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Spatio-Temporal Stick-Breaking Process

Clara Grazian∗,†

Abstract. Dirichlet processes and their extensions have reached a great popu-
larity in Bayesian nonparametric statistics. They have also been introduced for
spatial and spatio-temporal data, as a tool to analyze and predict surfaces. A pop-
ular approach to Dirichlet processes in a spatial setting relies on a stick-breaking
representation of the process, where the dependence over space is described in
the definition of the stick-breaking probabilities. Extensions to include temporal
dependence are still limited, however it is important, in particular for those phe-
nomena which may change rapidly over time and space, with many local changes.
In this work, we propose a Dirichlet process where the stick-breaking probabilities
are defined to incorporate both spatial and temporal dependence. We will show
that this approach is not a simple extension of available methodologies and can
outperform available approaches in terms of prediction accuracy. The approach
results in a predictive model that does not rely on the assumptions of Gaussianity
or the separability of time and space.
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1 Introduction
Spatial data is data that describes a surface, usually through variables on a two-
dimensional plane, i.e. data that references a specific geographical area or location. The
analysis and prediction of surfaces are essential to a diverse range of fields, including
ecology, meteorology, sociology, image recognition, real estate, etc.

Spatial data is defined as a realisation of a stochastic process over space

y(s) = {y(s), s ∈ D},

where D ⊂ R
d. The collected data comes as y = {y(s1), . . . , y(sn)}, where (s1, . . . , sn)

is a set of spatial locations, such that si = (si,1, si,2) for i = 1, . . . , n; for example, si
may represent latitude and longitude. Depending on D being a continuous surface or
a countable collection of d-dimensional spatial units, the problem can be specified as a
spatially continuous or discrete random process, respectively (Gelfand et al., 2010). For
example, data can be obtained by monitoring stations located in the set (s1, . . . , sn) of
n points. Alternatively, data may be observed in a set (s1, . . . , sn) of n areas, defined,
for example, by counties; we refer to this case as areal data.
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2 Spatio-Temporal SB

The first step in defining a spatial model within a Bayesian framework is to identify a
probability distribution for the observed data. We usually select a distribution from the
exponential family, indexed by a set of parameters θ accounting for spatial correlation;
for instance

y(s) = θ(s) + x(s)Tβ + ε(s), (1.1)

where θ(s) ∈ Θ is the spatial effect, x(s)T is a set of p covariates which may be dependent
on the location s and β is a column-vector of p regression coefficients; finally, ε(s) is
a normal error such that ε(s) ∼ N (0, σ2

ε) and errors are considered independent and
identically distributed (i.i.d.) over space.

A common approach to the problem of modelling surfaces is kriging (Stein, 2012),
which interpolates and smooths spatial data; in kriging, prediction y(s∗) at a spatial
location s∗ is obtained as a weighted average, where observations at closer locations are
given higher weights than observations at distant locations. The parameters θ(s) are
defined as a latent stationary Gaussian field. This is equivalent to assuming that θ(s)
has a multivariate normal distribution with mean μ and spatially structured covariance
matrix Σ, whose generic element is Σij = Cov(θ(si), θ(sj)) (Guttorp and Gneiting, 2006;
Banerjee et al., 2003; Cressie, 2015; Rue and Held, 2005).

The concept of spatial process can be extended to the spatio-temporal case including
a time dimension. The data are then defined by a process

y(s, t) = {y(s, t), (s, t) ∈ D × T ⊂ R
d × R}

and are observed at n spatial locations or areas and at T time points. When spatio-
temporal geostatistical data is considered (Gelfand et al., 2010; Cressie and Wikle, 2015),
the kriging model can be extended by defining a spatio-temporal covariance function
given as Cov(θ(si, t�), θ(sj , th)). Assuming stationarity in space and time, the space-
time covariance function can be written as a function of the spatial Euclidean distance
d(si, sj) and of the temporal lag |t� − th|.

In practice, to overcome the computational complexity of these models, some simpli-
fications are introduced. For example, under the separability hypothesis the space-time
covariance function is decomposed into the sum (or the product) of a purely spatial
and a purely temporal term, e.g. Cov(θ(si, t�), θ(sj , th)) = σ2C1(d(si, sj))C2(|t� − th|)
(Finkenstadt et al., 2006). Alternatively, it is possible to assume that the spatial corre-
lation is constant in time, giving rise to a space-time covariance function that is purely
spatial when t� = th and zero otherwise. In this case, the temporal evolution could be
introduced by assuming that the spatial process evolves in time following autoregressive
dynamics (Harvill, 2010). It is also possible to avoid the assumption of separability be-
tween time and space; several examples of non-separable space-time covariance functions
are reported in Cressie and Huang (1999) and Gneiting (2002).

The assumption of Gaussianity in kriging may be inappropriate or difficult to verify,
and overly restrictive, e.g. by oversmoothing the prediction. A first relaxation may be
represented by finite mixture models. The use of mixture models in the context of
spatio-temporal data is useful because it allows to better describe the heterogeneity of
the data, which is essential to optimise the allocation of resources and to perform better
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prediction without the need to include a complete list of covariates (which may not be
available). Fernández and Green (2002) and Neelon et al. (2014) propose models for
areal (possibly multivariate) data, Frühwirth-Schnatter and Kaufmann (2008) introduce
a clustering approach for dynamic regression models, while Hossain et al. (2014) analyze
space-time mixtures with a particular focus on model selection. However, finite mixture
models assume it is possible to consistently select the number of components, which may
be difficult, in particular, in presence of covariates. Therefore, extensions to consider
infinite mixture models have also been considered.

Mixture models can be generalised by considering an infinite number of components,
through Dirichlet process mixture models. A random distribution F is distributed ac-
cording to a Dirichlet process (DP) if its marginal distributions are Dirichlet distributed
(Ferguson, 1973, 1974). When analyzing spatial data, we want the Dirichlet process
to depend on a covariate represented by the location s. Dirichlet processes are then
generalised to dependent Dirichlet processes (DDPs) (MacEachern, 2000; Barrientos
et al., 2012), which model a collection of unknown distributions indexed by a covariate,
through the definition of weights π = (π1, π2, . . .) and atoms θ = (θ1, θ2, . . .) to vary
according to the covariate. Spatial dependence can be introduced in the base distri-
bution F0, by keeping the weights fixed: this is usually called single-π DDP (Gelfand
et al., 2005; Dunson and Herring, 2006). It can also be introduced in the DP weights
by keeping the atoms fixed: this is usually called single-atom DDP (Reich and Fuentes,
2007; Dunson and Park, 2008). Finally it can be introduced in both the atoms and the
weights (Duan et al., 2007).

Introducing the possibility of analysing data evolving over time and space incurs
in additional modelling and computational challenges. For this reason, many proposed
approaches assume that the DDP only depends on time or space. This work presents a
novel Bayesian nonparametric method applied towards problems of prediction in spatio-
temporal settings. The method relies on the stick-breaking representation of DPs, with
a kernel-based method along the line of Dunson and Park (2008). The model takes ad-
vantage of the natural clustering property of the DP to construct clusters evolving with
time and space for spatio-temporal data and is able to describe and use for prediction
the heterogeneity of the observed data, without the need to introduce a large number of
covariates. Observations are allocated so that data points which are observed at nearby
locations and at consecutive times are assumed to be more similar. In practice, this
means that the model is able to adapt to rapid changes over time and space, to learn
more from points close in space and time to improve the prediction accuracy. The case
where the DP atoms are not varying with the location and the time allows to define
computationally simple and efficient algorithms; extensions to consider both varying
weights and varying atoms are conceptually straightforward, but come at an increased
computational cost. Both these versions will be considered in this work.

The remaining of the paper is organized as follows: Section 2 reviews the DP and the
stick-breaking process, focusing on the introduction of spatial and temporal dependence;
the spatio-temporal proposal, which is the main contribution of this work, is introduced
in Section 3. The performance of the model is tested on simulation studies in Section 4
and on a real-data example in Section 5. Section 6 concludes the paper.
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2 Spatial and temporal Dirichlet processes
Dirichlet processes have been widely applied in Bayesian nonparametric statistics due
to their property of conjugacy, their flexibility, and ease of implementation. Taking F0
to be a distribution on Θ, and some real positive number α, consider a finite number of
sets A1, . . . , Ar ∈ Θ; then F is considered to have a DP prior with base distribution F0
and concentration parameter α, i.e. F ∼ DP (α, F0), if

(F (A1), . . . , F (Ar)) ∼ Dir(αF0(A1), . . . , αF0(Ar)).

As α → ∞, F (A) → F0(A), for A ⊂ Θ. The properties of the DP are clear from its stick-
breaking construction (Sethuraman, 1994), for which, given a concentration parameter
α > 0 and a non-atomic base distribution F0 on (Θ,B(Θ)), where Θ is the parameter
space and B(Θ) the corresponding σ-algebra, we have that F ∼ DP (α, F0) if

F =
∞∑
k=1

πkδθk ,

π1 = V1 and πk = Vk

k−1∏
j=1

(1 − Vj) for k = 2, . . .

Vk ∼ Beta(1, α) ⊥ θk ∼ F0 k = 1, 2, . . . ,

where δz is a probability measure concentrated at z (a Dirac mass). This construction
is not limited to the Dirichlet process, but generalisation of the beta distribution, such
as Vk ∼ Beta(ak, bk), are also available (Ishwaran and James, 2001).

In problems of density estimation, in many situations data may be better described
by a continuous distribution, therefore the mixing proposed by Antoniak (1974) is usu-
ally applied, to produce an infinite mixture of (often Gaussian) kernels P (·), so that
yi ∼

∑∞
k=1 πkp(yi|θk) for i = 1, . . . , n, i.e. the model for yi is assumed to be an infinite

mixture model, where the weights of the mixture are defined through the stick-breaking
construction.

Consider a random field {y(s) : s ∈ D} for D ⊆ R
2, and let s = (s1, . . . , sn) be a set

of distinct locations in D. Let y(s), the observation at location s, be characterized by
the model in (1.1). The spatial effect θ(s) is assumed to follow an unknown distribution
Fs, such that FD = {Fs : s ∈ D} and FD ∼ P where P is a probability measure on
(Γ, C), Γ is the space of uncountable collections of probability measures on the Polish
space (Θ,B) indexed by s ∈ D and C is the corresponding σ-algebra. Therefore Fs is a
probability measure over a measurable Polish space (Θ,B). Then, the density of y(s) is

g(y(s)|x(s)) =
∫

Θ
p
(
y(s)|θ(s) + x(s)Tβ

)
dFs,

where p(·) is some kernel, possibly Gaussian.

The spatial generalisation of the DP can be introduced in the definition of the base
distribution, such that F0D is indexed by s, and the atoms θk of the DP are replaced with
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θkD = {θk(s) : s ∈ D}, for k = 1, 2, . . .. This approach can be considered as a particular
case of the approach based on regression in the base measure first proposed by Cifarelli
and Regazzini (1978). For instance, the spatial Dirichlet process (SDP) introduced by
Gelfand et al. (2005) uses a base measure F0D which is a Gaussian process with a (pos-
sibly isotropic) covariance function. Then FD is defined such that Fs =

∑∞
k=1 πkδθk(s)

for each s ∈ D. The distribution of the observations y(s) = (y(s1), . . . , y(sn)) is al-
most surely a mixture of Gaussian distributions. This is a model in the class of single-π
DDPs (MacEachern, 2000), and maintains the same weights (π1, π2, . . . , ) for all loca-
tions s ∈ D. This means that it is difficult to identify the spatial contribution of each
component of the mixture. Examples of this approach can be found in Kottas et al.
(2012) and Park et al. (2022).

One of the drawbacks of this approach is that, since the observations on the surface
defined by the spatial locations constitute one single observation from the random field,
replications are needed in order to conduct inference. Such replications are usually taken
to be temporal replications. A dynamic model can be introduced in the DP atoms θkD
(Kottas et al., 2008), however this represents an extension of the modelling of the DP
parameters, and the clustering probabilities are still not let evolving with time.

When observations are indexed by time instead of space, Dunson (2006) propose a
dynamic mixture of Dirichlet processes (DMDP), where a latent variable dynamically
varies across groups; Zhu et al. (2005), Caron et al. (2007) and Caron et al. (2017)
propose a time-varying DPM with dynamic evolution of the atoms; Rodriguez and
Ter Horst (2008) propose a model where atoms are allowed to evolve over time. Lau
and So (2008) consider a model for temporal observations, where each atom can be
expressed as an infinite mixture of autoregressions of order p. Di Lucca et al. (2013)
propose a single-π DDP where the atom processes are expressed as linear autoregression
θk(t) = βk+αkθk(t−1). They also consider the case where the atom process is defined as
a Ornstein-Uhlenbeck process. An interesting variation of a dynamic DDP construction
is proposed by Ascolani et al. (2021) who define a family F = {Ft, t ≥ 0} of dependent
random probability measures Ft which share some, but not all atoms and the set of
atoms which are shared in Ft is defined as a pure death process over time, in particular
a Fleming-Viot process.

Models that incorporate dependent weights have a number of theoretical and practi-
cal advantages over models that only use dependent atoms (MacEachern, 2000). There-
fore, a second characterization of the DDP for spatial problems relies on the definition of
a spatial stick-breaking prior, where the stick-breaking weights are allowed to vary with
the spatial locations. Taddy (2010) proposes an approach for multivariate correlated
time series, allowing for marginal Dirichlet process priors at each time. Nieto-Barajas
et al. (2012) propose an approach where random proabilities measure are marginally
Dirichlet processes, and temporal dependence is introduced via multivariate beta distri-
butions for the unnormalized weights of the stick-breaking representation. The spatial
stick-breaking model was first proposed by Reich and Fuentes (2007) and, more gener-
ally, by Dunson and Park (2008). The spatial stick-breaking prior assumes y(s) to be a
set of observations at site s such that model (1.1) is still valid. A prior is assigned to
the spatial random effects θ(s) ∼ Fs. Differently from the SDP of Gelfand et al. (2005),
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this framework utilizes marginal models Fs, Fs′ rather than a joint model Fs,s′ . In fact,
the distribution for θ(s) is given by

Fs =
∞∑
k=1

πk(s)δθk s ∈ D where

π1(s) = V1(s) and πk(s) = Vk(s)
k−1∏
j=1

(1 − Vj(s)) for k = 2, . . .

Vk(s) = wk(s, ψk)Vk, Vk ∼ Beta(a, b) ⊥ θk ∼ F0 for k = 1, 2, . . .

The distributions Fs and Fs′ are related through the dependence among πk(s) and
πk(s′) which arises from dependence among Vk(s) and Vk(s′), according to the bounded
functions wk(s, ψk), which are bounded kernels w : D×R

2 → [0, 1], allowing the masses
of the DP to vary with space. An example of kernel function is the squared exponential
kernel

wk(s, ψk) =
2∏

j=1
exp

[
− (sj − ψjk)2

h2
jk

]
. (2.1)

The kernel function is centred around knots ψk = (ψ1k, ψ2k) for k = 1, 2, . . ., such
that ψ ∼ Q, where Q is a probability measure on the Polish space (Ψ,A), where Ψ
is a Lebesgue-measurable subset of R

2 (not necessarily corresponding to D) and A
is the corresponding Borel σ-algebra. The kernel spread is controlled by a bandwidth
parameter hk = (h1k, h2k) which can be fixed to a value or allowed to vary according to
a prior distribution, e.g. an inverse gamma distribution. The kernel function is defined so
that knots closer to s and having a smaller index k have, on average, higher probability
weight. Fs and Fs′ allocate similar probabilities to atoms θ = (θ1, θ2, . . .) if s and s′

are close in space. An application of the spatial stick-breaking prior was discussed by
Reich et al. (2011) and Reich and Bondell (2011), within the field of landscape genetics.
Reich and Fuentes (2007) and Dunson and Park (2008) show that the covariance of
(y(s), y(s′)) is stationary when integrating with respect to (Vk, ψk, hk), however the
conditional covariance can be non-stationary, so this model can be more robust than
standard kriging. Moreover, the correlation function tends to one as s → s′.

When the focus is on a distribution indexed on time, Ft, Mena and Ruggiero (2016)
construct a single-atom dynamic DDP by setting up a Wrights-Fisher diffusion on the
fractions Vk(t) in the stick-breaking construction of the marginal DP prior for Ft. Gutiér-
rez et al. (2016) propose a time-dependent Bayesian nonparametric model, where the
stick-breaking weights are defined on beta variables evolving over time. In discrete time,
Dunson (2006) and Griffin and Steel (2011) propose an AR-process type model allowing
for efficient inference, such that the marginal distribution of Vk(t) is Be(a(t), b(t)) for
all k and t. An alternative construction relies on the arrivals contribution of the m-DPP
(Griffin and Steel, 2006).

There are few DDP models in the literature where both weights and atoms are
allowed to vary according to a covariate. DeYoreo and Kottas (2018) introduce a DDP
prior with temporal dependence in both the atoms and weights for ordinal regression.
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Duan et al. (2007) describe a model where atoms θk(s) are i.i.d. from F0 and the weights
πk(s1),...,k(sn) determine the site-specific joint probabilities, however the contribution of
time and space to the specific component through the mixing weight is integrated out.
Rodriguez and Dunson (2011) propose an approach based on a probit representation of
the weights

Fs =
K∑

k=1

πk(s)δθk(s)

πk(s) = Φ(αk(s))
∏
j<k

(1 − Φ(αj(s))),

where αk(s) have Gaussian marginals and θk(s) are independent and identically dis-
tributed sample paths from a given stochastic process. Arbel et al. (2016) and Barcella
et al. (2017) empirically show the good predictive performance of models using a pro-
bit representation of the weights. Nevertheless, spatial or spatio-temporal dependence
among the parameters αk, and indirectly the mixture weights, can be introduced by as-
suming a Gaussian process over D, which means that the computational cost increases
and these models may be difficult to fit in cases with large sample sizes, as the examples
in Section 5.

To the best of our knowledge, the only work introducing a spatio-temporal varying
kernel is proposed by Hossain et al. (2013), who, however, use the logistic normal kernel
as in Fernández and Green (2002), where spatio-temporal dependence is introduced
through spatio-temporal varying covariates in a logistic function. This approach has
limitations, including the need for covariates (which may not be available), and the need
for a truncation of the possible number of weights (and atoms). Moreover, this approach
has been implemented only for areal data, while in this work we focus on point referenced
data. In general, the approach of Hossain et al. (2013) has a more difficult interpretation
of the interaction of the spatial and temporal components. The contribution of this work
is to introduce spatio-temporal dependence in the clustering probabilities, in order to
increase the prediction accuracy in highly heterogeneous phenomena.

3 Spatio-temporal stick-breaking process
In this work, we suppose the observation y(s, t) is a response variable observed at time
t, with t ∈ {1, . . . , T} = T , where T < ∞ and T is s distinct set of points in time, and
location s ∈ D ⊂ R

2, where D is the spatial region of interest. While it is easy to define
the stick-breaking weights in the case of continuous time, the complete model would
imply important modifications and we leave it for further research; see, for example,
Mena et al. (2011) and Arndt (2019).

Here we propose a class of stick-breaking processes that can be seen as a prior
for FD,T and induces a spatio-temporal dependence on the DP weights. Similarly to
model (1.1), y(s, t) can be modelled according to

y(s, t) = θ(s, t) + x(s, t)Tβ + ε(s, t),



8 Spatio-Temporal SB

where θ(s, t) is a spatial effect evolving over time, x(s, t) is a column-vector of p covari-
ates which may be dependent on the location s and the time t and β is a column-vector
of p regression coefficients; finally, ε(s, t) are i.i.d. normal errors. For ease of notation,
in what follows, we assume that no covariate is available, simplifying the model to:

y(s, t) = θ(s, t) + ε(s, t). (3.1)

However, it is straightforward to extend the model to include covariates. Model (3.1)
aligns with the data application described in Section 5.

The spatio-temporal effect θ(s, t) is assumed to follow an unknown distribution Fs,t,
such that FD,T = {Fs,t : s ∈ D, t ∈ T }. FD,T ∼ P where P is a probability measure on
(Γ, C), Γ is the space of uncountable collections of probability measures on the Polish
space (Θ,B) indexed by s ∈ D and t ∈ T , and C is the corresponding σ-algebra. There-
fore Fs,t is a probability measure over a measurable Polish space (Θ,B). In particular

g(y(s, t)|Fs,t) =
∫

p (y(s, t)|θ(s, t)) dFs,t,

where p(·) is a (possibly Gaussian) kernel.

The distribution of the observation y(s, t) can be represented as an infinite mixture.
The mixing weights are allowed to vary over time and space. They are built similarly
to the spatial stick-breaking:

Fs,t =
∞∑
k=1

πk(s, t)δθk s ∈ D, t ∈ T where

π1(s, t) = V1(s, t) and πk(s, t) = Vk(s, t)
k−1∏
j=1

(1 − Vj(s, t)) for k = 2, . . .

Vk(s, t) = wk(s, ψk, t, ζk)Vk, Vk ∼ Beta(a, b) ⊥ θk ∼ F0 for k = 1, 2, . . .

Then, we consider a countable sequence of mutually independent random variables
(ψ1, ψ2, . . .) such that ψk ∼ Q for each k = (1, 2, . . .), where Q is a probability measure
on a Polish space (Ψ,A), where A is a Borel σ-algebra and Ψ is a Lebesgue measurable
subset of R2 which may or may not correspond to D; moreover, we consider a countable
sequence of mutually independent random variables (ζ1, ζ2, . . .) such that ζk ∼ L for
each k = (1, 2, . . .) and where L is a probability measure on a Polish space (Ξ, E), where
Ξ is a Lebesgue measurable subset of R and E is the corresponding Borel σ-algebra.

Similarly to the spatial stick-breaking, the spatio-temporal stick-breaking is proper
if E[Vk] and E[wk(s, ψk, t, ζk)] are both positive. These are not restrictive requirements:
Vk is usually assumed beta distributed and the prior distribution for a, b, ψk and ζk
can be chosen to assure this feature. We propose Vk ∼ Be(a, b), where a and b are fixed
or can be assumed to follow prior distributions (for example, uniform distributions in
a reasonable compact space), the spatial knots ψk = (ψk,1, ψk,2) can be fixed, or given
uniform prior distributions over the spatial domain, and, similarly, the temporal knots
ζk can be fixed or given uniform prior distributions over the temporal domain.
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Fs,t and Fs′,t′ allocate similar probabilities to elements of the set θk if s → s′ and
t → t′, and in this way the process induces dependence on the response variable. Fs,t is
well defined with

∑∞
k=1 πk(s, t) = 1 almost surely for each (s, t) ∈ S ×T (Ishwaran and

James, 2003). In order to deal with the sparseness that may be present in the data, it
is possible to choose the hyper-parameters (a, b) so that they favour values of Vk close
to one or a value (or prior distribution) for the DP concentration parameter α so that
the DP assigns high mass to few atoms.

When dealing with spatial and spatio-temporal data, it is important to study the
spatio-temporal correlation or covariance functions assumed by the model. First, we
derive the covariance function conditionally on the beta variables Vk, the knots ψk and
ζk.

It is easy to see that Cov(y(s, t), y(s′, t′)|V, ψ, ζ) = Cov(θ(s, t), θ(s′, t′)|V, ψ, ζ), given
that ε(s, t) and θ(s′, t′) are independent for any (t, s) and (t′, s′), and ε(s, t) and ε(s′, t′)
are independent for any (t, s) and (t′, s′). Moreover, the covariance between θ(s, t) and
θ(s′, t′) can be seen as dependent on the mixture weights, i.e. Cov(y(s, t), y(s′, t′)|V, ψ, ζ)
= σ2

θ Pr(θ(s, t) = θ(s′, t′)|V, ψ, ζ). See the Supplementary Material (Grazian, 2024) for
details of this derivation.

The covariance between y(s, t) and y(s′, t′), conditional on the mixture weights, but
marginalised with respect to the atoms can be written as

Cov(y(s, t), y(s′, t′)|V, ψ, ζ) = σ2
θ Pr(θ(s, t) = θ(s′, t′)|V, ψ, ζ) = σ2

θ

∞∑
k=1

πk(s, t)πk(s′, t′)

= σ2
θ

∞∑
k=1

[
wk(s, ψk, t, ζk)wk(s′, ψk, t

′, ζk)V 2
k

×
∏
j<k

[1 − wj(s, ψj , t, ζj)Vj ][1 − wj(s′, ψj , t
′, ζj)Vj ]

]

= σ2
θ

∞∑
k=1

[
wk(s, ψk, t, ζk)wk(s′, ψk, t

′, ζk)V 2
k

×
∏
j<k

[1 − (wj(s, ψj , t, ζj) + wj(s′, ψj , t
′, ζj))Vj

+ wj(s, ψj , t, ζj)wj(s′, ψj , t
′, ζj)V 2

j ]
]
.

The covariance function, as expected, depends on the choice of the kernel, and this means
that it is maximised when choosing a kernel for which w(s, ψ, t, ζ) → w(s′, ψ, t′, ζ) when
s → s′ and t → t′. It is also interesting to notice that, the conditional covariance function
does not depend on the specific value of the response variable. This covariance can be
a function of only the distances between spatial locations and between time points or
can depend on the specific spatial locations and time points, therefore the fact that the
process is stationary depends on the choice of kernel.
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To better understand the properties of the covariance function between y(s, t) and
y(s′, t′), it is useful to marginalise over the random beta variables Vk and the knots to
obtain the unconditional covariance. It is reasonable to use independent priors: for ex-
ample, uniform independent priors for ψk over the spatial domain and uniform indepen-
dent priors for ζk over the temporal window of the observations. Then, the unconditional
covariance function is

Cov(y(s, t), y(s′, t′)) = E[V,ψ,ζ]{Cov(y(s, t), y(s′, t′)|V, ψ, ζ)
+ Cov(E(y(s, t)|V, ψ, ζ),E(y(s′, t′)|V, ψ, ζ)}

which is E[V,ψ,ζ]{Cov(y(s, t), y(s′, t′)|V, ψ, ζ)} given that Cov(E(y(s, t)|V, ψ, ζ),
E(y(s′, t′)|V, ψ, ζ) = Cov(E(θ(s, t)|V, ψ, ζ),E(θ(s′, t′)|V, ψ, ζ)} = 0, under the assump-
tion of independence of the stick-breaking atoms. Then,

Cov(y(s, t), y(s′, t′)) = σ2
θE[V,ψ,ζ]

{ ∞∑
k=1

[
wk(s, ψk, t, ζk)wk(s′, ψk, t

′, ζk)V 2
k ·

∏
j<k

[1 − (wj(s, ψj , t, ζj)+wj(s′, ψj , t
′, ζj))Vj+wj(s, ψj , t, ζj)wj(s′, ψj , t

′, ζj)V 2
j ]

⎤
⎦
⎫⎬
⎭

= σ2
θ

∫
Ψ

∫
Ξ
w(s, ψ, t, ζ)w(s′, ψ, t′, ζ)π(ψ, ζ)E[V 2

k ]

·
∞∑
k=1

[
1 −

∫
Ψ

∫
Ξ
w(s, ψ, t, ζ)π(ψ, ζ)E[Vk]+

−
∫

Ψ

∫
Ξ
wt(s′, ψ, t′, ζ)π(ψ, ζ)E[Vk] +

∫
Ψ

∫
Ξ
w(s, ψ, t, ζ)w(s′, ψ, t′, ζ)π(ψ, ζ)E[V 2

k ]
]k−1

.

If we use Vk ∼ Be(a, b) for all k, then E[Vk] and E[V 2
k ] have a fixed form, depending on

a and b, and

Cov(y(s, t), y(s′, t′)) = σ2
θ

g(s, s′, t, t′)
2
(
1 + b

a+1 − g(s, s′, t, t′)
) . (3.2)

Derivation of these formulas are provided in the Supplementary Material (Grazian,
2024). The unconditional covariance does not depend on the value of y(s, t) or y(s′, t′)
and it is equal to one only when w(s, ψ, t, ζ) → w(s′, ψ, t′, ζ) when s → s′ for every
ψ ∈ Ψ and t → t′ for every ζ ∈ Ξ. Moreover, the covariance does not depend on
F0. The covariance structure depends on the expectations of the kernels, i.e. the ex-
pectation of wk(s, ψk, t, ζk), the expectation of wk(s′, ψk, t

′, ζk), and the expectation of
wk(s, ψk, t, ζk)wk(s′, ψk, t

′, ζk), therefore it depends on the form of the chosen kernel.
It is important to notice that, similarly to all single-atom DDPs, the covariance func-
tion presents a lower bound. However, this does not influence the fact that the process
has full support with respect to the weak topology, and the corresponding DP mixture
model has large Hellinger support (Barrientos et al., 2012).

The kernel w(s, ψ, t, ζ) is a bounded kernel, w : D × R
2 × T × R → [0, 1], allowing

masses to vary over time and space. The easiest way to define a spatio-temporal kernel
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Figure 1: Covariance function Cov(y(s, t), y(s′t′)) of the spatio-temporal process
(marginalised over V, ψ, ζ) when separable exponential kernels are used for space and
time (left), and when the non-separable kernel (3.3) is used (right). In the second case,
the covariance structure does not only depend on the distance between time points, so
in this plot we fix t = 0, and compute the covariance by varying t′.

is by considering a separable kernel

wk(s, ψk, t, ζk) = wk(s, ψk) · wk(t, ζk) k = 1, 2, . . .

The hypothesis of separability in this setting implies that the temporal autocorrelation
of the mixing weights for two locations at distance d is proportional to the temporal
autocorrelation of the mixing weights for two locations at distance rd for some constant
r. While the kernel is separable, the covariance structure of the process is not separable.
Indeed, in this setting

g(s, s′, t, t′) =
∫
Ψ w(s, ψ)w(s′, ψ)p(ψ)dψ∫

Ψ
∫
w(s, ψ)p(ψ)dψ

·
∫
Z
w(t, ζ)w(t′, ζ)p(ζ)dζ∫

Z
w(t, ζ)p(ζ)dζ

.

Even if the kernel is separable, the covariance function is not separable, in the sense
that it is not a product of functions in time and space, however it is a combination of
separable factors. While the model is already flexible, leading to a non-separable co-
variance function, it implies a symmetry between time and space, as shown in Figure 1.
For example, consider using an exponential kernel for both time and space as in (2.1);
Figure 1 shows that there is a symmetry between time and space, such that the covari-
ance between the observations decreases symmetrically as the distance between time
and spaces increases, and this may represent a strong assumption depending on the
phenomenon, in particular when this interaction is not known. Importantly, the condi-
tional covariance function is non-stationary, but the unconditional covariance function
only depends on the distance between locations and time points, i.e. it is stationary,
when choosing separable exponential kernels.

The impact of the hypothesis of separability in the definition of the mixing weights
in complicated, given that it relates to non-observable variables. There are several non-
separable kernels proposed in the literature: see, for example, Cressie and Huang (1999),
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Gneiting (2002) and Genton (2007). We propose to use the class of kernels proposed by
Gneiting (2002):

w(s, ψ, t, ζ) = 1
ξ(|t− ζ|2)d/2φ

(
(s1 − ψ1)2 + (s2 − ψ2)2

ξ(|t− ζ|2)

)
,

where φ(·) is a completely monotone function, and ξ(·) is a positive function with a
completely monotone derivative. For example,

w(s, ψ, t, ζ) = 1
γ|t− ζ| + 1 exp

(
− (s1 − ψ1)2 + (s2 − ψ2)2

(γ|t− ζ| + 1)λ/2

)
, (3.3)

where γ is a non-negative scaling parameter and λ ∈ [0, 1] is a parameter controlling
the space-time interaction: if λ = 0, the kernel is separable; as λ → 1, the space-time
interaction in the definition of the stick-breaking probabilities increases and the spatial
dependence at positive lags decreases more slowly. The parameter γ can be fixed or
given an inverse-gamma or a uniform prior distribution.

The definition of λ allows an automatic testing about it being equal to zero (i.e.
separability of space and time in the definition of the mixing weights), by assuming a
spike-and-slab prior (Mitchell and Beauchamp, 1988; Ishwaran and Rao, 2005; Andersen
et al., 2017), so that

λ ∼ ωλf(λ) + (1 − ωλ)δ0, (3.4)

i.e. the prior distribution results in a mixture between a continuous distribution f(λ)
(for example, uniform or beta) and a Dirac mass at zero δ0, with some mixing weights
ωλ that can be fixed or allowed to follow a prior distribution. In this way, the posterior
distribution for λ will be again a mixture, and it is possible to test the hypothesis of
separability by looking at the weight of the mass component at zero. In more detail,
it is possible to examine the posterior probability Pr(λ = 0|y) and compare it to an
experimenter’s chosen threshold, such as 0.5, in order to make a decision regarding
whether time and space are separable in the definition of the mixture weights.

The structure of the covariance function among observations is similar to the one
obtained with separable kernels in Equation (3.2), however the function g(·, ·) is not
defined on separable factors anymore. More specifically,

g(s, s′, t, t′) =
∫
Ψ
∫
Ξ wk(s, ψk, t, ζk)wk(s′, ψk, t

′, ζk)p(ψ, ζ)dψkdζk∫
Ψ
∫
Ξ wk(s, ψk, t, ζk)p(ψ, ζ)dψkdζk

,

when considering γ and λ fixed. In the case of kernel (3.3), while the integral with
respect to ψ1 and ψ2 results in a function that depends on the distance among space
only, the integral with respect to ζ is a function that does not depend on the distance
of time points only, but depends on the specific points t and t′, see also Figure 1. When
λ is estimated to be zero, then

g(s, s′, t, t′) = exp
(
−((s1 − s′1)2 + (s2 − s′2)2)

)
·
(
− log(t′) − log(t′ − 1) − log(t) − log(t− 1)

γ2(t− t′)

)
,



C. Grazian 13

Figure 2: Map of π1 (left) and π2 (right) for each location and t = 1.

then the covariance is again non-separable among time and space, but made by sepa-
rable factors, and it depends on the distance among spatial locations, and distances in
standard scale and in log scale for the time. Therefore, depending on the choice of the
kernel, the covariance can be stationary or non-stationary, and it is always non-separable
with respect to space and time. In the particular choice of kernel (3.3), the covariance
function obtained by marginalising over the parameters of the kernel is stationary with
respect to space, but not with respect to time. Therefore, the covariance obtained for
the spatio-temporal stick-breaking can be non-stationary, differently from the spatial
stick-breaking.

An example of covariance structure of the process is illustrated in Figure 1, which
shows that the covariance can decrease in a non-symmetric way with respect to the
direction of time and space, for instance, by decreasing more slowly along the time
direction. Figure 1 is defined for a fixed value of γ and λ, however, in real situations,
the parameters are estimated, therefore the type of interaction between time and space is
left to be defined by the data. Supplementary Material (Grazian, 2024) shows additional
examples of the covariance function of the process by varying the parameters (γ, λ, ψ,
ζ).

Observations which are close in space and time are more likely to be allocated to
similar components, because the mixing weights for each component are more similar.
Figure 2 shows a map of the weights π1(s, t = 1) and π2(s, t = 1) over the space domain,
which represents how locations tend to be more likely allocated to component one or
two.

Finally, Figure 3 shows the behavior of the number of allocated clusters of four
processes: classic DP, spatial stick-breaking, spatio-temporal stick-breaking and probit
stick-breaking. For all the processes, as expected, the number of populated clusters in-
creases with the number of observations. The spatio-temporal stick-breaking on average
is associated with a larger number of populated clusters than the other processes: in
terms of prediction and density estimation, this property can be associated with a higher
ability to take into account local heterogeneity, and can lead to higher prediction scores
in more complex situations, as it will be shown in Section 5.

Under the single-atom setting, the dependence on space and time is expressed
through the weights of the stick-breaking representation. One advantage of doing so
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Figure 3: Clustering structure generated by the spatio-temporal stick-breaking. Com-
parison with the classic DP, the spatial stick-breaking and the probit stick-breaking
process. The figure shows the expected number of clusters with respect to the log num-
ber of observations.

is that the implied partition model changes with the values of s ∈ S and t ∈ T . This is
an essential property, in particular when the allocation of the observations to the mix-
ing component is also of interest. Another important feature is that problems related
to inference of θk(s, t) are avoided: this has computational consequences, i.e. the ap-
proaches are less computationally intensive, and predictive consequences, i.e. the atoms
θk(s, t) should include values which are not linked with any observed data in the case
of inference for new values of (s, t). However, extensions are also possible.

3.1 Allowing the atoms to depend on space and time

The single-atom stick-breaking process (stSB) is capable of capturing features of distri-
butions that vary over time and space, even whithout the need for replicates for each
location in the index space. However, any nonparametric model that does not allow
both weights and atoms to vary over the covariate space assumes a lower bound to the
covariance between the distributions (Rodriguez and Dunson, 2011). This is not neces-
sarily a drawback of the model, if the assumption of dependence is a reasonable one,
but it may be an unreasonable assumption in the case we want to take into account the
possibility of no dependence over time or space.

Atoms may also be allowed to vary by introducing a modification of the stick-
breaking representation of each element

Fs,t =
∞∑
k=1

πk(s, t)δθk(s,t), (3.5)

where πk(s, t) are defined as in the previous section, and θk(s, t) are independent stochas-
tic processes with index set S×T and Fs,t,0 marginal distributions. The processes asso-
ciated to the weights and atoms are independent. We refer to the process with varying
weights and atoms as stSB (VA).
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The atoms θk(s, t) can be generated from a Gaussian process characterised by a
covariance matrix considering space and time distances. In this work, we use a spatio-
temporal covariance function defined as the product of one covariance function depend-
ing on space and one covariance function depending on time. More specifically, if d(s, s′)
is the distance between two spatial locations, for instance the Euclidean distance, and
d(t, t0) is the temporal lag with respect to the initial time point, then the covariance
function is

C(d(s, s′), d(t, t0)) = Cs(d(s, s′)) × Ct(d(t, t0)),

where Cs is a spatial covariance function and Ct is a temporal covariance function.
In this work, we use an exponential covariance function for Cs(·) and the temporal
covariance corresponding to an AR(1) process Ct(·) = ρ(t− t0). Such covariance matrix
is implemented in the SpatialTools package available in R (French, 2022).

Figure 4 shows the temporal evolution of the process over time and space; on the left,
the single-atom process is represented, and on the right the process with both varying
weights and atoms is represented. Figure 4 shows a case where locations are uniformly
generated in a unit-square set; the Supplementary Material (Grazian, 2024) includes
additional simulation, considering more structured locations and a different prior for
the parameters Vk. The process seems to vary more smoothly over space and with a
higher variation over time by introducing spatio-temporal dependence also among the
atoms with respect to the process only introducing dependence among weights. From
the simulations, it seems that the model with both weights and atoms dependent on
(s, t) can better describe heterogeneity and situations where the process varies more
quickly over time. However, the main drawback of this process is that inference for it is
more computationally expensive. For this reasons, in some simulation settings and the
real-data applications we fit the model on a subset of the datasets.

3.2 Computational details

Posterior inference can be obtained through Markov Chain Monte Carlo (MCMC).
Usually, two different finite approximation strategies are adopted for stick-breaking
processes. The first strategy is a marginal approach which uses a Pólya urn representa-
tion to marginalise over the Dirichlet process prior. The second strategy is a conditional
approach (Ishwaran and Zarepour, 2000; Papaspiliopoulos and Roberts, 2008), which
avoids marginalization. We use this second strategy with the retrospective sampling
and the generalized Pòlya urn sampling scheme of Dunson and Park (2008). We present
details of the MCMC scheme for the case of both atoms and weights varying over (s, t),
while the single-atom case results as a simplification of this scheme.

It is possible to use a truncation scheme or to consider the possibility to have an
infinite number of components. Earlier works have investigated the truncation level,
see, for example, Muliere and Tardella (1998) and Ishwaran and James (2001). In our
simulation studies and real-data applications, we have set the maximum number of
clusters to a very large number, i.e. M = 500. Details of the algorithms are given in the
Supplementary Material (Grazian, 2024).
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Figure 4: Temporal evolution of the observations for uniformly selected locations. The
spatial locations are simulated uniformly over the unit-square set; after having fixed
the locations, the process is simulated using the spatio-temporal stick breaking and the
colour represents the value of y(s, t). Process with only varying weight (stSB) on the
left (columns 1 and 2) and process with both varying weights and atoms (stSB (VA))
on the right (columns 3 and 4). We assume Vk ∼ Be(a, b) and a = b = 1.
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For full specification of the prior distributions for the model described in Section 3,
please refer to the Supplementary Material (Grazian, 2024).

4 Simulation study
4.1 Simulation study with a complex temporal structure
We first illustrate the performance of the model following the simulation study set-up
used by Gutiérrez et al. (2016), with the difference that we include spatial dependence.

We simulate n = 7, 200 observations for each time point t = 1, 2, . . . , 24 from

y(s, t) =

⎧⎪⎨
⎪⎩
N (f(t), σ2

1C(s; ρ)) 1 ≤ t < 8
0.3N (f(t), σ2

1C(s; ρ))) + 0.7N (f(t), σ2
2C(s; ρ))) 8 ≤ t < 16

0.5N (f(t), σ2
3C(s; ρ))) + 0.5N (0.1t + f(t), σ2

3C(s; ρ))) t ≥ 16,

where σ2
1 = 0.04, σ2

2 = 1, σ2
3 = 0.09,

f(t) = cos(t) + 2 × sin(t) + t

2 − min(t, 16),

and C(s; ρ) is a covariance matrix defined by a squared exponential kernel with length-
scale ρ > 0. N (μ,Σ) stands for a multivariate normal distribution, where Σ is given
an inverse-Wishart prior distribution with expected value E(Σ) = A

ν−3 and ν = 8. We
assume no covariates are available.

For this setting and the relative sample size, it is not possible to apply the version
of the spatio-temporal stick-breaking with varying atoms of Section 3.1, for reasons
associated to both memory and computational time. Therefore it has been fitted by
using only 50% of the observations as training set.

The results of the single-atom spatio-temporal stick-breaking (stSB), and its exten-
sion with varying atoms (stSB (VA)), are compared with two main alternatives available
in the literature. The benchmark model is the Bayesian spatio-temporal model (sp):

y(s, t) = θ(s, t) + ε(s, t),

where θ(s, t) is a spatio-temporal process with a separable covariance function Σ =
Cst = C(y(s, t), y(s′, t′)) = Cs(s, s′) · Ct(t, t′). Cs(s, s′) and Ct(t, t′) represent the spa-
tial and temporal covariance functions, respectively. Then θ(s, t) ∼ GP(0, σ2

θCst), where
GP stands for a Gaussian process with a column vector of zero-elements as mean. More-
over, ε(s, t) ∼ N (0, σ2

εI), where I is the identity matrix. The model can be fitted by
using the spTimer package (Bakar and Sahu, 2015) available for the R software (R
Core Team, 2020). In particular, we choose to use exponential correlation functions
Cs(s, s′) = exp(−ρd(s, s′)2) and Ct(t, t′) = exp(−ξ(t − t′)2), where d(s, s′) is the Eu-
clidean distance, and Var(θ(s, t)) = σ2

θ . Prior distributions are defined as ρ, ξ ∼ U(3, 30),
σ2
ε ∼ IG(0.01, 0.01), and σ2

θ ∼ IG(0.01, 0.01), where IG stands for an inverse gamma
distribution.
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The second model is the one implemented by Reich and Fuentes (2007) (sSB),
described in Section 2, with prior distributions a ∼ Unif(0, 10), b ∼ Unif(0, 10),
σ2
ε ∼ IG(0.01, 0.01) and σ2

θ ∼ IG(0.01, 0.01), the knots are uniform over the spatial
domain; an exponential kernel (2.1) is used for wk(s, ψk), with hjk ∼ IG

(
1.5, ν2

2

)
and

ν ∼ Unif(0, νmax) where νmax is the maximum distance between any pair of points in
the spatial grid. Temporal dependence is introduced in the atoms of the stick-breaking
process, by adding a temporal structure through a transition equation for θ(s, t), say
θ(s, t) = ζθ(s, t − 1) + η(s, t), where |ζ| < 1 and ηD,T = {η(s, t) : s ∈ D, t ∈ T } are
independent realizations from a spatial stochastic process; see Kottas et al. (2008).

We run the MCMC algorithm for 20,000 iterations, with the first 10,000 iterations
discarded for burn-in. We set the maximum number of components to M = 500. Data
simulation is repeated 50 times.

We use the expected mean squared prediction error (ESPE) to compare the predic-
tion accuracy for each considered model; we keep 70% of the simulated data as training
dataset, and use the estimated model to predict the remaining 30% of the observations.
The ESPE is computed over repetitions of the simulations and over all the time points
and spatial locations:

ESPE = E

[∑
t∈T

∑
s∈S

[y(s, t) − ỹ(s, t)]2
]
,

which is approximated by the corresponding sample average. Here, y(s, t) is the observed
value, while ỹ(s, t) is the predicted mean value in the testing dataset.

The mean squared error is 175.69 for sp, 196.04 for sSB, and 52.33 for stSB; for
stSB, 97.3% of accepted values of λ are equal to zero and the posterior mean of values
different from zero is 0.037. The model stSB (VA) has ESPE equal to 142.15, with 100%
of accepted values of λ equal to zero; however, it has to be noticed that this last model
is fitted with a reduced training set with respect to the other models. By considering
the prediction (not shown here), it is evident that the spatio-temporal model smooths
too much over time, while the sSB is associated with the highest uncertainty in the
prediction. The stSB is able to follow the data more closely.

4.2 Simulation study with a complex spatial structure

We now consider the case where data are simulated from different spatio-temporal ran-
dom fields with consecutive 15 time points and a variable number of locations which
are simulated in the following way. Locations are generated according to a Thomas
point process, i.e. a cluster point process, so that locations tend to get clustered: first
a homogeneous Poisson point process with intensity ω > 0 is simulated on a spatial
rectangle (parent process), then for each simulated point another Poisson point process
with intensity δ > 0 is simulated (daughter processes). On these simulated daughter
points, a random field is generated. The daughter point processes are simulated within
a cluster disk (of radius 0.1), which has the centre in each parent point. This way of
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simulating spatial points has the aim of recreating a realistic situation where obser-
vations are locally closed; for instance, meteorological variables are often recorded by
monitoring stations which are present in urban areas in a large number, while are less
present or totally absent in rural areas.

Some of the models include temporal dependence and some do not; this decision
is meant to show the ability of the proposed approach to adapt to less complicated
situations. We considered the following models:

1. a stationary isotropic covariance model with Gaussian covariance C(s, s′) =
σ2
θe

− ||s−s′||2
h with variance σ2

θ = 1, scale parameter h = 0.4, and time-independent
observations;

2. a stationary isotropic exponential model C(s, s′) = σ2
θe

− |s−s′|
h with variance σ2

θ =
4 and scale h = 10, with a nugget component and a mean described by a trend of
mean 0.5, and time-independent observations;

3. a stationary isotropic covariance model belonging to the stable family, with covari-
ance function given by C(s, s′) = σ2

θe
− |s−s′|α

h with α = 1.9 so that the Gaussian
sample paths are not differentiable, scale parameter h = 0.4, and time-independent
observations;

4. a nugget effect model with variance σ2
θ = 1, zonal anisotropy, and time-independent

observations;

5. a Stein non-separable space-time model (Stein, 2005), where the covariance func-
tion is given by

C(h, t) = Wν(z) −
(< h, c > t)

((ν − 1)(2ν + d) ·Wν−1(z)),

where h = ||s−s′||, Wν(·) is a Whittle-Matern covariance model with smoothness
parameter ν, z = ||(h, t)|| is the norm of the vector (h, t), and d is the dimension
of the space on which the random field is defined; here ν = 1.5; t is intended as
the difference between the observed time and the starting point and < · > is the
inner product with respect to a reference vector of coordinates c = (0.9, 0.1);

6. a stationary space-isotropic covariance model with covariance function given by

C(s, s′, t, t′) = (ψ(t, t′) + 1)d/2φ
(

|s− s′|√
ψ(t, t′) + 1

)
,

where d depends on the spatial dimension of the field and here is set equal to 2;
φ(·) is a Gaussian covariance model; ψ(t, t′) = |t− t′|α with α = 1.

Simulations are obtained via the R package RandomFields (Schlather et al., 2015).
For every model, we repeat simulations 50 times. We compare two exponential models
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(Model 2) with nugget and trend, using ω = 10 (Model 2a) and ω = 30 (Model 2b)
respectively in the Thomas point process.

Results are shown in Table 1. The stSB outperforms, in terms of ESPE, sSB for
simulations from a Gaussian model (Model 1), an anysotropy model (Model 4), a Stein
model (Model 5), and a non-separable space-time model (Model 6). Results are very
similar for the sp, sSB and stSB for simulations from exponential models (Models 2a and
2b). Overall, stSB seems to be a good prior process in more complex situations, where
space and time are not separable or where the covariance function is complicated, as for
the Stein model. The approach still performs well in comparison with a simpler kriging
model in more standard situations. In this sense, stSB seems to represent a robust prior
process; this may be due to the ability to estimate the parameter a of the beta prior
for Vk from the data, so that if a increases the process is smoother (see Supplementary
Material (Grazian, 2024)), while if a is close to one the process is more heterogeneous.
stSB (VA) tends to perform slightly worse than the other processes with simulations
from the exponential models (Model 2a and 2b), the stable model, the Stein model and
the non-separable model. This may be due to the additional complexity of the model,
which requires an additional number of MCMC iterations to provide good estimates
and an additional number of observations to reach the same level of accuracy.

Table 2 presents results on the estimation of the separability parameter λ in Equa-
tion (3.3). When data comes from a separable model and observations are time-indepen-

sp sSB stSB stSB (VA)
1. Gaussian 0.93611 0.96797 0.92212 0.89518
2a. Trend, ω = 10 1.77601 1.78522 1.86372 2.86420
2b. Trend, ω = 30 1.66367 1.68756 1.71742 1.79734
3. Stable 0.11978 0.31019 0.90373 0.98556
4. Zonal Anisotropy 1.00187 0.99860 0.90475 0.98629
5. Stein 0.63084 0.68333 0.57722 0.77151
6. Nonseparable 0.60420 0.64485 0.53416 0.93089

Table 1: Comparison of the estimated ESPEs for the four considered models and for
simulations from models described in the list with the relative number. The bold number
represents the preferred models.

stSB stSB (VA) stSB stSB (VA)
Pr(λ = 0|y) Pr(λ = 0|y) E[λ|y] E[λ|y]

1. Gaussian 0.97476 0.00000 0.04098 0.86898
2a. Trend, ω = 10 0.70008 0.15749 0.34658 0.94788
2a. Trend, ω = 30 0.69074 0.50000 0.33236 0.99458
3. Stable 0.87393 0.10000 0.13651 0.91893
4. Zonal Anisotropy 0.02957 0.08295 0.94224 0.89265
5. Stein 0.98938 0.10000 0.01257 0.86846
6. Nonseparable 0.98252 0.00000 0.03513 0.97822

Table 2: Comparison of posterior measures on the separability parameter λ in the spatio-
temporal stick-breaking models - posterior probability that λ = 0 and posterior expec-
tation of λ when different from zero.
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Figure 5: Mixture densities obtained by choosing the modal means μ, weights π and
standard deviation σ parameters for four observations, characterized by different spatial
locations and time points and for data generated from a Stein model. The red dots on
the x-axis represent the observed value.

dent, there is a strong support that weights obtained using a separable kernel are pre-
ferred. It is, however, interesting to notice, that the support for a non-separable kernel
is never strong, except for the anisotropic case: data are evidently not strongly informa-
tive about the parameter defining separability within the kernel. This is not surprising,
since the covariance among observations obtained by using either a separable kernel
or a non-separable kernel is non-separable in both cases. However, it represents an ad-
ditional level of flexibility for the model, allowing for the covariance function to be
non-stationary. The Supplementary Material (Grazian, 2024) provides results with an
alternative prior distribution for λ.

From the simulation study, it seems that stSB is able to adapt to spatial and tem-
poral changes, by modifying the mixing weights according to the information carried
by the data. Figure 5 shows the mixture densities obtained via posterior estimate of
the parameters relative to four locations and time points from data generated from a
Stein model: the process seems to be adaptable to different situations and produce very
variable posterior densities.

5 Real-data application
We now implement the methodology proposed in this work on a real-data application,
the Supplementary Material (Grazian, 2024) includes an alternative example on tem-
perature data.
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Rainfalls in Australia are known to be highly variable (Nicholls et al., 1997), with
low rainfall over most of the country and intense seasonal falls in the tropical regions
in the North. The rainfall pattern is concentric from the coast, in particular the North
and East coasts can be characterized by large rainfall volumes, while the centre is more
arid. Around the centre there is another humid area, particularly in the East (Dey et al.,
2019). The temporal and spatial variability of Australia’s rainfall can lead to droughts
and floods that have large impact on various sectors, e.g. agriculture, hydrology, resource
management and allocation, human health and housing.

The dataset contains 10 years of daily weather observations in 49 locations across
all Australia, from 31 October 2007 to 24 June 2017. The spatial area D corresponds to
the entire Australia, with spatial locations identified by the 49 meteorological stations
included in the dataset. Observations were drawn from weather stations, and include
the amount of rainfall recorded for the day in mm. The dataset is publicly available
on the website of the Bureau of Meteorology of the Australian Government http://
www.bom.gov.au/climate/data/. The code and the dataset used for this example are
available at https://github.com/bayesgra/spatiotempoSB. For illustration, Figure 6
shows the monthly rainfall volumes for each location from 2009 to 2017, however daily

Figure 6: Monthly rainfalls for the month of June from 2009 to 2017 in Australia. A
larger and darker dot represents a larger volume of rainfall.

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
https://github.com/bayesgra/spatiotempoSB
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data were used as training dataset. Years 2007 and 2008 were left out of the illustration
because data were highly missing, however they were included in the training dataset.
The complete dataset comprises 140,793 data points. The training dataset, consisting
of data from 2007 to 2016, includes 132,420 observations, while the testing dataset,
which pertains to the year 2017, contains 8,373 data points. Predictions are made at
the same 49 spatial locations as those available in the training dataset, but at different
time points. The model is capable of handling situations where there is no rainfall, so
zeros were not modified.

Four models have been compared: sp, sSB, stSB and stSB (VA). The first three
models were trained on the daily observations from 2007 to 2016 to predict data for 2017;
stSB (VA) could not be fit on the full dataset, for computational reasons. Therefore, it
was fitted on weakly data, instead of daily data, obtained by avaraging the daily rainfall
data for each week at each location.

Table 3 presents a comparison of prediction accuracy and model preference among
sp, sSB, and stSB. For this application, we also assessed the models using the Deviance
Information Criteria as defined by DIC1 in Celeux et al. (2006) and the Watanabe–
Akaike information criterion as defined by WAIC2 in Gelman et al. (2014). Once again,
stSB appears to produce more reliable predictions compared to the other models in
terms of ESPE, DIC, and WAIC, providing strong support for it in both prediction
accuracy and model preference.

ESPE DIC WAIC
sp 109.74 39,960,564 3,109,830

sSB 115.47 495,345 524,083
stSB 71.05 233,070 257,581

Table 3: Model comparison for the three models.

The ESPE for stSB(VA) on the same testing dataset is 104.67 for stSB (VA). How-
ever, conducting a fair model comparison is not possible because the model was trained
on a relatively different dataset.

Figure 7 displays the posterior means of the weights of the fitted mixture model, il-
lustrating how the component with the highest posterior probability of allocation varies
over time and space. We have chosen to focus on Sydney and Perth due to their geo-
graphical differences and the significant distance between the two cities. Additionally,
we have selected two different seasons to showcase: summer for Sydney and winter for
Perth.

The majority of the components have weights close to zero. Specifically, components
associated with large indices are never selected. For any location and time point, no
component beyond the 100th exhibits a posterior mean significantly different from zero.

Figure 8 shows the average squared residuals for predictions relative to June 2017
(values based on the posterior predictive mean) for each spatial location. The first two
models, sp and sSB, tend to oversmooth over the area, with high volatility, in particular
in the area relative to Perth (West) and the area on the coast of New South Wales
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Figure 7: Posterior means for the weights of the mixture, truncated at 50 components
for stSB.

Figure 8: Residuals plots for the month of June 2017 obtained with the three methods,
sp (left), sSB (centre), stSB (right). The size of dots is fixed.

(East), especially around Byron Bay. On the other hand, stSB is able to capture the
peaks of rainfall and the squared residuals show less spatial structure. It is interesting
to note that the spatio-temporal stick-breaking process appears to adapt quickly to
changes over time. With access to daily rainfall data, the model adjusts to seasonal
changes without the necessity of including a seasonal regression effect in the model.

In this application, 100% of the posterior samples for the separability parameter λ
equal zero. In this scenario, the hypothesis of separability between time and space for the
mixing weights is not rejected. Therefore, the covariance between observations recorded
at different spatial locations and time points can be interpreted as dependent on the
distance between spatial locations and the distance between time points, as described
in Section 3.
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6 Conclusion
Modelling spatio-temporal phenomena is an important and challenging problem. Some-
times there is not enough information to define a parametric model and nonparametric
methods may be preferred. This work presents a semi-parametric method to model
spatio-temporal data, which can be used to obtain higher predictive accuracy without
the need of introducing a large number of covariates.

The spatio-temporal stick-breaking prior proposed in this paper is a generalisation
of Reich and Fuentes (2007) and Dunson and Park (2008). This model avoids over-
smoothing, but, differently from the spatial stick-breaking of Reich and Fuentes (2007),
can model non-stationary covariance structures (with respect to either time or space,
or both of them) and with a covariance among observations that can be symmetric or
asymmetric with respect to time and space. Moreover, this model avoids the need for
space-time varying covariates as in Hossain et al. (2013) to model the weight compo-
nents.

Two models have been considered: a single-atom model where only the mixing
weights are dependent on time and space, and a model where both atoms and weights
are allowed to vary over time and space. The two models have shown to often lead to
similar results, however the latter is definitely more computationally intensive, and this
can lead to the need to train the model on a reduced number of observations.

The model has been validated by using simulated data and real data, and compared
to other spatio-temporal models. Two dataset has been analyzed: a dataset including
temperature recordings between 1985 and 2004 in California, USA (available in the Sup-
plementary Material (Grazian, 2024)), and a dataset of daily rainfall measurements in
Australia. With respect to the spatio-temporal kriging model, the spatial stick-breaking
and the spatio-temporal stick-breaking avoid oversmoothing, and with respect to the
spatial stick-breaking, the spatio-temporal stick-breaking allows to better differentiate
among areas over time: for example, predicting larger volumes of rain in areas that have
become more humid in recent years, and which used to be drier in the past.

An interesting current line of research focuses on situations where samples share
some instead of all mixture components (with or without differing weights) and the
components themselves may show some misalignment. For example, Lopes et al. (2003)
and Müller et al. (2004) allows some clusters to be shared among samples, Teh et al.
(2004) and Cron et al. (2013) allows all clusters to vary across samples, Rodriguez
et al. (2008) allows a structures where clusters in each sample must be either identical
or completely different, and Soriano and Ma (2019) propose a hierarchical mixture
modelling framework allowing for both varying weights across samples and distribution
misalignment. Such proposal often relies on a stick-breaking construction, however they
also tend to assume independence within samples. The possibility to introduce spatial
or temporal dependence on the mixing weights in a hierarchical way is left for further
research.

The model is open to several generalisations. First, we have intentionally considered
cases where no covariates were available, but it is easy to incorporate covariate infor-
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mation. Similarly, it is possible to introduce seasonality components in the regression
part of the model. Moreover, the model is easily generalisable to a multivariate setting.

Supplementary Material
Supplementary material for “Spatio-Temporal Stick-Breaking Process” (DOI: 10.1214/24-
BA1419SUPP; .pdf). The Supplementary Material includes the derivation of Equation
(3.2), figures describing more features of the correlation structure between observations
and the stick-breaking weights, additional simulations from the spatio-temporal stick-
breaking process (with single atoms and with varying atoms), the results of the simula-
tion study introduced in Section 4.2 using a discrete prior distribution for λ instead of
the spike-and-slab prior distribution presented in the paper, an additional application
to a temperature dataset, details of the MCMC algorithm used for the implementation,
and the prior specification of the parameters of the model.
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