ(ξ1
τ−)

ϕ(ξ1
t )ϕ(ξ2

at)

1Aδt
NatN̂t

e
∫ τ
0
β(ξ1s)(m2(ξ1s)−m1(ξ1s)) ds

]
(4.10)

where τ = τψ1
t ,ψ

2
at

, N̂t = N̂
ψ2
at

t , and Aδt = Aδ
ψ1
t ,ψ

2
at

. The application of Lemma 3.1 is justified
since

Y = F
(
τ/t
)
1{τ≤at}

1Aδt
NatN̂t

is F2
(at,t)-measurable.

Step 4 Next we consider Q̂2
δx

obtained by reweighting Q2
δx

by

1

β(ξ1
τ−)(m2(ξ1

τ−)− m1(ξ1
τ−))

e
∫ τ
0
β(ξ1s)(m2(ξ1s)−m1(ξ1s))ds−τ .

This change of measure alters the rate at which the spine particles split into two distinct
spines (from rate β(x)(m2(x) − m1(x)) when at x ∈ E to rate 1). Note, however, that it
doesn’t affect the rate at which branching events occur that don’t result in the spines
splitting. Combining this with a change of variables and conditioning on τ , it follows that
the right-hand side of (4.10) is equal to

ϕ(x)

tPδx(Nt > 0)

∫ a

0

duF (u)Q̂2
δx

[
β(ξ1

ut)ϕ(ξ1
ut)(m2(ξ1

ut)− m1(ξ1
ut))1Aδt

ϕ(ξ1
t )ϕ(ξ2

at)

t2

NatN̂t

∣∣∣∣ τ = ut

]
.

(4.11)
Note that under Q̂2

δx
(·|τ = ut), the process behaves as follows.
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• Until time ut, the process moves with biased motion as in (2.5) with ζ given by (3.4).
When at x ∈ E, at rate βm1(x) branching events occur, at which point, the offspring
distribution is given by P2,1 (as in (2.6)) and the i-th particle is chosen to be the
spine with probability proportional to ϕ(xi).

• At time ut a branching event occurs, where the law of the offspring is given by P2,2

and particles i, j with i 6= j are chosen as the two (distinct) spines with probability
proportional to ϕ(xi)ϕ(xj).

• After time ut, the processes issued from the two spine particles evolve under Q1

and those issued from the non-spine particles evolve under P.

Note also that by Lemma 4.8, ϕ(x)/(tPδx(Nt > 0)) → Σ/2 as t → ∞. Thus, if we write
Q̂2
δx,ut

(·) := Q̂2
δx

(· | τ = ut), we have that

Pδx

[ ∑
v∈Nt, w∈Nat

w�v

1Aδv,w

NatN̂w
t

F (τv,w/t)

∣∣∣∣Nt > 0

]

∼ Σ

2

∫ a

0

duF (u)Q̂2
δx,ut

[
β(ξ1

ut)ϕ(ξ1
ut)(m2(ξ1

ut)− m1(ξ1
ut))

ϕ(ξ1
t )ϕ(ξ2

at)

t21Aδt
NatN̂t

]
, (4.12)

as t→∞.

Step 5 Our next goal is to describe the limit in law of (ξ1
ut, ξ

1
t , ξ

2
at, Nat/t, N̂t/t) under

Q̂2
x,ut as t→∞. More precisely, we claim that it converges to (ξ̄, ξ̄′, ξ̄′′, N, N̂) where

• ξ̄, ξ̄′, ξ̄′′ are independent of eachother and of (N, N̂), each with law given by (4.2);

• the law of N is that of aZ + (a − u)Z ′, where (Z,Z ′) are a pair of independent
Gamma(2, 2/Σ〈1, ϕ̃〉) random variables;

• conditionally on N , the law of N̂ is that of a Gamma(2 +K, 2/Σ(1− a)〈1, ϕ̃〉) random
variable with random K ∼ Poisson(2N/(1− a)Σ〈1, ϕ̃〉).

To justify this claim, we identify the limiting Laplace transform of (ξ1
ut, ξ

1
t , ξ

2
at, Nat/t, N̂t/t).

To this end, for arbitrary θ, µ, η, ρ, χ ≥ 0, let us consider

Q̂2
x,ut

[
e−θξ

1
ute−µξ

1
t e−ηξ

2
ate−ρNat/te−χN̂t/t

]
= Q̂2

x,ut

[
e−θξ

1
ut−ηξ

2
at−ρNat/t Q̂2

x,ut

[
e−µξ

1
t e−χN̂t/t | F2

at

]]
, (4.13)

where F2
at is the σ-algebra containing all the information about the process, including

the spines, up to time at.

Recalling the description of the process under Q̂2
x,ut, we see that

Q̂2
δx,ut

[
e−µξ

1
t e−χN̂t/t | F2

at

]
= Q1

δ
ξ1at

[
e−µξ(1−a)te−χN(1−a)t/t

] ∏
v∈Nat

v 6=ψ1
at,ψ

2
at

PδXv(at)

[
e−χN(1−a)t/t

]

= Q1
δ
ξ1at

[
e−µξ(1−a)te−χN(1−a)t/t

]
exp

( ∑
v∈Nat

v 6=ψ1
at,ψ

2
at

log
(
1− (1− PδXv(at)

[e−χN(1−a)t/t])
))

= Q1
δ
ξ1at

[
e−µξ(1−a)te−χN(1−a)t/t

]
(1− εt) exp

( ∑
v∈Nat

v 6=ψ1
at,ψ

2
at

−(1− PδXv(at)
[e−χN(1−a)t/t])

)

(4.14)
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where

εt := 1− exp

( ∑
v∈Nat

v 6=ψ1
at,ψ

2
at

log
(
1− (1−PδXv(at)

[e−χN(1−a)t/t])
)

+ (1−PδXv(at)
[e−χN(1−a)t/t])

)
.

We claim that εt belongs to [0, (cNat/t
2) ∧ 1] for some absolute deterministic constant c,

by Lemma 4.8(a). The lower bound of zero and the upper bound of 1 are obvious. To
see where the upper bound of cNat/t2 ®comes from, note that there are at most Nat
elements of the sum defining εt, log(1− x) + x ≤ −x2/2 and 1− PδXv(at)

[e−χN(1−a)t/t] ≤
χ supx∈E Pδx [N(1−a)t]/t ≤ K/t, for some appropriate K > 0 (where this final inequality
follows from criticality and Assumption 4.1).

Note also that by Lemma 4.8(c),

Q1
δ
ξ1at

[
e−µξ(1−a)te−χN(1−a)t/t

]
= s2〈ϕe−µ·, ϕ̃〉(1 + et(ξ

1
at))

where s := (1 +χΣ(1− a)〈1, ϕ̃〉/2)−1 < 1 and et(x) is such that et(x)→ 0 in the pointwise
sense on E and

sup
t,x
|et(x)| <∞.

Let us further denote for x ∈ E, t ≥ 0,

gt(x) := t
(
1− Pδx [e−χN(1−a)t/t]

)
> 0

so that by Lemma 4.8, supt,x gt(x) <∞ and

gt(x) = tPδx(N(1−a)t > 0)
(
1− Pδx(e−χN(1−a)t/t |N(1−a)t > 0)

)
→ 2(1− s)

Σ(1− a)
ϕ(x)

pointwise on E as t → ∞. Using this notation in the right hand side of (4.14), we see
that

Q̂2
δx,ut

[
e−µξ

1
t e−χN̂t/t | F2

at

]
= s2〈ϕe−µ·, ϕ̃〉e−

Xat[gt]
t (1 + et(ξ

1
at))(1− Et)

so that

Q̂2
x,ut

[
e−θξ

1
ut−e−µξ

1
t e−ηξ

2
ate−ρNat/te−χN̂t/t

]
= s2〈ϕe−µ·, ϕ̃〉Q̂2

x,ut

[
e−θξ

1
ut−−ηξ

2
at−ρNat/te−Xat[gt]/t(1 + et(ξ

1
at))(1− Et)

]
. (4.15)

Now, we claim that under Q̂2
x,ut,

(ξ1
ut, ξ

2
at, et(ξ

1
at), Nat/t,Xat[gt]/t, Et)⇒ (ξ̄, ξ̄′′, 0, N, 2(1−s)

Σ(1−a)〈1,ϕ̃〉N, 0) (4.16)

as t → ∞, where (ξ̄, ξ̄′′, N) have joint law as described in the bullet points at the
start of Step 5. Since everything inside the expectation on right-hand side of (4.15) is
deterministically bounded, (4.16) implies that

Q̂2
x,ut

[
e−θξ

1
ut−e−µξ

1
t e−ηξ

2
ate−ρNat/te−χN̂t/t

]
→

〈ϕe−θ·, ϕ̃〉〈ϕe−µ·, ϕ̃〉〈ϕe−λ·, ϕ̃〉s2

∫ ∞
0

pa,u(x)e−ρxe
2(s−1)

(1−a)Σ(1,ϕ̃)xdx,

where pa,u is the density of N (with law as described in the second bullet point). It is
easy to check using the explicit expressions for the Laplace transforms of Poisson and
Gamma random variables, that the right-hand side above is exactly the joint Laplace
transform of our desired limit (ξ, ξ′, ξ′′, N, N̂). Thus, it only remains to justify (4.16).
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To this end, let us write N 1
at for the collection of particles alive at time at that have

branched off the first spine between times 0 and at (depicted in orange in Figure 2). We
also write N 2

at for those particles alive at time at that have branched off the second spine
between times ut and at (depicted in green in Figure 2). Then, using Lemma 4.8 (and its
extension Remark 4.9), it follows that

(ξ1
ut, et(ξ

1
at),

1

t
|N 1

at|,
1

t

∑
v∈N 1

at

gt(Xv(at)))⇒ (ξ, 0, N ′, 2(1−s)
Σ(1−a)〈1,ϕ̃〉N

′) (4.17)

say, where (ξ,N ′) are independent, ξ has law given in (4.2) and N ′ has the law of a times
a Gamma(2, 2/Σ〈1, ϕ̃〉) random variable (recall that et(x) is deterministically uniformly
bounded over t, x and converges pointwise to 0 on E). Now, given all the information in
the quadruple displayed on the left-hand side of (4.17), the (conditional) joint law of

(ξ2
at,

1

t
|N 2

at|,
1

t

∑
v∈N 2

at

gt(Xv(at)))

is given by the Q1
δX

law of (ξ2
(a−u)t, N(a−u)t/t,X(a−u)t[gt]/t), where the (conditional) law

of X is explicit but not required here. Again, by Lemma 4.8, in particular part (c),

(ξ2
(a−u)t, N(a−u)t/t,X(a−u)t[gt]/t)⇒ (ξ̂, N̂ , 2(1−s)

Σ(1−a)〈1,ϕ̃〉N̂)

as t→∞ under Q1
δX

, where ξ̂, N̂ are independent, ξ̂ has law given by (4.2), and N̂ has
the law of (a − u) times a Gamma(2, 2/Σ〈1, ϕ̃〉)) random variable, independently of the
value of X. Putting these observations together, plus the fact that Et ∈ [0, cNat/t

2] for
some deterministic c, gives us (4.16).

Step 6 Using the convergence in law (and associated notation for limiting variables)
from Step 5, plus boundedness of the functionals in question, we deduce that for each
0 ≤ u ≤ a,

Σ

2

∫ a

0

duF (u)Q̂2
δx,ut

[
β(ξ1

ut)ϕ(ξ1
ut)(m2(ξ1

ut)− m1(ξ1
ut))

ϕ(ξ1
t )ϕ(ξ2

at)

t21Aδt
NatN̂t

]
→Σ

2

∫ a

0

duF (u)E

[
β(ξ̄)ϕ(ξ̄)(m2(ξ̄)− m1(ξ̄))

ϕ(ξ̄′)ϕ(ξ̄′′)
1{ϕ(ξ̄)≥δ,ϕ(ξ̄′)≥δ,ϕ(ξ̄′′)≥δ}

1{N≥δ,N̂≥δ}

NN̂

]
, (4.18)

as t→∞, where under E, (ξ̄, ξ̄′, ξ̄′′, N, N̂) are described in Step 5. By independence of
(N, N̂) and (ξ̄, ξ̄′, ξ̄′′′) under E, plus conditioning on N and applying the tower property,
we can rewrite the expectation in the integrand on the right-hand side of (4.18) as

cδE

[
1{N≥δ}

N
E

[
1{N̂≥δ}

N̂

∣∣∣∣N]] = cδE

[
1{N≥δ}

N

(
E

[
1

N̂

∣∣∣∣N]− E [1{N̂<δ}N̂

∣∣∣∣N])] , (4.19)

with cδ := 〈1{ϕ≥δ}, ϕ̃〉2〈βϕ2(m2 − m1)1{ϕ≥δ}, ϕ̃〉.
Now we recall that under E, the law of N̂ given N is that of a Gamma(2 +K, 2/Σ(1−

a)〈1, ϕ̃〉) random variable with randomK ∼ Poisson(2N/(1− a)Σ〈1, ϕ̃〉). If Y ∼ Gamma(2+

k, θ), a simple calculation gives that E(1/Y ) = (θ(k + 1))−1 and if P ∼ Poisson(λ), then
E((P + 1)−1) = λ−1(1− e−λ). We use this to calculate the conditional expectation:

E

[
1

N̂

∣∣∣∣N] =
Σ(1− a)〈1, ϕ̃〉

2
E

[
1

K + 1

]
=

1− exp(− 1
1−a ( 2

Σ〈1,ϕ̃〉N))

N
.

Substituting this into the right hand side of (4.19), we obtain that

cδE

[
1{N≥δ}

N

(
E

[
1

N̂

∣∣∣∣N]− E [1{N̂<δ}N̂

∣∣∣∣N])]
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=cδE

[
1{N≥δ}

N

1− exp(− 1
1−a ( 2

Σ〈1,ϕ̃〉N))

N

]
− cδE

[
1{N≥δ}

N
E

[
1{N̂<δ}

N̂

∣∣∣∣N]]

=
4cδ

a2Σ2〈1, ϕ̃〉2
E

[
1− exp(− a

1−a ( 2
aΣ〈1,ϕ̃〉N))

( 2
aΣ〈1,ϕ̃〉N)2

]
− h(δ) (4.20)

as t→∞, where

h(δ) = cδE

[
1{N<δ}

N

1− exp(− 1
1−a ( 2

Σ〈1,ϕ̃〉N))

N

]
− cδE

[
1{N≥δ}

N
E

[
1{N̂<δ}

N̂

∣∣∣∣N]] ≥ 0.

Step 7 Recall that by (4.8) and (4.12), our aim is to prove that

Σ

2

∫ a

0

duF (u)Q̂2
δx,ut

[
β(ξ1

ut)ϕ(ξ1
ut)(m2(ξ1

ut)− m1(ξ1
ut))

ϕ(ξ1
t )ϕ(ξ2

at)

t21Aδt
NatN̂t

]
→ cδ
〈1, ϕ̃〉2Σ

∫ a

0

F (u)fδa(u)du

as t→∞, for some fδa(u)↗ fa(u) as δ ↘ 0, pointwise on [0, a].

First notice that h(δ) in (4.19) converges to 0 as δ ↘ 0, since the law of NN̂ has
negative moments of all orders. Then (4.19), (4.18) imply the result, since writing
Y = 2N/aΣ(1, ϕ̃) (so that Y ∼ Y ′ + (1− u

a )Y ′′ for independent Y ′, Y ′′ ∼ Gamma(2, 1)) we
have:

2

a2
E

[
1− exp(− a

1−a ( 2
aΣ(1,ϕ̃)N))

( 2
aΣ(1,ϕ̃)N)2

]

=
2

a2

∫ ∞
0

E
[
θ exp(−θY )− θ exp(−(θ + a

1−a )Y )
]
dθ

=
2

a2

∫ ∞
0

(
θ

(1 + θ)2(1 + (1− u
a )θ)2

− θ

(1 + θ + a
1−a )2(1 + (1− u

a )(θ + a
1−a ))2

)
dθ

= fa(u).

For the second line above, we have used the fact that

1

x2
=

∫ ∞
0

θe−θxdθ

for x > 0. To calculate the integral in the penultimate line, we have used the change
of variables x = θ + a

1−a for the second integrand, the fact that the anti-derivative of
y

(1+y)2(1+γy)2 is given by

1

(γ − 1)3

(
(γ − 1)(γy + y + 2)

(y + 1)(γy + 1)
− (γ + 1) log

( y + 1

γy + 1

))
,

and that the anti-derivative of 1
(1+y)2(1+γy)2 is given by

1

(γ − 1)3

(
−(γ − 1)(2γy + γ + 1)

(y + 1)(γy + 1)
+ 2γ log

( y + 1

γy + 1

))
.

The proof is now complete.

Proof of Proposition 4.6. The proof of this proposition is contained in the proof of Step 5
above, ignoring the contribution from the second spine.
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