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Estimating Sparse Direct Effects in Multivariate
Regression With the Spike-and-Slab LASSO

Yunyi Shen∗, Claudia Solís-Lemus†, and Sameer K. Deshpande‡

Abstract. The multivariate regression interpretation of the Gaussian chain graph
model simultaneously parametrizes (i) the direct effects of p predictors on q out-
comes and (ii) the residual partial covariances between pairs of outcomes. We
introduce a new method for fitting sparse versions of these models with spike-and-
slab LASSO (SSL) priors. We develop an Expectation Conditional Maximization
algorithm to obtain sparse estimates of the p× q matrix of direct effects and the
q × q residual precision matrix. Our algorithm iteratively solves a sequence of
penalized maximum likelihood problems with self-adaptive penalties that grad-
ually filter out negligible regression coefficients and partial covariances. Because
it adaptively penalizes individual model parameters, our method is seen to out-
perform fixed-penalty competitors on simulated data. We establish the posterior
contraction rate for our model, buttressing our method’s excellent empirical per-
formance with strong theoretical guarantees. Using our method, we estimated the
direct effects of diet and residence type on the composition of the gut microbiome
of elderly adults.

MSC2020 subject classifications: Primary 62F15; secondary 62F12.
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1 Introduction
1.1 Motivation: Gut microbiome composition
Between 10 and 100 trillion microorganisms live within each person’s lower intestines.
These bacteria, fungi, viruses, and other microbes constitute the human gut microbiome
(Guinane and Cotter, 2013). The composition of human gut microbiome can substan-
tially affect our health and well-being (Shreiner et al., 2015): in addition to playing
an integral role in digestion and metabolic processes, microbes living in the gut can
mediate immune response to certain diseases (Kamada and Núñez, 2014) and may even
influence disease pathogenesis and progression (Wang et al., 2011).

Emerging evidence suggests that the gut microbiome can mediate the effects of diet
and medication use on human health (Singh et al., 2017). That is, these factors may first
affect the composition of the gut microbiome, which in turn influences health outcomes.
Further, these factors can impact the composition of the microbiome in both direct and
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indirect ways. For instance, many antibiotics target and kill certain microbial species,
thereby directly affecting the abundances of the targeted species. However, by killing the
targeted species, the antibiotics may reduce the overall competition for nutrients, which
allows non-targeted species to proliferate. Thus, by directly reducing the abundance of
a small number targeted microbes, antibiotics may indirectly increase the abundance of
many other non-targeted species.

In Section 6, we re-analyze a dataset Claesson et al. (2012) containing n = 178
covariate-response pairs (x,y) where x contains measurements of p = 11 factors related
to diet, medication use, and residence type and y contains the logit-transformed relative
abundances of q = 14 different microbial taxa. Our main analytic goal is to identify
which lifestyle factors directly affect the relative abundances of which taxa.

1.2 Directly modeling direct effects
It is tempting to fit q separate linear models, one for each outcome Yk. After all, doing
so allows us to estimate the average change in each Yk associated with a change in
Xj , keeping all other covariates fixed. However, as we alluded in Section 1.1, there are
two mechanisms through which a change in Xj can produce a change in Yk. First,
it is possible that Xj may directly change Yk itself. More subtly, it is possible that
Xj directly induces a change in some other outcome Yk′ , which in turns induces a
change in Yk (i.e. an indirect effect). Generally speaking, fitting separate linear models
to our data estimates combinations of these direct and indirect effects. Unfortunately,
without modeling the residual dependence between outcomes, we cannot disentangle
direct effects from the indirect effects.

To that end, a natural starting point for our analysis is the multivariate linear
regression model that asserts

y|B,Ω,x ∼ N (B�x,Ω−1), (1.1)

where B = (βj,k) is a p × q matrix of regression coefficients and Ω = (ωk,k′) is a
symmetric, positive definite q × q residual precision matrix. Under this model, ωk,k′ ,
the (k, k′) entry of Ω, quantifies the residual partial covariance between outcomes Yk

and Yk′ that remains after adjusting for the effects of the covariates. Unfortunately, βj,k

does not quantify the direct effect of Xj on outcome Yk. To see this, observe that

βj,k = E[Yk|Xj = x + 1, X−j ] − E[Yk|Xj = x,X−j ]. (1.2)

Notice that the expectations in right-hand side of Equation (1.2) do not condition
on the values of the other outcomes Yk′ for k′ �= k. In other words, βj,k represents
a certain marginal association between Xj and Yk, keeping all other covariates fixed.
Specifically, βj,k represents a weighted average of (i) Xj ’s direct effect on Yk and (ii)
Xj ’s indirect effect, which is induced through Xj ’s direct effect on other outcomes Yk′ ’s
that themselves may be related to Yk.

Although the model in Equation (1.1) does not directly parametrize the direct effects
of interest, we can nevertheless compute them from B and Ω. Letting ψj,k be the (j, k)
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entry of the matrix Ψ = BΩ, it turns out that

ψj,k/ωk,k = E[Yk|Xj = xj + 1, Y−k, X−j ] − E[Yk|Xj = xj , Y−k, X−j ]. (1.3)

Based on this decomposition, a straightforward approach to estimating direct effects
involves first fitting the model in Equation (1.1) and then computing the matrix Ψ.

This analytic plan is unfortunately inadequate for our purposes. For one thing,
although neither p nor q is especially large in our application, the total number of
parameters (pq + q(q + 1)/2) exceeds the total sample size n. While we can overcome
this challenge by assuming that B and Ω are sparse (and estimating them accordingly),
the resulting matrix of scaled direct effects Ψ tends not to be sparse. The combination
of a sparse B, sparse Ω, and dense Ψ corresponds to a situation in (i) a single covariate
directly affects multiple outcomes but (ii) appears to be associated (in the usual linear
regression sense) to very few. In the context of our microbiome applications, a sparse B
and dense Ψ would mean that several of the lifestyle factors directly affect the abundance
of several taxa but that we would observe very few marginal associations. Such a scenario
is implausible in the context of microbiome data; in fact the exact opposite tends to be
true, with a small number of direct effects producing several marginal associations (see,
e.g., Yassour et al., 2016; Blaser, 2016; Thorpe et al., 2018; Schwartz et al., 2020; Avis
et al., 2021; Fishbein et al., 2023).

We instead propose fitting a re-paramatrized version of the model in Equation (1.1):

y|Ψ,Ω,x ∼ N (Ω−1Ψ�x,Ω−1), (1.4)

where Ψ and Ω are now assumed to be sparse. Now, we may interpret ψj,k �= 0 to mean
that Xj has a direct effect on Yk. Furthermore, whenever ψj,k = 0, we can conclude
that any marginal correlation between Xj and Yk is due solely to Xj ’s direct effects on
other outcomes Yk′ that are themselves conditionally correlated with Yk.

1.3 Our contributions

We introduce the chain graph spike-and-slab LASSO (cgSSL) for fitting the model in
Equation (1.4) by placing separate spike-and-slab LASSO priors (Ročková and George,
2018) on the entries of Ψ and on the off-diagonal entries of Ω. We derive an efficient
Expectation Conditional Maximization algorithm to compute the maximum a poste-
riori (MAP) estimates of Ψ and Ω. We further quantify the uncertainty around this
estimate using Newton et al. (2021)’s weighted Bayesian bootstrap. Our algorithm in-
volves solving a sequence of penalized maximum likelihood problems with individualized
penalties for each parameter ψj,k and ωk,k′ . In fact, these individualized penalties are
self-adaptive: the penalties are updated according to the previous iteration’s parameter
estimates, with smaller (resp. larger) parameter estimates receiving larger (resp. smaller)
penalties. In this way, the algorithm automatically and adaptively learns the appropri-
ate amount of shrinkage to apply to each parameter. On synthetic data, our algorithm
displays excellent support recovery and estimation performance. We further establish
the posterior contraction rate for each of Ψ,Ω,ΨΩ−1, and XΨΩ−1. Our contraction
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results provide asymptotic justification for MAP estimation and also upper bound the
minimax optimal rates of estimating these quantities in the Frobenius norm. To the
best of our knowledge, ours are the first posterior contraction results for sparse Gaus-
sian chain graph models with element-wise priors on Ψ and Ω.

In Section 2, we review the Gaussian chain graph model and the spike-and-slab
LASSO. We next introduce the cgSSL prior in Section 3.1 and carefully derive our
ECM algorithm for finding the MAP in Sections 3.2. We present our asymptotic results
in Section 4 before demonstrating the cgSSL’s excellent finite sample performance on
several synthetic datasets in Section 5. We apply the cgSSL to our motivating gut
microbiome data in Section 6. Finally, in Section 7, we outline avenues for future research
in spike-and-slab uncertainty quantification and modeling outcomes of mixed type.

2 Background
2.1 Motivating (1.4) and related graphical models
Under the model in Equation (1.4), we have for each k = 1, . . . , q,

Yk|Y−k, X,Ψ,Ω ∼ N

⎛
⎝−ω−1

k,k

∑
k′ �=k

ωk,k′yk′ + ω−1
k,k

p∑
j=1

ψj,kXj , ω
−1
k,k

⎞
⎠ . (2.1)

In this way, the parameters Ψ and Ω directly encode important conditional dependence
relationship between the covariates and outcomes. Specifically, if ψj,k = 0, we can
conclude from Equation (2.1) that Yk is conditionally independent from Xj given all
other covariates and outcomes. And if ωk,k′ = 0, then Yk is conditionally independent
of Yk′ , given all other covariates and outcomes. Consequently, despite its somewhat
complicated notation, we can represent the conditional dependencies encoded by the
model in Equation (1.4) with a simple graphical model.

Specifically, we construct a graph with p+ q vertices, one for each covariate Xj and
outcome Yk. We then draw a directed edges from Xj ’s vertex to Yk’s vertex whenever
ψj,k �= 0. We additionally draw two directed edges (or, equivalently, a single bi-directed
edge) between Yk’s and Yk′ ’s vertices whenever ωk,k′ �= 0. Figure 1 shows a cartoon
illustration of such a graph with p = 3 covariates and q = 4 outcomes.

The graph so constructed is a chain graph and is faithful to the model in Equa-
tion (1.4) under Cox and Wermuth (1993)’s multivariate regression (MVR) interpreta-
tion of chain graph; see Sonntag and Peña (2015) for a comparison of different chain
graph interpretations. Based on this interpretation, and following the examples of Mc-
Carter and Kim (2014) and Shen and Solís-Lemus (2021), we will refer to the model in
Equation (1.4) as the Gaussian chain graph model.

McCarter and Kim (2014) proposing fitting sparse Gaussian chain graph models
by maximizing a penalized log-likelihood. They specifically introduced homogeneous
L1 penalties on the entries of Ψ and Ω and used cross-validation to set the penalty
parameters for Ψ and Ω. Shen and Solís-Lemus (2021) developed a Bayesian version
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Figure 1: Cartoon illustrations of a Gaussian chain graph model with p = 3 covariates
and q = 4 outcomes. Edges indicate conditional dependence. Edge labels correspond to
non-zero parameters in Equation (1.4).

of that chain graphical LASSO and put a gamma prior on the penalty parameters. In
this way, they automatically learned the degree to which each ψj,k and ωk,k′ should be
shrunk to zero. Although these papers differ in how they determined the appropriate
amount of penalization, both deployed a single fixed penalty on all entries in Ψ and
a single fixed penalty on all entries in Ω. With fixed penalties, larger parameter esti-
mates are shrunk towards zero as aggressively as smaller estimates, which can introduce
substantial estimation bias.

Fitting a sparse Gaussian chain graph model is related to the covariate-adjusted
Gaussian graphical model problem (see, e.g., Consonni et al., 2017; Ni et al., 2019, and
references therein). In that problem, interest lies in uncovering the conditional depen-
dencies between q outcomes that remain after controlling for p covariates. Typically,
this is done by fitting a sparse version of the marginal model in Equation (1.1) and
examining the support of Ω (see, e.g., Cai et al., 2013; Chen et al., 2016, 2018). Within
the context of Figure 1, those works focus on detecting Y –Y edges, while we are pri-
marily interested in detecting X–Y edges. As we alluded to in Section 1.2, although it is
possible to estimate direct effects by first estimating B and Ω, doing so generally results
in a very dense Ψ that is at odds with our expectations, with one important exception:
whenever the j-th row of B contains all zeros, the j-th row of Ψ will as well.

Consonni et al. (2017) introduced an Objective Bayes approach to fitting (1.1) with
a row-sparse B. Although their method can yield sparse Ψ, it makes the restrictive
assumption that each covariate directly affects all or none of the outcomes. In contrast,
our proposed procedure places no restrictions on the support of Ψ, allowing covariates
to directly affect all, none, or some of the outcomes.

2.2 Spike-and-slab variable selection & asymptotics
The spike-and-slab prior originally comprised a mixture of a point mass at 0 (the
“spike”) and a uniform distribution over a wide interval (the “slab”; Mitchell and
Beauchamp, 1988). George and McCulloch (1993) introduced a continuous relaxation
of the original prior, respectively replacing the point mass spike and uniform slab dis-
tributions with zero-mean Gaussians with small and large variances. Intuitively, the
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spike generates the “essentially negligible” model parameters while the slab generates
the “significant” parameters values. In high dimensional problems, spike-and-slab pri-
ors often produce extremely multimodal posteriors, which render many Markov chain
Monte Carlo strategies computationally prohibitive.

In response, Ročková and George (2014) introduced EMVS, a fast Expectation Max-
imization (EM; Dempster et al., 1977) algorithm targeting the maximum a posteriori
(MAP) estimate of the regression parameters. They later extended EMVS, which used
Gaussian spike and slab distributions, to use Laplacian spike and slab distributions
in Ročková and George (2018). The resulting spike-and-slab LASSO (SSL) procedure
demonstrated excellent empirical performance. The SSL algorithm solved a sequence of
maximum likelihood problems with adaptive L1-penalties that shrink larger parameter
estimates to zero less aggressively than smaller parameter estimates.

Ročková and George (2014)’s general EM technique for maximizing spike-and-slab
posteriors has been successfully applied to many problems. For instance, Tang et al.
(2017) deployed the SSL to fit sparse generalized linear models while Bai et al. (2020)
introduced a grouped version of the SSL that adaptively shrinks groups of parameter
values towards zero. Beyond single-outcome regression, continuous spike-and-slab priors
have been used to estimate sparse Gaussian graphical models (Li et al., 2019; Gan et al.,
2019a,b), sparse factor models (Ročková and George, 2016), and to biclustering (Moran
et al., 2021). Deshpande et al. (2019) introduce a multivariate SSL for estimating B and
Ω in the marginal regression model in Equation (1.1). In each extension, the adaptive
penalization esulted in superior support recovery and parameter estimation compared
to fixed penalty methods.

Ročková and George (2018) proved that, under mild regularity conditions, the pos-
terior induced by the SSL prior in high-dimensional, single-outcome linear regression
contracts at a near minimax-optimal rate as n → ∞. Bai et al. (2020) extended these
results to the group SSL posterior with an unknown variance. In the context of Gaussian
graphical models, Gan et al. (2019a) showed that the MAP estimator corresponding to
placing spike-and-slab LASSO priors on the off-diagonal elements of a precision ma-
trix is consistent. They did not, however, establish the contraction rate of the posterior.
Ning et al. (2020) showed that the joint posterior distribution of (B,Ω) in the multivari-
ate regression model in Equation (1.1) concentrates when using a group spike-and-slab
prior with Laplace slab and point mass spike on B and a carefully selected prior on the
eigendecomposition of Ω−1. However, the asymptotic properties of the posterior formed
by placing SSL priors on the entries of Ψ and Ω have not yet been established.

3 Introducing the cgSSL
3.1 The cgSSL prior
To quantify the prior belief that many entries in Ψ are essentially negligible, we model
each ψj,k as having been drawn either from a spike distribution, which is sharply con-
centrated around zero, or a slab distribution, which is much more diffuse. More specif-
ically, we take the spike distribution to be Laplace(λ0) and the slab distribution to be
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Laplace(λ1), where 0 < λ1 � λ0 are fixed positive constants. We further let θ ∈ [0, 1]
be the prior probability that each ψj,k is drawn from the slab and model the ψj,k’s as
conditionally independent given θ. The prior density for Ψ, conditional on θ, is

π(Ψ|θ) =
p∏

j=1

q∏
k=1

(
θλ1

2 e−λ1|ψj,k| + (1 − θ)λ0

2 e−λ0|ψj,k|
)
. (3.1)

Since Ω is symmetric, it is enough to specify a prior on the entries ωk,k′ where
k ≤ k′. To this end, we begin by placing an entirely analogous spike-and-slab prior on
the off-diagonal entries. That is, for k < k′, we model each ωk,k′ as being drawn from
a Laplace(ξ1) with probability η ∈ [0, 1] or a Laplace(ξ0) with probability 1 − η, where
0 < ξ1 � ξ0. We similarly model each ωk,k′ as conditionally independent given η and
place independent exponential Exp(ξ1) priors on the diagonal entries of Ω. We truncate
the resulting distribution of Ω|θ to the positive definite cone, yielding the prior density

π(Ω|η) ∝

⎛
⎝ ∏

1≤k<k′≤q

[
ηξ1
2 e−ξ1|ωk,k′ | + (1 − η)ξ0

2 e−ξ0|ωk,k′ |
]⎞⎠

×
(

q∏
k=1

e−ξ1ωk,k

)
× 1(Ω 
 0).

(3.2)

Note that the truncation implicitly introduces dependence between the entries in Ω.
In Section S1.5 of the Supplementary Materials (Shen et al., 2024), we demonstrate
that the truncated prior still marginally shrinks every ωk,k′ towards zero. We have also
observed empirically that, at least for small q, the marginal prior of ωk,k′ tends to be
more concentrated around zero after truncation than before truncation (see Figure S1
in the Supplementary Materials (Shen et al., 2024)).

The quantities 1 − θ and 1 − η respectively capture the proportion of essentially
negligible entries in Ψ and Ω. We specify independent Beta priors for θ and η: θ ∼
Beta(aθ, bθ) and η ∼ Beta(aη, bη), where aθ, bθ, aη, bη > 0 are fixed positive constants.

3.2 MAP estimation and uncertainty quantification

MAP estimation

We follow Ročková and George (2018) and approximate the maximum a posteriori
(MAP) estimate of (Ψ, θ,Ω, η). Throughout, we assume that the columns of X are
centered and scaled to have norm

√
n. For Ω 
 0, the log posterior density is, up to an

additive constant,

log π(Ψ, θ,Ω, η|y) = n

2 × log|Ω| − 1
2tr

((
Y −XΨΩ−1)� Ω

(
Y −XΨΩ−1))

+
q∑

k=1

p∑
j=1

log
(
θλ1e

−λ1|ψj,k| + (1 − θ)λ0e
−λ0|ψj,k|

)
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+
q∑

k=1

[
−ξ1ωk,k +

q∑
k′=k+1

log
(
ηξ1e

−ξ1|ωk,k′ | + (1 − η)ξ0e−ξ0|ωk,k′ |
)]

+ (aθ − 1) log(θ) + (bθ − 1) log(1 − θ)
+ (aη − 1) log(η) + (bη − 1) log(1 − η),

where the first line is the log-likelihood implied by the model in Equation (1.4).

Optimizing log π(Ψ, θ,Ω, η|Y ) directly is complicated by the non-concavity of log π
(Ω|η) (i.e. the term in the third line above). Instead, we iteratively optimize a surrogate
objective using an EM-like algorithm. To motivate this approach, observe that we can
obtain the prior density π(Ω|η) in Equation (3.2) by marginalizing an augmented prior

π(Ω|η) =
∫

π(Ω|δ)π(δ|η)dδ

where δ = {δk,k′ : 1 ≤ k < k′ ≤ q} is a collection of q(q − 1)/2 i.i.d. Bernoulli(η)
variables,

π(Ω|δ) ∝

⎛
⎝ ∏

1≤k<k′≤q

(
ξ1e

−ξ1|ωk,k′ |
)δk,k′ (

ξ0e
−ξ0|ωk,k′ |

)1−δk,k′

⎞
⎠

×
(

q∏
k=1

e−ξ1ωk,k

)
× 1(Ω 
 0),

and δk,k′ encodes whether ωk,k′ is drawn from the slab (δk,k′ = 1) or the spike (δk,k′ = 0).

The above marginalization immediately suggests an EM algorithm: rather than op-
timize log π(Ψ, θ,Ω, η|Y ) directly, we can iteratively optimize a surrogate objective
formed by marginalizing the augmented log posterior density. That is, starting from
some initial guess (Ψ(0), θ(0),Ω(0), η(0)), for t > 1, the tth iteration of our algorithm
consists of two steps. In the first step, we compute the surrogate objective

F (t)(Ψ, θ,Ω, η) = Eδ|·[log π(Ψ, θ,Ω, η, δ|y)|Ψ=Ψ(t−1), θ=θ(t−1),Ω=Ω(t−1), η=η(t−1)],

where the expectation is taken with respect to the conditional posterior distribution of
the indicators δ given the current value of (Ψ, θ,Ω, η). Then in the second step, we max-
imize the surrogate objective and set (Ψ(t), θ(t),Ω(t), η(t)) = arg maxF (t)(Ψ, θ,Ω, η).
We defer closed form expressions for the log densities of the augmented posterior
(i.e., log π(Ψ, θ,Ω, η, δ|Y )) and the surrogate objective function (i.e., F (t)(Ψ, θ,Ω, η))
to Equations S1.5 and S1.6 in the Supplementary Materials (Shen et al., 2024).

Given Ω and η, the indicators δk,k′ are conditionally independent, making it simple
to derive a closed form expression for the surrogate objective F (t). Unfortunately, max-
imizing F (t) is still difficult. Consequently, we carry out two conditional maximizations,
first optimizing with respect to (Ψ, θ) while holding (Ω, η) fixed, and then optimizing
with respect to (Ω, η) while holding (Ψ, θ) fixed. That is, in the second step of each
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iteration of our algorithm, we set

(Ψ(t), θ(t)) = arg max
Ψ,θ

F (t)(Ψ, θ,Ω(t−1), η(t−1)) (3.3)

(Ω(t), η(t)) = arg max
Ω,η

F (t)(Ψ(t), θ(t),Ω, η). (3.4)

In summary, we propose finding the MAP estimate of (Ψ, θ,Ω, η) using an Expectation
Conditional Maximization (ECM; Meng and Rubin, 1993) algorithm.

The objective function F (t)(Ψ, θ,Ω(t−1), η(t−1)) in Equation (3.3) can be written as
the sum of a function of Ψ alone and a function of θ alone. So we separately compute Ψ(t)

and θ(t) while fixing (Ω, η) = (Ω(t−1), η(t−1)). The objective function in Equation (3.4)
is similarly separable and we separately compute Ω(t) and η(t) while fixing (Ψ, θ) =
(Ψ(t), θ(t)). Computing θ(t) and η(t) is relatively straightforward: we compute θ(t) using
Newton’s method and there is a closed form expression for η(t).

The main computational challenge lies in computing each of Ψ(t) and Ω(t) condi-
tionally given all other parameters. At a high level, we compute Ψ(t) with a cyclical
coordinate descent algorithm that blends soft- and hard-thresholding. Essentially, each
entry ψj,k is thresholded at a level determined by the conditional posterior probability
that ψj,k was drawn from the slab distribution; see Section S1.3 of the Supplementary
Materials (Shen et al., 2024) for details. We compute Ω(t) by solving an optimization
problem that is similar to the graphical LASSO (GLASSO; Friedman et al., 2008) objec-
tive but includes additional trace terms. We solve that problem by forming a quadratic
approximation of the objective and following a Newton direction for a carefully chosen
step size. See Sections S1.4 and S2 of the Supplementary Materials (Shen et al., 2024)
for the detailed derivation of the algorithm used to update Ω and a proof that the
algorithm converges to the unique optimum.

Implementation considerations

The ability of the proposed ECM algorithm to identify the MAP critically depends
on two sets of hyperparameters and the initial estimate Ψ(0 and Ω(0). The first set of
hyperparameters consists of the spike and slab penalties λ0, λ1, ξ0 and ξ1. The second
set, containing aθ, bθ, aη, and bη, encode our initial beliefs about the overall proportion of
non-negligible entries in Ψ and Ω. In this section, we recommend default hyperparameter
settings and sketch a particular path-following scheme that provides good initialization
for the ECM algorithm. We have found these recommendations to work very well in
practice and present a systematic hyperparameter sensitivity analysis in Section 3.1 of
the Supplementary Materials (Shen et al., 2024).

It is initially tempting to run our ECM algorithm with very small slab penalties λ1
and ξ1 and very large spike penalties λ0 and ξ0 so that the slabs cover a wide range
of non-zero parameter values while the spikes are supported only on narrow ranges of
extremely small parameter values. Unfortunately, our algorithm was quite sensitive to
initialization with such choices. In fact, in early experiments with synthetic data, with
very large spike and very small slab penalties, the algorithm tended to estimate Ψ with
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a zero matrix and Ω with a diagonal matrix with very small diagonal entries, unless it
was initialized close to the true data-generating parameter values. Such initialization
is, of course, impossible in practice. To overcome this challenge, rather than run cgSSL
with a single set of spike and slab penalties, we run our ECM algorithm along sequences
of increasing values of the spike-penalties using warm-starts.

Specifically, we fix the slab penalties λ1 and ξ1 and specify grids of L increasing spike
penalties Iλ = {λ(1)

0 < · · · < λ
(L)
0 } and Iξ = {ξ(1)

0 < · · · < ξ
(L)
0 }. We then run cgSSL

with warm-starts for each combination of spike penalties, yielding a set of posterior
modes {(Ψ(s,t), θ(s,t),Ω(s,t), η(s,t))} indexed by the choices (λ(s)

0 , ξ
(t)
0 ). To warm-start

the estimation of the mode corresponding to (λ(s)
0 , ξ

(t)
0 ), we first compute the modes for

(λ(s−1)
0 , ξ

(t−1)
0 ), (λ(s)

0 , ξ
(t−1)
0 ) and (λ(s−1)

0 , ξ
(t)
0 ). Then we initialize the ECM algorithm

from the mode with highest density (computed using (λ(s)
0 , ξ

(t)
0 )).

Our path-following strategy mirrors one first introduced in Ročková and George
(2014) and subsequently deployed by many others (see, e.g., Ročková and George, 2016,
2018; Moran et al., 2019, 2021). In fact, our strategy exactly matches the one used
by Deshpande et al. (2019), who fit sparse versions of the model in Equation (1.1) by
placing spike-and-slab LASSO priors on the βj,k’s and ωk,k′ ’s. Taking a cue from that
literature, we refer to our strategy as dynamic posterior exploration (DPE).

It is important to stress that the goal of DPE is not to tune or optimize hyperparam-
eters. Instead, we use DPE to identify a good initialization from which to launch our
algorithm with large spike penalties. It specifically does so by computing L2 posterior
modes, one for each combination of spike penalties. We can additionally think of DPE
as passing an initial estimate of Ψ and Ω through a sequence of increasingly discern-
ing filters. As the spike penalties increase, DPE filters out more and more negligible
parameter values, producing sparser and sparse estimates of Ψ and Ω.

In practice, we recommend setting λ1 = 1 and ξ1 = 0.01n and letting Iλ contain
ten evenly spaced values ranging from 10 to n and Iξ contain ten evenly spaced values
from 0.1n to n. We further recommend reporting the final mode computed by DPE,
corresponding to the largest spike penalties, as a final parameter estimate. With these
choices, the sequence of posterior modes computed by DPE appeared to stabilize in the
underlying parameter space. That is, for large penalty values λ

(s)
0 , λ

(s′)
0 , ξ

(t)
0 , and ξ

(t′)
0 ,

we have (Ψ(s,t), θ(s,t),Ω(s,t), η(s,t)) ≈ (Ψ(s′,t′), θ(s′,t′),Ω(s′,t′), η(s′,t′)); see Figure S2 in
the Supplementary Materials (Shen et al., 2024) for an illustration.

While experimenting with different penalty choices, we observed that when the spike
and slab penalties were approximately equal and small, our ECM algorithm would often
return very dense estimates of Ψ and diagonal estimates of Ω with large diagonal entries.
Essentially, when the spike and slab distributions are not too different and when neither
encourages strong shrinkage, our ECM algorithm tended to overfit the data using a dense
Ψ, leaving very little residual variation to be quantified with Ω. We found that we could
detect such pathological behavior by examining the condition number of the matrix
Y Ω−XΨ. To avoid propagating dense Ψ’s and diagonal Ω’s through DPE, we terminate
our ECM algorithm early whenever the condition number of Y Ω−XΨ exceeds 10n. We
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then set the corresponding Ψ(s,t) = 0p×q and Ω(s,t) = Iq×q and continue the dynamic
exploration from that point. Though it is not foolproof, we have found this heuristic
to work well in practice. We also note that Moran et al. (2019) utilized a similar early
termination strategy in the single-outcome high-dimensional linear regression setting
with unknown variance.

To further discourage our ECM algorithm from over-fitting the data with a dense
Ψ, we recommend the default priors θ ∼ Beta(1, pq) and η ∼ Beta(1, q). These priors
concentrate probability around models with very few direct covariate effects on the
outcomes and very few conditional dependencies between outcomes, after adjusting for
the covariates. These choices mirror similar prior choices made by Ročková and George
(2018) and Deshpande et al. (2019).

To summarize, we recommend setting aθ = 1, bθ = pq, aη = 1, and bη = q, and
running DPE with λ1 = 1 and ξ1 = 0.01n and letting Iλ contain ten evenly spaced
values ranging from 10 to n and Iξ contain ten evenly spaced values from 0.1n to n. We
implemented these choices as the default options in the R (R Core Team, 2022) package
mSSL, which is available at https://github.com/YunyiShen/mSSL. In Section S3.1 of
the Supplementary Materials (Shen et al., 2024), we assess the sensitivity of our DPE
implementation to (i) the range of spike penalty values in the grids Iλ and Iξ; (ii) the
size of the grids Iλ and Iξ; and the choice of prior for θ and η. We found that the
final point estimates returned by our default implementation displayed better recovered
the supports of Ψ and Ω than those found with larger or smaller penalty values. We
additionally did not observe much sensitivity to the number of spike penalties in the
grids Iλ and Iξ nor to the choice of priors for θ and η.

Uncertainty quantification via the weight Bayesian bootstrap

The cgSSL posterior distribution is not log-concave, rendering efficient MCMC or impor-
tance sampling computationally prohibitive. Newton et al. (2021)’s weighted Bayesian
bootstrap, on the other hand, offers a computationally practical and embarrassingly
parallel alternative. At a high-level, the procedure works by repeatedly solving a MAP
estimation problem that randomly re-weights every observation’s contribution to the
log-likelihood and the log-prior density. We specifically use the following two-step pro-
cedure. In the first step, we run cgSSL with DPE and obtain point estimates Ψ̂, θ̂, Ω̂,
and η̂. Then in the second step, we repeatedly solve the single optimization problem

arg min
Ψ,Ω,

{
n∑

i=1
wi�i(Ψ,Ω) + w0

[
log π(L)

ψ (Ψ) + log π(L)
ω (Ω)

]}
, (3.5)

where w = (w0, w1, . . . , wn) is a vector of independent Gamma(1, 1) weights, π(L)(Ψ) is
the conditional prior density of Ψ|θ = θ̂(L,L) with λ0 = λ

(L)
0 , and π(L)(Ω) is analogously

defined. Note, we do not re-run the full DPE procedure to generate each bootstrap
sample. Instead, we fix the values of θ and η and also warm-start our optimization from
the stabilized Ψ and Ω estimates.

https://github.com/YunyiShen/mSSL
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4 Asymptotic theory of cgSSL
If the Gaussian chain graph model in Equation (1.4) is well-specified — that is, if our
data are truly generated according to the model — will the posterior distribution of
Ψ and Ω collapse to a point-mass at the true data generating parameters as n → ∞?
In this section, we answer the question affirmatively: under some mild assumptions
and with some slight modifications, the cgSSL posterior concentrates around the truth.
We further establish the rate of concentration, which quantifies the speed at which
the posterior distribution shrinks to the true data generating parameters. We begin by
briefly reviewing our general proof strategy before precisely stating our assumptions
and results. Proofs of our main results are available in Section S5 of the Supplementary
Materials (Shen et al., 2024).

4.1 Proof strategy

Following Ning et al. (2020) and Bai et al. (2020), we first showed that the posterior of
(Ψ,Ω) concentrates in log-affinity. Posterior concentration of the individual parameters
followed as a consequence. To show that the posterior concentrates in log-affinity, we
verified the three conditions of Theorem 8.23 of Ghosal and van der Vaart (2017).
First, we confirmed that the cgSSL prior places enough prior probability mass in small
neighborhoods around every possible choice of (Ψ,Ω). This was done by verifying that
for each (Ψ,Ω), the prior probability contained in a small Kullback-Leibler ball around
(Ψ,Ω) can be lower bounded by a function of the ball’s radius. Then we studied a
sequence of likelihood ratio tests defined on sieves of the parameter space that can
correctly distinguish between parameter values that are sufficiently far away from each
other in log-affinity. In particular, we bounded the error rate of such tests and then
bounded the covering number of the sieves.

Ning et al. (2020) studied the sparse marginal regression model in Equation (1.1)
instead of the sparse chain graph. Although these are somewhat different models, our
overall proof strategy is quite similar to theirs. However, there are important techni-
cal differences. First, they placed a prior on Ω’s eigendecomposition while we placed
an arguably simpler and more natural element-wise prior on Ω. The second and more
substantive difference is in how we bound the covering number of sieves of the under-
lying parameter space. Because they specified exactly sparse priors on the elements
of B = ΨΩ−1, it was enough for them to carefully bound the covering number of
exactly low-dimensional sets of the form A × {0}r where A is some subset of a multi-
dimensional Euclidean space and r > 0 is a positive integer. In contrast, because we
specified absolutely continuous priors on the elements of Ψ, we had to cover “effectively
low-dimensional” sets of the form A× [−δ, δ]r for small δ > 0. Our key lemma, Lemma
S5 of the Supplementary Materials (Shen et al., 2024), provides sufficient conditions
on δ for bounding the ε-packing number of effectively low-dimensional sets using the
ε′-packing number of A for a carefully chosen ε′ > 0.
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4.2 Contraction of cgSSL

In order to establish our posterior concentration results, we first assume that the data
were generated according to a sparse Gaussian chain graph model with true parameter
Ψ0 and Ω0. We additionally modify our prior on Ω by truncating it to the set {Ω 
 τ} for
some small τ that does not depend on n. Finally, we make the following assumptions
about the spectra of Ψ0 and Ω0 and on the dimensions n, p, and q. Note that for
sequences {an} and {bn}, we write an � bn to mean that there is some constant C
independent of n such that an ≤ Cbn.

A1 Bounded operator norms: Ψ0 ∈ T0 = {Ψ : |||Ψ|||2 < a1} and Ω0 ∈ H0 = {Ω :
eig(Ω) ⊆ [1/b2, 1/b1]} where |||·||| is the operator norm, eig is the set of eigenvalues,
and a1, b1, b2 > 0 are fixed positive constants not depending on n.

A2 Dimensionality: We assume that log(n) � log(q); log(n) � log(p); and

max{p, q, sΩ
0 , s

Ψ
0 } log(max{p, q})/n → 0,

where sΩ
0 and sΨ

0 are the number of non-zero free parameters in Ω and Ψ.

A3 Tuning the Ψ prior: We assume that (1 − θ)/θ ∼ (pq)2+a′ ; λ0 ∼ max{n, pq}2+b′ ;
and λ1 � 1/n where a′ > 0 and b′ > 1/2 are fixed constants not depending on n

A4 Tuning the Ω prior: We assume that (1 − η)/η ∼ max{Q, pq}2+a; ξ0 ∼
max{Q, pq, n}4+b; and ξ1 � 1/max{Q,n}, where Q = q(q − 1)/2 and a, b > 0
are fixed constants not depending on n.

Before proceeding, we highlight two key differences between the above assumptions
and model introduced in Section 3.1. Although the prior in Section 3.1 restricts Ω to
the positive-definite cone, our modified prior and Assumption A1 bound the smallest
eigenvalue of Ω away from zero. The stronger assumption ensures that the entries of
ΨΩ−1 do not diverge in our theoretical analysis and parallels those made by Gan et al.
(2019a), Ning et al. (2020), and Sagar et al. (2021). Based on these works and ours, we
conjecture that bounded eigenvalue assumptions may in fact be necessary. Additionally,
like Ročková and George (2018) and Gan et al. (2019a), we restricted our theoretical
analysis to the setting where the proportion of non-negligible parameters, θ and η, are
fixed and known (Assumptions A3 and A4).

Theorem 1 (Posterior contraction). Under Assumptions A1–A4, there is a constant
M1 > 0 not depending on n such that

sup
Ψ∈T0,Ω∈H0

E0Π
(
Ψ : ||X(ΨΩ−1 − Ψ0Ω−1

0 )||2F ≥ M1nε
2
n|Y1, . . . , Yn

)
−→ 0 (4.1)

sup
Ψ∈T0,Ω∈H0

E0Π
(
Ω : ||Ω − Ω0||2F ≥ M1ε

2
n|Y1, . . . , Yn

)
−→ 0 (4.2)

where εn =
√

max{p, q, sΩ
0 , s

Ψ
0 } log(max{p, q})/n. Note that εn → 0 as n → ∞.
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A key step in proving Theorem 1 is Lemma 1. In order to state this lemma, we denote
the effective dimensions of Ψ and Ω by |νψ(Ψ)| and |νω(Ω)|. The effective dimension of
Ψ (resp. Ω) counts the number of entries (resp. off-diagonal entries in the lower-triangle)
whose absolute value exceeds the intersection point of the spike and slab prior densities.

Lemma 1 (Dimension recovery). For a sufficiently large constant C ′
3 > 0, we have:

sup
Ψ∈T0,Ω∈H0

E0Π(Ψ : |νψ(Ψ)| > C ′
3s

	|Y1, . . . , Yn) → 0 (4.3)

sup
B∈T0,Ω∈H0

E0Π (Ω : |νω(Ω)| > C ′
3s

	|Y1, . . . , Yn) → 0 (4.4)

where s	 = max{p, q, sΩ
0 , s

Ψ
0 }.

Lemma 1 guarantees that the cgSSL posterior does not grossly overestimate the
number of non-zero entries in Ψ and Ω.

Note that the result in Equation (4.1) shows that the vector XΨΩ−1 converges to the
vector of evaluations of the true regression function Ω−1

0 Ψ�
0 x. Importantly, apart from

Assumption A2 about the dimensions of X, Theorem 1 does not require any assumptions
about the design matrix X. The contraction rates for Ψ and ΨΩ−1, however, depend
critically on a restricted eigenvalue of X, which we define as

φ2(s) = inf
A∈Rp×q :0≤|ν(A)|≤s

{
‖XA‖2

F

n‖A‖2
F

}
.

Corollary 1 (Regression coefficients recovery). Under Assumptions A1–A4, there is a
constant M ′ > 0 not depending on n such that

sup
Ψ∈T0,Ω∈H0

E0Π
(
||ΨΩ−1 − Ψ0Ω−1

0 ||2F ≥ M ′ε2n
φ2(sΨ

0 + C ′
3s

	)

)
→ 0 (4.5)

sup
Ψ∈T0,Ω∈H0

E0Π
(
||Ψ − Ψ0||2F ≥ M ′ε2n

min{φ2(sΨ
0 + C ′

3s
	), 1}

)
→ 0. (4.6)

Corollary 1 shows that the posterior distribution of ΨΩ−1 can contract at a faster or
slower rate than the posterior distributions of XΨΩ−1 and Ω, depending on the design
matrix. In particular, when X is poorly conditioned, we might expect the rate to be
slower. In contrast, the term min{φ2(sΨ

0 +C ′
3s

	), 1} appearing in the denominator of the
rate in Equation (4.6) implies that the posterior distribution of Ψ cannot concentrate
at a faster rate than the posterior distributions of ΨΩ−1 and Ω, regardless of the design
matrix. To develop some intuition about this phenomenon, notice that

Ψ − Ψ0 = (ΨΩ−1 − Ψ0Ω−1
0 )Ω + (Ψ0Ω−1

0 (Ω − Ω0)Ω−1)Ω.

Roughly speaking, the decomposition suggests that in order to estimate Ψ well, we must
estimate both Ω and ΨΩ−1 well. That is, estimating Ψ is at least as hard, statistically,
as estimating Ω and ΨΩ−1. Taken together, Corollary 1 suggests that while a carefully
constructed design matrix can improve estimation of the matrix of marginal effects,
B = ΨΩ−1, it cannot generally improve estimation of the matrix of direct effects Ψ.
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5 Synthetic experiments
We performed a simulation study to assess how well cgSSL with DPE (cgSSL-DPE)
(i) recovers the supports of Ψ and Ω and (ii) estimates each matrix. We simulated
several synthetic datasets of various dimensions and with different sparsity patterns
in Ω (Figure 2) from the model in Equation (1.4). We compared cgSSL to several
competitors: a fixed-penalty method (cgLASSO), which uses 10-fold cross-validation to
select a single penalty λ for the entries in Ψ and a single fixed penalty ξ for the entries in
Ω; Shen and Solís-Lemus (2021)’s CAR-LASSO procedure (CAR), which puts a common
Laplace prior on the entries in Ψ and a common Laplace prior entries in Ω; Shen and
Solís-Lemus (2021)’s adaptive CAR-LASSO (CAR-A), which puts individualized Laplace
priors on the entries in Ψ and Ω; Deshpande et al. (2019)’s mSSL procedure that places
spike-and-slab LASSO priors on the entries of B and Ω in Equation (1.1); and Consonni
et al. (2017)’s Objective Bayes procedure (OBFB).

Before proceeding, we note that mSSL is inherently misspecified as it assumes B =
ΨΩ−1 is sparse instead of Ψ. Nevertheless, we included mSSL in our experiments to
investigate how misspecifying the mean structure affects our ability to recover Ω. OBFB
is similarly misspecified, albeit to a somewhat lesser extent, as it assumes that B (and
consequently Ψ) is row-sparse. Unfortunately, the implementation of OBFB only returns
posterior samples of indicators encoding which rows of B and which entries in Ω are
non-zero. We computed a point-estimate of Ω′s support using the posterior mode of
the relevant indicators. We were unable, however, to reliably reconstruct Ψ’s support
from OBFB’s output. This is because a zero-entry in Ψ can occur when a non-zero row
of B is orthogonal to a non-zero column in Ω. For these reasons, we only report OBFB’s
performance in recovering the support of Ω.

Across all choices of dimension and Ω, we found that cgSSL-DPE achieved somewhat
lower sensitivity but much higher precision in estimating the supports of both Ψ and Ω
than the competing methods. This means that while cgSSL-DPE tended to return fewer
non-zero parameter estimates than the other methods, we can be much more certain
that those parameters are truly non-zero. Put another way, although the other methods
can recover more of the truly non-zero signal, they do so at the expense of making many
more false positive identifications in the supports of Ψ and Ω than cgSSL-DPE.

5.1 Simulation design

We simulated data with three different dimensions (n, p, q) = (100, 10, 10), (100, 20, 30),
and (400, 100, 30). For each choice of (n, p, q), we considered seven different Ω’s: (i) an
AR(1) model for Ω−1 so that Ω is tri-diagonal; (ii) an AR(2) model for Ω−1 so that
ωk,k′ = 0 whenever |k − k′| > 2; (iii) a block model in which Ω is block-diagonal with
two dense q/2 × q/2 diagonal blocks; (iv) a star graph where the off-diagonal entry
ωk,k′ = 0 unless k or k′ is equal to 1; (v) a small-world network; (vi) a tree network;
and (viii) dense model with all off-diagonal elements ωk,k′ = 2.

In the AR(1) model we set (Ω−1)k,k′ = 0.7|k−k′| so that ωk,k′ = 0 whenever |k−k′| >
1. In the AR(2) model, we set ωk,k = 1, ωk−1,k = ωk,k−1 = 0.5, and ωk−2,k = ωk,k−2 =
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Figure 2: Supports of each Ω for q = 10 (top) and corresponding graph (bottom). Gray
cells in top row indicate non-zero entries ωk,k′ and white cells indicate zeros.

0.25. For the block model, we partitioned Σ = Ω−1 into 4 q/2 × q/2 blocks and set all
entries in the off-diagonal blocks of Σ to zero. We then set σk,k = 1 and σk,k′ = 0.5 for
1 ≤ k �= k′ ≤ q/2 and for q/2 + 1 ≤ k �= k′ ≤ q. For the star graph, we set ωk,k = 1,
ω1,k = ωk,1 = 0.1 for each k > 1, and set the remaining off-diagonal elements of Ω equal
to zero. For the small-world and tree networks, we first generated an appropriate random
graph and then drew Ω from a G-Wishart distribution (Roverato, 2002; Lenkoski, 2013)
with three degrees of freedom and an identity scale matrix. We generated the small-
world graph using the Watts-Strogatz (Watts and Strogatz, 1998) model with a single
community and rewiring probability of 0.1. We generated the tree graph by running a
loop-erased random walk on a complete graph.

These seven specifications of Ω (top row of Figure 2) correspond to rather different
underlying graphical structure among the outcomes (bottom row of Figure 2). The
AR(1) model, for instance, represents an extremely sparse but regular structure while
the AR(2) model is somewhat less sparse. While the star model and AR(1) model
contain the same number of edges, the underlying graphs have markedly different degree
distributions. Compared to the AR(1), AR(2), and star models, the block model is
considerably denser. We included a dense Ω to assess how well all of the methods
perform in a misspecified regime.

In total, we considered 21 combinations of dimensions (n, p, q) and Ω. We generated
Ψ by randomly selecting 20% of entries to be non-zero and drawing the non-zero entries
uniformly from [−2,2]. For each combination of (n, p, q),Ω and Ψ, we generated 100
synthetic datasets from the Gaussian chain graph model in Equation (1.4). The design
matrix X contained independent standard normal entries.

5.2 Results

To assess estimation performance, we computed the Frobenius norm between the esti-
mated matrices and the true data generating matrices. We additionally computed the
coverage of our 95% bootstrap intervals, averaged over all entries in Ψ and Ω (cgSSL-
dpe+BB) To assess the support recovery performance, we counted the number of ele-
ments in each of Ψ and Ω that were (i) correctly estimated as non-zero (true positives;
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TP); (ii) correctly estimated as zero (true negatives; TN); (iii) incorrectly estimated
as non-zero (false positives; FP); and (iv) incorrectly estimated as zero (false nega-
tives; FN). We report the sensitivity (TP/(TP + FN)) and precision (TP/(TP + FP)).
We also report the sensitivity and precision of estimating the supports of Ψ and Ω by
checking whether zero is contained in the bootstrap interval for each ψj,k and ωk,k′ .
Generally speaking, we prefer methods with high sensitivity and high precision. High
sensitivity indicates that the method has correctly estimated most of the true non-zero
parameters as non-zero. High precision, on the other hand, indicates that most of the
estimated non-zero parameters are truly non-zero. For brevity, we only report results
for the (n, p, q) = (400, 100, 30) setting in Table 1. Results for the other dimensions were
similar; see Tables S1 and S2 of the Supplementary Materials (Shen et al., 2024).

We performed all our experiments in a shared high-throughput computing environ-
ment (Center for High Throughput Computing, 2006) on nodes with 5 GB RAM and 2
CPU cores running R (v. 4.13; R Core Team, 2022). We ran cgSSL-DPE using the default
hyperparameter settings recommended in Section 3.2. Similarly, we ran mSSL using the
default settings that were recommended in Deshpande et al. (2019). For each MCMC
method (CAR, CAR-A, and OFBF), we ran four Markov chains for 10,000 iterations each,
discarding the first 5,000 samples from each as “burn-in,” and retaining all subsequent
samples. In general, although the simulated Markov chains did not mix (see below for
more discussion), we nevertheless report the results based on the 20,000 obtained sam-
ples. Because cgLASSO’s cross-validation step often did not finish within 72 hours (the
maximum time limit set by our cluster) when run serially, we parallelized our cgLASSO
implementation, allowing our cluster to schedule separate jobs running each combina-
tion of fold and penalty. Because the scheduler sometimes delayed running certain jobs,
we were unable to reliably time cgLASSO and do not report its runtimes in Table 1.
Extrapolating from preliminary runs, however, we estimate that running one full fold
would take around ten hours.

In terms of identifying non-zero direct effects (i.e., estimating the support of Ψ),
cgLASSO consistently achieved the highest sensitivity. But, as the precision results in-
dicate, the majority of cgLASSO’s “discoveries” were in fact false positives. On further
inspection, we determined that such behavior was the result of the cross-validation step
in cgLASSO, which tended to select very small penalty values that promoted very lit-
tle shrinkage. The other fixed penalty method, CAR, similarly displayed high sensitivity
and low precision. In contrast, methods that deployed adaptive penalties (CAR-A and
cgSSL-DPE), displayed higher precision in estimating the support of Ψ. In fact, at least
for estimating the support of Ψ, cgSSL-DPE made no false positives in the vast majority
of simulation replications.

We observed essentially the same phenomenon for Ω: although cgSSL-DPE generally
returned fewer non-zero estimates of ωk,k′ , the vast majority of these estimates were true
positives. In a sense, the fixed penalty methods (cgLASSO and CAR) cast a very wide
net when searching for non-zero signal in Ψ and Ω, leading to large number of false
positive identifications in the supports of these matrices. Adaptive penalty methods, on
the other hand, were much more discerning. Interestingly, mSSL recovered Ω’s support
substantially better than OBFB. We suspect that the discrepancy stems from the fact
that mSSL deploys adaptive penalization while OBFB utilizes a fixed Wishart prior for Ω.
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Ψ recovery Ω recovery Runtime
Method SEN PREC FROB SEN PREC FROB Time (min)

AR(1) model
cgLASSO 1 0.2 0.07 0.94 0.46 28.0 –
CAR 0.82 0.46 0.02 1 0.27 2.2 472.7
CAR-A 0.86 0.73 0.01 1 0.89 7.3 564.8
OBFB – – – 0.07 0.08 – 54.0
cgSSL 0.87 0.99 0.00 1 0.78 3.4 26.7
cgSSL+BB 0.88 0.99 – 1 0.83 – 55.4
mSSL 0.95 0.25 0.06 1 0.82 9.9 51.6

AR(2) model
cgLASSO 1 0.2 0.2 0.79 0.63 10.8 –
CAR 0.85 0.5 0.01 0.98 0.49 0.4 493.8
CAR-A 0.89 0.77 0.01 1 0.94 1.2 458.1
OBFB – – – 0.06 0.13 – 49.6
cgSSL 0.92 1 0.00 1 0.47 0.3 13.0
cgSSL+BB 0.92 1 – 1 0.61 – 30.3
mSSL 0.99 0.23 0.03 1 0.95 2.5 0.08

Block model
cgLASSO 1 0.20 0.4 0.87 0.97 10.1 –
CAR 0.84 0.46 0.02 0.71 0.76 3.4 480.6
CAR-A 0.88 0.70 0.01 0.75 0.99 4.1 512.4
OBFB – – – 0.06 0.50 – 74.5
cgSSL 0.86 0.99 0.01 0.98 0.98 1.4 17.3
cgSSL+BB 0.88 0.99 – 0.99 0.98 – 42.6
mSSL 0.99 0.21 0.1 0.44 0.99 28.4 2.0

Star model
cgLASSO 0.93 0.83 0.01 0.53 0.59 4.7 –
CAR 0.89 0.48 0.01 0.73 0.25 0.6 493.2
CAR-A 0.90 0.70 0.01 0.87 0.74 1.1 431.8
OBFB – – – 0.06 0.08 – 65.2
cgSSL 0.89 1 0.00 1 0.90 0.3 1.1
cgSSL+BB 0.89 1 – 1 0.90 – 3.7
mSSL 0.90 0.85 0.02 1 1 0.7 0.1

Small world model
cgLASSO 0.99 0.20 0.6 0.38 0.49 468.1 –
CAR 0.82 0.43 0.03 0.92 0.22 10.7 633.7
CAR-A 0.85 0.68 0.01 0.92 0.79 29.3 431.5
OBFB – – – 0.06 0.08 – 47.7
cgSSL 0.82 0.99 0.01 0.95 0.78 25.8 359.7
cgSSL+BB 0.82 0.99 – 0.95 0.78 – 749.6
mSSL 0.88 0.34 0.1 0.58 0.7 122.8 10.9

Tree model
cgLASSO 0.99 0.20 0.6 0.69 0.48 381.0 –
CAR 0.79 0.46 0.03 0.95 0.24 14.2 716.1
CAR-A 0.84 0.72 0.02 0.95 0.86 22.7 519.9
OBFB – – – 0.07 0.08 – 44.7
cgSSL 0.84 0.99 0.01 0.97 0.61 18.8 398.6
cgSSL+BB 0.84 0.99 – 0.96 0.61 – 1139.1
mSSL 0.92 0.28 0.2 0.9 0.76 25.1 28.3

Dense model
cgLASSO – – – – – – –
CAR 0.87 0.39 0.01 0 – 964.2 522.7
CAR-A 0.88 0.52 0.01 0 – 970.0 431.8
OBFB – – – 0.06 1 – 53.8
cgSSL 0.86 0.98 0.04 0.26 1 918.4 1.7
cgSSL+BB 0.86 0.98 – 0.24 1 – 10.2
mSSL 0.96 0.27 0.06 0.18 1 960.0 8.7

Table 1: Sensitivity, precision, and Frobenius error for Ψ and Ω when (n, p, q) =
(400, 100, 30). For each Ω, the best performance is bold-faced. For dense Ω, cgLASSO
with tuned penalties did not converge within 72 hours.
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In terms of estimation performance, with the exception of the dense Ω setting, the
fixed penalty methods tended to have much larger Frobenius error than the adaptive
penalty methods. Interestingly, for the six sparse Ω’s, no method had high Frobenius for
Ω but low Frobenius error for Ψ. This finding corroborates our intuition about Corol-
lary 1: in order to estimate Ψ well, we must estimate Ω well. Additionally, our bootstrap
intervals for individual parameters were reasonably well-calibrated and achieved near-
nominal coverage (0.9 for Ψ and Ω). Using these intervals for support recovery was
comparable to cgSSL-DPE.

Across all choices of Ω, cgSSL-DPE was faster than the two MCMC methods. As
alluded to above, the Markov chains simulated by those methods did not appear to
have mixed, even after 10,000 iterations: across our experiments, about 25% of the
ωk,k′ ’s had effective sample sizes less than 1,000 and around 5% of the parameters had
marginal R̂ estimates in excess of 1.1. Interestingly, mSSL was sometimes faster than
cgSSL-DPE, depending on Ω.

6 Re-analysis of the gut microbiome data with cgSSL
Claesson et al. (2012) studied the gut microbiota of elderly adults using data sequenced
from fecal samples taken from 178 subjects. They were primarily interested in under-
standing differences in the gut microbiome composition across several residence types
(in the community, day-hospital, rehabilitation, or in long-term residential care) and
across several different types of diet. They found that the gut microbiomes of residents
in long-term care facilities were considerably less diverse than those of residents dwelling
in the community. They additionally reported that diet had a large marginal effect on
gut microbe diversity but they did not examine direct effects, which might align more
closely with the underlying biological mechanism. We re-analyzed their data using the
cgSSL to estimate the direct effects of each type of diet and residence type on gut
microbiome composition. Before proceeding, we note that while raw microbiome data
consists of counts, we used cgSSL to model the logarithms of relative abundances of
each taxa. Section S4 of the Supplementary Materials (Shen et al., 2024) describes how
we pre-processed the raw 16s-rRNA data to obtain these log-abundances.

In all, the dataset contains n = 178 observations of p = 11 predictors and q = 14
outcomes. We computed two graphs for these data, which are shown in Figure 3. In
Figure 3a, edges correspond to the estimated non-zero entries of Ψ and Ω returned by
cgSSL-DPE. Edges in Figure 3b instead correspond to those parameters whose boot-
strapped uncertainty intervals did not contain zero.

In both graphs in Figure 3, we observed many more edges between the different
species (corresponding to non-zero ωk,k′ ’s) than edges between covariates and species
(corresponding to non-zero ψj,k’s). In both graphical models, we estimated that per-
cutaneous endoscopic gastronomy (PEG), in which a feeding tube is inserted into the
abdomen, had a direct effect on the abundance of Veillonella, which is involved in lac-
tose fermentation. Our findings reassuringly align with those in Takeshita et al. (2011),
who reported a negative effect of PEG on this genus. Although cgSSL-DPE addition-
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Figure 3: Graphical models for Claesson et al. (2012)’s gut microbiome dataset esti-
mated by cgSSL-DPE (a) and cgSSL-DPE followed by the weighted Bayesian bootstrap
(b). Triangles correspond to covariates and circles correspond to responses. Edges cor-
responding to non-zero ψj,k’s are colored red.

ally identified staying in a day hospital as having a direct effect on Caloramator, the
corresponding bootstrap interval contained zero.

Our results suggest that the large marginal effects reported by Claesson et al. (2012)
are a by-product of only a few direct effects and substantial residual conditional depen-
dence between species. For instance, because PEG has a direct effect on Veillonella,
which is conditionally correlated with Clostridium, Butyrivibrio, and Blautia, PEG dis-
plays a marginal effect on each of these other genus. In this way, the cgSSL can provide
a more nuanced understanding of the underlying biological mechanism than simply es-
timating the matrix of marginal effects B = ΨΩ−1. We note, however, that Claesson
et al. (2012)’s dataset does not contain an exhaustive set of environmental and patient
life-style predictors. Accordingly, our re-analysis is limited in the sense that were we
able to incorporate additional predictors, the estimated graphical model may be quite
different. Further, although we followed a relatively standard pre-processing workflow,
we anticipate that our overall findings will be somewhat sensitive to some of the choices
made in converting the raw microbiome data into the log abundances that we modeled.

7 Discussion
In the Gaussian chain graph model in Equation (1.4), Ψ is a matrix containing all of
the direct effects of p predictors on q outcomes while Ω is the residual precision ma-
trix that encodes the conditional dependence relationships between the outcomes that
remain after adjusting for the predictors. We have introduced the cgSSL procedure for
obtaining simultaneously sparse estimates of Ψ and Ω. In our procedure, we formally
specify spike-and-slab LASSO priors on the free elements of Ψ and Ω and use an ECM
algorithm to maximize the posterior density. Our ECM algorithm iteratively solves a
sequence of penalized maximum likelihood problem with self-adaptive penalties. Across
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several simulated datasets, cgSSL demonstrated excellent support recovery and esti-
mation performance, substantially out-performing competitors that deployed constant
penalties. We further characterized the asymptotic properties of cgSSL posteriors, es-
tablishing posterior contraction rates under relatively mild assumptions. To the best
of our knowledge, these are the first posterior contraction results for sparse Gaussian
chain graph models with element-wise priors.

Our main asymptotic result (Theorem 1) notwithstanding, quantifying the finite
sample uncertainty around the MAP estimate returned by our cgSSL procedure re-
mains a challenging problem. We found that Newton et al. (2021)’s weighted Bayesian
bootstrap can produce uncertainty intervals for individual parameters with close-to-
nominal frequentist coverage. Although the bootstrap does not exactly sample from the
posterior, randomly re-centering the prior densities in Equation (3.5), as suggested by
Nie and Ročková (2022), may improve the approximation. Understanding the extent to
which solving randomly re-weighted and shifted MAP estimation problems faithfully
approximate posterior sampling remains an important open question.

Although our motivating example involves only continuous outcomes, many applica-
tions feature outcomes of mixed type — that is both continuous and discrete outcomes.
We anticipate that cgSSL could be extended to such settings using a strategy similar to
that in Kowal and Canale (2020). Specifically, one would model the discrete outcomes
as a truncated and transformed latent Gaussian vector and fit a sparse Gaussian chain
graphical model to the latent vector. The main challenge of such an extension lies in
adaptively learning an appropriate transformation.

Supplementary Material
Supplementary Material for “Estimating sparse direct effects in multivariate regression
with the spike-and-slab LASSO” (DOI: 10.1214/24-BA1430SUPP; .pdf). Full derivation
of the cgSSL procedure, additional simulation study results, and proofs of our asymp-
totic results
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