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A Bayesian Nonparametric Approach to Species
Sampling Problems with Ordering

Cecilia Balocchi∗ Federico Camerlenghi† , and Stefano Favaro‡

Abstract. Species-sampling problems (SSPs) refer to a vast class of statistical
problems calling for the estimation of (discrete) functionals of the unknown species
composition of an unobservable population. A common feature of SSPs is their
invariance with respect to species labeling, which is at the core of the Bayesian
nonparametric (BNP) approach to SSPs under the popular Pitman-Yor process
(PYP) prior. In this paper, we develop a BNP approach to SSPs that are not “in-
variant” to species labeling, in the sense that an ordering or ranking is assigned to
species’ labels. Inspired by the population genetics literature on age-ordered alle-
les’ compositions, we study the following SSP with ordering: given an observable
sample from an unknown population of individuals belonging to species (alleles),
with species’ labels being ordered according to weights (ages), estimate the fre-
quencies of the first r order species’ labels in an enlarged sample obtained by
including additional unobservable samples. By relying on an ordered PYP prior,
we obtain an explicit posterior distribution of the first r order frequencies, with
estimates being of easy implementation and computationally efficient. We apply
our approach to the analysis of genetic variation, showing its effectiveness in es-
timating the frequency of the oldest allele, and then we discuss other potential
applications.

Keywords: Bayesian nonparametrics, exchangeable partition probability
function, first r order frequency, ordered Pitman-Yor process prior, species
sampling problems, population genetics.

1 Introduction
Species sampling problems (SSPs) refer to a vast class of statistical problems, of which
the estimation of the number of unseen species is arguably the most popular example
(Good and Toulmin, 1956; Efron and Thisted, 1976; Lijoi et al., 2007; Orlitsky et al.,
2016). Consider n ≥ 1 observable samples from a generic population of individuals, with
each individual taking a value in a (possibly infinite) discrete space of symbols or species’
labels. The unseen-species problem assumes that observable samples are modeled as a
random sample (X1, . . . , Xn) from an unknown discrete distribution p, and calls for
estimating

K(n)
m = |{Xn+1, . . . , Xn+m} \ {X1, . . . , Xn}|, (1)

arXiv: 2203.07342
∗School of Mathematics, University of Edinburgh, cecilia.balocchi@ed.ac.uk
†Department of Economics, Management and Statistics, University of Milano - Bicocca, federico.

camerlenghi@unimib.it
‡Department of Economics, Social Studies, Applied Mathematics and Statistics, University of Torino

and Collegio Carlo Alberto, stefano.favaro@unito.it

c© 2024 International Society for Bayesian Analysis https://doi.org/10.1214/24-BA1418

https://bayesian.org/resources/bayesian-analysis/
https://orcid.org/0000-0002-1234-6063
https://orcid.org/0000-0002-4956-1103
https://arxiv.org/abs/2203.07342
mailto:cecilia.balocchi@ed.ac.uk
mailto:federico.camerlenghi@unimib.it
mailto:federico.camerlenghi@unimib.it
mailto:stefano.favaro@unito.it
https://doi.org/10.1214/24-BA1418


2 Species Sampling Problems with Ordering

namely the number of hitherto unseen symbols that would be observed if m ≥ 1 ad-
ditional samples (Xn+1, . . . , Xn+m) were collected from the same distribution. SSPs
comprise of generalizations or refinements of the unseen-species problem, calling for the
estimation of (discrete) functionals of the species’ composition of unobservable samples,
e.g. missing mass, discovery probabilities, unseen species with prevalences and cover-
ages of prevalence. We refer to Deng et al. (2019) and Balocchi et al. (2022) for reviews
of SSPs, both in methods and applications, mostly in the field of biological sciences
but also in machine learning, electrical engineering, computer science and information
theory.

A common feature of SSPs is that species’ labels identifying the Xi’s are immaterial
in the definition of the functional of interest, as for instance in (1), thus making SSPs
“invariant” to species labeling. Such a feature is at the core of the Bayesian nonparamet-
ric (BNP) approach to SSPs (Lijoi et al., 2007, 2008; Favaro et al., 2009, 2013), which
relies on the specification of a (nonparametric) prior P for the unknown distribution
p, i.e.

Xi |P iid∼ P i = 1, . . . , n, (2)
P ∼ P.

Species sampling models (SSMs) (Pitman, 1996) provide a natural choice for the prior
distribution P, including the celebrated Dirichlet process (DP) prior (Ferguson, 1973)
and the Pitman-Yor process (PYP) prior (Pitman and Yor, 1997). Under the BNP
model (2) with a SSM for P , the random sample (X1, . . . , Xn) induces a random parti-
tion π̃n of [n] = {1, . . . , n} whose blocks correspond to the (equivalence) classes induced
by the equivalence relation i ∼ j ⇐⇒ Xi = Xj almost surely. In particular, π̃n is
exchangeable (Pitman, 2006, Chapter 2), namely its distribution is such that the prob-
ability of any partition of [n] with k blocks of frequencies (n1, . . . , nk) is a symmetric
function of compositions (n1, . . . , nk) of [n]. The exchangeability of π̃n implies that
blocks’ labels are immaterial, and therefore it legitimates the BNP approach to SSPs
under the class of SSMs.

1.1 Our contributions

In this paper, we consider SSPs that are not “invariant” with respect to species labeling,
in the sense that an ordering or ranking is assigned to species’ labels, and we develop
a BNP approach to such problems. Under the infinitely-many neutral alleles model
for the evolution of genetic populations (Ewens, 1972; Kingman, 1975; Watterson and
Guess, 1977; Griffiths, 1979), the work of Donnelly and Tavaré (1986) first investigated
the alleles’ composition of a random sample from the population by also taking into
account the ages of alleles, namely the times elapsed since the first time each allele
first appeared in the sample. This study led to the introduction of an age-ordered
version of the random partition induced by the DP prior, where species are alleles and
species’ labels are ordered according to the age of alleles in such a way that the smaller
the order the older the allele. Besides providing distributional properties of the age-
ordered random partition, Donnelly and Tavaré (1986) applied such a model to answer
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a critical question raised in Crow (1972): “Is the most frequent allele the oldest?”.
Under the infinitely-many neutral alleles model, Donnelly and Tavaré (1986) came up
with a positive answer to such a question, showing that the probability that an allele
represented i times in sample of size n is the oldest is i/n (Kelly, 1977; Watterson and
Guess, 1977). The question of Crow (1972) is to some extent a SSP with ordering, as
the object of interest involves a species’ label with a precise order, namely the species’
label of order 1 that corresponds to the oldest allele.

Inspired by the seminal work of Donnelly and Tavaré (1986), we study the following
SSP with ordering: assuming n observable samples to be modeled as a random sample
((T1, X1), . . . , (Tn, Xn)) from an unknown discrete distribution q on R+ ×X, with the
positive Ti’s being considered as weights inducing an ordering among species’ labels
identifying the Xi’s, on a general (measurable) space X, we estimate the frequencies of
the first r order species’ labels in an enlarged sample obtained by including m additional
unobservable samples ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)) from the same unknown dis-
tribution. Within the population genetic setting of Donnelly and Tavaré (1986), this
ordered SSP corresponds to the estimation of the frequency of the r oldest alleles in a
sample of size (n + m) based on n observable samples. We introduce a BNP approach
to estimate the first r order frequencies, which relies on the use of the class of spatial
neutral to the right SSMs (James, 2006a), or ordered SSMs, as prior distributions for
q. The most popular ordered SSM is the ordered DP prior, which is known to induce
the age-ordered random partition of Donnelly and Tavaré (1986). See also Gnedin and
Pitman (2005) and references therein. Here, we consider the more general ordered PYP
prior (Gnedin and Pitman, 2005; James, 2006a), and we determine the posterior distri-
bution of the first r order frequencies; then, a BNP estimator is proposed in terms of
the posterior mean, whose closed-form expression results to be of easy implementation
and also computationally efficient. Of special interest is the case r = 1 that, in the
original setting of Donnelly and Tavaré (1986), leads to an estimate of the frequency of
the oldest allele.

We present an empirical validation of the effectiveness of our BNP approach, both
on synthetic data and real data. It is natural to focus on applications to genetic data, for
which the weights Ti’s have an interpretation as the ages of the alleles Xi’s. The problem
of modeling the interplay between the alleles’ composition of a genetic population and
the age of alleles dates back to the 1970s and the 1980s, and nowadays the genealogical
structure of alleles is well recognized as a fundamental aspect in many inferential (de-
cision) processes in the field of population genetics. In particular, investigating genetic
variation while incorporating the information on the variants’ age enhances the inves-
tigation of several problems, such as analyzing and comparing populations structure,
detecting which samples are related, studying demographic history, and learning about
genetic susceptibility to disease (Mathieson and McVean, 2014). For example, it enables
researchers to use variants’ age distribution to compare populations, to differentiate age
distributions in pathogenic and benign variants, and to learn about genealogical history
(Albers and McVean, 2020). Here, we apply our BNP methodology to the problem of
estimating the frequency of the oldest allele, using genetic variation data from the 1000
Genomes Project (1000 Genomes Project Consortium, 2015) and variants’ age estimates
from the Human Genome Dating Project (Albers and McVean, 2020). Thanks to our
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posterior estimator, we can not only answer inferential questions on the frequency of
the oldest allele in an observed sample, but also make predictions by analyzing an en-
larged sample. By studying the trajectory of this frequency as a function of the enlarged
sample size, we can enhance our understanding of the population distribution, thereby
addressing the investigation of the aforementioned issues more effectively.

Besides population genetics, SSPs with ordering arise in at least other two contexts:
i) citations to academic articles and ii) online purchases of items. In the context of cita-
tions to academic articles, with articles being ordered according to their publication’s
dates, one may be interested in the frequency of citations to the oldest paper. Citation
data are often analyzed in the framework of citation networks to study the movement
of ideas in academic fields or examine scholars’ influence (Portenoy et al., 2017). Incor-
porating knowledge of articles’ age permits the investigation of the effects of time on
the number of citations (Hajra and Sen, 2005) and to answer questions such as “are
older papers more frequently cited than newer papers?”. Assuming that each citation
represents an observation, that the article cited represents a species, and that the or-
der of the cited article is determined by its publication’s date, we may apply our BNP
approach in order to predict the frequency of citations to the oldest article in future
observations. In the context of online purchases of items, species’ labels are represented
by the items purchased, with items being ordered according to their costs, as well as
by a generic independent measure of popularity. In such a context, we may apply our
BNP approach to study the distribution of the most popular item in future purchases,
which is particularly relevant in order to plan suitable changes in the current marketing
strategies.

1.2 Organization of the paper

The paper is structured as follows. In Section 2 we present the ordered PYP prior and
review its sampling structure in terms of sampling formulae and predictive distribu-
tions. In Section 3 we provide the posterior distribution of the first r order frequencies,
with emphasis on the special case r = 1, and obtain corresponding estimators. Section 4
contains numerical illustrations of our BNP approach, both on synthetic and real data,
whereas in Section 5 we discuss our work and some directions for future research. Addi-
tional numerical illustrations on genetic data, an illustration in the context of citations
to academic articles, and the proofs of our results are deferred to the Supplementary
Material (Balocchi et al., 2024).

2 The ordered PYP
To introduce the ordered PYP, it is useful to recall the PYP and its sampling structure.
Let P be a PYP with parameter α ∈ [0, 1) and θ > −α on a measurable space X.
That is P =

∑
i≥1 PiδSi , where: i) P1 = V1 and Pi = Vi

∏
1≤j≤i−1(1 − Vj) with (Vi)i≥1

being independent Beta random variables with parameter (1−α, θ + iα); ii) (Si)i≥1 be
random variables, independent of the Vi’s, and independent and identically distributed
according to a non-atomic distribution ν on X (Perman et al., 1992; Pitman, 1995).
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Because of the (almost sure) discreteness of P , a random sample (X1, . . . , Xn) from P
induces a random partition π̃n of [n] into Kn ≤ n blocks, labelled by {X∗

1 , . . . , X
∗
Kn

},
with frequencies Nj,n = |i ∈ [n] : Xi = X∗

j | for j = 1, . . . ,Kn and such that Nj,n ≥ 1
and

∑
1≤j≤Kn

Nj,n = n. In particular, if we set (a)(r) =
∏

0≤i≤r−1(a + i) for any a ≥ 0
and r ∈ N0, then the probability of any partition of [n] with k blocks of frequencies
(n1, . . . , nk) is

Π(n)
k (n1, . . . , nk) =

∏k
i=1(θ + (i− 1)α)

(θ)(n)

k∏
i=1

(1 − α)(ni−1). (3)

Equation (3) is referred to as the exchangeable partition probability function (EPPF),
a concept introduced in Pitman (1995) as a development of results in Kingman (1978).
For α = 0 the PYP reduces to DP, and hence (3) reduces to the Ewens sampling formula
(Ewens, 1972). See Pitman (2006, Chapter 3 and Chapter 4) for a detailed account of
EPPFs.

The predictive distribution of the PYP provides a generative scheme for the random
partition π̃n. This is typically stated in terms of the Chinese Restaurant Process (Pit-
man, 2006, Chapter 3), which is a sequential construction of π̃n through the metaphor
of customers (observations) sitting at tables (species) of a restaurant. Under Chinese
Restaurant Process, the first customer X1 arrives and is assigned to a table. After n
customers (X1, . . . , Xn) have arrived and have been assigned to k tables {X∗

1 , . . . , X
∗
k},

with ni being the number of customers at table i = 1, . . . , k, the customer Xn+1 arrives
and

i) she will sit at a (“new”) table X∗, that is a table not already occupied, with a
probability

p(new) = θ + kα

θ + n
; (4)

ii) she will sit at a table X∗
j that has been already occupied, for j = 1, . . . , k, with a

probability
p
(old)
j = nj − α

θ + n
. (5)

We refer to Pitman (2006, Chapter 3 and Chapter 4) for a detailed account of Chinese
Restaurant Process and its generalizations to SSMs. In particular, the PYP is charac-
terized as the sole SSM for which p(new) depends only on (n, k) and p

(old)
j depends only

on (n, nj) (Zabell et al. (1997); see Bacallado et al. (2017) for more general sufficiency
postulates).

Equation (3) is a symmetric function of compositions (n1, . . . , nk) of [n], that is
the random partition π̃n induced by the PYP is an exchangeable random partition
(Pitman, 2006, Chapter 2). The ordered PYP is a discrete random probability measure
generalizing the PYP, in the sense that random sampling from the ordered PYP allows
to couple each species’ label with a corresponding order (Gnedin and Pitman, 2005;
James, 2006a). An ordered PYP Q is an almost surely discrete random probability
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measure with parameters α ∈ [0, 1) and θ > 0, that can be defined relying on the de
Finetti theorem. Indeed, if {(Ti, Xi)}i≥1 is an exchangeable sequence of observations
whose directing measure is an ordered PYP Q, i.e., (Ti, Xi) |Q iid∼ Q as i ≥ 1, we can
characterize Q by assigning the predictive distributions of the associated exchangeable
sequence. In order to do this, consider the random sample ((T1, X1), . . . , (Tn, Xn)) from
Q, with the Ti’s being viewed as weights that induce an ordering among species’ labels
identifying the Xi’s. Because of the (almost sure) discreteness of Q, the random sample
((T1, X1), . . . , (Tn, Xn)) from Q induces a random partition of [n] into Kn ≤ n blocks,
labelled by a Kn-tuple ((T ∗

1 , X
∗
1 ), . . . , (T ∗

Kn
, X∗

Kn
)) that is ordered according to the

T ∗
j ’s in such a way that T ∗

1 > · · · > T ∗
Kn

, with corresponding ordered frequencies
Mj,n = |i ∈ [n] : (Ti, Xi) = (T ∗

j , X
∗
j )| for j = 1, . . . ,Kn and such that Mj,n ≥ 1 and∑

1≤j≤Kn
Mj,n = n. Species’ labels X∗

j ’s are thus ordered with respect to the decreasing
ordering of the weights T ∗

j ’s, namely the larger the weight the smaller the order, such
that Mj,n is the frequency of the species’ label of order j that corresponds to the j-th
largest weight T ∗

j . An analogous construction follows for ordered SSMs (James, 2006a).

In analogy with the Chinese Restaurant Process, the predictive distribution of the
ordered PYP Q may be stated as an ordered version of the Chinese Restaurant Pro-
cess, with tables ordered according to weights (James, 2006a). In particular, under the
ordered Chinese Restaurant Process, the first n customers ((T1, X1), . . . , (Tn, Xn)) ar-
rive and they are assigned to the k ordered tables ((T ∗

1 , X
∗
1 ), . . ., (T ∗

k , X
∗
k)), with the

table of order j corresponding to the j-th largest weight T ∗
j . Hereinafter, we denote by

mj the number of customers seated at the table of order j for j = 1, . . . , k, and we set
rj = mj+· · ·+mk, for any j = 1, . . . , k, and rk+1 = 0. Then, the customer (Tn+1, Xn+1)
arrives and

i) she will sit at a “new” table (T ∗, X∗) of order j = 1, . . . , k + 1, that is a table not
already occupied and whose order j is determined through the weight T ∗, with a
probability

q
(new)
j = θ + αrj

(1 + rj)(θ + n)

j−1∏
i=1

ri(αri+1 + α + θmi)
(ri + 1)(αri+1 + θmi)

, (6)

where T ∗ and X∗ are generated from two non-atomic distributions on R+ and X

respectively;

ii) she will sit at a table (T ∗
j , X

∗
j ) that has been already occupied, for j = 1, . . . , k,

with a probability

q
(old)
j = rj(mj − α)(αrj+1 + θmj + θ)

(1 + rj)(θ + n)(αrj+1 + θmj)

j−1∏
i=1

ri(αri+1 + α + θmi)
(ri + 1)(αri+1 + θmi)

. (7)

Given that the T ∗
j only affect the distribution of an ordered partition through the

ordering induced on the clusters, we avoid using specific notation for its distribution,
as it is immaterial. We refer to Gnedin and Pitman (2005) and James (2006a) for a
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detailed account of (6) and (7). The predictive distribution of the ordered DP arises
from (6) and (7) by setting α = 0.

Equation (6) and Equation (7) provide a generative scheme for the random par-
tition of [n] induced by the ordered PYP Q. That is: i) if the (n + 1)-th customer
(Tn+1, Xn+1) sits at the new table (T ∗, X∗), which happens with probability (6), then
the order of such a table with respect to the ordering of the already occupied tables
((T ∗

1 , X
∗
1 ), . . . , (T ∗

k , X
∗
k)) is determined by T ∗, thus possibly changing the ordering of

occupied tables by shifting the order of tables (T ∗
j , X

∗
j )’s with weights smaller than T ∗;

ii) if the (n + 1)-th customer (Tn+1, Xn+1) sits at a table (T ∗
j , X

∗
j ) that is already oc-

cupied, which happens with probability (7), then the order of such a table with respect
to the ordering of the already occupied tables is determined by T ∗

j , thus not changing
the ordering of occupied tables. In other terms, a new customer sitting at a new table
may determine a change in the ordering of the occupied tables, whereas a new customer
sitting at a table occupied does not determine a change in the ordering of the already
occupied tables.

Gnedin and Pitman (2005) and James (2006a) first investigated properties of the
random partition induced by the ordered PYP, and introduced the notion of ordered
EPPF. Generalizing the definition of EPPF, the ordered EPPF is defined as the prob-
ability of any ordered partition of [n] with k blocks of frequencies (m1, . . . ,mk). Here
the term ordered partition refers to a partition of [n], where the blocks are ordered in
accordance with the weights Tj . Gnedin and Pitman (2005) showed that the ordered
PYP induces a random partition whose ordered EPPF is

Φ(n)
k (m1, . . . ,mk) =

∏k
i=1

θmi+αri+1
ri

(θ)(n)

k∏
i=1

(1 − α)(mi−1). (8)

See also Gnedin (2010), and references therein, for a comprehensive account on ordered
EPPFs and generalizations thereof. Note that the EPPF (3) can be recovered from the
ordered EPPF (8) by summing over the set Sk of all possible permutations of the k
blocks, that is

Π(k)
n (m1, . . . ,mk) =

∑
π∈Sk

Φ(n)
k (mπ(1), . . . ,mπ(k)). (9)

See Section S1.1 of the Supplementary Material for details on Equation (9). The dis-
tribution of the age-ordered partition of Donnelly and Tavaré (1986) arises from (8) by
setting α = 0, where species’ labels are ordered according to weights Ti’s that are inter-
preted as the ages of alleles. Another special case of the ordered EPPF (8) is obtained
by setting α ∈ (0, 1) and θ = 0. See Favaro and James (2016) and references therein for
details.

By applying the ordered EPPF (8), one may compute the probability Pn(i;α, θ)
that a species with frequency i has species’ label of order 1, i.e. the species’ label cor-
responding to the largest weight T ∗

1 . For α = 0, Donnelly and Tavaré (1986) computed
such a probability, showing that it is independent of θ and also an increasing (linear)
function of i, i.e.

Pn(i; 0, θ) = i

n
. (10)
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Within the population genetic setting of Donnelly and Tavaré (1986), Equation (10)
shows that the most frequent allele is the oldest allele. In general, for any α ∈ [0, 1) and
θ > 0 it holds

Pn(i;α, θ) = αn + i(θ − α)
n

E

[
1

θ + αKn−i

]
, (11)

where Kn−i is the number of distinct species in (n− i) random samples for the ordered
PYP Q, with the proviso K0 = 0 (Pitman, 2006, Chapter 3). See Section S1.2 of the
Supplementary Material for the proof of Equation (11). It is easy to show that (11)
reduces to the probability (10) for α = 0. The comparison between (11) and (10) is
critical, as it highlights the increased flexibility of the ordered PYP compared to the
ordered DP (α = 0). In fact, differently from the probability (10), the probability (11)
depends on (α, θ) and, most importantly, it is no more an increasing (linear) function
of i. Figure 1 shows that the probability (11) may increase or decrease in i according
to the value of (α, θ); for instance, for α ∈ (0, 1) and θ = 0 the probability (11) is the
product of a term decreasing in i and one increasing in i. The non-increasing behavior
of Pn(i;α, θ) for α > θ and for θ = 0 is depicted in Figure S1 of the Supplementary
Material.

To conclude, it is worth mentioning the construction of the order PYP Q that
induces the predictive distributions (6) and (7), though we will not make use of such a
construction in the paper. The ordered PYP belongs to the class of spatial neutral to
the right SSMs defined by James (2006a), and hence it is defined as a discrete random
probability measure on the product space S = R+ ×X, from which the observations
(Ti, Xi), as i = 1, . . . , n, are sampled. To formalize such a definition, we consider a
marked Poisson process N (Kingman, 1993) on the space [0, 1]×S with mean intensity
given by

ν(du, ds,dx) := ρ(du|s)Λ0(ds,dx)
where ρ is a Lévy density, while Λ0 is a hazard measure on the space S . Thus, one may
define a functional of the Poisson process N as follows Λ(ds,dx) =

∫ 1
0 uN(du, ds,dx),

which turns out to be a completely random measure (Daley and Vere-Jones, 2008);
Λ represents a hazard measure in the framework of survival analysis. Now, define
the survival function associated with Λ as − log(S(t−)) :=

∫
[0,1]×S [−1{s<t} log(1 −

u)]N(du, ds,dx). Then, a spatial neutral to the right random probability measure equals
Q(dt,dx) := S(t−)Λ(dt,dx). By choosing ρ as in (James, 2006a, Section 6.2), the law
of the resulting Q is the de Finetti measure associated with the prediction rules (6)–(7).
Note that in this construction the Ti’s are considered as times, but they can be seen
more generally as weights inducing an order, making the model more widely applicable.
See James (2006a) for general properties of the ordered PYP Q, including the posterior
distribution.

3 BNP inference for the first r order frequencies
In analogy with SSPs, SSPs with ordering assume n ≥ 1 observable samples from a
population of individuals, with each individual taking a value in a (possibly infinite)
discrete space of symbols, and then consider m ≥ 1 additional unobservable sample from
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Figure 1: The probability Pn(i;α, θ), where n = 1000, as a function of the frequency i,
for different values of α and θ. Each panel corresponds to a different θ, from top left to
bottom right, we have: θ = 1, 10, 100, 500.

the same population. The critical difference between SSPs and SSPs with ordering lies
in the definition of the (discrete) functional of interest: while in SSPs such a functional
is “invariant” with respect to species ordering and deals with the species’ composition
of the additional samples, in SSPs with ordering the functional is not “invariant” with
respect to species ordering and deals with the species’ composition of both the addi-
tional samples and the enlarged sample. The estimation of the first r order frequencies
is arguably the most natural example of SSPs with ordering. Assuming n observable
samples to be modeled as a random sample ((T1, X1), . . . , (Tn, Xn)) from the ordered
PYP Q:

(Ti, Xi) |Q iid∼ Q i = 1, . . . , n, (12)
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i.e., the observations are updated according to the predictive laws (6)-(7). We introduce
a BNP approach to estimate the frequencies of the first r order species in an enlarged
sample obtained by collecting m additional samples ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m))
from the same Q.

3.1 Posterior distributions for the first r order frequencies
We start by introducing a marginal distribution related to the random partition induced
by an ordered PYP Q, with parameters (α, θ). For any n ≥ 1 let ((T1, X1), . . . , (Tn, Xn))
be a random sample under the BNP model (12), such that the sample features Kn = k
distinct species with ordered frequencies Mn = m. Hereinafter, for the sake of simplicity
in notation, we denote by |m|1:r the sum of the first r elements of m, i.e. |m|1:r =∑

1≤j≤r mj , with the proviso |m|1:0 = 0. For any index r ∈ {1, . . . , n} such that r ≤
|m|1:r ≤ n− k + r, if we set

Cr,n(α, θ,m) =
r∏

j=1

[α(n− |m|1:j) + θmj ]
n− |m|1:j−1

(1 − α)(mj−1)

then

Pr[M1,n = m1, . . . ,Mr,n = mr,Kn ≥ r] (13)

=
(

n

m1, . . . ,mr, n− |m1:r|

)
Cr,n(α, θ,m)

(θ + n− |m|1:r)|m|1:r
.

See Section S1.4 of the Supplementary Material for the proof of Equation (13). Equa-
tion (13) generalizes Donnelly and Tavaré (1986, Proposition 6.1), which is recovered
from (13) by letting α → 0. For r = 1, Equation (13) provides the distribution of first
order frequency, i.e.

Pr[M1,n = m1] =
(

n

m1

)
α(n−m1) + θm1

n(θ + n−m1)(m1)
(1 − α)(m1−1). (14)

Within the population genetic setting of Donnelly and Tavaré (1986), Equation (14)
with α = 0 provides the distribution of the frequency of the oldest allele (Kelly, 1977;
Watterson and Guess, 1977).

Now, we can state our main results on the posterior distribution of the first r or-
der frequencies. Let ((T1, X1), . . . , (Tn, Xn)) be a random sample from the ordered PYP
Q, and let ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)) be an additional random sample from the
same ordered PYP Q. Moreover, we denote by K

(n)
m the number of distinct species in the

sample ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)) that are not in ((T1, X1), . . . , (Tn, Xn)), i.e.
K

(n)
m = Kn+m−Kn, and we denote by Wi,n+m the frequency of the specie’s label of order

i in the enlarged sample ((T1, X1), . . . , (Tn+m, Xn+m)), for i = 1, . . . ,Kn+m. To deter-
mine the distribution of the ordered frequencies Wn+m = (W1,n+m, . . . ,WKn+m,n+m),
it is useful to set

Ar = {species’ labels with order 1, . . . , r are new}, (15)
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i.e., the event that the species’ labels with higher weights have not been recorded in the
first sample, and

Br = {species’ labels with order 1, . . . , r are old}, (16)

i.e. the event that the observations with higher weights have been recorded in the initial
sample.

Theorem 1. Let ((T1, X1), . . . , (Tn, Xn)) be a random sample under the BNP model (12),
such that the sample features Kn = k distinct species with ordered frequencies Mn = m.
Let ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)) be an additional random sample under the same
BNP model (12) such that the enlarged sample ((T1, X1), . . . , (Tn+m, Xn+m)) features
Km+n distinct species with corresponding ordered frequencies Wn+m, and set K

(n)
m =

Kn+m −Kn. If Ar and Br are the events defined in (15) and (16), respectively, then it
holds:

i) for r ∈ {1, . . . , n + m} such that r ≤ |w|1:r ≤ m,

Pr[Ar,W1,n+m = w1, . . . ,Wr,n+m = wr,K
(n)
m ≥ r |Kn = k,Mn = m] (17)

=
(

m

w1, . . . , wr,m− |w|1:r

)
Cr,n+m(α, θ,w)

(θ + n + m− |w|1:r)(|w|1:r)
;

ii) for r ∈ {1, . . . , k} such that 0 ≤ |w|1:r ≤ m,

Pr[Br,W1,n+m = w1 + m1, . . . ,Wr,n+m = wr + mr |Kn = k,Mn = m] (18)

×
(

m

w1, . . . , wr,m− |w|1:r

) Cr,n+m(α,θ,w+m)
(θ+n+m−|w+m|1:r)(|w+m|1:r)

Cr,n(α,θ,m)
(θ+n−|m|1:r)(|m|1:r)

See Section S1.5 of the Supplementary Material for the proof of Theorem 1. The-
orem 1 may be viewed as the posterior counterpart of Equation (13), with respect
to an initial observable sample ((T1, X1), . . . , (Tn, Xn)). In particular, Equation (17)
and Equation (18) provide two posterior distributions of the first r order frequen-
cies under the events Ar and Br, respectively, for r ≥ 1. Equation (17) provides
the posterior distribution of the first r order frequencies having species’ labels not
belonging to the additional observable samples; that is the ordering of species’ la-
bels in the initial sample ((T1, X1), . . . , (Tn, Xn)) is changed according to the addi-
tional sample ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)). Equation (18) provides the poste-
rior distribution of the first r order frequencies having species’ labels belonging to
the additional observable samples; that is the ordering of species’ labels in the ini-
tial sample ((T1, X1), . . . , (Tn, Xn)) is not changed according to the additional sample
((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)). BNP estimators of the first r order frequencies, with
respect to a squared loss function, are obtained in terms of posterior expectations, i.e.
the vectors of expected values with respect to the posterior distributions (17) and (18).
As a corollary of Theorem 1, we obtain the posterior distributions of the frequency of
order 1.
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Corollary 1. Let ((T1, X1), . . . , (Tn, Xn)) be a random sample under the BNP
model (12), such that the sample features Kn = k distinct species with ordered fre-
quencies Mn = m. Let ((Tn+1, Xn+1), . . . , (Tn+m, Xn+m)) be an additional random
sample under the same BNP model (12) such that the enlarged sample ((T1, X1), . . . ,
(Tn+m, Xn+m)) features Km+n distinct species with corresponding ordered frequencies
Wn+m, and set K

(n)
m = Kn+m − Kn. If A1 and B1 are the events defined in (15)

and (16), respectively, then it holds:

i)

Pr[A1,W1,n+m = w1,K
(n)
m ≥ 1 |Kn = k,Mn = m] (19)

=
(
m

w1

)
α(n + m− w1) + θw1

(n + m)(θ + n + m− w1)(w1)
(1 − α)(w1−1);

ii)

Pr[B1,W1,n+m = w1 + m1 |Kn = k,Mn = m] (20)

=
(
m

w1

) α(n+m−w1−m1)+θ(w1+m1)
(n+m)(θ+n+m−w1−m1)w1+m1

α(n−m1)+θm1
n(θ+n−m1)(m1)

(m1 − α)(w1);

iii)

Pr[W1,n+m = w |Kn = k,Mn = m] (21)

=
[α(n + m− w) + θw](1 − α)(w−1)

(n + m)(θ + n + m− w)(w)

×
[
1{1,...,m}(w)

(
m

w

)

+ 1{m1,...,m1+m}(w)
(

m

w −m1

)
n(θ + n−m1)(m1)

[α(n−m1) + θm1](1 − α)(m1−1)

]
.

The proofs of Equation (19) and Equation (20) follow directly from Theorem 1 by
setting r = 1, whereas Equation (21) follows by combining (19) and (20). Within the
population genetic setting of Donnelly and Tavaré (1986), Equation (21) with α = 0
provides the posterior distribution of the frequency of the oldest alleles. By exploiting
Corollary 1, BNP estimators of the frequency of order 1, with respect to a squared
loss function, are obtained in terms of the expected values of the posterior distribu-
tions (19), (20) and (21). Here, we report the BNP estimator with respect to the poste-
rior distribution (21) and we refer to Section S1.6 of the Supplementary Material for the
BNP estimators with respect to the posterior distributions (19) and (20). In particular,
if we set

C(α, θ, n,m,m1)

= [α(n + m−m1) + θm1]
[
m1 + m

m1 − α

θ + n− α

]
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+
[
m(θ − α) m1 − α

θ + n− α

] [
(m1 + 1) + (m− 1) m1 + 1 − α

θ + n + 1 − α

]

then

E[W1,n+m |Kn = k,Mn = m] (22)

=
m(θ + n + 1 − α)(m)

(n + m)(θ + n)(m)

θ + nα

θ + n + 1 − α
+

n(θ + n− α)(m)

(n + m)(θ + n)(m)

C(α, θ, n,m,m1)
α(n−m1) + θm1

.

We refer to Section S1.7 of the Supplementary Material for explicit expressions of the
posterior probabilities of the events A1 and B1, which complete the main result of
Corollary 1.

3.2 Estimation of prior’s parameter (α, θ)

The closed-form expressions of our results facilitate posterior inferences. In particular, if
the prior’s parameters (α, θ) are estimated with an empirical Bayes approach and fixed,
then the inferential procedure becomes straightforward and efficient. Here we consider
both an empirical Bayes approach and a fully Bayes approach for the estimation of
(α, θ), the latter considering the specification of a prior distribution on (α, θ). While
the empirical Bayes approach takes advantage of closed-form formulae, the fully Bayes
approach may sometimes be preferable. In both cases, the inference is based on an initial
sample of n observations, which are then used to make predictions on a second set of
m data points.

Within the empirical Bayes approach, we consider methods relying on maximum
likelihood estimation and methods relying on moment-based estimation. With regards
to maximum likelihood estimation, the problem consists in finding the values of α and
θ that maximize the (marginal) likelihood function, which in this context is equal to
the EPPF. Under the ordered PYP, this coincides with (8), and the parameters found
by solving:

max
α,θ

Φ(n)
k (m1, . . . ,mK ;α, θ).

As a term of comparison, we also consider the performance of estimating the prior’s
parameters when the model is misspecified, specifically assuming an ordered DP prior
(i.e. fixing α = 0), or ignoring the ordering structure or the model, i.e. maximizing the
EPPF of the standard PYP (3). The sets of prior’s parameters obtained by optimizing
these EPPFs are respectively denoted with ordPYP, ordDP and stdPYP. Note that the
approaches based on the “misspecified” likelihood (ordDP and stdPYP) do not take
full advantage of the increased complexity of the model, and are considered only as
reference. When the model is correctly specified, these methods do not estimate the
correct parameters.

With regard to moment-based estimation, we consider a statistic of interest and then
match its population first moment with the corresponding observed sample statistic.
Rather than doing this for the full initial sample, we consider a collection of samples
of increasing size and match the statistics of interest’s trajectory given by increasing
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sample sizes, using a least squares method. Specifically, we consider a grid of sample
size values 1 ≤ n1 ≤ . . . ≤ nd = n; for each ni, we compute the discrepancy between
the first moment and the observed statistics for the first ni observations; finally, we
minimize the sum of the squared discrepancies, where the sum is for i = 1, . . . , d. The
statistics we consider are the frequency of the first ordered species M1,n and the number
of distinct species Kn; the parameters obtained are respectively denoted as lsM1 and
lsK:

(α̂, θ̂)lsM1 = arg min
α,θ

d∑
i=1

(E[M1,ni ;α, θ] −M1,ni)
2
,

(α̂, θ̂)lsK = arg min
α,θ

d∑
i=1

(E[Kni ;α, θ] −Kni)
2
,

where M1,ni and Kni are the frequency of the first ordered species and the number of
distinct species in the first ni samples, respectively. In Section S2.1 of the Supplementary
Material, we provide additional details, as well as report the pseudocode algorithms, to
obtain these parameter estimates. Moment-based estimation allows to focus the esti-
mation problem on a specific feature or property of the data, by choosing the summary
statistics of interest. Moreover, by considering a grid of sample size values, the method
learns the growth curve over n, ideally being more robust compared to methods that
only look at one “snapshot” given by the full dataset. Additionally, because they do not
rely on the full likelihood, these methods could be more robust in the case of model
misspecification.

We also consider a fully Bayes approach (FB), by specifying a suitable prior dis-
tribution for the parameters (α, θ) and focusing the inference on the posterior distri-
bution. This can be implemented using standard MCMC algorithms. Here, we con-
sider independent non-informative prior distributions, setting p(θ) = G(0.1, 0.1) and
p(α) = Unif(0, 1).

4 Numerical illustrations
We empirically study the ordered PYP and assess the performance of our BNP approach
for estimating the frequency of the first ordered species, using synthetic and real data.
Moreover, we empirically study distributional properties of the ordered random parti-
tions induced by the model, in particular focusing on the species’ ordering distribution.
In the synthetic data, we compare the performance when the data is generated from the
model, i.e. the PYP prior is correctly specified, and when the data is generated from dif-
ferent distributions, thus under model misspecification. For the application of our model
to real data, we analyze genetic variation using samples from the 1000 Genome Project
(1000 Genomes Project Consortium, 2015), which we combine with variants’ age esti-
mates obtained from the Human Genome Dating Project (Albers and McVean, 2020).
Studying genetic variation is of great importance to investigate population structure, to
detect related samples, to investigate demographic history, and to learn about the risk
of diseases and different quantitative traits. By also incorporating information on the
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variants’ age, similar and further issues can be assessed, such as using the variants’ age
distribution to compare populations, differentiating age distributions in pathogenic and
benign variants, and learning about genealogical history (Albers and McVean, 2020).
Here we assess the performance of our method on predicting frequencies of variants
ordered by their age, focusing in particular on the oldest variant. Code is available at
https://github.com/cecilia-balocchi/OrderedSSP.

4.1 Preliminaries
While the distributional properties of the random partition induced by the PYP are
well-known in the BNP literature, the properties induced by the ordered PYP are less
understood. Because of the marginality property (9), some distributional properties of
the ordered PYP are equivalent to the ones of the PYP. For example, the distribution
of the number of distinct species (or clusters) induced by the ordered PYP is equal to
the one induced by the PYP, reported in equation (S3). However, other properties that
relate to the ordering on the species are not as well understood. In particular, we are
interested in learning the behavior of the distribution that assigns the order to a new
cluster. We aim to characterize it using simple descriptive features. We achieve this goal
by studying the predictive distribution (6) that assigns the n + 1 observation to a new
species of order j, and to examine its behavior marginalizing on all the configurations
of partitions of n observations into Kn species. In other words, we empirically study
the marginal distribution Pr(order(n + 1) = j|(Tn+1, Xn+1) = (T ∗

new, X
∗
new),Kn = k)

that a new species after n observations is assigned order j, given that the previous n
observations are partitioned into Kn = k species, for j = 1, . . . ,Kn+1. This distribution
is “marginal” compared to (6), because it does not condition on the frequencies of the
ordered species, Mn = (m1, . . . ,mk), and it is obtained by marginalizing over all possible
configurations (m1, . . . ,mk) of partitions of n into Kn = k species.

In Figure 2 we depict the marginal ordering distribution for a new species given an
observed sample of size n = 10. The solid color lines represent the ordering distributions
given the number of previously observed clusters, marginally on the partition configu-
ration (different colors correspond to different numbers of clusters), Pr(order(n + 1) =
j|(Tn+1, Xn+1) = (T ∗

new, X
∗
new),Kn = k). The colored points instead represent the real-

izations of the ordering probabilities conditional on individual partition configurations
Mn, Pr(order(n + 1) = j|(Tn+1, Xn+1) = (T ∗

new, X
∗
new),Kn = k,Mn = (m1, . . . ,mk)),

for different values of (m1, . . . ,mk); note that this conditional ordering probability can
be found from (6) as q

(new)
j /

∑k+1
i=1 q

(new)
i . The ordering distribution has been sketched

for different configurations (parameters) of the PYP prior. In particular, from left to
right, we represent the distribution under the ordered DP (θ > 0, α = 0, first panel),
the ordered PYP with α < θ, α = θ, and α > θ and the ordered α-stable process
(θ = 0, α > 0, last panel). Figure 2 shows that the ordering distribution changes de-
pending on the parameters θ and α: for θ > α the probability that a new cluster is
assigned to order j increases with j for each previous number of species Kn (first and
second panels from the left) and the increasing trend in stronger when the difference
θ − α is large. For θ = α (third panel from the left) the trend is constant over j, for all
Kn. For θ < α we see instead that the trend is decreasing with j, for each Kn (fourth

https://github.com/cecilia-balocchi/OrderedSSP
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Figure 2: Order distribution for a new species, given a sample of n = 10 observations,
divided into Kn = 1, . . . , 10 species (each color represents a different value of Kn).
Solid colored curves represent the ordering distributions marginally on the partition
configuration Mn, Pr(order(n + 1) = j|(Tn+1, Xn+1) = (T ∗

new, X
∗
new),Kn = k); the

colored points instead show the variation of the ordering distribution conditional on
Mn, across different partition configurations Mn = (m1, . . . ,mk). The dashed black
line represents the order distribution for a new species, marginally on the number of
previous species Kn.

panel). The last panel shows that in the case of the α-stable process (θ = 0 < α) the
trend is again constant. These intuitions are useful for constructing a distribution for or-
dered partitions that has properties similar to those induced by the ordered PYP prior.
Moreover, Figure 2 emphasizes an additional aspect of the ordered PYP’s improved
flexibility compared to the ordered DP (α = 0).

4.2 Analysis of synthetic data
We consider the problem of making inference on some quantities of interest with our
BNP approach, in the context of synthetic data. In particular, we study the performance
on an additional sample of size m of the posterior mean predictors for the total number
of species Kn+m, the frequency of the oldest cluster W1,n+m, and the frequency W1,n+m

conditionally on the knowledge that either the event A1 or B1 happened (W1,n+m|A1
and W1,n+m|B1). For notational simplicity, we will remove the dependence on n + m
in the notation. All of the estimators for these quantities have closed-form expressions,
thanks to the results in Section 3. In particular, we estimate Kn+m using the posterior
mean of the number of unseen species K

(n)
m (see Section S1.3 of the Supplementary

Materials), while W1,n+m is estimated using (22), and W1,n+m|A1 and W1,n+m|B1 us-
ing respectively combining formulas (S14) with (S20), and (S19) with (S21) from the
Supplementary Materials. We compare the predictive performance of the ordered PYP
model, under a full Bayes approach, and when the prior’s parameters are estimated
with the empirical Bayes methods described in Section 3.2. We generate the synthetic
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Figure 3: Predictive performance for our BNP approach for the total number of distinct
species K, the frequency of the first ordered cluster W1, and the conditional frequencies
W1|A1 and W1|B1 (shown in different columns). The boxplots display the median abso-
lute percentage error between the predicted posterior mean and the true value, across
several datasets simulated from the ordered PYP model. The full Bayes approach and
different parameter-estimating methods are compared.

data under different scenarios. We first consider a framework where the model is cor-
rectly specified, i.e. the data is generated from the ordered PYP prior. We then focus
on a framework where the model is misspecified, as the data is generated from different
distributions.

Inference of the first ordered frequency under correct specification

We first generate the data from the ordered PYP prior, i.e. under correct model specifi-
cation. Specifically, we consider 100 datasets of size n = 500, generated from the ordered
PYP prior with randomly sampled parameters (θ, α); for each dataset, we consider 25
additional datasets of size m = 5000, and compute the median prediction error across
the 25 additional datasets (absolute percentage error is computed for the four quantities
of interest K, W1, W1|A1, W1|B1).

Figure 3 compares the performance of the full Bayes approach with the different
empirical Bayes approaches, for the four quantities of interests. Overall we notice that
the performance of the full Bayes approach (FB) is almost identical to the one of the
approach based on the EPPF of the ordered PYP (ordPYP). These two approaches
tend to have the best prediction error for all the quantities of interest, except for the
estimation of the frequency of the first ordered species W1, where the best predictive
performance is achieved by lsM1. The empirical Bayes approach based on the standard
PYP likelihood stdPYP has a similar but slightly worse performance to ordPYP and FB.
ordDP instead shows poor predictive performance for all quantities of interests.

Inference of the first ordered frequency under misspecification

We then consider a synthetic data framework where the data is not generated from the
ordered PYP prior, i.e. under model misspecification. We aim at evaluating how our
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method performs in such adverse conditions, which are in general also to be expected
from real data. We consider several different data-generating processes. In all of them,
we generate the species order independently from the observations’ species (or clus-
ter) assignment. For the clustering distribution, we consider: (a) the standard DP, (b)
the standard PYP, and (c) the (infinite support) Zipf distribution (also known as the
zeta distribution). In the latter, each observation is associated with an integer (sam-
pled from the Zipf distribution) and clusters are formed by aggregating observations
mapped to the same integer. Given that these distributions do not induce an order on
the species, we additionally consider an ordering distribution for each new species. For
the ordering distribution, we consider: (1) the alpha-stable distribution (induced by
the ordered α-stable process, a special case of the ordered PYP with θ = 0 where the
predictive distribution (6) simplifies significantly), and (2) what we call the arrival-
weighted distribution. The latter considers the ordering induced by the cluster arrival
and introduces a random component by sampling for each new cluster an exponentially
distributed weight with mean given by the arrival order, and ordering the species ac-
cording to the weight. We generate 100 datasets of size n = 500 using randomly sampled
parameters, and for each of them consider 25 additional datasets of size m = 5000; we
consider the median absolute percentage errors across the 25 additional datasets.

Figure 4 displays the predictive performance results for the different measures of
interests (K, W1, W1|A1 and W1|B1) across different rows, and for different data-
generating distributions (clustering and ordering distributions) across different columns.
We compare the performance of the full Bayes and of the different empirical Bayes ap-
proaches. The first row of Figure 4 focuses on the prediction of the number of distinct
species K. Overall, the best prediction error is achieved by the empirical Bayes method
maximizing the likelihood of the non-ordered (standard) PYP (stdPYP). This is not
surprising given that the ordered PYP is not correctly specified, and the number of
distinct species has the same behavior under the ordered and the standard PYP. The
second best performance is achieved by lsK, and this is consistent with the fact that
it was designed to be more robust and learn this “feature” (K) even under model mis-
specification. The performance of the full Bayes approach FB and the empirical Bayes
approach based on the ordered PYP likelihood ordPYP are similar and slightly worse
when the clustering distribution is the PYP or the Zipf distribution, but it gets consid-
erably worse when the clustering distribution is the DP, suggesting that these methods
are not able to learn that α is equal to zero in such simulated datasets. The performance
of ordDP is good under the DP clustering distribution, but quite bad otherwise.

The second row of Figure 4 shows the error committed when predicting the frequency
of the first ordered species W1. The best performance is often achieved by lsM1, followed
by ordPYP and FB. When the clustering distribution is the Zipf distribution, the differ-
ence between lsM1 and the other two is considerable, with the former being more robust.
Sometimes, stdPYP achieves comparable results. Overall, the distribution of the errors
is much more spread out when the ordering is generated from the arrival-weighted
distribution, compared to the alpha-stable distribution, meaning that the behavior
induced by the former is more different from the one described by 22. Finally, the third
and the fourth rows focus on the predictive performance for the conditional frequencies
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Figure 4: Predictive performance for our BNP approach, for the total number of clus-
ters K, the frequency of the first ordered cluster W1, and the conditional frequencies
W1|A1 and W1|B1 (shown in different rows). The boxplots display the median absolute
percentage error between the predicted posterior mean and the true value, across sev-
eral datasets simulated under different distributions (shown in different columns). We
compare various parameter-estimating methods.

W1|A1 and W1|B1. In both cases, the best performance is achieved by ordPYP, FB, and
lsM1.

Overall, the full Bayes approach achieves results very similar to the ones of the
empirical Bayes approach based on the likelihood of the ordered PYP (ordPYP). When
the model is misspecified, lsM1 seems to be more robust for the estimation of both
the marginal distribution and the conditional distribution of W1, but it performs quite
poorly for the prediction of K. While the parameter-estimation method ordPYP and
the full Bayes approach FB do not always produce the best predictions, they seem to
provide a good balance between learning the number of species K and the frequency
of the first order species W1. Alternatively, the parameter estimation method could be
selected based on the quantity of interest.
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Figure 5: Prediction performance for the number of distinct species K and the frequency
of the oldest cluster W1 across several training-testing sets for BRCA2 (panels one and
three) and EDAR (panels two and four).

4.3 Analysis of genetic variation data
We employ our method to analyze genetic variation data from the 1000 Genomes Project
(1000 Genomes Project Consortium, 2015). We examine single nucleotide polymor-
phisms (SNPs) corresponding to certain genes for a sample of 2548 individuals. In
particular, we consider a variant to be present for a given individual and SNP locus if
the present DNA base is different from the reference genome in either allele. We combine
the variants from all individuals and all SNPs corresponding to a certain gene, to create
our basic sample, where the variant location (i.e. the SNP) represents the species each
sample unit belongs to. To associate an ordering to each species, we used SNPs age esti-
mates from Human Genome Dating project (Albers and McVean, 2020), and discarded
any variant for which no age information is available. We study two datasets, formed
by the genetic variants corresponding respectively to the BRCA2 and the EDAR genes,
for which we analyze respectively 1482 and 1073 unique SNPs. We focus on the predic-
tive performance for the number of distinct variants K and the frequency of the oldest
variant W1, using the different parameter estimation methods for our BNP approach.
We repeat our analysis for 100 different training and testing sets, randomly sampled so
that the testing set size is approximately 20 times larger than the training set size.

In Figure 5 we report the percentage errors for predicting K and W1 for the datasets
corresponding to the BRCA2 and the EDAR genes. For the prediction of the number
of species, we find the method stdPYP provides the best results for the BRCA2 dataset,
but that ordPYP and FB have the best prediction for the EDAR dataset. In terms of
predicting the frequency of the oldest variant, ordDP and lsM1 perform better for both.
We note that the performances of ordPYP and FB are comparable to that of ordDP in
the BRCA2 dataset, as the former often estimated values of α close to zero; however,
the two methods achieved different performance in the EDAR dataset, due to the fact
that ordPYP and FB estimated positive values of α. Under further inspection, we note
that lsM1 has performance comparable to ordDP in the prediction of W1 for the EDAR
dataset because it often estimates values of α very close to zero. It is also surprising
to see that these datasets seem to have power-law behavior in terms of the number of
species, for which values of α greater than 0 provide more accurate predictions, but the
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Figure 6: Prediction of the curve of K (top panels) and W1 (bottom panels) as a
function of sample size, for the BRCA2 dataset. The curves represented correspond
to the training-testing split that resulted in the median error, with the observed curve
depicted in black, the predicted curve in red, and the red confidence bands corresponding
to 95% empirical quantiles.

best predictions for the frequency of the oldest variant W1 are produced by methods
that estimate α = 0. This is probably due to the model being not correctly specified for
these data. Thus we recommend analyzing the two prediction problems separately.

Our method can also be used to analyze the predictions as functions of the number of
samples, rather than simply make a prediction for the entire test set. Using the multiple
training and testing splits method, we also looked at the performance in the prediction
of the curve of K and W1. Figure 6 reports the results for each parameter-estimating
method, applied to the BRCA2 dataset. Similar plots are reported in Section S2.2 of
the Supplementary Material for the EDAR gene dataset. For simplicity of visualization,
we depict in black the actual curve of K (or respectively W1) observed in the training-
testing split that most closely represents the median error achieved by each method.
The prediction curve (depicted in red) is also the one corresponding to the “median”
training-testing split, while the red bands represent the 95% confidence bands. We report
the empirical confidence bands, computed using the empirical quantiles of the curve
estimates across the various training-testing splits. For the estimation of the number of
distinct species K, the top panel of Figure 6 confirms that stdPYP and lsK have the
best performance, with quite accurate prediction and with the represented curve falling
within the 95% bands. In the other parameter-estimating methods the prediction is
much worse, and often the curve does not fall within the confidence bands. In terms of
predictions for W1, the results are consistent with the expectations from the predictions
on the whole test set, with ordDP, ordPYP, FB and lsM1 performing better, with very
accurate prediction of W1 as a function of the number of additional samples.
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5 Discussion
A common feature of SSPs is the invariance with respect to species labeling, i.e. species’
labels are immaterial in the definition of the functional of interest, which is at the core
of the development of the BNP approach to SSPs under the popular PYP prior (Lijoi
et al., 2007, 2008; Favaro et al., 2009, 2013). In this paper, we considered SSPs that are
not “invariant” to species labeling, in the sense that an ordering or ranking is assigned
to species’ labels, and we developed a BNP approach to such problems. In particular,
inspired by the seminal work of Donnelly and Tavaré (1986) on age-ordered alleles’ com-
positions, with a renowned interest in the frequency of the oldest allele (Crow, 1972;
Kelly, 1977; Watterson and Guess, 1977), we studied the following SSP with order-
ing: given an observable sample from an unknown population of individuals belonging
to some species (alleles), with species’ labels being ordered according to some weights
(ages), estimate the frequencies of the first r order species’ labels in an enlarged sample
obtained by including additional unobservable samples from the same population. Our
BNP approach relies on the ordered PYP prior, which leads to an explicit posterior dis-
tribution of the first r order frequencies, with corresponding estimates being simple and
also computationally efficient. We presented an empirical validation of our approach on
both synthetic and real data. The proposed methodology has been applied to the anal-
ysis of the genetic variation, showing its effectiveness in the estimation of the frequency
of the oldest allele.

The sampling structure of the ordered PYP has been first presented in Gnedin
and Pitman (2005) and James (2006a), and since then no other works have further
investigated such a sampling structure in BNPs. To date, the sampling formulae of
ordered PYP prior appear to be largely unknown and unexplored in the BNP literature.
Our work highlights the great potential of the ordered PYP in BNP inference for SSPs
with ordering, paving the way for future research. First, in our work we considered
the problem of estimating the frequency of the first r order species, which is arguably
the most natural SSP with ordering; other (discrete) functionals of the ordered species’
composition of unobservable samples may be of interest, e.g. the number of unseen
species with order less than r that would be observed in additional samples, and the
number of unseen species observed with a certain prevalence and order less than r
in the enlarged sample. Second, while SSPs with ordering have a natural motivation
in population genetics, they may be of interest in different fields; in Section S2.3 of
the Supplementary Material, we present an application in the context of citations to
academic articles, where each cited article is a species whose order is determined by the
publication date; another application is in the context of online purchasing of items,
with order being determined by a suitable measure of popularity assigned to items.
When analyzing these applications in terms of SSMs, some simplifications need to be
considered, which might impact certain aspects of the analysis. For example, our model
cannot consider the case of different species having the same ranking (such as different
papers published on the same date). However, we argue that it is still interesting to
understand if the ordered PYP is an adequate model to describe the behaviors observed
in such applied contexts.

We believe that interest in ordered SSMs is not limited to BNP inference for SSPs
with ordering. Ordered SSMs, and in particular the ordered PYP prior, may be also
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applied to a setting in which species are not explicitly observed, but need to be in-
ferred. This is the case of Bayesian mixture models (Frühwirth-Schnatter et al., 2019),
where each observation is assumed to be assigned to a latent component (species’ la-
bel), which characterizes some features of the distribution of the observations. In such
a setting, ordered SSMs may be used to specify the distribution of the mixture’s prob-
abilities of the latent components, with such components being ordered according to
some weights (James, 2006b). Ordered SSMs admit a natural extension to the features
sampling framework, which generalizes the species sampling framework by allowing each
observation to belong to multiple species, now called features. Feature sampling prob-
lems first appeared in ecology for modeling the presence or absence of an animal in a
trap, and their importance has grown dramatically in recent years driven by numer-
ous applications in biological and physical sciences (Camerlenghi et al., 2022; Masoero
et al., 2022). In such a context, the Beta process prior (Broderick et al., 2013) is the
most popular nonparametric prior for modeling the unknown feature’s composition of
the population. The definition of an ordered version of the Beta process prior, and gen-
eralizations thereof, would be the starting point to introduce and investigate feature
sampling problems with ordering.
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