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Their Impact on Seasonal Adjustment in the
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Anindya Roy∗,† and Tucker S. McElroy†

Abstract. A conventional approach to the extraction of latent components in a
time series is to first model extreme values (including level shifts and seasonal
outliers) as fixed effects, followed by their removal. Then the extreme-value ad-
justed series can be filtered using linear (Gaussian) techniques. A drawback is
that identification of the epochs of extreme values is needed, and the uncertainty
about this identification – as well as the removal of extremes – goes unmeasured.
Alternatively, each outlier effect can be modeled as a particular type of latent
stochastic process driven by heavy-tailed innovations; extraction of latent com-
ponents then follows non-linear techniques and does not require identification of
extreme epochs. We model monthly retail data impacted by the Covid-19 epidemic
by incorporating additive outliers and level shifts as heavy-tailed latent processes,
and estimate the unknown parameters through a Bayesian approach that utilizes
Gibbs sampling. As a result, we can extract retail trends that incorporate stochas-
tic level shifts and a full measure of the extraction uncertainty. An added benefit
of the proposed approach is an estimate of a counterfactual trend following an
extreme event. The posterior estimate of the counterfactual trend can be used to
quantify the impact of an extreme event.

MSC2020 subject classifications: Primary 62F15, 62M10; secondary 91B84.
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1 Introduction
Economic time series are typically sensitive to global shocks, such as natural disasters,
terrorist events, or epidemics. However, the form that such a shock will take depends on
the particular variables and the type of event. Although in most examples of extreme
events the timing of the event may be known, the impact of the event could be an
instantaneous effect on the variable of interest, or could be a prolonged series of effects
over a period of time following the event. The nature of the impact during a period
following the event may be quite involved, with aftershocks and echoes of the event
producing a complex structure of decay and dissipation of shocks. Possibly the timing
of an event (or the event itself), which could be constructed from more complex dynamics
in the global market, may elude detection.
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2 Seasonal Adjustment Under Extreme Events

Regardless of whether the exact event timing is known or not, extreme events can
have a substantial impact on the trajectory of a time series, and can adversely impact
statistical modeling, estimation, and prediction. In particular, the important task of
seasonal adjustment may be adversely affected if extreme events are not accounted for
– see McElroy and Penny (2019). Typically, every attempt is made at statistical agencies
to detect extreme events, and account for their impact prior to seasonally adjusting the
time series. This is often done by attributing unusual movements in the trajectory to
event-specific regressors (this is the regression-ARIMA approach described in Findley
et al. (1998)). This process, while popular, suffers from the usual problems of multistage
procedures. In widespread events – such as the Covid-19 pandemic – that affect several
different aspects of global dynamics, attribution of structural changes in the dynamics
to specific regressors may be difficult and misleading.

In this paper, we acknowledge that most economic time series are exposed to unusual
shocks – not just during the epochs associated with known extreme events, but also
during times of market regularity. Hence, each process can be described as the sum
of an orthodox part, generally modeled using a Gaussian process, and an aberrant
part, which historically has been modeled using deterministic dummy regressors (Tsay
(1986)). We propose a framework to accommodate the modeling of the orthodox and
aberrant portions together, using a single stochastic model that allows for potentially
large changes in the dynamics via heavy-tailed distributions. This synthesis removes
some of the criticism of the multistage modeling exercise. We use a Bayesian Structural
Time Series (BSTS) model to automatically detect and adjust extreme values.

The idea of using heavy-tailed shocks to accommodate structural changes is not new.
For example, Trimbur (2010) used a heavy-tailed model to describe a ‘local-level’ model
with large changes; Maiz et al. (2012), Harvey and Luati (2014), Calvet et al. (2015),
and Crevits and Croux (2018), among several others, have used dynamic linear models
with heavy-tailed errors to propose robust filtering that can accommodate outliers in
structural time series models. Our proposal builds upon these approaches, providing
a treatment of seasonality and more general dynamics, while using a fully Bayesian
framework that can automate the seasonal adjustment and extreme-value adjustment
of time series.

We also provide an approach for evaluating the impact of an extreme event by con-
structing a counterfactual idealized trend following the event. The comparison of the
idealized trend and the estimated trend provides an insight into the changes in the long-
term behavior of the series due to the shocks infused by the extreme event. Estimation of
the impact of an extreme event is closely related to several procedures that are designed
for evaluating a causal estimate of the impact. Often economists and scientists are in-
terested in estimating a counterfactual quantity, viz. the values of the series beyond the
time of the extreme event in the absence of such an event. Economists may ask what
the trend would look like had the extreme event not occurred; this is in the purview of
causal inference and counterfactual estimation. Traditionally, causal inference for time
series is done in panel data using the difference-in-difference (Did) approach (Angrist
and Krueger (1999), Angrist and Pischke (2008), Lechner (2010)) where it is possible get
control time series that are not subjected to a treatment or intervention, and hence dif-
ferences of post- and pre-treatment differences can be evaluated between treatment and
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control time series. For a single time series, exposed to an extreme event/intervention,
pre- and post-treatment control is a counterfactual. Brodersen et al. (2014) delineated
a modeling framework based on BSTS that allows prediction of the counterfactual con-
trol time series following an extreme event, hence being amenable to causal inference
on the effect of the extreme event. The methodology produces a posterior predictive
distribution of a series post-event based on the data from prior events. Several articles
spanning diverse disciplines have used the Brodersen et al. (2014) framework to evaluate
the impact of extreme events – particularly the Covid-19 pandemic – on time series of
interest; for example, see Takyia and Bentum-Enninb (2021) and Dey et al. (2021).

Our proposed framework for extreme-value adjustment is also based on BSTS. How-
ever, the proposed framework does not set out to estimate a causal estimand, but rather
produces an estimate of a latent orthodox component of the time series, i.e., that por-
tion that is free from the influence of any aberrant shocks due to extreme events. Being
a fully Bayesian methodology wherein the volatilities associated with extreme events
are also estimated, the framework is able to discount the extra volatility in the dynamic
components following an event, and thereby estimate the trend as it would appear with-
out the extreme event. The Bayesian framework is able to quantify uncertainty in the
estimates measuring the impact of extreme events.

The paper makes several contributions. First, general types of outlier processes are
defined, starting with the deterministic setup of Tsay (1986, 1988). Second, we use
these outlier processes to model trend, seasonal, and irregular components in economic
time series, obtaining the extracted components via Gibbs sampling, and thereby con-
structing seasonally adjusted series as a sum total of all non-seasonal components. This
provides a feasible way of performing seasonal adjustment in the presence of numerous
outliers of various magnitudes and types without the manual intervention of choosing
time-specific outlier regressors. The fully Bayesian framework allows quantification of
the uncertainty in the extraction while avoiding the pitfalls of selecting specific inter-
vention dates. Third, the paper introduces the framework of a counterfactual trend, and
develops the corresponding estimation of orthodox components in the time series. The
framework provides the quantification of posterior uncertainty of all unknown quanti-
ties, including the counterfactual estimates.

2 Background
The impact of extreme events/interventions on different economic time series can be
disparate in its scope, depending on the type of event and the type of the series. Ac-
counting for event- and series-specific effects can pose considerable challenges in the
statistical modeling of time series with extreme values. Here we study five monthly
time series (not seasonally adjusted) at the U.S. aggregate level (units of millions of
dollars); the span of each series is January 2001 through August 2022. The series1 are

• Retail Trade and Food Services 722: Food Services and Drinking Places: Data
Extracted on October 18, 2022 (11:23 am)

1Downloaded from the U.S. Census Bureau website https://www.census.gov/econ/currentdata/.

https://www.census.gov/econ/currentdata/
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• Manufacturers’ Shipments, Inventories, and Orders Total Manufacturing: Data
Extracted on October 18, 2022 (11:28 am)

• Total for Durable Goods: Data Extracted on October 18, 2022 (11:26 am)

• Grocery Stores, series 4451: Data Extracted on October 18, 2022 (11:25 am)

• Building Materials and Garden Equipment, series 444: Data Extracted on October
18, 2022 (11:30 am)

Retail series for restaurants and bars are known to be “recession-proof,” in that such
series (shown in the uppermost panel of Figure 1) do not suffer the same dips that
may be evident in construction or other retail sectors. But during the Covid-19 crisis,
the values of such series have dropped dramatically, suggesting that modeling via a
level shift (or sequence of additive outliers) is necessary. The economic reasons for such
disparate effects are fairly clear: during a slow-down of the economy due to cyclical
factors (or a housing bust) citizens continue to frequent their favorite pubs and eateries,
whereas during March and April of 2020 the states of America had various degrees
of a lockdown status imposed by the governors, so that only take-out orders for these
retailers were legal. However, what is not clear is how to account for the lingering effect
of the pandemic and lockdown using the traditional static regression approaches.

On the other hand, the effect of the pandemic and the recession are very different
for Grocery Stores (second panel from the top on Figure 1). While the Great Recession
effect on this series is similar to that observed in the Food Services and Drinking Places,
with a slight flattening of the trend, the Grocery Stores series had a significant uptick
at the beginning of the pandemic due to the hoarding behavior of consumers.

Figure 1 displays three other time series over the period January 2001 through
August 2022: Total Manufacturing, Durable Goods, and Building Materials and Garden
Equipment. All series show some effect of the two documented extreme events, viz.
the Great Recession of 2007-2009 and the Covid-19 pandemic that began in March
2020. However, the effect is also very different for the remaining three series. Total
Manufacturing and Durable Goods both suffered a significant drop during the recession,
and it took several months for the series to return to the pre-recession levels. Subsequent
to the recession there seems to be a level shift, in terms of the long-term trend in both
series. The effect of Covid-19 is more short-lived for both series, resembling a temporary
change, with the series returning to the pre-pandemic trend by the summer of 2020. In
contrast, Building Materials and Garden Equipment seem to be less affected by the
pandemic, although it also exhibited a shift in the trend during the Great Recession.
These plots illustrate that models of macroeconomic time series experiencing extreme
events must be flexible yet specific.

A model that has been adequate for a time series during an epoch of normalcy will,
at time of crisis, fail unless it is updated to account for new features. One approach is to
use an indicator – this could be another time series, or an appropriately chosen sequence
of dummies – in the model of the mean function, essentially introducing the indicator as
a regressor to the model. Intervention analysis (Box et al. (1975)) takes a single impulse
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Figure 1: Five aggregate monthly series (in millions of dollars): Food Services and Drink-
ing places; Grocery; Total Manufacturing; Durable goods; Building Materials and Gar-
den Equipment (top to bottom); the outlier points detected by the seasonal R package,
as given in Table 1, are marked by circle (AO), triangle (LS) and diamond (TC).
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dummy as the indicator of an additive extreme, and this has been generalized in many
ways.

Such an approach is predicated on knowing the timing of the crisis and treating
the offset as a fixed additive effect. Alternatively, a heavy-tailed distribution could be
used to model the magnitude of distortion caused by a shock, while remaining agnostic
about the exact timing. This could be advantageous in situations where we are unsure
whether there is a lag between the onset of the shock and its impact. For example,
we know that on September 11, 2001, a deadly terrorist attack was carried out in the
USA, but the timing of this event’s impact on airline passenger sales data is harder
to pinpoint. Likewise, with the Covid-19 crisis, the lockdown orders were issued with
different timing in the various states of America, so that national-level data is a mingling
of staggered, local, self-inflicted level shifts.

Conventionally at the US Census Bureau (USCB), sustained crisis effects have been
modeled with various types of intervention effects, such as an additive outlier (AO), a
level shift (LS), a temporary change (TC), or a quadratic ramp, etc. This methodology is
discussed in Maravall and Pérez (2012). First the timing and type of intervention effect
must be determined (often by expensive sweeps through the series), followed by extreme-
value adjustment; finally, a linear extraction of components of interest, such as the non-
seasonal component, is obtained – and extremes may be re-introduced to the final result
if they pertain to the target component. In particular, for seasonal adjustment, both
additive outliers and level shifts must be identified and removed before filtering, but
are finally added back to the resulting extraction (because additive outliers pertain to
the irregular movements, and level shifts pertain to the trend). In essence, the trend (as
well as the irregular) is implicitly being divided into two portions: the normal part given
by a Gaussian process, and the aberrant part given by a level shift dummy. Instead of
this “Jekyll and Hyde” decomposition of the trend, we can envision a synthesis where
the orthodox and aberrant portions are modeled as a single non-Gaussian process. The
drawback, however, is that linear Gaussian techniques of signal extraction are no longer
applicable; see McElroy (2016) for an overview of extreme processes and the signal
extraction problem in the heavy-tailed context, and Tsay et al. (2000) for a framework
for outlier detection and identification in time series.

Non-Gaussian signal extraction is naturally approached through a Bayesian frame-
work. McCulloch and Tsay (1994) handle the modeling of an aberrant trend process in
much the way described above, though with the random walk innovations being given
by a Bernoulli variable times a heavy-tailed variable. Trimbur (2010) used Student’s t
innovations for the random walk trend. The Bayesian approach treats all latent com-
ponents as parameters of interest, which in turn are governed by hyper-parameters
specified by the latent models; then posterior means for the components correspond to
point estimates of signal extractions in the frequentist context, and the posterior dis-
tribution allows us to quantify all the uncertainty – see Holan and McElroy (2012) for
Bayesian seasonal adjustment. The Bayesian framework is naturally suited for extract-
ing latent component models with ARMA components. Ravishanker and Ray (1997)
have discussed Gibbs sampling algorithms for ARMA time series. More recently, Scott
and Varian (2014) have developed efficient Bayesian computation for structural time
series.
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3 Extreme values and seasonal adjustment
The procedure of seasonally adjusting a time series goes through several important pre-
processing steps before an appropriate linear filter can be applied to remove seasonality.
One of the key pre-processing steps is the detection and removal of outliers, which here
are defined as unusually large (in either direction from the mean level) observations.
Linear filters are optimal for Gaussian processes, which do not exhibit many outliers;
when numerous substantial outliers are present, linear filtering will be adversely affected.
Whereas unusual observations can sometimes be attributed to known events (such as a
change in policy or a significant geopolitical event) that could produce large shocks or
significantly alter the trajectory of the series, it is also common that observed outliers
can not be attributed to any specific cause.

Additive outliers – or single impulses added to the observed series – are the simplest
and most common form of outliers. Such impulses could occur in the latent innovation
process (in which case they are called innovation outliers). Additive outliers can be
modeled using deterministic additive outlier regressors of the form AO

(t0)
t = I(t = t0),

where I(A) is the indicator function of an event A. For idiosyncratic shocks, the time (t0)
may be known, e.g. if there is an extreme value that can be attributed to a particular
event whose timing is known. However, if large values are occurring frequently and
cannot be attributed to particular events, then the modeler must sweep through the
series to identify the times t0 where additive outliers occur – this is expensive and
requires multiple tests.

For example, analyzing the five series Food Services and Drinking Places, Grocery
Stores, Durable Goods, Total Manufacturing and Building Materials and Garden Equip-
ment with the deterministic outlier regressor framework of X-13ARIMA-SEATS,2 the
software flags several observations as potential outliers. The results are displayed in Fig-
ure 1; the identified extreme regressors are shown at the top of the panel of Table 1. The
bottom rows show the results of a similar outlier analysis based on outlier regressors
obtained when the outlier critical threshold has been reduced from the default value of
4 to 3.5. Even when care is taken to minimize subjective choices on part of an analyst,
the results still depend on the type of regressors used, i.e., the change points in each of
the regressors.

In order to minimize the disruptions caused by such subjective choices – as well
as to mitigate the effects of multiple testing – we propose a stochastic modeling of
the extremes. Such a model will be parsimonious, and will be able to adapt to the
unknown locations of the outliers. Thus, unless the outliers can be attributed to specific
events, and hence can be modeled using regressors of the form AO

(t0)
t , we advocate

using a stochastic outlier generating process that allows for large values, e.g. heavy-
tailed processes. This approach unifies identification and estimation, thereby reducing
uncertainty and biases due to sequential testing.

2X-13ARIMA-SEATS Reference Manual, Washington, DC: U.S. Census Bureau, U.S. Department
of Commerce, available at https://www.census.gov/ts/x13as/docX13ASHTML.pdf.

https://www.census.gov/ts/x13as/docX13ASHTML.pdf
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Series AO LS TC
Types and times of flagged outliers with default threshold 4.0

Food & Drink 12/20, 01/22 06/20, 03/21, 06/21 03/20, 04/20
06/20, 11/20

Grocery Stores 04/20 03/20
Total Manufacturing 09/09, 03/20, 05/20 10/08, 11/08 11/08, 04/20

Durable Goods 03/20, 05/20 10/08 10/08, 04/20
Building Material 04/10 05/20, 03/21

Types and times of flagged outliers with threshold 3.5
Food & Drink 12/20, 01/22 06/20, 03/21, 06/21 03/20, 04/20

06/20, 11/20
Grocery Stores 04/20 07/20 03/20

Total Manufacturing 02/01, 12/01, 12/06, 09/06, 10/08, 11/08, 08/08, 11/08
09/08, 02/09, 04/13, 03/11, 01/15, 12/16, 04/20
03/20, 05/20, 01/21 11/18

Durable Goods 03/20, 05/20 10/08, 07/09, 10/08, 04/20
Building Material 04/10 05/20, 03/21

Table 1: Detected outliers using default specification in the seas function of the ‘seasonal’
R package (Sax, 2018; Sax, C. and Eddelbuettel, D., 2018) for the X-13ARIMA-SEATS
software; default outlier detection threshold of 4.0 (top panel) and custom outlier de-
tection threshold of 3.5 (bottom panel).

4 Model, estimation and signal extraction
4.1 Specification of the components
The primary goal of the paper is to propose stochastic models for additive outliers (AO),
level shifts (LS), and temporary change (TC) outliers. For the application of seasonal
adjustment, the outlier regressors that are of interest are

AOt0
t =

{
1 if t = t0,

0 otherwise,
LSt0

t =
{

0 if t < t0,

1 otherwise,
TCt0

t =
{

0 if t < t0,

φt−t0 otherwise.
(1)

Here φ ∈ (0, 1) is a user-defined decay rate for the temporary change outlier. Note that
the first difference of the level shift is the additive outlier, (1−B)LS(t0)

t = AO
(t0)
t (where

B is the backshift operator) and (1− φB)TCt0
t = AO

(t0)
t . Thus the level shift regressor

can be obtained as an integrated additive outlier regressor and the temporary change
can be obtained by applying the (1−φB)−1 operator to an AO regressor. In analogy to
using a heavy-tailed white noise process model for additive outliers, stochastic modeling
of level shifts can be achieved by using integrated heavy-tailed white noise processes.
This paradigm was adopted by Trimbur (2010), who modified the additive outliers in a
local level model using a Student’s t process.

Seasonal adjustment is often done under a structural time series model:

Xt = μt + γt + St + εt,
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where {μt}, {γt}, {St}, and {εt} are the trend, cycle, seasonal (with s seasons per
year), and irregular components, respectively. The different components satisfy individ-
ual dynamic equations, given by (1 − B)μt = ξt, (1 − φB)γt = ζt, and U(B)St = ηt,
where {ξt}, {ζt}, {ηt}, and {εt} are independent Gaussian white noise processes, and
U(B) = (1 + B + . . . + Bs−1) is the seasonal aggregation operator.

To account for extreme observations in a particular dynamical component, the com-
ponent is usually augmented with a dummy outlier regressor, e.g. LS for the trend, TC
for the cycle, and AO for the irregular. Since each outlier regressor can be reduced to the
additive outlier dummy through the differencing operator for the associated stochastic
component, the latent (unobserved) dynamical components with extreme changes are
thus, after differencing, modeled as the sum of a Gaussian white noise and additive
outlier regressors. Instead of using a combination of white noise and AO regressors as
the driving process for the extreme dynamics, we use a single heavy-tailed white noise
process that would adapt to the shocks via large disturbances. In particular we use a
scaled Student’s t distribution with low degrees of freedom to model a component that
is traditionally modeled as the sum of a Gaussian white noise with several AO effects.

Applying this formulation to the trend and cycle components, the full model becomes

Xt = μt + γt + St + εt; μt = (1 −B)−1ζt; γt = (1 − φB)−1ξt, (2)

where {ξt}, {ζt}, and {εt} are independent scaled Student’s t white noise processes, but
{ηt} (the seasonal innovations) is still a Gaussian white noise process. This specific model
structure can be expressed as a special case of a more general unobserved component
model. Let

Xt = Htη +
J∑

j=1
Cj

t + εt, (3)

where Ht = (ht,1, . . . , ht,m) are fixed regressors associated with known effects, such as
trading day and moving holidays, η = (η1, . . . , ηM )′ are the regression coefficients for the
fixed effects, εt is the irregular component, and Cj

t , j = 1, . . . , J are J latent components.
It will be convenient to identify εt as another unobserved component, C0

t . In the specific
application of seasonal adjustment with the structural time series model (2), the model
can be recognized as a special case of (3) with J = 3 and the unobserved components
being the trend C1

t = μt, the cycle C2
t = γt, the seasonal C3

t = St, and the irregular
component C0

t = εt. The (J+1) unobserved components are assumed to satisfy ordinary
difference equations

Φj(B)Cj
t = Θj(B)W j

t , j = 0, . . . , J.

The operators Φj(B) and Θj(B) are given by

Φj(B) = 1 − φj
1B − . . .− φj

dj
Bdj ,

Θj(B) = 1 − θj1B − . . .− θjqjB
qj ,

with polynomial order dj and qj , respectively. The degrees of differencing corresponding
to the irregular component (i.e., for j = 0) are assumed to zero, so that d0 = q0 = 0
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and Φ0(B) = Θ0(B) = 1. All the polynomials are assumed to have roots on or outside
the unit circle. We will assume dj ≥ qj for identification; see Hotta (1989).

Given a length n sample of the time series, in order to describe the joint distribution
of the components we need to know the initial observations C̃j = [Cj

0 , C
j
−1, . . . , C

j
−dj+1]

′
,

as well as W̃
j = [W j

0 ,W
j
−1, . . . ,W

j
−qj+1]

′
. Conditional on the initial observations, the

joint distributions for the latent components are described by the equations

ΦjCj + Φ̃j
C̃

j = ΘjW j + Θ̃j
W̃

j
, (4)

where the (u, v)th element of the n × n matrix Φj is defined as Φj
u,v = −φj

u−v and
that of the n× dj matrix Φ̃j is defined as Φ̃j

u,v = −φj
dj−v+u. Here it is understood that

φj
r = 0 if either r > dj or r < 0, and −φj

0 = 1. The entries of the n × n matrix Θj

and the n× qj matrix Θ̃j are defined analogously as Θj
u,v = θju−v and Θ̃j

u,v = θjqj−v+u,
where θjr = 0 if either r > qj or r < 0, and θj0 = 1. Note that for j = 0, Φ0 and Θ0 are
identity matrices and Φ̃0 and Θ̃0 are zero matrices.

The first J1 (an integer selected by the modeler) latent processes, as well as the
irregular process, will be assumed to be heavy-tailed, whereas processes of higher index
are assumed to be Gaussian. Thus, we assume that each W j is a vector of n consecutive
values from a white noise sequence, such that for j = 0, . . . , J1 the entries in W j are
independently and identically distributed as a scaled Student’s t distribution (with
scale σ2

j and degrees of freedom νj), and such that for j = J1 + 1, . . . , J the entries in
W j are distributed as Gaussian variables with variance σ2

j . Specifically, W j
t

iid∼ σjtνj for
t = 1, . . . , n and j = 1, . . . , J1, and W j

t
iid∼ N(0, σ2

j ) for t = 1, . . . , n and j = J1+1, . . . , J .
Furthermore, the latent component vectors are all assumed to be independent of each
other.

4.2 Gibbs sampling

A Gaussian unobserved component model can be cast into a state-space framework,
and the computation of likelihood and estimators are done using standard Kalman
filtering/smoothing techniques (Durbin and Koopman (2001)). While that is a general
framework, specific features may be more directly incorporated in the model using
alternative methods, and direct Bayesian computation steps can be more explicitly
formulated for specific models.

In latent component models, Bayesian data augmentation methods are typically used
for ease of computation. In latent component time series models, there is a long literature
of such augmentation algorithms, using versions of the Kalman filter/smoother; see
Carter and Kohn (1994), de Jong and Shepard (1995), McCausland et al. (2011), and
Scott and Varian (2014), and the references therein. In the present context, if the model
is written in a state-space format, the error variances for the aberrant components will be
time-dependent since the mixing parameters will change at every time point. The simple
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conjugate update is not possible any longer in such cases, but each conditional variance
parameter could be updated using univariate methods such as rejection sampling.

The structural models for the latent components in (4), along with the data model
in (3), provide a natural framework for formulating a joint distribution for all the
unknown variables. Once a prior distribution for the parameters in the structural models
of the latent components is specified, the full joint distribution of the data and the
unknown components can be obtained. To facilitate posterior computation we further
use a hierarchical formulation, writing the Student’s t distributions as a scale mixture
of Gaussian distributions. This will allow one to use conjugacy in the full conditional
specification.

Specifically, if Wt ∼ σ2tν then the hierarchical formulation gives Wt|σ2, α ∼ N(0, σ2α)
and α|σ2 ∼ IG(ν/2, ν/2), where IG is the inverse gamma density and the degrees of
freedom ν is assumed to be known. Following this idea, we specify the full set of pri-
ors for the latent components and parameters for their distributions as follows: for
j = 0, . . . , J1,

Cj |σ2
j ,Aj ∼ N(θj , σ2

jBjAjB
′
j),

αj
t |σ2

j
iid∼ IG(νj/2, νj/2), t = 1, . . . , n,

σ2
j ∼ IG(νj0, σ2

j0), (5)

and for j = J1 + 1, . . . , J ,

Cj |σ2
j ∼ N(θj , σ2

jBjB
′
j),

σ2
j ∼ IG(νj0, σ2

j0), (6)

where Aj = diag(αj
1, . . . , α

j
n), θj = Θ̃j

W̃
j − Φ̃j

C̃
j , Bj = (Φj)−1Θj , and the hyper-

parameters ν1, . . . , νJ1 , ν10, . . . , νJ0, σ
2
10, . . . , σ

2
J0 are assumed to be pre-specified. The

different components are assumed to be independently distributed a priori. In addition,
the fixed effects are given standard conjugate normal priors, viz. η|σ2

0 ∼ N(η0, σ
2
0Aη),

where the prior mean vector η0 and the prior variance matrix Aη are pre-specified.

With the full conditional specification, it is natural to use Gibbs sampling for pos-
terior sampling. For updating the latent component, normal-normal conjugacy provides
the conditional posterior distribution for the component vector given the rest of the
parameters. Specifically,

η ∼ N(η̂, σ2
0Âη)

σ2
j ∼ IG((νj,0 + n)/2, (νj,0σ2

j,0 + �′j�j)/2)
αj,t ∼ IG((νj + 1)/2, (νj + �2

j,t/σ
2
j )/2)

Cj ∼ N(θ̃j
,Ω−1

j ), j > 0, (7)

where Âη = [H ′A−1
0 H + A−1

η ]−1, η̂ = Âη[H ′A−1
0 (X −

∑J
k=1 C

k) + A−1
η η0], �j =

A
−1/2
j wj , and wj = (Θj)−1[ΦjCj + Φ̃j

C̃
j − Θ̃j

W̃
j ] for j = 1, . . . , J . Also, w0 =



12 Seasonal Adjustment Under Extreme Events

X−Hη−
∑

k≥1 C
k, Ωj = (σ2

0B0A0B
′
0)−1+(σ2

jBjAjB
′
j)−1, and the conditional mean

of the jth component given the rest of the unknowns is θ̃j = Ω−1
j [(σ2

0B0A0B
′
0)−1(X−

Hη−
∑

k �=j C
k +(σ2

jBjAjB
′
j)−1θj ]. Here Aj = I for j > J1 and H = (H ′

1, . . . ,H
′
n)′.

The expressions in (7) follow directly from the model and the priors described in (4), (5),
and (6), using the standard derivation of conjugate posterior under Normal-Inverse
Gamma conjugacy; see Gelman et al. (2013).

The latent component block can be sampled together in a block-Gibbs step. However,
for the application at hand, it is more convenient to successively sample the components
of each latent component. It is understood that, at each Gibbs step, only the most
recent value of each conditioning variable is used. For sampling the coordinates of a
latent component Cj having conditional distribution N(θ̃j

,Ω−1
j ), the tth component

Cj
t is sampled from N(θ̃j

t\t,Ω
−1
j,t\t), where the mean and the variance, θ̃j

t\t and Ω−1
j,t\t, of

Cj
t given the rest of the coordinates (the set denoted by \t) are obtained using standard

formulas for the conditional mean and variance of coordinates of a multivariate normal
vector.

5 Numerical results and illustrations
In this section, we present results from analyzing real data time series using the proposed
method. In addition, results from a limited simulation experiment are given in the
supplement (Roy and McElroy, 2024). Since this is purely for illustration, we do not use
any fixed regressors. Thus, throughout this section, H in (2) is assumed to be zero, and
hence η is not estimated.

We fit model (2) to several macroeconomic time series, and study the flexibility of
the proposed model with regard to fitting data with multiple extreme events. We fixed
the degrees of freedom for the Student’s t processes to be ν0 = ν1 = ν2 = 2.1. Thus,
the variances (apart from the scales) for the Student’s t processes – corresponding to
the trend, the temporary change, and the irregular innovations – were 3, 3, and 3,
respectively. The parameters of the Inverse Gamma priors for all the scale parameters
were given defaults values of ν0,0, ν1,0 = ν2,0 = ν3,0 = 3, and the scales were σ2

0,0 =
σ2

1,0 = σ2
2,0 = σ2

3,0 = 400. When fitting in the log scale the scale parameters were chosen
to be σ2

0,0 = σ2
1,0 = σ2

2,0 = σ2
3,0 = 0.5. The decay parameter in the temporary change

processes was fixed at φ = 0.7 following the recommendation in Tsay et al. (2000).
The seasonal period is taken to be s = 12, mimicking a monthly series. The automatic
default values of the hyperparameters were obtained by tuning. However, we did a
sensitivity analysis based on the inverse gamma parameters, and the results (presented
in the supplement) show the models to be robust with respect to specification of the
scale parameters. The degrees of freedom parameters for the aberrant components were
set to 2.1 to have finite variance, while retaining the capacity to generate very large
shocks.

Since the process is nonstationary and starts at an arbitrary time point, to get the
initial values for the trend and the seasonal components we used the output from a
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Figure 2: Food Services and Drinking Places: trend component with 90% confidence
band (upper left panel), long-term component consisting of trend together with tempo-
rary changes (upper right panel), extracted seasonal component along with extraction
using seasonal (bottom left panel), seasonally adjusted series (bottom right panel).

fitting of the data (with start date s − 1, i.e. 11 months prior to the start date of
the fitting period) using the seasonal package in R with the default specification. The
initial value for the temporary change process was set to zero. These initial values
were fixed throughout the modeling exercise. To initialize the chain, parameters were
drawn randomly from their prior distribution and then given the initial parameter values
and the initial values obtained from the seasonal package; the components were drawn
randomly from their corresponding structural models.

The aggregate Food Services and Drinking Places series’ dynamics went through a
period of change during the Great Recession, where the overall trend flattened before
returning to normalcy. However, the effect of the Covid-19 crisis is much starker in
the early months of the pandemic (in early 2020). Figure 2 shows that much of the
departure from normalcy at the end of the series is being attributed to a level shift
in the trend, plus a large disturbance captured by the temporary change component.
The seasonal part in the right middle panel of Figure 2 seems to be similar in pre- and
post-Covid times. The behavior of the model fit during the Great Recession also shows
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Figure 3: Grocery Stores: trend component with 90% confidence band (upper left panel),
long-term component consisting of trend together with temporary changes (upper right
panel), extracted seasonal component along with extraction using seasonal (bottom left
panel), seasonally adjusted series (bottom right panel).

a change in the overall trend. However, the attribution to the temporary change is of
much greater magnitude during the Covid-19 era. While there is a considerable shift
in the trend during the pandemic, it is still difficult to discern whether (and when)
the dynamics will stabilize. The uncertainty due to challenges that emerged during the
pandemic continues to exert an influence upon the data; hence, a model that can rapidly
adapt to these changes is preferable.

Grocery Stores, despite a partial lockdown, have fared reasonably well throughout
the crisis period. Indeed, there was a substantial upward movement in February 2020,
possibly due to hoarding; the series returned to previous patterns afterward. Figure 3
shows that the uptick in the single month of February 2020 is mostly attributed to the
aberrant irregular component. The extracted seasonality in Figure 3 does not show any
aberrant behavior, and can be used in the usual way to seasonally adjust the series.

We also examined the U.S. monthly total series for Total Manufacturing (Figure 4),
Durable Goods (Figure 5), and Building Materials and Garden Equipment (Figure 6).
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Figure 4: Total Manufacturing: trend component with 90% confidence band (upper
left panel), long-term component consisting of trend together with temporary changes
(upper right panel), extracted seasonal component along with extraction using seasonal
(bottom left panel), seasonally adjusted series (bottom right panel).

Total Manufacturing suffered less impact than Food Services and Drinking Places, and
the dip produced by the pandemic appears to be of a transient nature – especially in
comparison to the Great Recession. The story is similar for Durable Goods, but Building
Materials and Garden Equipment show two stochastic level shifts in the Covid-19 period,
reflecting changes in those particular markets.

6 Estimation of the orthodox trend
6.1 Definition of an idealized trend

Bayesian structural time series and related models have been used to make causal in-
ference on the effect of extreme events. There is a growing literature on estimation of
counterfactuals to quantify the impact of extreme events; see Brodersen et al. (2014).
The methodology used in Brodersen et al. (2014) and related work essentially relies on
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Figure 5: Durable Goods: trend component with 90% confidence band (upper left panel),
long-term component consisting of trend together with temporary changes (upper right
panel), extracted seasonal component along with extraction using seasonal (bottom left
panel), seasonally adjusted series (bottom right panel).

forecasting the post-event time series using a posterior predictive distribution obtained
from a BSTS fitted to the pre-event time series. The method regards the impact of an
event as a singular quantity that changes the trajectory of the time series from that time
point onward. Thus, a difference between pointwise forecasts and the observed value –
after the onset of the extreme event – provides a counterfactual. A related body of work
on causal inference for time series data is based on the DiD analysis using a parallel trend
assumption; see Lechner (2010). The parallel trend assumption says that the trajectory
of the time series with and without the extreme event should be parallel, beginning
from the time of the event. A particular advantage of Brodersen et al. (2014) over the
traditional DiD framework is that – being based on stochastic regressors and Bayesian
posterior analysis, as opposed to static regressors as in the classical DiD analysis –
uncertainty quantification in the estimated counterfactual quantities are more precise.

In the present work we use a fully stochastic framework to describe counterfactu-
als and quantify uncertainty. We assume a counterfactual series where the latent white
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Figure 6: Building Materials and Garden Equipment: trend component with 90% con-
fidence band (upper left panel), long-term component consisting of trend together with
temporary changes (upper right panel), extracted seasonal component along with ex-
traction using seasonal (bottom left panel), seasonally adjusted series (bottom right
panel).

noise shocks are Gaussian instead of t-distributed. The Gaussian case signifies the be-
havior of the series during ‘normal times’ as opposed to one that is exposed to extreme
shocks, where the Gaussian white noise are multiplied by the latent scales √

αt to have
a student’s t distribution. Since the Bayesian model estimates all latent quantities, in-
cluding the latent shocks and the scales, one can also generate posterior samples of the
normalized Gaussian white noise by rescaling using the estimated scales.

We focus our treatment on the latent trend process {μt}, though the discussion
could be extended to the latent cycle or seasonal as well if practitioners were interested
in counterfactuals for cyclic or seasonal dynamics. Letting Δ = 1 − B, recall from (2)
that ζt = Δμt = √

αtWt, where {Wt} is i.i.d. Gaussian. We shall define a counterfactual
trend {mt} (using the Latin form of the Greek μt) to be the so-called orthodox portion of
the stochastic process obtained by removing the presence of the inverse Gamma variable
αt; this corresponds to enforcing that the extreme-value distribution is concentrated at
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unity. Thus by definition Δmt = Wt, which in turn equals Δμt/
√
αt, and hence

mt =
t∑

s=1
αs

−1/2 Δμs.

Here we have defined the orthodox trend for times t ≥ 1, but the starting point could
be taken to be more remotely in the past. The so-called idealized trend is defined to be
the actual trend {μt} for times up to some onset t∗ of aberrant behavior, and thereafter
is given by the orthodox trend, viz.

m
(t∗)
t =

{
μt, if t ≤ t∗,

μt∗ +
∑t

s=t∗+1 αs
−1/2 Δμs, if t > t∗.

This idealized trend {m(t∗)
t } differs significantly from the real trend {μt} only at times

subsequent to the crisis, and allows us via comparison to assess what would have hap-
pened if the crisis had not occurred; m(t∗)

t can be interpreted as the counterfactual trend
of interest. Of course, m(t∗)

t is a latent stochastic process that is not observed, but for a
given posterior sample we have draws for αt and μt from the sampling iteration of the
Gibbs loop described in (7), and we can therefore construct a posterior estimate m̂

(t∗)
t

by averaging over these draws. Below, we use m̂
(t∗)
t to evaluate the impact of specific

events such as temporary changes, level shifts, and additive outliers in simulated series.

6.2 Estimation of the impact of an extreme event

Based on the estimated idealized trends from the post-onset event time t∗, one is able to
quantify the direct impact of the event in terms of changes to the stochastic processes.
The difference between the estimated total trend, i.e. the sum of the trend and the
cycle, provides a noise-free version of the observed series after the seasonal effect has
been removed. This quantity can be compared with the estimated idealized total trend,
i.e., the sum of the latent orthodox part of the trend and the cycle that are bereft of
any effect of the extreme shocks.

The idealized trend can deviate substantially from the actual series over time, since
the accumulation of extreme shocks is likely to shift the actual series from the orthodox
part of the series. Hence, to make a meaningful evaluation of the impact of an event
the time horizon is limited to a few time points after the event. A large disruptive
phenomenon such as the Covid-19 pandemic constitutes a sequence of shocks, mimick-
ing the aftershocks following a large earthquake, and hence accounting for the entire
sequence of shocks becomes important while evaluating the impact. For example, the
initial lockdown following the beginning of the pandemic had several stages, and the
total impact was an aggregate effect of the partial and full closures in different parts of
the country. An advantage of the proposed framework is that it naturally allows for a
sequence of extreme events, and hence any estimate based on the framework includes
the effect of the entire sequence of aberrant shocks during the time period.
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For a fixed time horizon H, the impact of an event occurring at time t∗ can be
measured via the sum of pointwise differences between the estimated total trend and its
orthodox part, and can be estimated for each posterior draw. The overall impact can
be summarized as the average of the quantity over all posterior samples.

The time horizon H could be chosen to be a fixed number or a quantity estimated
from the sample, e.g., the first time after t∗ such that the total trend and the idealized
total trend intersect (if this happens); the horizon also should have a upper bound,
such as the endpoint of the observation period. While most scientific questions require
the difference between the two trends to be small in order to declare that the event
no longer has an impact, we advance the criterion that the two trends must cross in
order to claim that the series has returned to the pre-event level. Note that when H is a
sample-dependent quantity (such as the first time point following the event time where
the trends intersect), its value will be different for each posterior sample.

6.3 Numerical illustration

Using the orthodox total trend described above, one could evaluate the impact of ex-
treme events such as the Great Recession and the onset of the Covid-19 pandemic.
Figure 7 shows the estimated orthodox trends for each series for post-recession and
post-covid periods.

For Food Services and Drinking Places and Grocery Stores, the idealized trends after
the Great Recession show that the recovery outpaced the orthodox trend. In the former
series the Covid-19 effect is mostly a large temporary change with a sharp recovery after
the lockdown, and a slight shift in level is estimated in the trend after the recovery. The
idealized trend estimate is flat, maintaining the level from the pre-Covid-19 era.

For the Grocery Stores series, the estimated trend shows a level shift at the onset of
the pandemic, but the idealized trend is essentially flat at the pre-Covid-19 level.

For the Total Manufacturing series the estimated trend does not show any impact
from the pandemic, as the impact of the extreme event is essentially attributed to
a temporary change (blue line showing the trend plus the temporary change), and
therefore the counterfactual trend is also at the level of the estimated trend. The Great
Recession had a significant effect on the trend, about two full years being required for
the trend to catch up with the pre-recession trend and make up for the loss.

For the Durable Goods series a majority of Covid-19’s impact is attributed to a
temporary change at the onset of the pandemic. There is a small level change in the
trend that is absent in the idealized trend. During the post-recession there was also a
significant drop in the level, and the counterfactual estimate indicates a more permanent
change in the level and the trend than it showed for the Total Manufacturing series.

For the Building Materials and Garden Equipment series there is a small level shift
at the beginning of the pandemic followed by a temporary change. The recession effect
was essentially a level shift, and toward the end of the observation period the idealized
trend and the estimated trend seem to be merging together.
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Figure 7: Estimates of the orthodox trend immediately after the Great Recession and
the start of the Covid-19 pandemic: Food Services and Drinking Places (first row);
Grocery Stores (second row); Total Manufacturing (third row); Durable Goods (fourth
row), Building Materials and Garden Equipment (fifth row). The left panel and the right
panels are for post-recession trend and post-covid trend, respectively. In each panel the
estimated trend and the estimated counterfactual trend are shown against the series.
For post-Covid-19 plots, the estimated total trends are also shown to illustrate the
attribution of the Covid-19 effect to different dynamics.
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6.4 Estimate of impact of the COVID-19 pandemic
We use the Food Services and Drinking Places series to illustrate the effectiveness of
the proposed impact measure. Due to the lockdowns the restaurant business (or in-
person food service) in the USA suffered great losses in the first year of the pandemic,
particularly in the three months following its onset. We used three different values of
the time horizon H to measure the impact of the onset of the pandemic. The values
were H3 = 3 for evaluating the impact during March, April, and May 2020, H12 = 12
to evaluate the impact in the first year, and H = H∗ equal to the first time point
of intersection of the total trend and the idealized total trend following the onset to
evaluate the impact prior to returning to normalcy. The posterior mean estimate of H∗

was approximately 14 months, indicating about a year-long struggle for the industry
to catch up with the pre-pandemic level. The estimated total impacts (in billions of
dollars) were 58, 192, and 211 for the three different time horizons H.

In contrast, the USDA Economic Research Service Food Expenditure Survey (FES)
reports a decline of about 19.6% in food-away-from-home sales during 2020 compared to
2019 (Zeballos and Dong (2021)). Based on the FES values (in nominal billions of dol-
lars) the total sales in full and limited service restaurants and drinking places are about
724, 622, and 829 in the years 2019, 2020, and 2021, respectively. The expenditures
in the Food Service during 2020 based on the pre-pandemic trend (an exponentially
weighted moving average forecast based on the annual sales from years 2000-2019) is
about 762, indicating a loss of about 140 billion, almost entirely coming from the pan-
demic months in that year, spanning March through December of 2020. Our estimate
of the loss in sales for the retail Food Services and Drinking services from March 2020
through February 2021 (12 months) is about 192 billion. The National Restaurant As-
sociation, in its January 15, 2021 article3 estimates a total of 240 billion dollars of loss
to the industry during 2020. However, this figure includes the sales shortfall at eating
and drinking places along with a reduction in spending at food service operations in
sectors such as lodging, arts/entertainment/recreation, education, healthcare, and re-
tail. Overall, the estimate Δ̂H

t∗ = 197 captures the amount of loss in the average level
(smooth trend) of the Retail Food and Drinking Services series, over a 12 month period
from March 2020.

7 Discussion
The X-13ARIMA-SEATS software provides a choice of different models and filters, and
the default procedure performs an automatic model selection to choose the best possible
model. Such flexibility is needed to have adequate seasonal adjustment for a wide variety
of time series. The structural model (2), while considerably rich in terms of the models
it can approximate, can be generalized to obtain a broader spectrum of model options,
and hence more flexibility in adjusting seasonal features while accounting for extreme
observations.

3Available at https://restaurant.org/education-and-resources/resource-library/state-of-
the-restaurant-industry-report-measures-virus-impact-on-business/.

https://restaurant.org/education-and-resources/resource-library/state-of-the-restaurant-industry-report-measures-virus-impact-on-business/.
https://restaurant.org/education-and-resources/resource-library/state-of-the-restaurant-industry-report-measures-virus-impact-on-business/.
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For example, the seasonal component can be given a moving average structure in
order to make the seasonal model more versatile. This is analogous to the popular
airline model, where an MA(1) structure is given to the seasonally differenced series.
Triantafyllopoulosa and Nason (2007) provides a conjugate sampling procedure for the
MA(1) parameter, and this can be easily incorporated in the overall Gibbs sampling
scheme (7). In (2), for the specific model used in the examples with J = 3 and C3

t = St,
instead of assuming that U(B)St = Wt (a white noise), we would assume that the
seasonal component satisfies U(B)C3

t = Yt, where Yt = W 3
t + θ3

1W
3
t−1 is an MA(1)

process. Thus, the entries of moving average coefficient matrix Θ3 will be a function
of the scalar parameter θ3

1. For updating θ3
1 with the rest of the parameters given, the

conditional posterior will be that of an MA(1) parameter computed from data of length
n, from an invertible MA(1) process with the initial value W 3

0 pre-specified. In the Gibbs
sampling the main change will only be in the updating steps for the seasonal component
St, the variance of the seasonal white noise σ2

3 , with the additional updating step for
the seasonal moving average parameter θ.

In summary, we have proposed a fully Bayesian framework for accommodating aber-
rant behavior in the components of a structural time series, particularly in the process
of doing seasonal adjustment. The BSTS paradigm has several distinct advantages over
the outlier dummy regressor framework currently used to do seasonal adjustment at
many statistical agencies. The Bayesian method provides a full measure of uncertainty
for all the unknown quantities, and also produces counterfactual trend estimates that
allows quantification of the effect of extreme events. One challenge in the heavy-tailed
framework is that signal extraction is done based on non-linear filters, which are not
explicitly defined. Thus, exercises such as designing a modified filter for addressing
features of the seasonal process, or such as forecasting that involves filter coefficients,
become extremely challenging, if not impossible.

The current practice of seasonal adjustment has been perfected over many decades,
with expert experiences helping to fine-tune the different parameters. In the current
proposal we have not done any extensive investigation on how sensitive the results are
to the choice of hyper-parameters, or any other pre-specified quantity. If the proposal
is to provide a viable supplement to the seasonal adjustment methodology, such inves-
tigations need to be carried out.

The world having emerged from the Covid-19 pandemic, the seasonal adjustment
community will be well-served to develop a flexible framework that quickly adapts to the
changing dynamics of the thousands of time series requiring seasonal adjustment. The
present work adds tools to the seasonal adjustment community’s arsenal that could be
used in the post-Covid-19 era, particularly when the occurrence of change in dynamics
can not be attributed to a specific month or quarter, but rather needs to be modeled
as a stochastic event.
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