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Abstract

We prove Föllmer’s pathwise Itô formula for a Banach space-valued càdlàg path. We
also relax the assumption on the sequence of partitions along which we treat the
quadratic variation of a path.
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1 Introduction

In his seminal paper [22], Föllmer presented a new perspective on Itô’s stochastic
calculus. The main theorem of Föllmer [22] states that a deterministic càdlàg path
satisfies the Itô formula provided it has quadratic variation along a given sequence
of partitions. This theorem enables us to construct the Itô integral

∫ t
0
f(Xs−)dXs for

a sufficiently nice function f and a path X with a quadratic variation. This suggests
the possibility of developing an analogue of the Itô calculus in completely analytic,
probability-free situations. We call this framework Föllmer’s pathwise Itô calculus or,
more simply, the Itô–Föllmer calculus. It can be regarded as a deterministic counterpart
of the classical Itô calculus.

Recently, the Itô–Föllmer calculus has been receiving increasing attention from the
viewpoint of its financial applications. It is regarded as a useful tool to study financial
theory under probability-free settings and has been used to construct financial strategies
in a strictly pathwise manner (see, e.g., Föllmer and Schied [24], Schied [67], Davis,
Obłój and Raval [13], and Schied, Speiser, and Voloshchenko [69]). We expect that the
Itô–Föllmer calculus will have a growing presence in financial applications.

The Itô–Föllmer calculus can be applied to a stochastic process having quadratic
variation. A standard example of such a process is a semimartingale. However, it is
known that the class of processes possessing quadratic variation is strictly larger than
that of semimartingales (see, e.g., Föllmer [22, 23]). In this sense, the Itô–Föllmer
calculus enables us to extend stochastic integration theory beyond semimartingales.

There are several approaches to the pathwise construction of stochastic integra-
tion. First, we mention classic studies by Bichteler [3], Karandikar [38], and Willinger
and Taqqu [78, 79], but see also Nutz [53] and Łochowski [40, 43]. The theory of
Vovk’s outer measure and typical paths was pioneered by Vovk [73, 74, 75, 76, 77]
and further developed by several authors, including Perkowski and Prömel [56, 55],
Łochowski, Perkowski, and Prömel [42], and Bartl, Kupper, and Neufeld [2]. Russo and
Vallois [58, 59, 60, 61, 62, 63, 64] developed a theory called stochastic calculus via regu-
larization. The rough path theory, pioneered by Lyons [44], and its generalization have
become important in stochastic calculus and its applications. In addition, we refer to
Gubinelli [29], Gubinelli and Tindel [30], Friz and Shekhar [26], and Friz and Zhang [27].
Some studies have investigated the relation between the Itô–Föllmer calculus and rough
path theory (see, e.g., Perkowski and Prömel [56], and Friz and Hairer [25]).

Among the various pathwise methods, we consider Föllmer’s approach to be the
simplest and the most intuitively clear. It needs only elementary arguments to establish
calculation rules such as Itô’s formula within this framework. Moreover, the Itô–Föllmer
calculus requires only a minimal assumption that the integrator has quadratic variation.
We believe that these are advantages of Föllmer’s theory, and also that careful observa-
tion of this theory helps us to understand the path properties of processes better when
we consider semimartingales and their stochastic integration.

Increasingly many works related to Itô–Föllmer calculus have been appearing recently.
First, we refer to Sondermann [70], Schied [67], Hirai [35], and Cont and Perkowski [11].
Schied [68], Mishura and Schied [52], and Cont and Das [7] construct deterministic
continuous paths with nontrivial quadratic variations. See also Chiu and Cont [6].
Functional extensions of the Itô–Föllmer calculus have been developed by Dupire [21],
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Cont and Fournié [8, 9, 10], and Ananova and Cont [1], for example. Extension of the
Itô–Föllmer calculus in terms of local times has been investigated in Davis, Obłój, and
Raval [13], Davis, Obłój, and Siorpaes [14], Łochowski et al. [41], and Hirai [34, 36].

To our knowledge, however, the Itô–Föllmer calculus in an infinite dimensional setting
has not yet been sufficiently studied. Stochastic integration in infinite dimensions
naturally appears when we treat stochastic partial differential equations (see, e.g.
Da Prato and Zabczyk [12]). These have played an important role in modelling term
structures of interest rates or forward variances in mathematical finance, and also in
models of statistical mechanics and quantum field theories. Then we aim to extend
Föllmer’s theory to Banach space-valued paths. In this paper, we prove the Itô formula
for a path in a Banach space with a suitably defined quadratic variation. We will study
relations between various quadratic variations and prove some transformation formulae
for quadratic variations in our second paper in this series [37]. We not only generalize
the state space of paths but also relax the assumption on the sequence of partitions along
which we consider the quadratic variation. In the context of the Itô–Föllmer calculus,
two types of assumptions about a sequence of partitions are frequently used. One is
|πn| → 0, as used in Föllmer [22], and the other is the condition O−t (X;πn)→ 0, which is
used in many papers handling continuous paths and some dealing with discontinuous
paths such as Vovk [76]. In this paper, we introduce new conditions to a sequence of
partitions and a càdlàg path (Definition 3.4), which gives a unified approach.

There have been many attempts to extend classical stochastic calculus to Banach
or Hilbert space-valued processes. Examples include Kunita [39], Metivier [45], Pel-
laumail [54], Yor [81], Gravereaux and Pellaumail [28], Metivier and Pistone [48],
Meyer [49], Metivier and Pellaumail [47], Gyöngy and Krylov [32, 33], Gyöngy [31],
Metivier [46], Pratelli [57], Brooks and Dinculeanu [5], Mikulevicius and Rozovskii [50,
51], Dinculeanu [20], De Donno and Pratelli [15], van Neerven, Veraar, and Weis [71],
Veraar and Yaroslavtsev [72], and Yaroslavtsev [80]. Note that Di Girolami, Fabbri, and
Russo [17] treat quadratic covariation of Banach space-valued processes within the
framework of stochastic calculus via regularization, with Föllmer’s calculus in mind.

Our method can be interpreted as a deterministic counterpart of these stochastic
integration theories in Banach spaces. Some of the works listed above, such as Metivier
and Pellaumail [47] and Dinculeanu [20], give proofs of Itô’s formula in a similar manner
to Föllmer’s calculus. One of the advantages of our approach appears in the statement
of the Itô formula. For a function f to satisfy the Itô formula, we require f to be just
C2 class, while a stochastic approach needs some additional assumptions about the
boundedness of f and its derivatives.

Before explaining our contribution, we begin by summarizing the main result of
Föllmer [22]. Let Π = (πn)n∈N be a sequence of partitions of R≥0 such that |πn| :=

sup]r,s]∈πn |s − r| tends to 0 as n → ∞. We say that a càdlàg path X : R≥0 → R has
quadratic variation along Π if there exists a càdlàg increasing function [X,X] such that
for all t ∈ R≥0

(i)
∑

]r,s]∈πn(Xs∧t −Xr∧t)
2 converges to [X,X]t as n→∞, and

(ii) ∆[X,X]t = (∆Xt)
2.

An Rd-valued càdlàg path X = (X1, . . . , Xd) has quadratic variation along Π if the real-
valued path Xi +Xj has quadratic variation along the same sequence for each i and j.
Föllmer [22] proved that if X has quadratic variation, then for any f ∈ C2(Rd) the path
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t 7→ f(Xt) satisfies Itô’s formula. That is,

f(Xt) = f(X0) +

∫ t

0

〈Df(Xs−),dXs〉+
1

2

∑
1≤i,j≤d

∫ t

0

∂2f

∂xi∂xj
(Xs−)d[Xi, Xj ]cs

+
∑

0<s≤t

{∆f(Xs)− 〈Df(Xs−),∆Xs〉} (1.1)

holds for all t ∈ R≥0. The first term on the right-hand side of (1.1) is defined as the limit∫ t

0

〈Df(Xs−),dXs〉 = lim
n→∞

∑
]r,s]∈πn

〈Df(Xr), Xs∧t −Xr∧t〉,

where 〈 , 〉 denotes the usual Euclidean inner product. We call this limit the Itô–Föllmer
integral along Π. Föllmer’s theorem claims that if X has quadratic variation along Π,
then the Itô–Föllmer integral above exists and it satisfies equation (1.1).

As stated above, we aim to extend Föllmer’s pathwise Itô formula to Banach space-
valued paths. Let us describe a simplified version of our main result. The precise
statement will be given as Theorem 3.6 and Corollary 3.7. Let E be a Banach space and
E⊗̂αE be the tensor product Banach space with respect to a reasonable crossnorm α.
We say that an E-valued càdlàg path X has strong/weak α-tensor quadratic variation
along Π = (πn) if there is a càdlàg path α[X,X] : R≥0 → E⊗̂αE of finite variation such
that, for all t ≥ 0,

(i) the sequence
∑

]r,s]∈πn(Xs∧t − Xr∧t)
⊗2 converges to α[X,X]t in the norm/weak

topology of E⊗̂αE, and

(ii) the equation ∆α[X,Y ]t = ∆X⊗2
t holds.

The path X has finite 2-variation along Π if

V 2(X; Π)t := sup
n∈N

∑
]r,s]∈πn

‖Xs∧t −Xr∧t‖2 <∞

for all t ≥ 0. We say that a sequence of partitions (πn) satisfies Condition (C) for a path
X : [0,∞[ → E in a Banach space if it satisfies Conditions (C1)–(C3) of Definition 3.4.
Roughly speaking, Conditions (C1) and (C2) state that (πn) reconstructs the information
of the jumps of X. Condition (C3) means that (πn) controls the oscillation of X in some
sense. Under these settings, our main result, the Itô formula, is stated as follows. Let
X : R≥0 → E be a càdlàg path that has strong/weak α-tensor quadratic variation and
finite 2-variation along (πn)n∈N, and let A : R≥0 → F be a càdlàg path of finite variation
in a Banach space. Suppose that (πn) satisfies Condition (C) for (A,X) and the left-side
discretization of (A,X) along (πn) approximates (A−, X−) pointwise (see Definition 3.1
for the exact definition). If f : F × E → G is a C1,2 function such that the second
derivative induces a continuous map D2

xf : F × E → L(E⊗̂αE,G), then the composite
function f(A,X) satisfies

f(At, Xt)− f(A0, X0)

=

∫ t

0

Daf(As−, Xs−)dAc
s +

∫ t

0

Dxf(As−, Xs−)dXs

+
1

2

∫ t

0

D2
xf(As−, Xs−)dα[X,X]

c
s +

∑
0<s≤t

{∆f(As, Xs)−Dxf(As−, Xs−)∆Xs} .

The second integral on the right-hand side is defined respectively as the strong/weak
limit of left-side Riemannian sums along (πn).
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To conclude this section, we give an outline of the remainder of this paper. Section 2
is a preliminary part of this article. We introduce basic notation and terminology in the
first subsection. The next subsection is devoted to a review of càdlàg paths and Stieltjes
integrals in Banach spaces. In Section 3, we set up basic notions in Itô–Föllmer calculus
in Banach spaces and state the main results of the paper (Theorem 3.6 and Corollary 3.7).
In Section 4, we study conditions on the sequence of partitions and the relation between
them and càdlàg paths. Fundamental properties of quadratic variations are studied
in Section 5. The purpose of Section 6 is to show Lemma 3.10, which is essentially
used in the proof of the main theorem. In the last section of the main part, Section 7,
we prove the Itô formula for a Banach space-valued path having quadratic variation.
In appendices, we present some auxiliary results related to differential calculus and
integration in Banach spaces.

2 Preliminaries

2.1 Notations and terminologies

In this section, we introduce basic notation and terminology used throughout this
article.

The symbol N denotes the set of natural numbers {0, 1, 2, . . . } and R denotes that of
real numbers. If A is a subset of R and a ∈ R, we define A≥a = {x ∈ A | x ≥ a}.

If E and F are two real Banach spaces, L(E,F ) denotes the space of bounded linear
maps from E to F . In addition, given another Banach space G, we define L(2)(E,F ;G) as
the space of bounded bilinear maps from E×F toG. Recall that L(E,F ) and L(2)(E,F ;G)

are Banach spaces with norms

‖L‖ = sup
‖x‖6=0

‖Lx‖
‖x‖

, ‖B‖ = sup
‖x‖,‖y‖6=0

‖B(x, y)‖
‖x‖‖y‖

,

respectively.
Now we introduce another topology on the space L(E,G). Let KE be the family of all

compact subsets of E. For each K ∈ KE , define a seminorm ρK by the formula

ρK(L) = inf{C > 0 | ∀x ∈ K, ‖Lx‖F ≤ C‖x‖E} (2.1)

for each L ∈ L(E,F ). Then the family (ρK)K∈KE induces a locally convex Hausdorff
topology on L(E,F ). We use the symbol Lc(E,F ) for this topological vector space.

Let [0,∞[ = R≥0 = {r ∈ R | r ≥ 0} and let E be a Hausdorff topological vector space.
A càdlàg path in E is a function X : R≥0 → E that is right continuous at every t ≥ 0 and
has a left limit at every t > 0. The terms RCLL and right-regular are also used to stand
for the same property. Similarly, a càglàd (also called LCRL or left-regular) path in E
is a function X : R≥0 → E that is left continuous on ]0,∞[ and has right limits on [0,∞[.
The symbols D([0,∞[, E) and D(R≥0, E) denote the set of all càdlàg paths in E. If X is
an element of D(R≥0, E), we define

X(t−) = lim
s↑↑t

X(s) = lim
s→t,s<t

Xs, ∆X(t) = X(t)−X(t−).

We also use Xt, Xt−, and ∆Xt to indicate the values X(t), X(t−), and ∆X(t), respectively.
Next, set

D(X) = {t ∈ R≥0 | ‖∆Xt‖ 6= 0},
Dε(X) = {t ∈ R≥0 | ‖∆Xt‖ ≥ ε},

Dε(X) = D(X) \Dε(X) = {t ∈ R≥0 | 0 < ‖∆Xt‖ < ε}.
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We simply write D, Dε, and Dε if there is no ambiguity. Given a discrete set D ⊂ [0,∞[

and a càdlàg path X, we define

JD(X)t = J(D;X)t =
∑

0<s≤t

∆Xs1D(s).

Recall that a subset D is discrete if it is a discrete topological subspace of [0,∞[; i.e.
every element of D is an isolated point with respect to the subspace topology. By
assumption, the set D ∩ [0, t] is finite for all t, and therefore the summation above is
well-defined. Then JD(X) is a càdlàg path of finite variation. For abbreviation, we often
write Jε(X) instead of J(Dε(X);X).

Throughout this paper, the term partition of R≥0 always means the set of intervals
of the form π = {]ti, ti+1]; i ∈ N} which satisfies 0 = t0 < t1 < · · · → ∞. The set of
all partitions of R≥0 is denoted by Par(R≥0) or Par([0,∞[). Similarly, given a compact
interval [a, b] ⊂ R≥0, let Par([a, b]) be the set of all finite partitions of the form π =

{]ti, ti+1]; 0 ≤ i ≤ n − 1} with a = t0 < t1 < · · · < tn = b. For a partition π of R≥0 or a
compact interval, we define πp ⊂ R≥0 as the set of all endpoints of elements of π. If
π = {]ti, ti+1]; i ∈ I}, then πp = {ti, ti+1; i ∈ I}.

2.2 Remarks on càdlàg paths and Stieltjes integration

In this subsection, we review some basic properties of càdlàg paths that will be
referred to later.

Let E be a Banach space. E-valued right continuous and left continuous step functions
are functions of the form∑

i∈N
1[ti,ti+1[ai, 1{0}b0 +

∑
i∈N

1]ti,ti+1]bi+1,

respectively, where 0 = t0 < t1 < · · · < tn < · · · → ∞ and ai, bi ∈ E for all i ∈ N. Right
continuous step functions are càdlàg and left continuous step functions are càglàd. Every
right continuous step function f =

∑
i∈N 1[ti,ti+1[ai is strongly B(R≥0)/B(E) measurable

because it is the pointwise limit of the sequence (fn) defined by fn =
∑

0≤i≤n 1[ti,ti+1[ai.
A càdlàg path in a Banach space satisfies the following properties.

Lemma 2.1. Let f be a càdlàg path in a Banach space E.

(i) For every C > 0, there are only finitely many s satisfying ‖∆fs‖E > C in each
compact interval of [0,∞[.

(ii) The image f(I) of any compact interval I ⊂ [0,∞[ is relatively compact in E.

(iii) Suppose that every jump of f is smaller than C > 0 on a compact interval I ⊂ [0,∞[.
Then for all ε > 0, there exists a δ > 0 such that ‖f(s)− f(u)‖E < C + ε holds for
any s, u ∈ I satisfying |s− u| < δ.

(iv) The path f is the uniform limit of some sequence of right continuous step functions
on each compact interval.

(v) For every t > 0 and ε > 0, there is a partition π ∈ Par([0, t]) that satisfies

ω(f, [r, s[) := sup
u,v∈[r,s[

‖f(u)− f(v)‖ < ε

for all ]r, s] ∈ π.

One can find an analogue of Lemma 2.1 for càdlàg paths in an arbitrary separable
complete metric space in Billingsley [4, 122].
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Next, recall that a function f : [0,∞[ → E is of bounded variation on a compact
interval I ⊂ [0,∞[ if

V (f ; I) := sup
π∈Par I

∑
]r,s]∈π

‖f(s)− f(r)‖E <∞.

For convenience, set V (f ; ∅) = 0 and V (f ; [a, a]) = 0 for every a ∈ [0,∞[. The function f
has finite variation if it has bounded variation on every compact subinterval of [0,∞[. The
set of all càdlàg paths of finite variation in E is denoted by FV (R≥0, E) or FV ([0,∞[, E).
We define the total variation path V (f) of a function f of FV (R≥0, E) by V (f)t =

V (f ; [0, t]). Then V (f) is increasing and satisfies V (f)0 = 0.
We list several basic properties of a path of finite variation below. See Dinculeanu [20,

§18] for a proof.

Lemma 2.2. Let f : [0,∞[→ E be a càdlàg path of finite variation in a Banach space.

(i) If a, b, c ∈ [0,∞[ satisfy a ≤ b ≤ c, then

V (f, [a, c]) = V (f, [a, b]) + V (f, [b, c]).

(ii) The total variation path V (f) is càdlàg.

(iii) The jump of V (f) at t ≥ 0 is given by ∆V (f)(t) = ‖∆f(t)‖E .

(iv) The family (∆f(s))s∈[0,t] is absolutely summable for all t ≥ 0; i.e.

sup

{∑
s∈F
‖∆f(s)‖E

∣∣∣∣∣F : a finite subset of [0, t]

}
<∞.

(v) The function fd defined by
fd(t) =

∑
0<s≤t

∆f(s).

is again a càdlàg path of finite variation.

Note that the summation in (v) of Lemma 2.2 is defined in the following manner. Let
D be the set of all finite subsets of ]0, t]. We regard D as a directed set with the order
defined by inclusion. Then the net (

∑
s∈d ∆f(s))d∈D converges in E by Condition (iv) of

Lemma 2.2, and hence we can define∑
0<s≤t

∆f(s) = lim
d

∑
s∈d

∆f(s).

The function fd defined in Proposition 2.2 is called the discontinuous part of f . We also
define f c = f − fd and call it the continuous part of f .

Let I the semiring of subsets of R≥0 consisting of all bounded intervals of the form
]a, b] and the singleton {0}. Given an f ∈ D(R≥0, E), define

µf (]a, b]) = f(b)− f(a), µf ({0}) = f(0)

for any two real numbers satisfying 0 ≤ a ≤ b. If f has finite variation, the function
µf : I → E can be uniquely extended to a σ-additive measure defined on the δ-ring D
generated by I. Refer to Theorem 18.19 of Dinculeanu [20, 208] for a proof. Notice
that this correspondence between a function and a measure satisfies (µf )d = µfd and
(µf )c = µfc . See Appendix B.1 for the definition of the measures (µf )d and (µf )c.

Because there is a measure µf associated with f , we can consider the Stieltjes
integral with respect to f . Let B : F × E → G be a continuous bilinear map between
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Banach spaces. Set L1
loc(µf ;F ) = L1

loc(|µf |;F ), where |µf | denotes the variation measure
of µf introduced in Appendix B.1. Then for each g ∈ L1

loc(µf ;F ) and a bounded interval
I = ]a, b], the Stieltjes integral is defined by the formula∫ b

a

B(g(s),df(s)) =

∫
I

B(g(s),df(s)) :=

∫
I

B(g(s), µf (ds)).

See Appendix B.1 for the definition of
∫
I
B(g(s), µf (ds)). If g : R≥0 → Lc(E,G) is a càglàd

path, we can also define the Stieltjes integral as∫
I

g(s) df(s) =

∫
I

g(s)µf (ds),

where the integral on the right-hand side is constructed in Appendix B.2. Finally, note
that the decomposition f = f c + fd gives a decomposition of the integral∫

I

B(g(s),df(s)) =

∫
I

B(g(s),df c(s)) +

∫
I

B(g(s),dfd(s)).

3 Settings and the main result

In this section, we introduce the main results of this paper, namely, the Itô formula
within the framework of the Itô–Föllmer calculus in Banach spaces. The statement is to
be found in Theorem 3.6 and Corollary 3.7.

First, we introduce some notations about difference operators. Given a function
X : R≥0 → E and t ≥ 0, define functions δX and δXt on I into E by the formulae

δX(I) = δX(]r, s]) = Xs −Xr, δXt(I) = δX(I ∩ [0, t]) = Xs∧t −Xr∧t

for each I = ]r, s] ∈ I. We also define δX({0}) = δXt({0}) = X0. Moreover, consider a
bilinear map B : F × E → G in Banach spaces and another function Y : R≥0 → F . Then
we define functions B(Y, δX) and B(Y, δXt) from I to G by the formulae

B(Y, δX)(]r, s]) = B(Yr, δX(]r, s])), B(Y, δXt)(]r, s]) = B(Yr, δX(]r, s] ∩ [0, t]))

for I = ]r, s] ∈ I and

B(Y, δX)({0}) = B(Y, δXt)({0}) = B(Y0, X0).

By using this notation, the left-side Riemannian sum along a partition π is expressed as∑
]r,s]∈π

B(Yr, Xt∧s −Xt∧r) =
∑

]r,s]∈π

B(Yt∧r, Xt∧s −Xt∧r) =
∑
I∈π

B(Y, δXt)(I).

We also defineB(δY,X) andB(δYt, X) in a similar manner. The functionB(δXt, δYt) : I →
G is defined as the composition of B and (δXt, δYt) : I → F × E.

Definition 3.1. Let E, F , and G be Banach spaces and let B : E × F → G be a bounded
bilinear map. Suppose that Π = (πn)n∈N is a sequence of partitions of R≥0.

(i) A path (X,Y ) ∈ D(R≥0, E × F ) has B-quadratic covariation along Π if there
exists a G-valued càdlàg path QB(X,Y ) of finite variation satisfying the following
conditions:

(a) for all t ∈ R≥0

lim
n→∞

∑
I∈πn

B(δXt, δYt)(I) = QB(X,Y )t

in the norm topology of G;
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(b) for all t ∈ R≥0, the jump of QB(X,Y ) is given by

∆QB(X,Y )t = B(∆Xt,∆Yt).

Then the path QB(X,Y ) is called the B-quadratic covariation of X and Y . If E = F

and X = Y , we call QB(X,X) the B-quadratic variation of X.

(ii) If the convergence of (i)-(a) holds in the weak topology of G, we say that (X,Y ) has
the weak B-quadratic covariation QB(X,Y ).

We often call a B-quadratic covariation a strong B-quadratic covariation if we stress
that the convergence holds in the norm topology. The quadratic covariation QB(X,Y )

depends on the sequence of partitions Π. Given a partition π, we often write

QπB(X,Y )t =
∑
I∈π

B(δXt, δYt)(I).

Because X and Y are càdlàg, the map t 7→ QπB(X,Y )t is also càdlàg. It is not, however,
of finite variation unless X and Y are of finite variation. With this notation, we can
say that the strong/weak B-quadratic covariation QB(X,Y ) is the pointwise limit of
(QπnB (X,Y ))n∈N respectively in the norm/weak topology satisfying the jump condition
(i)-(b) of Definition 3.1.

An important class of a bounded bilinear map B is the canonical bilinear map into a
tensor product of Banach spaces. Let α be a norm on the algebraic tensor product E⊗F
of two Banach spaces. The norm α is called a reasonable crossnorm if it satisfies the
following two conditions:

(i) the inequality α(x⊗ y) ≤ ‖x‖‖y‖ holds for all x ∈ E and y ∈ F ;

(ii) the inequality ‖x∗⊗y∗‖(E⊗F,α)∗ ≤ ‖x∗‖‖y∗‖ holds for all x∗ ∈ E∗ and y∗ ∈ F ∗, where
‖ ‖(E⊗F,α)∗ denotes the usual operator norm on the normed space (E ⊗ F, α).

The completion of the normed space (E⊗F, α), which is generally incomplete, is denoted
by E⊗̂αF . See Diestel and Uhl [18] and Ryan [65] for basic facts about tensor products
of Banach spaces. The quadratic covariation of (X,Y ) with respect to the canonical
bilinear map ⊗ : E × F → E⊗̂αF is denoted by α[X,Y ], and it is called the α-tensor
quadratic covariation. We also write [X,Y ]π = Qπ⊗(X,Y ) and call it the discrete tensor
quadratic covariation of (X,Y ) along π. If E = F , we can consider α-tensor quadratic
covariations α[X,Y ] and α[Y,X]. Although one of them exists if and only if the other
does, they are not equal in general. The path α[X,X] is called the α-tensor quadratic
variation.

There are various important reasonable crossnorms in Banach space theory. The
greatest crossnorm γ, also called the projective tensor norm 1, is defined by the following
formula

γ(z)=inf

{∑
i∈I
‖xi‖E‖yi‖F

∣∣∣∣∣ I is finite, xi ∈ E and yi ∈ F for all i ∈ I, and z=
∑
i∈I

xi⊗yi

}
.

We simply write E⊗̂F = E⊗̂γF and call it the projective tensor product of E and F .
γ-tensor quadratic variations are also called projective tensor quadratic variations.
An advantage of the projective tensor product is that there is a canonical isometric
isomorphism L(E,L(E,G)) ' L(E⊗̂E,G) ' L(2)(E,E;G). We use this identification
without mention. If E and F are Hilbert spaces, Hilbert–Schmidt crossnorm is also

1The projective tensor norm is often denoted by π. We use γ, following Diestel and Uhl [18], because the
symbol π is used to indicate a partition in this article.
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a natural object. For Lp(µ1) and Lp(µ2) defined on some measure spaces, there is a
crossnorm 4p such that Lp(µ1)⊗̂4pLp(µ2) ∼= Lp(µ1 ⊗ µ2). See Defant and Floret [16,
Section 7].

The tensor quadratic variation of an Rd-valued path X = (X1, . . . , Xd) has the matrix
representation

[X,X]t =

[X1, X1]t · · · [X1, Xd]t
...

. . .
...

[Xd, X1]t · · · [Xd, Xd]t

 .

A càdlàg path X : R≥0 → Rd has tensor quadratic variation if and only if it has quadratic
variation in the sense of Definition 2.3 of Hirai [35].

Remark 3.2. (i) Our definition of strong tensor quadratic variations can be regarded
as a pathwise analogue of tensor quadratic variations in classical stochastic in-
tegration theory in infinite dimensions such as Metivier and Pellaumail [47] and
Metivier [46]. See also Dinculeanu [20]. Although one can define tensor quadratic
variations in general Banach spaces, classical existence results only deal with
Hilbert spaces.

(ii) Another important approach is developing recently in the context of the martingale
theory in UMD Banach spaces. Yaroslavtsev [80] shows that a local martingale in
a UMD Banach space has the covariation bilinear form [[M ]]. In our terminology,
the covariation bilinear form corresponds to the cylindrical quadratic variation in
the sense of Corollary 3.5 in Hirai [37]. By this corollary, we see that a càdlàg path
with weak tensor quadratic variation has cylindrical quadratic variation.

Now we introduce a different type of quadratic variation, namely, scalar quadratic
variation. Again we assume that Π = (πn) is a sequence of partitions of R≥0.

Definition 3.3. Let E be a Banach space and X be an E-valued càdlàg path.

(i) The 2-variation of X on [0, t] along Π is defined by

V 2(X; Π)t = sup
n∈N

∑
I∈πn

‖δXt(I)‖2.

We say the X has finite 2-variation along Π if V 2(X; Π)t <∞ for all t ≥ 0.

(ii) A càdlàg path X : R≥0 → E has scalar quadratic variation along Π if there exists a
real-valued càdlàg increasing path Q(X) such that

(a) for all t ∈ R≥0, ∑
I∈πn

‖δXt(I)‖2 −−−−→
n→∞

Q(X)t,

(b) for all t ∈ R≥0, the jump of Q(X) at t is given by ∆Q(X)t = ‖∆Xt‖2E .

We call the increasing path Q(X) the scalar quadratic variation of X along (πn).

If X has scalar quadratic variation along Π, then it has finite 2-variation along Π.
The scalar quadratic variation of a Hilbert space valued path X coincides with the

bilinear quadratic variation Q〈 , 〉(X,X), where 〈 , 〉 is the inner product of the state
space. If a càdlàg path X = (X1, . . . , Xd) : R≥0 → Rd has tensor quadratic variation
along (πn), then it has scalar quadratic variation given by

Q(X)t = Trace[X,X]t =
∑

1≤i≤d

[Xi, Xi]t.

This trace representation is still valid for Hilbert space-valued càdlàg paths. This result
is proved in Hirai [37].
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Next, we introduce some conditions on a sequence of partitions and a càdlàg path.
Let π ∈ Par([0,∞[) and t ∈ ]0,∞[. The symbol π(t) denotes the element of π that contains
t. By definition, there exists only one such interval. In addition, set π(t) = supπ(t) and
π(t) = inf π(t). Then we have π(t) = ]π(t), π(t)].

Let f : S → E be a function into a Banach space and A be a subset of S. Define the
oscillation of f on A by

ω(f ;A) = sup
x,y∈A

‖f(x)− f(y)‖E .

Using this notation, we introduce two kinds of oscillation of a path X ∈ D(R≥0, E) along
a partition π ∈ Par(R≥0) as follows.

O+
t (X;π) = sup

]r,s]∈π
ω(X; ]r, s] ∩ [0, t]),

O−t (X;π) = sup
]r,s]∈π

ω(X; ]r, s[ ∩ [0, t]) = sup
]r,s]∈π

ω(X; [r, s[ ∩ [0, t]).

The second equality in the definition of O−t (X;π) is valid because X is supposed to be
right continuous. These oscillations satisfy the relation O−t (X;π) ≤ O+

t (X;π) for all
t ≥ 0. If X is continuous, these two quantities coincide.

Definition 3.4. Let E be a Banach space, X ∈ D(R≥0, E), and (πn)n∈N be a sequence
of partitions of R≥0.

(i) The sequence (πn) satisfies Condition (C) for X if it satisfies (C1)–(C3) below.

(C1) Let t ∈ [0,∞[ and ε > 0. Then there exists an N ∈ N such that for all n ≥ N

and for all I ∈ πn, the set I ∩ [0, t] ∩Dε(X) has at most one element.
(C2) Let s ∈ D(X) and t ∈ [s,∞[. Then

lim
n→∞

δXt(πn(s)) = lim
n→∞

{
X(πn(s) ∧ t)−X(πn(s) ∧ t)

}
= ∆Xs.

(C3) For all t ∈ R≥0,
lim
ε↓↓0

lim
n→∞

O+
t (X − Jε(X);πn) = 0.

(ii) The sequence (πn) approximates X : R≥0 → E from the left if limn→∞X(πn(t)) =

X(t−) holds for all t > 0. Then we call (πn) a left approximation sequence for X.

Remark 3.5. (i) Let (πn) be a sequence of partitions along which we consider a
quadratic variation of a path. In this paper, we often require that (πn) satisfies
Condition (C) defined above. Therefore, we can say that (C) is a condition for
integrators of Itô–Föllmer integration.

(ii) In contrast to (i), Condition (ii) of Definition 3.4 needs to be satisfied by integrands
of Itô–Föllmer or Stieltjes integrals. This will be mainly used in Theorem 3.6 and
Lemma 3.10.

Under these assumptions, we have the following C1,2 type Itô formula for Banach
space-valued paths.

Theorem 3.6 (Itô formula). Let E, E1, F , and G be Banach spaces, B : E × E → E1 be
a bounded bilinear map, (A,X) ∈ D(R≥0, F × E), and (πn) be a sequence of partitions
that satisfies Condition (C) for (A,X) and approximates (A,X) from the left. Suppose
that X has weak B-quadratic variation and finite 2-variation along (πn) and suppose also
that A has finite variation.

Moreover, let f : F × E → G be a function satisfying the following conditions:

(i) the map F 3 a 7→ f(a, x) ∈ G is Gâteaux differentiable for all x ∈ E and Daf : F ×
E → Lc(F,G) is continuous;
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(ii) the map E 3 x 7→ f(a, x) ∈ G is twice Gâteaux differentiable for all a ∈ F and
Dxf : F × E → Lc(E,G) is continuous;

(iii) there is a continuous function D2
Bf : F ×E → Lc(E1, G) that commutes the diagram

F × E Lc(E⊗̂E,G)

Lc(E1, G)

D2
xf

D2
Bf

B∗

where B∗ : Lc(E1, G)→ Lc(E⊗̂E,G) is defined by B∗(T )(x⊗ y) = T ◦B(x, y).

Then the Itô–Föllmer integral
∫ t

0
Dxf(As−, Xs−)dXs exists in the weak topology and it

satisfies

f(At, Xt)− f(A0, X0) =

∫ t

0

Daf(As−, Xs−)dAc
s +

∫ t

0

Dxf(As−, Xs−)dXs

+
1

2

∫ t

0

D2
Bf(As−, Xs−)dQB(X,X)c

s +
∑

0<s≤t

{∆f(As, Xs)−Dxf(As−, Xs−)∆Xs} . (3.1)

Moreover, if the quadratic variation QB exits in the strong sense, the convergence of
the Itô–Föllmer integral holds in the norm topology of G.

Here, note that (3.1) is an equation in the Banach space G. The Itô–Föllmer integral
in Theorem 3.6 is defined by∫ t

0

Dxf(As−, Xs−) dXs = lim
n→∞

∑
]r,s]∈πn

Dxf(Ar, Xr)(Xt∧s −Xt∧r)

with suitable topology (see Definition 7.1.)
As a direct consequence of Theorem 3.6, we can derive the Itô formula related to

tensor quadratic variations.

Corollary 3.7. Let E and F be Banach spaces and let α be a reasonable cross norm on
E ⊗ E. Suppose that X ∈ D(R≥0, E) has strong or weak α-tensor quadratic variation
and finite 2-variation along (πn) and suppose also that A ∈ FV (R≥0, F ). Moreover, let
f : F × E → G be a function satisfying the following conditions:

(i) the map F 3 a 7→ f(a, x) ∈ G is Gâteaux differentiable for all x ∈ E and Daf : F ×
E → Lc(F,G) is continuous;

(ii) the map E 3 x 7→ f(a, x) ∈ G is twice Gâteaux differentiable for all a ∈ F and
Dxf : F × E → Lc(E,G) is continuous;

(iii) the second derivative of f induces a continuous functionD2
xf : F×E→Lc(E⊗̂αE,G).

Then f(A,X) admits the following Itô formula:

f(At, Xt)− f(A0, X0) =

∫ t

0

Daf(As−, Xs−)dAc
s +

∫ t

0

Dxf(As−, Xs−)dXs

+
1

2

∫ t

0

D2
xf(As−, Xs−)dα[X,X]

c
s +

∑
0<s≤t

{∆f(As, Xs)−Dxf(As−, Xs−)∆Xs} .

The convergence of the Itô–Föllmer integral holds in the norm or weak topology, respec-
tively.

Remark 3.8. (i) Let f : F ×E → G be a C1,2 function in the sense of Fréchet differen-
tiation, i.e.
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(a) the function a 7→ f(a, x) is Fréchet differentiable for all x ∈ E and Daf : F ×
E → L(F,G) is continuous;

(b) the function x 7→ f(a, x) is twice Fréchet differentiable for all a ∈ F , and
Df : F × E → L(E,G) and D2f : F × E → L(E⊗̂E,G) are continuous.

Then f satisfies the assumptions in Corollary 3.7 for the projective tensor norm γ.

(ii) Define a class FC2
b(E) to be the set of all real functions of the form G = g ◦ P with

P : E → V being the projection to a finite-dimensional subspace and g ∈ C2
b(V ).

Let C be the completion of FC2
b with respect to the norm

‖G‖ := sup
x∈E
|G(x)|+ sup

x∈E
‖DG(x)‖E∗ + sup

x∈E
‖D2G(x)‖(E⊗̂αE)∗ .

Then every element of C satisfies the assumptions in Corollary 3.7.

Remark 3.9. A possible direction of development is a functional extension of Theo-
rem 3.6 and Corollary 3.7, that is, infinite-dimensional functional Itô calculus. For
such an extension, we should introduce Dupire’s derivative of a functional of infinite
dimensional paths. This seems an important future work. See, as referred to in Section 1,
Dupire [21], Cont and Fournié [8, 9, 10], and Ananova and Cont [1], for functional Itô
calculus in finite-dimensional state space.

The following lemma is essentially used to prove Theorem 3.6.

Lemma 3.10. Let B : E ×E → E1 be a bounded bilinear map between Banach spaces
and (πn) be a sequence of partitions of R≥0. Suppose that a path X ∈ D(R≥0, E) has
weak B-quadratic variation and finite 2-variation along (πn). Moreover, assume that (πn)

satisfies Condition (C) for X and approximates a ξ ∈ D(R≥0,Lc(E1, G)) from the left.
Then for all t ∈ [0,∞[∑

I∈πn

ξB(δXt, δXt)(I) −−−−→
n→∞

∫
]0,t]

ξu−dQB(X,X)u (3.2)

holds in the weak topology of G.
If, in addition, QB(X,X) is the strong B-quadratic variation, then (3.2) holds in the

norm topology.

4 Auxiliary results regarding sequences of partitions

In this section, we investigate conditions on a sequence of partitions along which we
deal with quadratic variations and Itô–Föllmer integrals. Recall that basic notions were
defined in Definition 3.4.

Definition 4.1. Let E be a Banach space, X ∈ D(R≥0, E), and (πn)n∈N be a sequence
of partitions of R≥0.

(i) The sequence (πn) controls the oscillation of X if limn→∞O−t (X;πn) = 0 holds for
all t.

(ii) The sequence (πn) exhausts the jumps of X if D(X) ⊂
⋃
n∈N

⋂
k≥n π

p
k .

Example 4.2. (i) Let r be an irrational number and X = 1[r,∞[. For each n ∈ N, we
set πn = {]k2−n, (k + 1)2−n]; k ∈ N}. Then the sequence (πn) satisfies |πn| → 0 as
n→∞. This sequence, however, does not control the oscillation of X.

(ii) Let X = 1[1,∞[ and πn = {]k, k + 1]; k ∈ N}. Though the sequence (πn) controls the
oscillation of X, it does not satisfy |πn| → 0.

(iii) Let X = 1[1/2,∞[ and πn = {]k, k + 1]; k ∈ N}. The sequence (πn) neither controls
the oscillation of X nor satisfies |πn| → 0. However, it satisfies Condition (C) for X
in the sense of Definition 3.4.
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Condition (i) of Definition 4.1 is characterized as follows.

Lemma 4.3. Let X be a càdlàg path in E and (πn) be a sequence of partitions of R≥0.
Then the following conditions are equivalent.

(i) The sequence (πn) controls the oscillation of X.

(ii) The sequence (πn) satisfies the following conditions:

(a) the sequence (πn) exhausts the jumps of X;
(b) if X is not constant on ]s, t[ ⊂ R≥0, then ]s, t[ contains at least one element of

πp
n for sufficiently large n.

Lemma 4.3 is a generalization of Lemma 1 of Vovk [76, 272]. Note that the condition
‘]s, t[ contains at least one point of πp

n’ is equivalent to ‘there is no I ∈ πn including ]s, t[.’

Proof. Step 1.1: (i) =⇒ (ii)-(a). Let s ∈ D(X) and set ε = ‖∆X(s)‖E . Moreover, fix T > s

arbitrarily. Then, by assumption, we can choose an N ∈ N such that O−T (X,πn) < ε/2

holds for all n ≥ N . We will show that s = πn(s) holds for all n ≥ N . Take an s′ from the
interval ]πn(s), s[ such that

‖Xs′ −Xs−‖E ≤ O−T (X,πn) <
ε

2
.

Then, we have

‖Xs −Xs′‖E ≥ ‖∆Xs‖E − ‖Xs− −Xs′‖E > ε− ε

2
=
ε

2
.

This shows that s /∈ ]πn(s), πn(s)[, and therefore s = πn(s). Hence (πn) exhausts the
jumps of X.

Step 1.2: (i) =⇒ (ii)-(b). Assume that ε := ω(X; ]s, t[) > 0. Choose an N ∈ N that
satisfies O−t (X,πn) < ε for all n ≥ N . For an arbitrarily fixed n ≥ N , choose a unique
i satisfying s ∈ [tni , t

n
i+1[. It remains to show that tni+1 ∈ ]s, t[. Seeking a contradiction,

suppose tni+1 ≥ t. Then [s, t[ ⊂ [tni , t
n
i+1[ and hence

O−t (X,πn) ≥ sup
u,v∈[tni ,t

n
i+1[∩[0,t]

‖Xu −Xv‖ ≥ sup
u,v∈[s,t[

‖Xu −Xv‖ = ε.

This contradicts the condition that O−t (X,πn) < ε.
Step 2: (ii) =⇒ (i). Suppose that (πn) satisfies the conditions (ii)–(a) and (b).
Fix an ε > 0 and a t > 0 arbitrarily. Because X is càdlàg, we can take a sequence

0 = s0 < s1 < · · · < sN = t such that ω(X; ]si, si+1[) < ε/2 for all i (see Lemma 2.1). By
assumption, we can choose an N ∈ N satisfying the following conditions:

1. If n ≥ N , there are no I ∈ πn and i ∈ {0, . . . , N} satisfying ]si, si+1[ ⊂ I and
ω(X; ]si, si+1[) > 0.

2. {s0, . . . , sN} ∩D(X) ⊂
⋂
n≥N π

p
n.

Let n ≥ N and ]u, v] ∈ πn. First, assume that ω(X; ]u, v[) > 0. By Condition 1, we see
that there are only two cases for the relationship between ]u, v] and (si)0≤i≤N as follows.

A. There is a unique i such that ]u, v] ⊂ ]si, si+1[.

B. There is a unique i such that si ∈ ]u, v[.

In Case A, the oscillation of X on ]u, v[ is estimated as

ω(X; ]u, v[ ∩ [0, t]) ≤ ω(X; ]si, si+1[) <
ε

2
.
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On the other hand, in Case B, X is continuous at si ∈ ]u, v[ by Condition 2. Therefore,

ω(X; ]u, v[ ∩ [0, t]) ≤ ω(X; ]si−1, si[) + ω(X; ]si, si+1[) < ε.

If ω(X; ]u, v[) = 0, we clearly have the same estimate. By the discussion above, we find
that ω(X; ]u, v[ ∩ [0, t]) < ε holds for all ]u, v] ∈ πn, and consequently

O−t (X;πn) = sup
]r,s]∈πn

ω(X; ]r, s[ ∩ [0, t]) ≤ ε

for every n ≥ N . This completes the proof.

We next consider the condition that (πn) approximates a path from the left. Given a
partition π, define the left discretization of a path ξ : R≥0 → E along π by

πξ =
∑

]r,s]∈π

ξ(r)1]r,s].

If ξ is càdlàg, then the sequence (πn) approximates ξ from the left in the sense of
Definition 3.4 if and only if (πnξ)n∈N converges to ξ− pointwise. Consider the following
example.

Example 4.4. Let X = 1[1/2,∞[ and πn = {]k, k + 1]; k ∈ N}. As we saw in Example 4.2,
the sequence (πn) satisfies Condition (C) for X. For each n ∈ N, the left discretization of
X is given by πnX = 1]1,∞[. The sequence (πnX) does not converge to X pointwise, and
hence (πn) does not approximate X from the left.

As we mentioned in Section 1, two types of assumptions about a sequence of partitions
are frequently used in the context of the Itô–Föllmer calculus. One is that |πn| → 0 and
the other is that (πn) controls the oscillation of X. In the next proposition, we show that
both conditions imply that (πn) satisfies Condition (C) for X.

Proposition 4.5. Let (πn) be a sequence of partitions of R≥0 and let E be a Banach
space.

(i) Suppose that (πn) satisfies |πn| → 0. Then it satisfies Condition (C) for every càdlàg
path in E. Moreover, it approximates every càdlàg path in E from the left.

(ii) Suppose that (πn) controls the oscillation of X ∈ D(R≥0, E). Then it satisfies
Condition (C) for X and approximates X from the left.

Proof. (i) If |πn| → 0, then πn(t) → t and πn(t) → t hold for every t ≥ 0. This directly
implies that (πn) approximates X from the left. Moreover, we have δXu(πn(t))→ Xt for
every t, u > 0 with t ≤ u. Hence, (πn) satisfies Condition (C2). Condition (C3) follows
from (iii) of Lemma 2.1. Condition (C1) remains to be shown. Given an ε > 0, define

r := inf{|u− v| | u, v ∈ Dε(X) ∩ [0, t], u 6= v} > 0.

If Dε(X) ∩ [0, t] has only one element, there is nothing to do. Otherwise, r is not zero,
because Dε(X) ∩ [0, t] has at most finitely many elements (see (i) of Lemma 2.1). Now
we take an N satisfying |πn| < r for all n ≥ N . Then for each n ≥ N and ]u, v] ∈ πn, the
set ]u, v] ∩ [0, t] contains at most one element of Dε.

(ii) Assume that (πn) controls the oscillation of X. Then we see that (πn) approximates
X from the left by the following estimate.

‖Xπn(t) −Xt−‖E ≤ ω(X; [πn(t), πn(t)[ ∩ [0, t]) ≤ O−t (X,πn).

Now, let us show that (πn) satisfies (C) for X. To obtain (C2), take a t ∈ D(X).
Because (πn) exhausts the jumps of X (Lemma 4.3), we have πn(t) = t for sufficiently
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large n. This combined with the fact that (πn) is a left-approximation sequence implies
(C2). Next, consider (C1). Let ε > 0 and fix an Nε ∈ N so that O−t (X,πn) < ε holds
for any n ≥ Nε. Then, for every n ≥ Nε and ]r, s] ∈ πn, the interval ]r, s[ ∩ [0, t] does
not contain any jump of X that is greater than ε. Therefore, ]r, s] possesses at most
one element of Dε(X). This means that (πn) satisfies (C1). All that is left is to check
Condition (C3). Choose an Mε that satisfies O−t (X;πn) < ε/2 for all I ∈ πn and n ≥ M .
As we just have shown, Jε/2(X) is zero on the interior of each I ∈ πn and n ≥Mε. Hence,

ω(X − Jε/2(X); ]r, s] ∩ [0, t]) ≤ ω(X − Jε/2(X); ]r, s[ ∩ [0, t]) + ‖∆(X − Jε/2(X))s‖E
≤ O−t (X;πn) + ‖∆(X − Jε/2(X))s‖E < ε

holds for all ]r, s] ∈ πn and n ≥Mε, which implies (C3).

In the last part of this section, we give an additional lemma about a sequence of
partitions.

Lemma 4.6. (i) Let X be a càdlàg path in a Banach space E. If (πn) approximates ξ
from the left, then (πn) also approximates f ◦ ξ from the left for every continuous
function f : E → E′ to an arbitrary Banach space.

(ii) Let X and Y be càdlàg paths in Banach spaces E and F , respectively. If (πn)

satisfies Condition (C) for the path (X,Y ) in E × F , then (πn) satisfies (C) for each
of X and Y . Here, we regard E × F as a Banach space endowed with the direct
sum norm ‖ ‖E + ‖ ‖F .

Proof. (i) immediately follows from the continuity of f .
To show (ii), suppose that (πn) satisfies (C) for (X,Y ). It suffices to show that (πn)

satisfies (C) for X. First, fix t ∈ R≥0 and ε > 0 arbitrarily, and then choose an N so that
Dε(X,Y ) ∩ I ∩ [0, t] has at most one element for all n ≥ N and I ∈ πn. The inclusion
Dε(X) ∩ I ∩ [0, t] ⊂ Dε(X,Y ) ∩ I ∩ [0, t] implies that the cardinality of I ∩ [0, t] ∩Dε(X) is
no greater than 1. Condition (C2) follows directly from the definition of product topology.
Condition (C3) remains to be shown. For an arbitrary δ > 0, choose an ε0 > 0 satisfying

sup
ε≤ε0

lim
n→∞

O+
t ((X,Y )− Jε(X,Y );πn) <

δ

2
.

Set ε1 = ε0 ∧ (δ/2). Given ε ≤ ε1, we can take Mε > 0 such that

(a) I ∩ [0, t] ∩Dε(X,Y ) has at most one element for all I ∈ πn and n ≥Mε.

(b) supn≥Mε
O+
t ((X,Y )− Jε(X,Y );πn) < δ/2.

If n ≥Mε and I ∈ πn, then for any u, v ∈ I, we have

‖(X − Jε(X))u − (X − Jε(X))v‖E
≤ ‖(X − J(Dε(X,Y ), X))u − (X − J(Dε(X,Y ), X))v‖E

+ ‖(J(Dε(X,Y ), X)− J(Dε(X), X))u − (J(Dε(X,Y ), X)− J(Dε(X), X))v‖E
≤ sup
n≥Mε

O+
t ((X,Y )− Jε(X,Y );πn) + ε

≤ δ

2
+
δ

2
= δ.

Here, note that the second inequality holds by Condition (a) above. Thus, we get

lim
n→∞

O+
t (X − Jε(X);πn) ≤ sup

n≥Mε

O+
t (X − Jε(X);πn) ≤ δ.

for arbitrary ε ≤ ε1. This implies (C3) for X.
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5 Properties of quadratic variations

This section is devoted to studying some basic properties of quadratic variations
introduced in Section 3. Throughout this section, suppose that we are given a sequence
Π = (πn)n∈N of partitions of R≥0.

First, we give some examples of quadratic variations.

Example 5.1. Let A be a path of finite variation in a Banach space E. If (πn) satisfies
|πn| → 0, then A has projective tensor and scalar quadratic variations given by

γ [A,A]t =
∑

0<s≤t

(∆As)
⊗2, Q(A)t =

∑
0<s≤t

‖∆As‖2.

This result will be proved later in this section.

Example 5.2. Let x : [0,∞[→ R be a càdlàg path and (πn) a sequence of partitions such
that |πn| → 0. Given arbitrary C1-function f : R→ E into a Banach space E, let us set
X(t) = f(x(t)). If x has quadratic variation along (πn), then X has projective tensor
quadratic variation given by

γ [X,X]t =

∫ t

0

Df(xs−)⊗2d[x, x]cs +
∑

0<s≤t

∆f(xs)
⊗2.

This is one of the main results of the second article in this series [37].
For the construction of a real continuous path of nontrivial quadratic variation, refer

to Schied [68], Mishura and Schied [52], and Cont and Das [7].

The next examples are from the theory of stochastic processes.

Example 5.3. (i) Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the
usual conditions. Consider a semimartingale X = (Xt)t≥0 in a separable Hilbert
space H. Moreover, let π = (τnk )n∈N be an increasing sequence of bounded stopping
times such that τnk → ∞ as k → ∞ and supk(τn+1

k − τnk ) → 0 as n → ∞ almost
surely. Then the process [X,X]π converges to the quadratic variation process
[X,X] uniformly on compacts in probability (ucp). By passing to an appropriate
subsequence, we see that almost all paths have quadratic variation along the
subsequence. See Gravereaux and Pellaumail [28] or Metivier and Pellaumail [47]
for details.

(ii) In addition to the assumptions of (i), let f : H → E be a C1 function into a Banach
space E. Then, along a suitable subsequence of (πn), almost all paths of f(X)

have quadratic variation. If, moreover, f is of C2 class, the Itô–Föllmer integral∫ ·
0
Df(Xs−)dXs exists and its paths have quadratic variation along the same subse-

quence. Now, since the Banach space E is chosen arbitrarily, it may fail to satisfy
some useful properties required by the martingale theory, e.g. UMD property or
martingale type 2 property. The path f(X), however, behaves well enough from
the viewpoint of the Itô–Föllmer calculus.

Now we consider the transpose of quadratic covariation. Let B ∈ L(2)(E,F ;G)

and define the transpose tB : F × E → G of B by tB(y, x) = B(x, y). Then (X,Y ) ∈
D(R≥0, E × F ) has strong/weak B-quadratic covariation if and only if (Y,X) does with
respect to the transpose tB.

Recall that a d-dimensional càdlàg path X = (X1, . . . , Xd) has tensor quadratic
variation if and only if Xi and Xj have quadratic covariation for each i and j. This
characterization is generalized to bilinear quadratic covariations in Banach spaces.

Proposition 5.4. Let Ei, Fj , and Gij be Banach spaces and let Bij : Ei × Fj → Gij be a
bounded bilinear map for i, j ∈ {1, 2}. Define a continuous bilinear map B : (E1 × E2)×
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(F1 × F2)→
∏
i,j Gij by

B((x1, x2), (y1, y2)) = (Bij(xi, yi))i,j∈{1,2}.

If X = (X1, X2) ∈ D(R≥0, E1 × E2) and Y = (Y1, Y2) ∈ D(R≥0, F1 × F2), then (X,Y) has
strong or weak B-quadratic covariation if and only if (Xi, Yj) has respectively strong
or weak Bij-quadratic covariation for all i, j ∈ {1, 2}. In this case, these quadratic
covariations satisfy

QB((X1, X2), (Y1, Y2)) = (QBij (Xi, Xj))i,j∈{1,2}. (5.1)

Using the matrix notation, we can also express equation (5.1) as

QB((X1, X2), (Y1, Y2)) =

(
QB11

(X1, Y1) QB12
(X1, Y2)

QB21(X2, Y1) QB22(X2, Y2)

)
.

Proof. By the definition of B, we can easily check that

∑
I∈πn

B
((

(δX1)t, (δX2)t
)
,
(
(δY1)t, (δY2)t

))
(I) =

(∑
I∈πn

Bij
(
(δXi)t, (δYi)t

)
(I)

)
i,j∈{1,2}

,

B (∆(X1, X2)t,∆(Y1, Y2)t) = (Bij(∆Xi(t),∆Yj(t)))i,j∈{1,2} ,

hold for all t ≥ 0. These immediately prove the assertion.

Applying Proposition 5.4 to the canonical bilinear map ⊗ : Ei × Ej → Ei⊗̂αEj , we
obtain the following corollary.

Corollary 5.5. Let (X1, X2) ∈ D(R≥0, E1 × E2) and let α be a uniform crossnorm. Then
(X1, X2) has strong or weak α-tensor quadratic variation if and only if (Xi, Xj) has strong
or weak α-tensor quadratic covariation, respectively, for every i, j ∈ {1, 2}.

Like the quadratic covariation [X,Y ] of scalar paths, quadratic covariation QB is
bilinear in an appropriate sense.

Proposition 5.6. Let X1, X2 ∈ D(R≥0, E) and Y1, Y2 ∈ D(R≥0, F ). Suppose that (Xi, Yj)

has strong or weak quadratic covariation with respect to B ∈ L(2)(E,F ;G) for each
i, j ∈ {1, 2}. Then, (X1 + X2, Y1 + Y2) has respectively strong or weak B-quadratic
covariation given by

QB(X1 +X2, Y1 + Y2) =
∑

i,j∈{1,2}

QB(Xi, Yj).

Proof. By the bilinearity of B, we see that∑
I∈πn

B(δ(X1 +X2)t, δ(Y1 + Y2)t)(I) =
∑

i,j∈{1,2}

∑
I∈πn

B(δ(Xi)t, δ(Yj)t)(I)

for every t ≥ 0. Therefore, by assumption, the left-hand side converges to
∑
ij QB(Xi, Yj)

in the corresponding topology. Again by bilinearity,

∆

 ∑
i,j∈{1,2}

QB(Xi, Yj)

 (t)=
∑

i,j∈{1,2}

B(∆(Xi)t,∆(Yj)t) = B (∆(X1 +X2)t,∆(Y1 + Y2)t) .

Hence,
∑
ij QB(Xi, Yj) is the B-quadratic covariation of X1 +X2 and Y1 + Y2.
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Corollary 5.7. Let E and F be Banach spaces and α be a reasonable crossnorm on
E ⊗ F . Suppose that (Xi, Yj) ∈ D(R≥0, E × F ) has strong or weak α-tensor quadratic
covariation for every i, j ∈ {1, 2}. Then, (X1 +X2, Y1 + Y2) has strong or weak α-tensor
quadratic covariation, respectively, and it satisfies

α[X1 +X2, Y1 + Y2] = α[X1, Y1] + α[X1, Y2] + α[X2, Y1] + α[X2, Y2].

Next, we investigate the quadratic variation of a path of finite variation. For conve-
nience, we introduce the following notation. Let D ⊂ R≥0 and define functions e1

D and
e2
D from P(R≥0) to {0, 1} by

e1
D(A) =

{
1 if A ∩D 6= ∅
0 if A ∩D = ∅

, e2
D = 1− e1

D.

The symbol P(R≥0) above denotes the power set of R≥0.

Proposition 5.8. Let E, F , and G be Banach spaces and let B ∈ L(2)(E,F ;G). Assume
that A ∈ FV (R≥0, E), X ∈ D(R≥0, F ), and (πn) satisfies Condition (C) for (A,X). Then
(A,X) has the strong B-quadratic variation given by

QB(A,X)t =
∑

0<s≤t

B(∆As,∆Xs).

Proof. Fix t ∈ R≥0 and take an arbitrary ε > 0. For convenience, set D = D(A,X),
Dε = Dε(A,X), and Dε = Dε(A,X). Then,∥∥∥∥∥∥
∑
I∈πn

B(δAt, δXt)(I)−
∑

0<u≤t

B(∆Au,∆Xu)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
I∈πn

B(δAt, δXt)(I)e1
Dε(I)−

∑
0<u≤t

B (∆Au,∆Xu)

∥∥∥∥∥∥+

∥∥∥∥∥∑
I∈πn

B(δAt, δXt)(I)e2
Dε(I)

∥∥∥∥∥
(5.2)

for any t ∈ R≥0. We will observe the behaviour of each term on the right-hand side
of (5.2).

Because (πn) satisfies Condition (C) for X, there exists an N1 such that Dε ∩ [0, t] ∩ I
contains at most one point for all n ≥ N1 and I ∈ πn. If n ≥ N1, we have∑

I∈πn

B(δAt, δXt)(I)e1
Dε(I) =

∑
u∈Dε

B (δAt, δXt) (πn(u)).

Therefore, by Condition (C2),

lim
n→∞

∑
I∈πn

B(δAt, δXt)(I)e1
Dε(I) =

∑
u∈Dε∩[0,t]

B(∆Au,∆Xu).

This implies that

lim
n→∞

∥∥∥∥∥∥
∑
I∈πn

B(δAt, δXt)(I)e1
Dε(I)−

∑
0<u≤t

B(∆Au,∆Xu)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

u∈Dε∩[0,t]

B(∆Au,∆Xu)

∥∥∥∥∥∥ ≤ ‖B‖ sup
u∈[0,t]

‖∆Xu‖
∑

u∈Dε∩[0,t]

‖∆Au‖.
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Next, we consider the second term on the right-hand side of (5.2). Since X has no
jumps greater than ε on I whenever e2

Dε
(I) = 1, we have the estimate

‖δXt(I)‖F e
2
Dε(I) = ‖δ(X − JDε(X))t(I)‖e2

Dε(I) ≤ O+
t (X − JDε(X);πn)e2

Dε(I).

Hence ∥∥∥∥∥∑
I∈πn

B(δAt, δXt)(I)e2
Dε(I)

∥∥∥∥∥
G

≤ ‖B‖
∑
I∈πn

‖δAt(I)‖E ‖δXt(I)‖F e2
Dε(I)

≤ ‖B‖O+
t (X − JDε(X);πn)V (A)t.

From the discussion above, we can deduce that

lim
n→∞

∥∥∥∥∥∥
∑
I∈πn

B(δAt, δXt)(I)−
∑

0<u≤t

B (∆Au,∆Xu)

∥∥∥∥∥∥
G

≤ ‖B‖ sup
u∈[0,t]

‖∆Xu‖F
∑

u∈Dε∩[0,t]

‖∆Au‖E + ‖B‖V (A)t lim
n→∞

O+
t (X − JDε(X);πn).

Consequently,

lim
n→∞

∥∥∥∥∥∥
∑
I∈πn

B(δAt, δXt)(I)−
∑

0<u≤t

B (∆Au,∆Xu)

∥∥∥∥∥∥
G

= 0,

which is the desired conclusion.

Applying Proposition 5.8 to the canonical bilinear maps ⊗ : E × F → E⊗̂αF and
⊗ : F × E → F ⊗̂α′E, we get the following corollary.

Corollary 5.9. Let A ∈ FV (R≥0, E) and X ∈ D(R≥0, F ). If (πn) satisfies Condition (C)
for (A,X), then it has tensor quadratic covariations α[A,X] and α′ [X,A] given by

α[A,X]t =
∑

0<s≤t

∆As ⊗∆Xs,
α′ [X,A]t =

∑
0<s≤t

∆Xs ⊗∆As

for every reasonable crossnorms α and α′ on E ⊗ F and F ⊗ E, respectively.

Using Corollaries 5.7 and 5.9, we obtain the following.

Corollary 5.10. Let (X,A) ∈ D(R≥0, E) × FV (R≥0, E) and suppose that (πn) satisfies
Condition (C) for (X,A). If X : R≥0 → E has α-tensor quadratic variation along (πn),
then X +A has α-tensor quadratic variation given by

α[X +A,X +A] = α[X,X] + α[X,A] + α[A,X] + α[A,A]

for every reasonable crossnorm α on E ⊗ E.

By a discussion similar to the proof of Proposition 5.8, we see that a path of finite
variation has scalar quadratic variation.

Proposition 5.11. Let A be a càdlàg path of finite variation in a Banach space E. If (πn)

satisfies Condition (C) for A, then A has the scalar quadratic covariation given by

Q(A)t =
∑

0<s≤t

‖∆As‖2.
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In the preceding part of this paper, we have used the summation∑
]r,s]∈πn

B(Xs∧t −Xr∧t, Ys∧t − Yr∧t)

to define the quadratic covariation. We can also consider a different summation∑
]r,s]∈πn

1[0,t[(r)B(Xs −Xr, Ys − Yr),

which is a slight modification of that used in the original paper by Föllmer [22]. Let us
investigate the relation between these two summations.

Proposition 5.12. Let (X,Y ) ∈ D(R≥0, E × F ) and B ∈ L(2)(E,F ;G). Suppose that
(X,Y )πn(t) → (X,Y )t holds for all t ∈ R≥0. Then the following two conditions are
equivalent, respectively.

(i) The path (X,Y ) has strong/weak B-quadratic covariation along (πn).

(ii) There exists a càdlàg path V ∈ FV (R≥0, G) such that

(a) for all t ∈ R≥0 ∑
]r,s]∈πn

1[0,t[(r)B(δX, δY )(]r, s]) −−−−→
n→∞

Vt

in the norm/weak topology of G,
(b) for all t ∈ R≥0

∆Vt = B(∆Xt,∆Yt).

If these conditions are satisfied, then V coincides with the quadratic covariation
QB(X,Y ).

Proof. We show the assertion about strong convergence. For each t > 0∥∥∥∥∥∥
∑

]r,s]∈πn

B(δXt, δYt)(]r, s])−
∑

]r,s]∈πn

1[0,t[(r)B(δX, δY )(]r, s])

∥∥∥∥∥∥
= ‖B (δXt, δYt) (πn(t))−B (δX, δY ) (πn(t))‖
≤ ‖B (δXt − δX, δYt) (πn(t))‖+ ‖B (δX, δYt − δY ) (πn(t))‖
≤ ‖B‖‖Xπn(t) −Xt‖‖δYt(πn(t))‖+ ‖B‖‖δX(πn(t))‖‖Yπn(t) − Yt‖.

Hence, by assumption, the convergences of these two sequences are equivalent and
their limits coincide.

In the weak case, we have a similar estimate for the pairing 〈z∗, 〉, which shows the
assertion about the weak quadratic covariation.

According to Proposition 5.12, we see that the two definitions of quadratic covariation
are equivalent provided that (πn) satisfies the assumption in the proposition. The first
definition, which is given in Definition 3.1, is more intuitive. The second one has some
technical advantages because the path t 7→

∑
I∈πn 1[0,t[B(δX, δY )(I) is of finite variation

2.

Remark 5.13. Following a discussion similar to that in Proposition 5.12, we can
obtain an equivalent definition of scalar quadratic variation using the summation∑
I∈πn‖1[0,t[δX(I)‖2 if (πn) satisfies the same condition as Proposition 5.12.

2Note that the path t 7→
∑
πn

1[0,t[B(δX, δY )(I) is càglàd but not càdlàg.
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6 Proof of Lemma 3.10

In this section, we prove Lemma 3.10, which is essentially used to show the main
theorems of this paper. To prove it, we prepare some additional lemmas. Though
Lemma 3.10 includes both weak and strong convergence results, we mainly focus on the
proof of the weak case 3.

Throughout this section, let the symbols E, E1, and G denote Banach spaces and
B : E × E → E1 denote a bounded bilinear map.

Lemma 6.1. Let s > 0 and let (πn)n∈N be a sequence of partitions. Then (πn) approxi-
mates 1[0,s[ from the left if and only if πn(s)→ s as n→∞.

Proof. First, assume that (πn) approximates 1[0,s[ from the left and take an ε > 0

arbitrarily. By definition, 1[0,s[(s + ε−) = 0. Since (πn) approximates 1[0,s[ from the
left and 1[0,s[ takes only two values 0 and 1, one sees that 1[0,s[(πn(s + ε)) = 0 holds
for a large enough n. Therefore, πn(s + ε) ≥ s for large enough n. This leads to
πn(s) ≤ πn(s+ ε) < s+ ε for a sufficiently large n. Hence πn(s)→ s as n→∞.

Conversely, assume that (πn(s))n∈N converges to s as n → ∞. If 0 < t ≤ s, then
the convergence 1[0,s[(πn(t)) → 1[0,s[(t−) = 1 is obvious. Let t > s. We see from the
assumption that πn(s) < t for large enough n. For such an n, we have s ≤ πn(s) ≤ πn(t) <

t, and hence 1[0,s[(πn(t)) = 0 = 1[0,s[(t−). This shows that limn→∞ 1[0,s[(πn(t)) = 1[0,s[(t−).
Hence (πn) is a left approximation sequence for 1[0,s[.

Lemma 6.2. Suppose that X ∈ D(R≥0, E) has weak B-quadratic variation along a
sequence (πn) satisfying Condition (C) for X. Let r, s be two real numbers satisfying
0 ≤ r < s. If (πn) approximates 1[r,s[ from the left, then

lim
n→∞

∑
I∈πn

1[r,s[B(δXt, δXt)(I) = QB(X,X)s∧t −QB(X,X)r∧t (6.1)

holds for all t ∈ R≥0 in the weak topology.

If X has strong B-quadratic variation, then the convergence of (6.1) holds in the
norm topology.

Proof. We show the case of weak convergence. By considering the decomposition∑
I∈πn

1[r,s[B(δXt, δXt)(I) =
∑
I∈πn

1[0,s[B(δXt, δXt)(I)−
∑
I∈πn

1[0,r[B(δXt, δXt)(I),

we can assume that r = 0 without loss of generality.

If t ≤ s, the equation∑
I∈πn

1[0,s[B(δXt, δXt)(I) =
∑
I∈πn

B(δXt, δXt)(I)

holds for all n ∈ N. Therefore,

lim
n→∞

〈
z∗,

∑
I∈πn

1[0,s[B(δXt, δXt)(I)

〉
= 〈z∗, QB(X,X)t〉 = 〈z∗, QB(X,X)t∧s〉

for all z∗ ∈ E∗1 .

3For the strong case, the reader can refer to an earlier version of this article at arXiv: 2104.08138v2
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Next, assume s < t. Then, by Lemma 6.1, πn(s)→ s as n→∞. Hence,

lim
n→∞

〈
z∗,

∑
I∈πn

1[0,s[B(δXt, δXt)(I)

〉
= lim
n→∞

〈
z∗,

∑
I∈πn

1[0,s[B(δX, δX)(I)

〉
= 〈z∗, QB(X,X)s〉
= 〈z∗, QB(X,X)s∧t〉.

Note that the second equality follows from the same argument as the proof of Proposi-
tion 5.12.

In both cases, we have the desired convergence.
If X has strong B-quadratic variation, we can directly show the norm convergence of

the sequence without taking the pairing 〈z∗, 〉.

Lemma 6.3. Let X be a càdlàg path in E with weak B-quadratic variation along a
sequence (πn) satisfying Condition (C) for X. Suppose that ξ ∈ D(R≥0,L(E1, G)) has the
representation

ξ =
∑
i≥1

1[τi−1,τi[ai, (6.2)

where 0 = τ0 < τ1 < · · · < τi < τi+1 < · · · → ∞ and each ai is an element of L(E1, G).
If (πn) approximates ξ from the left, then the Stieltjes integral of ξ− with respect to
QB(X,X) is approximated as

lim
n→∞

∑
I∈πn

ξB(δXt, δXt)(I) =

∫
]0,t]

ξs−dQB(X,X)s. (6.3)

in the weak topology.
If X has strong B-quadratic variation, then (6.3) holds in the norm topology of G.

Proof. We show the weak convergence case. First, note that the Stieltjes integral on the
right-hand side of (6.3) has the representation∫

]0,t]

ξs−dQB(X,X)s =
∑
i≥1

ai{QB(X,X)τi∧t −QB(X,X)τi−1∧t}.

On the other hand, the summation on the left-hand side of (6.3) is calculated as∑
I∈πn

ξB(δXt, δXt)(I) =
∑
i≥1

ai
∑
I∈πn

1[τi−1,τi[B(δXt, δXt)(I).

Therefore, it suffices to show that

lim
n→∞

〈
z∗ai,

∑
I∈πn

1[τi−1,τi[B(δXt, δXt)(I)

〉
= 〈z∗ai, QB(X,X)τi∧t −QB(X,X)τi−1∧t〉

for all z∗ ∈ G∗ and i ≥ 1. This follows directly from Lemma 6.2.
If QB(X,X) is the strong B-quadratic variation, the sequence of discrete sums

converges in the norm topology by the strong version of Lemma 6.2.

Lemma 6.4. Let V be a locally convex Hausdorff topological vector space of which
topology is generated by the family of seminorms (ρi)i∈I .

(i) Let f : R≥0 → V be a càdlàg path. Then for every i ∈ I and ε > 0, there is a right
continuous step function h such that ρi(f(t)− h(t)) ≤ ε for all t ≥ 0.
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(ii) If a sequence of partitions (πn) approximates f from the left, then the step function
h in (i) can be chosen so that (πn) still approximates h from the left.

Proof. Fix ε > 0 and i ∈ I. We define the oscillation of f on S ⊂ R≥0 by

ωi(f ;S) = sup{ρi(f(t)− f(s)) | s, t ∈ S}.

(i) Let us construct a partition of R≥0 recursively. First, let t0 = 0. Next, assume that
there is a sequence 0 = t0 < · · · < tn such that ωi(f ; [tk, tk+1[) ≤ ε for k ∈ {0, . . . , n− 1}.

Case A. If ωi(f ; [tn,∞[) = 0, then we set tn+1 = tn + 1.
Case B. If ωi(f ; [tn,∞[) > ε, first let

t′n+1 = inf {t > tn |ωi(f ; [tn, t[) > ε} ,

and then define

tn+1 =

{
sup{t > t′n+1 | ωi(f ; [t′n+1, t[) = 0} if ωi(f ; [t′n+1,∞[) > 0

t′n+1 otherwise.
(6.4)

Note that f is not constant on any interval of the form [tn+1, t[ (t > tn+1) when
ωi(f ; [t′n+1,∞[) > 0.

Case C. If 0 < ωi(f ; [tn,∞[) ≤ ε, then let t′n+1 = tn + 1 and define tn+1 by the
formula (6.4).

The sequence defined above satisfies tn → ∞. Indeed, if ωi(f ; [tn,∞[) ≤ ε for
some n ∈ N, we have tn+k ≥ tn + k for all k ∈ N, by definition. Now assume that
ωi(f ; [tn,∞[) > ε for all n ∈ N and tn ↑ t∗ < ∞. In this case, ωi(f ; [t∗ − δ, t∗[) ≥ ε holds
for arbitrary small δ. This contradicts the existence of the left limit at t∗.

Let P := (tn)n∈N and define a function fP by the formula

fP =
∑
n≥0

1[tn,tn+1[f(tn+1−).

For t ∈ [tn, tn+1[, we see that

ρi(f(t)− fP (t)) = ρi(f(t)− f(tn+1−)) ≤ ωi(f ; [tn, tn+1[) ≤ ε.

Hence fP is a right continuous step function satisfying the desired condition.
(ii) We shall show that the function fP defined above is approximated from left by the

left-approximation sequence (πk) for f . Note that, by the definition of fP ,

fP (s−) =
∑
n≥0

1]tn,tn+1](s)f(tn+1−)

holds for all s > 0.
Now fix s > 0 arbitrarily and choose a unique n0 ∈ N such that s ∈ ]tn0 , tn0+1]. If f is

discontinuous at tn0 , then we see that πk(tn0)→ tn0 by the same argument as the proof
of Lemma 6.1. In this case, tn0 ≤ πk(tn0) ≤ πk(s) < s for large enough k and therefore
we have

lim
k→∞

fP (πk(s)) = f(tn0+1−) = fP (s−).

Next, assume that f is continuous at tn0
and f is not constant on any interval of the

form [tn0
, t[ for t > tn0

. Take t′ such that tn0
< t′ < s and f(t′−) 6= f(tn0

) = f(tn0
−). If

πk(t′) ≤ tn0
for infinitely many k, then we can take a subsequence such that πkl(t

′) ≤ tn0

for all l. By definition, πkl(t
′) = πkl(tn0

) and hence

f(t′−) = lim
l→∞

f(πkl(t
′)) = lim

l→∞
f(πkl(tn0

)) = f(tn0
−),
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which contradicts the assumption on t′. This shows that tn0
< πk(t′) ≤ πk(s) < s holds

for large enough k and consequently

lim
k→∞

fP (πk(s)) = f(tn0+1−) = fP (s−).

Finally, assume that f is continuous at tn0
and f is constant on [tn0

, t[ for some t > tn0
.

In this case, we have ωi(f ; [tn0
,∞[) = 0 by the definition of P = (tn). Also note that

tn0
≤ πk(s) < s or πk(tn0

) = πk(s) holds for each k. In both cases,

lim
k→∞

fP (πk(s)) = f(tn0
−) = f(tn0+1−) = fP (s−).

The second equality follows from the continuity of f at tn0 and the property that
ωi(f ; [tn0 ,∞[) = 0. This completes the proof.

Finally, we start dealing with the proof of Lemma 3.10.

Proof of Lemma 3.10. First, fix t > 0 and ε > 0 arbitrarily and choose a compact set
K ⊂ E1 satisfying

B(δXt, δXt)(I ∩ [0, t]) ∪ δQB(X,X)t(I ∩ [0, t]) ⊂ K.

By Lemma 6.4, we can find an Lc(E1, G)-valued right continuous step function

h =
∑
i≥1

1[τi−1,τi[ai

so that ρK(h(s)− ξ(s)) ≤ ε holds for all s ∈ [0, t] and (πn) approximates h from the left.
Then, for all z∗ ∈ G∗,∣∣∣∣∣

〈
z∗,

∑
I∈πn

ξB(δXt, δXt)(I)

〉
−

〈
z∗,

∫
]0,t]

ξu−dQB(X,X)u

〉∣∣∣∣∣
≤

∣∣∣∣∣∑
I∈πn

〈z∗ξ,B(δXt, δXt)〉 (I)−
∑
I∈πn

〈z∗h,B(δXt, δXt)〉 (I)

∣∣∣∣∣
+

∣∣∣∣∣∣
〈
z∗,

∑
]r,s]∈πn

hB(δXt, δXt)(I)

〉
−

〈
z∗,

∫
]0,t]

h(u−)dQB(X,X)u

〉∣∣∣∣∣∣
+

∣∣∣∣∣
∫

]0,t]

〈z∗h(u−),dQB(X,X)u〉 −
∫

]0,t]

〈z∗ξ(u−),dQB(X,X)u〉

∣∣∣∣∣ . (6.5)

We will observe the behaviour of each part of the right-hand side. We can deduce
from Lemma 6.3 that the second term converges to 0 as n→∞. By the choice of h, we
find that∣∣∣∣∣∑

I∈πn

〈z∗ξ,B(δXt, δXt)〉 (I)−
∑
I∈πn

〈z∗h,B(δXt, δXt)〉 (I)

∣∣∣∣∣ ≤ ε‖z∗‖‖B‖∑
I∈πn

‖δXt(I)‖2E .

Therefore,

lim
n→∞

∣∣∣∣∣∑
I∈πn

〈z∗ξ,B(δXt, δXt)〉 (I)−
∑
I∈πn

〈z∗h,B(δXt, δXt)〉 (I)

∣∣∣∣∣ ≤ ε‖z∗‖‖B‖V 2(X; Π)t.
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On the other hand, we have∣∣∣∣∣
∫

]0,t]

〈z∗(h(u−)− ξ(u−)),dQB(X,X)u〉

∣∣∣∣∣ ≤ ‖z∗‖
∫

]0,t]

ρK(h(u−)− ξ(u−))dV (QB(X,X))t

≤ ε‖z∗‖V (QB(X,X))t

by Proposition B.7. Consequently,

lim
n→∞

∣∣∣∣∣
〈
z∗,

∑
I∈πn

ξB(δXt, δXt)(I)−
∫

]0,t]

ξu−dQB(X,X)u

〉∣∣∣∣∣
≤ ε‖z∗‖{V 2(X; Π)t + V (QB(X,X))t}.

Because ε is chosen arbitrarily, we get the desired conclusion.
If QB(X,X) is the strong quadratic variation, we replace (6.5) with a similar norm

inequality. In this case, we see that the corresponding second term converges to 0 by
the strong version of Lemma 6.3. The remaining terms are estimated in almost the same
way as above.

7 The Itô formula

This section is devoted to showing the Itô formula within our framework of the
Itô–Föllmer calculus in Banach spaces. Let us begin by defining Itô–Föllmer integrals.

Definition 7.1. Let E be a locally convex space, and let F and G be Banach spaces.
Consider càdlàg paths H and X in E and F , respectively, and a continuous bilinear map
B : E ×F → G. Suppose that a sequence of partitions (πn) approximates H from the left.
We call the limit∫ t

0

B(Hs−,dXs) =

∫
]0,t]

B(Hs−,dXs) := lim
n→∞

∑
]r,s]∈πn

B (Hr, δXt(]r, s])) ∈ G

the (strong) Itô–Föllmer integral of H with respect to X along (πn) if it exists. If this
convergence holds in the weak topology, we call the limit the weak Itô–Föllmer integral.

Similarly, the strong and the weak Itô–Föllmer integral for a B′ ∈ L(2)(F,E;G) are
defined as the limit∫

]0,t]

B′(dXs, Hs−) = lim
n→∞

∑
]r,s]∈πn

B′ (δXt(]r, s]), Hr) ∈ G

with the corresponding topology.

If B is the canonical bilinear map ⊗ : E × F → E⊗̂αF , we write∫
]0,t]

B(Hs−,dXs) =

∫
]0,t]

Hs− ⊗ dXs.

Remark 7.2. The Itô–Föllmer integral of Definition 7.1 inherits the bilinear property
from B ∈ L(2)(E,F ;G) in the following sense.

(i) Suppose that the following two Itô–Föllmer integrals exist:∫
]0,t]

B(Hs−,dXs),

∫
]0,t]

B(Ks−,dXs).

Then, for every α, β ∈ R, the Itô–Föllmer integral of αH + βK with respect to X
exists and satisfies∫

]0,t]

B(Hs− +Ks−,dXs) = α

∫
]0,t]

B(Hs−,dXs) + β

∫
]0,t]

B(Ks−,dXs).
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(ii) Suppose that the following two Itô–Föllmer integrals exist:∫
]0,t]

B(Hs−,dXs),

∫
]0,t]

B(Hs−,dYs).

Then, for every α, β ∈ R, the Itô–Föllmer integral of H with respect to αX + βY

exists and satisfies∫
]0,t]

B(Hs−,d(αX + βY )s) = α

∫
]0,t]

B(Hs−,dXs) + β

∫
]0,t]

B(Hs−,dYs).

First, we consider the case where the integrator is a path of finite variation. From
the dominated convergence theorem, we can easily deduce the following proposition.

Proposition 7.3. Let H ∈ D(R≥0, E), A ∈ FV (R≥0, F ), and B ∈ L(2)(E,F ;G). If a
sequence of partitions (πn) approximates H from the left, we have

(IF)

∫
]0,t]

B(Hs−,dAs) = (S)

∫
]0,t]

B(Hs−,dAs).

Here, the integral of the left-hand side is the Itô–Föllmer integral by Definition 7.1, and
that of the right-hand side is the usual Stieltjes integral.

Now we start to prove our main theorem.

Proof of Theorem 3.6. We show the weak convergence of the Itô–Föllmer integral.
First, fix t > 0 arbitrarily and choose compact convex sets K1 ⊂ F , K2 ⊂ E, and

K3 ⊂ G such that

A([0, t]) ⊂ K1, X([0, t]) ⊂ K2, B(δX, δX)(I ∩ [0, t]) ⊂ K3.

Step 1: Convergence of the summation in the formula (3.3). In this step, we confirm
that the summation of jump terms converges absolutely. This is proved by the following
estimate, which follows from Taylor’s formula (Proposition A.3):∑
0<s≤t

‖f(As, Xs)− f(As−, Xs−)−Dxf(As−, Xs−)∆Xs‖

≤
∑

0<s≤t

‖f(As−, Xs)−f(As−, Xs−)−Dxf(As−, Xs−)∆Xs‖+
∑

0<s≤t

‖f(As, Xs)−f(As−, Xs)‖

≤ sup
(a,x)∈K1×K2

‖D2
Bf(a, x)‖‖B‖

∑
0<s≤t

‖∆Xs‖2 + sup
(a,x)∈K1×K2

‖Daf(a, x)‖
∑

0<s≤t

‖∆As‖

<∞.

Note that the uniform boundedness principle combined with the strong continuity shows
that sup(a,x)

∥∥D2
Bf(a, x)

∥∥ and sup(a,x)‖Daf(a, x)‖ are finite.
Moreover, we see that∑

0<s≤t

‖D2
xf(As−, Xs−)∆X⊗2

s ‖ =
∑

0<s≤t

‖D2
Bf(As−, Xs−)B(∆X⊗2

s )‖

≤ sup
(a,x)∈K1×K2

∥∥D2
Bf(a, x)

∥∥ ‖B‖ ∑
0<s≤t

‖∆Xs‖2 <∞

and ∑
0<s≤t

|Daf(As−, Xs−)∆As| ≤ sup
(a,x)∈K1×K2

‖Daf(a, x)‖
∑

0<s≤t

‖∆As‖ <∞.
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This shows that equation (3.1) is equivalent to the following equation:

f(At, Xt)− f(A0, X0)−
∫

]0,t]

Dxf(As−, Xs−) dXs

=

∫
]0,t]

Daf(As−, Xs−) dAs +
1

2

∫
]0,t]

D2
Bf(As−, Xs−) dQB(X,X)s

+
∑

0<s≤t

{∆f(As, Xs)−Dxf(As−, Xs−)∆Xs}

−
∑

0<s≤t

Daf(As−, Xs−)∆As −
1

2

∑
0<s≤t

D2
Bf(As−, Xs−)B(∆Xs,∆Xs). (7.1)

We will therefore prove (7.1) instead of (3.1).
Step 2: The Taylor expansion. Let I = ]u, v] ∈ πn and consider the first-order Taylor

expansion with respect to the variable a on I ∩ [0, t] = ]u ∧ t, v ∧ t]. Then we have

f(Av∧t, Xv∧t)− f(Au∧t, Xv∧t) = Daf(A,X)δAt(I) + rt(I) (7.2)

where

rt(I) =

∫
[0,1]

{Daf (Au∧t + θδAt(I), Xv∧t)−Daf (Au∧t, Xu∧t)} δAt(I) dθ.

Here, recall that the notation ‘Daf(A,X)δAt’ was introduced in the second paragraph of
Section 3.

Next, we consider the second-order Taylor expansion

f(Au∧t, Xv∧t)− f(Au∧t, Xu∧t) = Dxf(A,X)δXt(I) +
1

2
D2
xf(A,X)(δXt)

⊗2(I) +Rt(I),

(7.3)

with Rt(I) given by

Rt(I) =
1

2

∫
[0,1]

(1− θ)
{
D2
xf(Au∧t, Xu∧t + θδXt(I))−D2

xf(Au∧t, Xu∧t)
}
δXt ⊗ δXt(I) dθ

=
1

2

∫
[0,1]

(1− θ)
{
D2
Bf(Au∧t, Xu∧t+θδXt(I))−D2

Bf(Au∧t, Xu∧t)
}
B(δXt, δXt)(I) dθ.

By the definition of D2
Bf , we can rewrite (7.3) as

f(Au∧t, Xv∧t)− f(Au∧t, Xu∧t) = Dxf(A,X)δXt(I) +
1

2
D2
Bf(A,X)B(δX⊗2

t )(I) +Rt(I),

(7.4)

Combining equations (7.3) and (7.4), we obtain

δf(A,X)t = Daf(A,X)δAt +Dxf(A,X)δXt +
1

2
DBf(A,X)B(δX⊗2

t ) + rt +Rt. (7.5)

Now take ε > 0 arbitrarily. For simplicity, write D = D(A,X), Dε = Dε(A,X), and
Dε = Dε(A,X). Using the notations e1

Dε
and e2

Dε
introduced in Section 5, we can derive

from (7.5) the equation

δf(A,X)t − δf(A,X)te
1
Dε = Dxf(A,X)δXt −Dxf(A,X)δXte

1
Dε

+Daf(A,X)δAt −Daf(A,X)δAte
1
Dε + rte

2
Dε

+
1

2
D2
Bf(A,X)B(δX⊗2

t )− 1

2
D2
Bf(A,X)B(δX⊗2

t )e1
Dε +Rte

2
Dε .

EJP 28 (2023), paper 89.
Page 28/41

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP986
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Itô–Föllmer calculus in Banach spaces I

Moreover, by summing up this equality along πn, we see that

f(At, Xt)− f(A0, X0)−
∑
I∈πn

Dxf(A,X)δXt(I)

=
∑
I∈πn

δf(A,X)t(I)e1
Dε(I)−

∑
I∈πn

Dxf(A,X)δXt(I)e1
Dε(I)

+
∑
I∈πn

Daf(A,X)δAt(I)−
∑
I∈πn

Daf(A,X)δAt(I)e1
Dε(I)

+
∑
I∈πn

1

2
D2
Bf(A,X)B(δX⊗2

t )(I)−
∑
I∈πn

1

2
D2
Bf(A,X)B(δX⊗2

t )(I)e1
Dε(I)

+
∑
I∈πn

rt(I)e2
Dε(I) +

∑
I∈πn

Rt(I)e2
Dε(I)

=: I
(n)
1 (t)− I(n)

2 (t) + I
(n)
3 (t)− I(n)

4 (t) + I
(n)
5 (t)− I(n)

6 (t) + I
(n)
7 (t) + I

(n)
8 (t). (7.6)

Step 3: Behaviour of I(n)
1 (t), . . . , I

(n)
8 (t) of (7.6). Since (πn) satisfies Condition (C) for

(A,X), we can easily verify that

lim
n→∞

I
(n)
4 (t) =

∑
s∈Dε∩[0,t]

Daf(As−, Xs−)∆As

lim
n→∞

I
(n)
2 (t) =

∑
s∈Dε∩[0,t]

Dxf(As−, Xs−)∆Xs

lim
n→∞

I
(n)
6 (t) =

1

2

∑
s∈Dε∩[0,t]

D2
xf(As−, Xs−)(∆Xs)

⊗2 =
1

2

∑
s∈Dε∩[0,t]

D2
Bf(As−, Xs−)B(∆X⊗2

s ).

If s ∈ D and s ≤ t, we can deduce from Proposition A.4 and the dominated convergence
theorem that

δf(A,X)t(πn(s)) =

∫ 1

0

{Df [(A,X)πn(s) + θδ(A,X)t(πn(s))]}{δ(A,X)t(πn(s))} dθ

−−−−→
n→∞

∫ 1

0

Df [(A,X)s− + θ∆(A,X)s]∆(A,X)s dθ = ∆f(A,X)s

Hence,

lim
n→∞

I
(n)
1 (t) =

∑
s∈Dε∩[0,t]

∆f(As, Xs).

By Lemma 3.10, we have

lim
n→∞

I
(n)
5 (t) =

1

2

∫
]0,t]

D2
Bf(As−, Xs−)dQB(X,X)s

in the weak topology.
The dominated convergence theorem (Proposition B.8) gives

lim
n→∞

I
(n)
3 (t) =

∫
]0,t]

Daf(As−, Xs−)dAs.

It remains to estimate the residual terms. If ]u, v] ∩Dε = ∅, then

ω(X, ]u, v] ∩ [0, t]) ≤ O+
t (X − J(Dε(X);X);πn),

ω(A, ]u, v] ∩ [0, t]) ≤ O+
t (A− J(Dε(A);A);πn).
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Now we write, for convenience,

α(ε, n) = O+
t (X − J(Dε(X);X);πn),

β(ε, n) = O+
t (A− J(Dε(A);A);πn).

By the assumption that (πn) satisfies Condition (C) for (A,X) — and hence so does each
of A and X — we see that

lim
ε↓↓0

lim
n→∞

α(ε, n) = 0, lim
ε↓↓0

lim
n→∞

β(ε, n) = 0.

By definition,

I
(n)
7 (t) ≤

∑
]u,v]∈πn

e2
Dε(]u, v])

×
∫

[0,1]

‖{Daf (Au∧t + θδAt(]u, v]), Xv∧t)−Daf (Au∧t, Xu∧t)} δAt(]u, v])‖ dθ

≤ V (A)t sup
z,w∈K1×K2

|z−w|≤α(ε,n)+β(ε,n)

ρK1−K1
(Daf(z)−Daf(w)).

Similarly, we have

I
(n)
8 (t) ≤ 1

2

∑
]u,v]∈πn

e2
Dε(]u, v])

∫
[0,1]

(1− θ)

·
∥∥{D2

Bf(Au∧t, Xu∧t + θδXt(]u, v]))−D2
Bf(Au∧t, Xu∧t)

}
B(δX⊗2

t )(]u, v])
∥∥dθ

≤ sup
z,w∈K1×K2

|z−w|≤α(ε,n)

ρK3
(D2

Bf(z)−D2
Bf(w))‖B‖

∑
I∈πn

‖δXt(I)‖2E ,

Consequently, for every z∗ ∈ G∗ with ‖z∗‖ = 1,

lim
n→∞

|〈z∗, (RHS of (7.1))− (RHS of (7.6))〉|

≤

∥∥∥∥∥∥
∑

s∈Dε∩[0,t]

{∆f(As, Xs)− 〈Dxf(As−, Xs−),∆Xs〉}

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

s∈Dε∩[0,t]

Daf(As−, Xs−)∆As

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

s∈Dε∩[0,t]

D2
xf(As−, Xs−)(∆Xs)

⊗2

∥∥∥∥∥∥
+ lim
n→∞

sup
z,w∈K1

|z−w|≤α(ε,n)

ρK3
(D2

Bf(z)−D2
Bf(w))V 2(X; Π)t,

+ lim
n→∞

sup
z,w∈K1×K2

|z−w|≤α(ε,n)+β(ε,n)

ρK1−K1(Daf(z)−Daf(w))V (A)t. (7.7)

Finally, by letting ε → 0, we see that the right-hand side of (7.6) converges weakly to
that of (7.1). This completes the proof for the weak case.

If QB(X,X) is the strong B-quadratic variation, then I
(n)
5 converges in the norm

topology by the strong version of Lemma 3.10. In this case, we obtain the norm
convergence of the Riemannian sums by replacing (7.7) with a similar norm estimate.

Combining Corollaries 3.7 and 5.9, we obtain the integration by parts formula. Note
that the existence of the Itô–Föllmer integral

∫ t
0
As− ⊗ dXs follows from Corollary 3.7

and Proposition 7.3.

Corollary 7.4. Let (πn), X, and A satisfy the same assumptions as Corollary 3.7. Then,

At ⊗Xt =

∫ t

0

dAs ⊗Xs− +

∫ t

0

As− ⊗ dXs + α[A,X]t.
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A Differential calculus in Banach spaces

In this section, we review some basic results about differential calculus in Banach
spaces.

Definition A.1. Let E and F be Banach spaces and U an open subset of E.

(i) A function f : U → F is Gâteaux differentiable at x ∈ U if there exits an L ∈ L(E,F )

such that

lim
t→0,t6=0

1

t
{f(x+ th)− f(x)} = Lh

for all h ∈ E. The function f is Gâteaux differentiable if it is Gâteaux differentiable
at all points in U .

(ii) A function f : U → F is Fréchet differentiable at x ∈ U if there exits an L ∈ L(E,F )

such that
‖f(x+ h)− f(x)− Lh‖ = o(‖h‖).

The function f is Fréchet differentiable if it is Fréchet differentiable at all points in
U .

The bounded operators L in (i) and (ii) are called Gâteaux and Fréchet derivatives,
respectively, and denoted by the same symbol Df(x). If f is Fréchet differentiable,
then it is Gâteaux differentiable and both derivatives coincide. Hence this notation is
consistent.

Higher-order Gâteaux and Fréchet derivatives are defined inductively by the for-
mula Dn+1f = DDnf . The n-th Gâteaux derivative Dnf(x) at x ∈ U is an element of
L(E⊗̂n, F ) ∼= L(n)(En;F ), where L(n)(En;F ) denotes the set of bounded n-linear maps.
Moreover, if f is n-times Fréchet differentiable, the multilinear map Dnf(x) : En → F is
symmetric.

Before introducing Taylor’s theorem, we define a mild continuity condition for a
function defined on a subset of a Banach space.

Definition A.2. Let E be Banach spaces and U an open convex subset of E. A function
f : U → T into a topological space is continuous along line segments if, for every x and y
in U , its restriction to the line segment {θx+ (1− θ)y | θ ∈ [0, 1]} is continuous.

One can easily see that a Gâteaux differentiable function f : U → F is continuous
along line segments.

The following proposition gives a version of Taylor’s formula that we use in this
article. It plays an essential role to prove the Itô formula in Section 7. Although that
theorem seems classical, we give a proof for the reader’s convenience.

Proposition A.3. Let E and F be Banach spaces and U an open convex subset of E.
Assume that f : U → F is n-times Gâteaux differentiable and Dnf is strongly continuous
along line segments. Then it admits Taylor’s formula

f(x+ u)− f(x) =
∑

1≤k≤n−1

1

k!
Dkf(x)u+

∫ 1

0

(1− θ)n−1

(n− 1)!
Dnf(x+ θu)u⊗n dθ

for all x ∈ U and u ∈ E with x+ u ∈ U .

Proof. The proof is by induction on n.
Suppose that f is Gâteaux differentiable and Df is strongly continuous along line

segments. Then the map θ 7→ f(x+ θu) has the continuous derivative

d

dθ
f(x+ θu) = Df(x+ θu)u.
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Hence, by the fundamental theorem of calculus, we get

f(x+ u)− f(x) =

∫ 1

0

Df(x+ θu)udθ.

Next, assume that the assertion holds for n. Let f : U → F be an n + 1-times
Gâteaux differentiable function whose derivative Dn+1f is strongly continuous along
line segments. By assumption, f satisfies

f(x+ u)− f(x) =
∑

1≤k≤n−1

1

k!
Dkf(x)u⊗k +

∫ 1

0

(1− θ)n−1

(n− 1)!
Dnf(x+ θu)u⊗ndθ. (A.1)

Computation by the Leibniz rule shows

d

dθ

(
(1−θ)n

n!
Dnf(x+θu)u⊗n

)
=−(1−θ)n−1

(n− 1)!
Dnf(x+θu)u⊗n+

(1− θ)n

n!
Dn+1f(x+θu)u⊗n+1.

Therefore,

− 1

n!
Dnf(x)u⊗n=−

∫ 1

0

(1− θ)n−1

(n− 1)!
Dnf(x+θu)u⊗ndθ +

∫ 1

0

(1− θ)n

n!
Dn+1f(x+ θu)u⊗n+1dθ.

(A.2)

Combining (A.1) and (A.2), we get the equation

f(x+ u)− f(x) =
∑

1≤k≤n

1

k!
Dkf(x)u⊗k +

∫ 1

0

(1− θ)n

n!
Dn+1f(x+ θu)u⊗n+1dθ.

This completes the proof.

The following proposition is also used in the proof of the main theorem.

Proposition A.4. Let E1, E2, and F be Banach spaces. Assume that f : E1 × E2 → F

satisfies the following conditions:

(i) The map x1 7→ f(x1, x2) is Gâteaux differentiable for all x2 ∈ E2 and Dx1f : E1 ×
E2 → L(E1, F ) is strongly continuous;

(ii) The map x2 7→ f(x1, x2) is Gâteaux differentiable for all x1 ∈ E1 and Dx2
f : E1 ×

E2 → L(E2, F ) is strongly continuous.

Then f : E1 × E2 → F has the Gâteaux derivative given by Df = (Dx1
f,Dx2

f) and
Df : E1 × E2 → L(E1 ⊕ E2, F ) is strongly continuous. Moreover, Df |K induces a contin-
uous map Df |K : K × (E1 × E2)→ F for every compact set K ⊂ E1 × E2.

Proof. Fix an (x1, x2) ∈ E1×E2 and take an arbitrary directional vector (h1, h2) ∈ E1×E2.
Applying Taylor’s formula to the first variable, we get

f(x1+th1, x2+th2)−f(x1, x2)=

∫ 1

0

Dx1f(x1+θth1, x2+th2)th1 dθ+f(x1, x2+th2)−f(x1, x2)

for all t 6= 0. Since Dx1
f is strongly continuous, we see that

lim
t→0

Dx1
f(x1+θth1, x2+th2)h1 =Dx1

f(x1, x2)h1, sup
θ,t∈]0,1]

‖Dx1
f(x1+θth1, x2+th2)‖<∞.

Note that the inequality above follows from the uniform boundedness principle. There-
fore, by the dominated convergence theorem,

1

t

∫ 1

0

Dx1f(x1 +θth1, x2 +th2)th1 dθ =

∫ 1

0

Dx1f(x1 +θth1, x2 +th2)h1 dθ −−−→
t→0

f(x1, x2)h1.
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This shows

lim
t→0,t6=0

1

t
{f(x1 + th1, x2 + th2)− f(x1, x2)} = Dx1f(x1, x2)h1 +Dx2f(x1, x2)h2,

which means that (Dx1
f,Dx2

f) is the Gâteaux derivative of f at (x1, x2). The strong
continuity of Df = (Dx1

f,Dx2
f) is obvious.

The last claim follows from Lemma A.5 below.

Lemma A.5. Let K be a compact topological space and let E and F be Banach spaces.
Assume that a map ϕ : K → L(E,F ) is strongly continuous. Then, the map ϕ̃ : K×E → F

induced by ϕ is continuous.

Proof. Fix (t, x) ∈ K × E and take an arbitrary net (tλ, xλ)λ∈Λ that converges to (t, x) in
the product topology. Then

‖ϕ(t)x− ϕ(tλ)xλ‖ ≤ ‖ϕ(t)x− ϕ(tλ)x‖+ sup
t∈K
‖ϕ(t)‖‖x− xλ‖.

Because ϕ is strongly continuous, the first term on the right-hand side converges to 0. The
strong continuity and the uniform boundedness principle imply that supt∈K‖ϕ(t)‖ <∞.
Hence the second term also converges to 0. As a consequence, we find that ϕ̃(tλ, xλ) :=

ϕ(tλ)xλ converges to ϕ̃(t, x) := ϕ(t)x.

B Vector integration

B.1 A brief review of vector integration in Banach spaces

In this subsection, we will review an integration theory for vector functions and vector
measures of finite variation. Let E, F , and G be three Banach spaces and B : F ×E → G

be a bounded bilinear map. We aim to introduce integrals of the form
∫
B(f, dµ), where

f is an F -valued ‘nice’ function and µ is an E-valued σ-additive measure defined on
a δ-ring of subsets of R≥0. See Dinculeanu [20, Chapter 1 § 2] for details about the
contents of this section. We also refer to Diestel and Uhl [18] and Dinculeanu [19], which
are classical references in the theory of vector measures and integration.

Let I be the semiring of subsets of R≥0 consisting of all bounded intervals of the
form ]a, b] and the singleton {0}. Moreover, let D be the δ-ring generated by I. Note that
both I and D generate the Borel σ-algebra. The variation of a σ-additive vector measure
µ : D → E on a subset A of R≥0 is defined by the formula

|µ|(A) :=sup

{∑
λ∈Λ

‖µ(Aλ)‖E

∣∣∣∣∣(Aλ)λ∈Λ: a finite disjoint family of elements of D,
⋃
λ∈Λ

Aλ⊂A

}
.

We say that µ has finite variation if |µ|(A) <∞ for all A ∈ D. The measure µ has bounded
variation whenever |µ|(R≥0) < ∞. Since µ is assumed to be σ-additive, the variation
measure |µ| : D → R≥0 is also σ-additive. Then there is a unique σ-additive measure,
denoted by the same symbol |µ|, on the σ-algebra B(R≥0) that extends |µ| : D → R≥0.

An F -valued D-simple function is a function f : R≥0 → F of the form

f =
∑
λ∈Λ

1Aλaλ,

where Λ is a finite set, (aλ)λ∈Λ ∈ EΛ, and (Aλ)λ∈Λ ∈ DΛ is a disjoint family. We can
immediately define the integral of f by∫

R≥0

B(f, dµ) =
∑
λ∈Λ

B(aλ, µ(Aλ)).
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Let SF (D) denote the set of all F -valued D-simple functions. Then SF (D) is dense in the
Lebesgue–Bochner space

L1(|µ|;F ) :=

{
f : R≥0→F

∣∣∣∣∣ f is strongly B(R≥0)-measurable,

∫
R≥0

‖f(s)‖F |µ|(ds) <∞

}
.

Since the integration map f 7→
∫
R≥0

B(f, dµ) is bounded and linear, it can be uniquely

extended to a bounded linear operator Tµ : L1(|µ|;F ) → G. If a strongly measurable
function f : R≥0 → F and an A ∈ B(R≥0) satisfy f1A ∈ L1(|µ|;F ), then we define the
integral of f on A as ∫

A

B(f(s), µ(ds)) =

∫
A

B(f, dµ) := Tµ(f1A).

In particular, every f ∈ L1
loc(|µ|;F ) can be integrated on every bounded interval. We also

use the notation ∫
A

B(f, dµ) =

∫ b

a

B(f, dµ)

if A is a bounded interval of the form A = ]a, b]. By a direct calculation, one can derive
the inequality ∥∥∥∥∫

A

B(f, dµ)

∥∥∥∥
G

≤ ‖B‖
∫
A

‖f(s)‖E |µ|(ds)

for all such A and f . This estimate guarantees that the dominated convergence theorem
remains valid in this situation.

Finally, we introduce a decomposition of a vector measure on R≥0 into atomic and
nonatomic parts. As before, let µ : D → E be a σ-additive measure of finite variation. Set

D = {t ∈ R≥0 | |µ|({t}) > 0}.

Because µ has finite variation, we see that D is countable. Besides, since each singleton
{t} belongs to D, we have the equality ‖µ({t})‖ = |µ|({t}) for all t ∈ R≥0. Now let

µd =
∑
s∈D

δsµ({s}),

where δs denotes the Dirac measure at s ∈ R≥0. Then µd is a σ-additive vector measure
of finite variation that satisfies

|µd|(A) =
∑
s∈D
‖µ({s})‖E δs(A) <∞

for each A ∈ D. If we define µc = µ − µd, then µc and µd give a mutually singular
decomposition of µ satisfying |µ| = |µc|+ |µd|. This decomposition of a measure gives a
decomposition of an integral as∫

R≥0

B(f, dµ) =

∫
R≥0

B(f, dµc) +

∫
R≥0

B(f, dµd)

for every f ∈ L1(|µ|;F ).

B.2 Extension of vector integration

In Section B.1, integrands are assumed to be strongly measurable with respect to
the norm topology of F ; i.e. integrands can necessarily be approximated pointwise
by simple functions in the norm topology. A function f : R≥0 → F that is càdlàg in a
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weaker topology may not satisfy this condition. We need, however, to integrate such
functions for our Itô–Föllmer formula (Theorem 3.6). For this purpose, we extend the
vector integration introduced in a previous section to a suitable setting.

As in Appendix B.1, let E and G be Banach spaces and let µ : D → E be a σ-additive
vector measure of finite variation.

Lemma B.1. The range µ(I ∩ [0, T ]) is relatively compact in E for all T > 0.

Proof. First, define a function F : R≥0 → E by the formula F (t) = µ([0, t]). σ-additivity of
µ implies that F is càdlàg in E. For a given T > 0, we can find a compact set K including
the image F ([0, T ]). If I = ]a, b] ⊂ [0, T ], then

µ(]a, b]) = F (b)− F (a) ∈ K −K.

On the other hand, if I = {0} ⊂ [0, T ],

µ({0}) = F (0) ∈ K.

Thus µ(I) ⊂ K ∪ (K −K). Because K and K −K are both compact, µ(I) is relatively
compact.

Lemma B.2. Let F = L(E,G) and let SF (I) be the set of all F -valued I-simple functions.
Suppose that T > 0 and K is a compact set such that µ(I ∩ [0, T ]) ⊂ K. Then∥∥∥∥∥

∫
[0,T ]

fdµ

∥∥∥∥∥
G

≤ sup
s∈[0,T ]

ρK(f(s))|µ|([0, T ]).

Here, recall that a seminorm ρK is defined by (2.1) in Section 2.1.

Proof. Let f =
∑
I∈Λ 1IaI be an I-simple function with Λ being disjoint. Then, by the

definition of the integral and the variation of µ, we see that∥∥∥∥∥
∫

[0,T ]

fdµ

∥∥∥∥∥
G

≤
∑
I∈Λ

ρK(aI)‖µ(I ∩ [0, T ])‖E ≤ sup
s∈[0,T ]

ρK(f(s))|µ|([0, T ]).

This is the desired inequality.

In what follows, let D−(R≥0,Lc(E,G)) stands for the locally convex Hausdorff topo-
logical vector space consisting of all càglàd functions endowed with the topology of
uniform convergence on compacta.

Lemma B.3. The space SF (I) is dense in D−(R≥0,Lc(E,G)).

Proof. First, let K the family of all compact subsets of E and define a family of seminorms
(ρT,K ;T > 0,K ∈ K) by the formula

ρT,K(f) = sup
s∈[0,T ]

ρK(f(s)).

Then the topology of D−(R≥0,Lc(E,G)) is induced by (ρT,K).
Set Λ = R>0 ×K ×R>0 and define an order on Λ by letting (T1,K1, ε1) ≤ (T2,K2, ε2)

whenever T1 ≤ T2, K1 ⊂ K2, and ε1 ≥ ε2. This order makes Λ a directed set because
(T1 ∨ T2,K1 ∪K2, ε1 ∧ ε2) ∈ Λ. For each λ = (T,K, ε), we can find a I-simple function sλ
satisfying ρT,K(sλ − f) < ε as in the proof of Lemma 6.4. The net (sλ)λ∈Λ converges to
f in the topology of D−(R≥0,Lc(E,G)). Indeed, take ε0 > 0 and (T0,K0) arbitrarily. If
λ = (T,K, ε) ≥ (T0,K0, ε0), then

ρT0,K0
(sλ − f) ≤ ρT,K(sλ − f) < ε ≤ ε0.

Hence (sλ)λ∈Λ converges to f in ρT0,K0
. Since the choice of (T0,K0) is arbitrary, we can

conclude that SF (I) is dense in D−(R≥0,Lc(E,G)).
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Theorem B.4. Let T > 0. The integration map

SF (I) 3 f 7−→
∫

[0,T ]

fdµ ∈ G

can be uniquely extended to a continuous linear map on D−(R≥0,Lc(E,G)).

Proof. Define the integral map IT : SF (I) → G by IT (f) =
∫

[0,T ]
fdµ. Because SF (I)

is dense in D−(R≥0,Lc(E,G)) by Lemma B.3, it suffices to show that IT is linear and
continuous. Refer to Schaefer and Wolff [66, Chapter III Section 1] for the extension of a
continuous linear map between topological vector spaces.

The linearity of IT is obvious. The continuity follows from Lemma B.2 and a standard
continuity criterion for linear maps in topological vector spaces. See, e.g. Schaefer and
Wolff [66, Chapter III Section 1 (1.1)].

We will show a variant of the dominated convergence theorem for our vector integrals.

Lemma B.5. For each f ∈ D−(R≥0,Lc(E,G)) and compact subset K of E, the function
t 7→ ρK(f(t)) is Borel measurable.

Proof. If f ∈ D−(R≥0,Lc(E,G)), then the map t 7→ ρK(f(t)) is càglàd. Hence it is Borel
measurable.

Lemma B.6. Let f =
∑
I∈Λ 1IaI be an Lc(E,G)-valued I-simple function such that Λ is

disjoint. Then,
ρK(f(t)) =

∑
I∈Λ

ρK(aI)1I(t), t ≥ 0.

Proposition B.7. Let T > 0 and let K be a compact set satisfying µ(I ∩ [0, T ]) ⊂ K.
Then ∥∥∥∥∥

∫
[0,T ]

fdµ

∥∥∥∥∥
G

≤
∫

[0,T ]

ρK(f(s))|µ|(ds) (B.1)

for all f ∈ D−(R≥0,Lc(E,G)).

Proof. If a simple function f has a disjoint representation f =
∑
I∈Λ 1IaI , then∥∥∥∥∥

∫
[0,T ]

fdµ

∥∥∥∥∥
G

≤
∑
I∈Λ

ρK(aI)‖µ(I ∩ [0, T ])‖E

≤
∑
I∈Λ

ρK(aI)|µ|(I ∩ [0, T ])

=

∫
[0,T ]

ρK(f(s))|µ|(ds).

Note that the last equality follows from Lemma B.6. Therefore (B.1) holds on SF (I).
The general case is proved by approximation.

Proposition B.8 (Dominated convergence theorem). Let T > 0 and let K be a compact
subset of E µ(I ∩ [0, T ]) ⊂ K. Suppose that a sequence (fn) and an element f in
D−(R≥0,Lc(E,G)) satisfy the following conditions:

(i) The sequence (fn) converges to f pointwise on [0, T ] with respect to ρK ;

(ii) There is a g ∈ L1([0, T ], |µ|) such that ρK(fn(t)) ≤ g(t) almost everywhere on [0, T ].

Then, ∥∥∥∥∥
∫

[0,T ]

fndµ−
∫

[0,T ]

fdµ

∥∥∥∥∥
G

−−−−→
n→∞

0.
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Proof. Proposition B.7 implies the inequality∥∥∥∥∥
∫

[0,T ]

fndµ−
∫

[0,T ]

fdµ

∥∥∥∥∥
G

≤
∫

[0,T ]

ρK(fn(s)− f(s))|µ|(ds).

By applying the dominated convergence theorem to the integral on the right-hand side,
we obtain the desired convergence.

Proposition B.9. If f ∈ D−(R≥0,Lc(E,G)), then〈
z∗,

∫
]0,t]

f(s)µ(ds)

〉
=

∫
]0,t]

〈z∗f(s), µ(ds)〉

for all z∗ ∈ G∗ and t ∈ R≥0.

Proof. First, assume that f has the form f =
∑
I∈Λ 1IaI with Λ ⊂ I disjoint. By a direct

calculation, we see that〈
z∗,

∫
]0,t]

f(s)µ(ds)

〉
=
∑
I∈Λ

z∗aIµ(I ∩ ]0, t]) =

∫
]0,t]

〈z∗f(s), µ(ds)〉 .

Hence the formula holds for simple functions. It can be extended to general integrands
by the density argument.
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