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Abstract

We investigate the parabolic Cauchy problem associated with quantum graphs includ-
ing Lipschitz or polynomial type nonlinearities and additive Gaussian noise perturbed
vertex conditions. The vertex conditions are the standard continuity and Kirchhoff
assumptions in each vertex. In the case when only Kirchhoff conditions are perturbed,
we can prove existence and uniqueness of a mild solution with continuous paths in
the standard state space H of square integrable functions on the edges. We also show
that the solution is Markov and Feller. Furthermore, assuming that the vertex values
of the normalized eigenfunctions of the self-adjoint operator governing the problem
are uniformly bounded, we show that the mild solution has continuous paths in the
fractional domain space associated with the Hamiltonian operator, Hα for α < 1

4
. This

is the case when the Hamiltonian operator is the standard Laplacian perturbed by a
potential. We also show that if noise is present in both type of vertex conditions, then
the problem admits a mild solution with continuous paths in the fractional domain
space Hα with α < − 1

4
only. These regularity results are the quantum graph ana-

logues obtained by da Prato and Zabczyk [9] in case of a single interval and classical
boundary Dirichlet or Neumann noise.
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On the parabolic Cauchy problem for quantum graphs

1 Introduction

We consider a so-called quantum graph; that is, is a metric graph G, equipped with a
diffusion operator on each edge and certain vertex conditions. Our terminology follows
[3, Chap. 1] (see also [21]), we list here only the most important concepts. The graph G
consists of a finite set of vertices V = {v} and a finite set E = {e} of edges connecting
the vertices. We denote by m = |E| the number of edges and by n = |V| the number
of vertices. In general, a metric graph is assumed to have directed edges; that is
edges having an origin and a terminal vertex. In our case, dealing with self-adjoint
operators, we can just consider undirected edges. Each edge is assigned a positive
length `e ∈ (0,+∞), and we denote by x ∈ [0, `e] a coordinate of G. We assume that G is
simple; that is, there are no multiple edges connecting two vertices, and there are no
loops at any of the vertices in G.

The metric graph structure enables one to speak about functions u on G, defined
along the edges such that for any coordinate x, the function takes its value u(x). If we
emphasize that x is taken from the edge e, we write ue(x). Thus, a function u on G can
be regarded as a vector of functions that are defined on the edges, therefore we will also
write

u = (ue)e∈E ,

and consider it as an element of a product function space.
To write down the vertex conditions in the form of equations, for a given function u

on G and for each v ∈ V, we introduce the following notation. For any v ∈ V, we denote
by Ev the set of edges incident to the vertex v, and by dv = |Ev| the degree of v. Let ue(v)

denote the value of u in v along the edge e in the case e ∈ Ev. Let Ev = {e1, . . . , edv}, and
define

U(v) = (ue(v))e∈Ev
=

ue1(v)
...

uedv (v)

 ∈ Rdv , (1.1)

the vector of the function values in the vertex v.
Let Iv be the bi-diagonal matrix

Iv =

1 −1
. . .

. . .

1 −1

 ∈ R(dv−1)×dv .

It is easy to see that if we set

IvU(v) = 0Rdv−1 , (1.2)

this means that all the function values coincide in v. If it is satisfied for each vertex
v ∈ V for a function u on G which is continuous on each edge, including the one-sided
continuity at the endpoints, then we call u is continuous on G.

Similarly, for a function u on G which is differentiable on each edge, that is, u′e exists
for each e ∈ E including the one-sided derivatives at the endpoints, we set

U ′(v) = (u′e(v))e∈Ev
=

u′e1(v)
...

u′edv (v)

 ∈ Rdv , (1.3)

the vector of the function derivatives in the vertex v. We will assume throughout the
paper that derivatives are taken in the directions away from the vertex v (i.e. into the
edge), see [3, Sec. 1.4.].
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On the parabolic Cauchy problem for quantum graphs

First we aim to analyse the existence, uniqueness and regularity of solutions of the
problem written formally as

u̇e(t, x) = (ceu
′
e)
′(t, x)− pe(x)ue(t, x) + Fe(ue(t, x)), x ∈ (0, `e), t ∈ (0, T ], e ∈ E, (a)

0 = IvU(t, v), t ∈ (0, T ], v ∈ V, (b)

β̇v(t) = C(v)>U ′(t, v), t ∈ (0, T ], v ∈ V, (c)

ue(0, x) = u0,e(x), x ∈ [0, `e], e ∈ E, (d)
(1.4)

where Fe : R→ R is (globally) Lipschitz and T > 0 is arbitrary but fixed. However, at the
end of the paper we comment on the non-Lipschitz case as well.

Here u̇e and u′e denote the time and space derivative, respectively, of ue. For each
v ∈ V, U(t, v) and U ′(t, v) denote the vector of the function values in v introduced in (1.1)
and (1.3), respectively, for the function on G defined as

u(t, ·) = (ue(t, ·))e∈E .

Analogously to (1.1), for each v ∈ V and Ev = {e1, . . . , edv} the 1-row matrix in (1.6c) is
defined by

C(v)> =
(
ce1(v), . . . , cedv (v)

)
∈ R1×dv .

Equations (1.6b) assume continuity of the function u(t, ·) on the metric graph G, cf. (1.2).
It is clear by definition, that (1.6b) consists of∑

v∈V

(dv − 1) = 2m− n (1.5)

equations. At the same time, (1.6c) consists of n equations. Hence, we have altogether
2m (boundary or vertex) conditions in the vertices.

Here (Ω,F ,P) is a complete probability space endowed with a right-continuous
filtration F = (Ft)t∈[0,T ], whilst the process

(β(t))t∈[0,T ] =
(

(βv(t))t∈[0,T ]

)
v∈V

,

is an Rn-valued Brownian motion (Wiener process) with covariance matrix

Q̃ ∈ Rn×n

with respect to the filtration F; that is, (β(t))t∈[0,T ] is (Ft)t∈[0,T ]-adapted and for all t > s,
β(t)− β(s) is independent of Fs.

The functions ce are (variable) diffusion coefficients or conductances, and we assume
that

ce ∈ C[0, `e], 0 < c0 ≤ ce(x), for all x ∈ [0, `e], for all e ∈ E.

The functions pe are non-negative, bounded functions, hence

0 ≤ pe ∈ L∞(0, `e), e ∈ E.

In equation (1.6d) we pose the initial conditions on the edges.
In Section 4 we omit the nonlinear drift term in (1.4a) and perturbe (1.4b) using a

white-noise-term Φ̇v for all v ∈ V as, in this case, it turns out that the solution process even
to the linear equation is too irregular in space to include a Nemytskii-type nonlinearity.
Hence, we investigate the problem

u̇e(t, x) = (ceu
′
e)
′(t, x)− pe(x)ue(t, x), x ∈ (0, `e), t ∈ (0, T ], e ∈ E, (a)

Φ̇v(t) = IvU(t, v), t ∈ (0, T ], v ∈ V, (b)

β̇v(t) = C(v)>U ′(t, v), t ∈ (0, T ], v ∈ V, (c)

ue(0, x) = u0,e(x), x ∈ [0, `e], e ∈ E. (d)

(1.6)
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On the parabolic Cauchy problem for quantum graphs

Here the process

Θ :=

(
(Φv)v∈V
(βv)v∈V

)
is an R2m-valued Brownian motion (Wiener process) with covariance matrix

Q ∈ R2m×2m (1.7)

with respect to the filtration F. The main motivation to consider (1.4) and (1.6) is to
generalize the classical concept of boundary noise, see, for example, [6, 9] for Gaussian
noise and [23, Sec. 15.1] for Lévy noise, to quantum graphs, see also [5].

The paper is organized as follows. In Section 2 we first investigate the linear
deterministic version of (1.4) (that is, of (1.6)). We rewrite the system in the form of
an abstract Cauchy problem governed by the operator A and prove well-posedness by
showing that A generates a strongly continuous, analytic contraction semigroup on the
Hilbert space H of L2-functions on the edges, see Proposition 2.3. The statement of
Proposition 2.2 is the existence and boundedness of the so-called Dirichlet-operator.
Using this and results from [9], we can treat two versions of the stochastic problem.

In Section 3 we consider the problem (1.4). In Theorem 3.5 we prove the existence
and uniqueness of the mild solution for this problem with continuous paths in the Hilbert
space H. We also verify that this solution is Markov and Feller. Assuming that the vertex
values of the eigenfunctions of A are uniformly bounded, we can show in Theorem 3.8
that the mild solution has continuous paths in the fractional domain space of order
α < 1

4 . This is the case, for example, if all diffusion coefficients and all edge lengths are
constant and equal 1, see Example 3.10. In Remark 3.11 we treat the case of odd-degree
polynomial type nonlinearities.

In Section 4 we briefly investigate the problem (1.6) where all the boundary conditions
are perturbed by some noise, but due to the low regularity shown, only in the linear
case. In Theorem 4.1 we prove that the stochastic convolution process has values in
the fractional domain space of A of order α < − 1

4 only. Therefore, Nemytskii type
nonlinearities, as in the previous section, cannot be considered as point evaluation is not
well-defined anymore.

The regularity results obtained in this paper are the analogues of the ones obtained by
Da Prato and Zabczyk in [9] in case of a single interval and classical boundary Dirichlet
or Neumann noise.

2 Heat equation on a network

2.1 The abstract Cauchy problem

We start with the deterministic problem
u̇e(t, x) = (ceu

′
e)
′(t, x)− pe(x)ue(t, x), x ∈ (0, `e), t > 0, e ∈ E, (a)

0 = IvU(t, v), t > 0, v ∈ V, (b)

0 = C(v)>U ′(t, v), t > 0, v ∈ V, (c)

ue(0, x) = u0,e(x), x ∈ [0, `e], e ∈ E. (d)

, (2.1)

where 0 denotes the constant 0 vector of dimension dv − 1 on the left-hand-side of (2.1b).

We would like to rewrite our system in the form of an abstract Cauchy problem. First
we consider the Hilbert space

H :=
∏
e∈E

L2 (0, `e)
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On the parabolic Cauchy problem for quantum graphs

as the state space of the edges, endowed with the natural inner product

〈f, g〉H :=
∑
e∈E

∫ `e

0

fe(x)ge(x)dx, f = (fe)e∈E , g = (ge)e∈E ∈ H.

On H we define the operator

Amax := diag

(
d

dx

(
ce
d

dx

)
− pe

)
e∈E

(2.2)

with maximal domain
D(Amax) = H2 :=

∏
e∈E

H2(0, `e). (2.3)

We also introduce the boundary space

Y := `2(R2m) ∼= R2m. (2.4)

Notice that for fixed u ∈ D(Amax), the boundary (or vertex) conditions can be written
as

0Rdv−1 = IvU(v), 0 = C(v)>U ′(v), v ∈ V, (2.5)

cf. (2.1b) and (2.1c).

Remark 2.1. Define Av as the square matrix that arises from Iv by inserting an additional
row containing only 0’s; that is,

Av =


1 −1

. . .
. . .

1 −1

0 . . . 0 0

 ∈ Rdv×dv .
Furthermore, let Bv be the square matrix defined by

Bv =


0 . . . 0
...

...
0 . . . 0

ce1(v) . . . cedv (v),

 ∈ Rdv×dv .
It is straghtforward that for a fixed v ∈ V, equations (2.5) have the form

AvU(v) +BvU
′(v) = 0Rdv ,

where the dv × (2dv) matrix (Av, Bv) has maximal rank. Thus, our vertex conditions have
the form as in [3, Sec. 1.4.1].

We now define the feedback operator B : D(Amax)→ Y by

D(B) = D(Amax);

Bu =

(
(IvU(v))v∈V(

C(v)>U ′(v)
)
v∈V

)
,

(2.6)

where the first “block” of Bu has
∑

v∈V(dv − 1) = 2m − n coordinates (see also (1.5)),
while the second “block” has n coordinates. Hence, B maps indeed into R2m.

With these notations, we can finally rewrite (2.1) in form of an abstract Cauchy
problem. Define

A := Amax (2.7)

D(A) := {u ∈ D(Amax) : Bu = 0Y}. (2.8)
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On the parabolic Cauchy problem for quantum graphs

Using this, (2.1) becomes {
u̇(t) = Au(t), t > 0,

u(0) = u0,

with u0 = (u0,1, . . . , u0,m)>.

2.2 Well-posedness of the abstract Cauchy problem

Proposition 2.2. The operators Amax and B satisfy the conditions in [23, Section 15.1]
and [9, Section 1], that is

1. the operator A defined in (2.7) generates a C0-semigroup on H;

2. for λ ∈ ρ(A) there exists a bounded operator DB,λ : Y → H such that

DB,λ =
(
B |Ker(λ−Amax)

)−1
. (2.9)

Proof. 1. Follows directly by [11, Sec. 3.2 and Rem. 2.9] or [22, Rem. 3.6].

2. We will show that the assumptions (a)–(d) of [13, (1.13)] are satisfied for Amax

and B. Then, by [13, Lemma 1.2] the existence of the bounded operator of DB,λ in (2.9)
follows for every λ ∈ ρ(A).

The operator (Amax, D(Amax)) is densely defined and closed on H, hence assumption
(a) is satisfied. The boundary operator as a mapping

B : (D(Amax), ‖ · ‖H2)→ Y

is bounded by Sobolev embedding, which is assumption (b). The statement of (d) is
exactly 1. above.

It remains only to prove (c); that is, ImB = R2m, which is the assertion of Proposi-
tion A.1.

Proposition 2.3. The operator (−A,D(A)), where A is defined in (2.7), is the operator
associated with the form

a(u, v) =
∑
e∈E

∫ `e

0

ce(x)u′e(x)v′e(x) dx+
∑
e∈E

∫ `e

0

pe(x)ue(x)ve(x) dx,

D(a) =
{
u ∈ H1 : IvU(v) = 0, v ∈ V

}
,

(2.10)

where

H1 :=
∏
e∈E

H1(0, `e),

in the following sense:

D(A) = {u ∈ D(a) : ∃h ∈ H s.t. a(u, v) = 〈h, v〉H for all v ∈ D(a)} ,
−Au = h.

The form (a, D(a)) is symmetric, densely defined, continuous, closed and accretive.
The operator (A,D(A)) is densely defined, dissipative, sectorial and self-adjoint with
(0,+∞) ⊂ ρ(A). The strongly continuous semigroup (S(t))t≥0 generated by (A,D(A)) is
analytic, positive and contractive.

Proof. All the statements follow by [22, Sec. 3] (see also [17, Prop. 2.3–2.6]).
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On the parabolic Cauchy problem for quantum graphs

3 Stochastic perturbation of the Kirchhoff–Neumann vertex con-
ditions

In this section we consider the problem
u̇e(t, x) = (ceu

′
e)
′(t, x)− pe(x)ue(t, x) + Fe(ue(t, x)), x ∈ (0, `e), t ∈ (0, T ], e ∈ E,

0 = IvU(t, v), t ∈ (0, T ], v ∈ V,

β̇v(t) = C(v)>U ′(t, v), t ∈ (0, T ], v ∈ V,

ue(0, x) = u0,e(x), x ∈ [0, `e], e ∈ E,
(3.1)

where Fe : R→ R is (globally) Lipschitz, see (1.4).
To treat this problem, on H we define the maximal operator (AK,max, D(AK,max)) in

a slightly different way than it has been done in (2.2) and (2.3). Namely, we put the
continuity conditions in its domain (see also [17]), that is, we set

AK,max := diag

(
d

dx

(
ce
d

dx

)
− pe

)
e∈E

,

D(AK,max) :=
{
u ∈ H2 : IvU(v) = 0, v ∈ V

}
.

Accordingly, we have to modify the boundary space as

YK := `2(Rn) ∼= Rn,

where n = |V| the number of vertices in G, cf. (2.4). The feedback operator becomes
BK : D(AK,max)→ YK ,

D(BK) = D(AK,max);

BKu :=
(
C(v)>U ′(v)

)
v∈V ,

see (2.6).
Defining

A := AK,max (3.2)

D(A) := {u ∈ D(AK,max) : BKu = 0YK} (3.3)

we obtain the same operator as in (2.7).
Mimicking the proof of Proposition 2.2 one obtains the following result.

Proposition 3.1. The operators AK,max and BK satisfy the conditions in [23, Section
15.1] and [9, Section 1], that is

1. the operator A defined in (3.2) – that is, in (2.7) – generates a C0-semigroup on H;

2. for λ > 0 there exists a bounded operator DBK ,λ : YK → H such that

DBK ,λ =
(
BK |Ker(λ−AK,max)

)−1
. (3.4)

In order to define the so-called mild solution to (3.1) we first study the stochastic
convolution process defined by

ZK(t) :=

∫ t

0

(λ−A)S(t− s)DK dβ(s), t ∈ [0, T ], (3.5)

where λ > 0 is fixed, DK := DBK ,λ and

β = (βv)v∈V ,
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On the parabolic Cauchy problem for quantum graphs

is an Rn-valued Brownian motion (Wiener process) with covariance matrix

Q̃ ∈ Rn×n.

To this aim we first introduce the fractional domain spaces of the generator. Since A
generates a contractive analytic semigroup, we can define its fractional powers for λ > 0

and α ∈ (0, 1). In particular, the fractional domain spaces

Hα := D((λ−A)α), ‖u‖α := ‖(λ−A)αu‖, u ∈ D((λ−A)α) (3.6)

are Banach spaces. We fix H0 := H.
For α ∈ (−1, 0) we define the extrapolation spaces Hα as the completion of H under

the norms ‖u‖α := ‖(λ−A)αu‖, u ∈ H.
It is well-known (see e.g. [12, §II.4–5.]) that up to equivalent norms, these spaces are

independent of the choice of λ > 0.

Remark 3.2. Since the semigroup (S(t))t≥0 is contractive, hence bounded, then by [14,
Prop. 3.1.7] we can choose λ = 0 in (3.6). That is,

Hα ∼= D((−A)α), α ∈ [0, 1),

when D((−A)α) is equipped with the graph norm.

Theorem 3.3. The stochastic convolution ZK(·) given by (3.5) is well-defined,

ZK ∈ C
(
[0, T ], L2(Ω,H)

)
and has an H-valued continuous version.

Proof. First we prove that the stochastic process ZK(·) in (3.5) is well-defined in H, that
is, ∫ T

0

∥∥∥(λ−A)S(t)DKQ̃
1
2

∥∥∥2
HS(YK ,H)

dt < +∞, (3.7)

where HS denotes the Hilbert–Schmidt-norm between the appropriate spaces. As we
have ∥∥∥(λ−A)S(t)DKQ̃

1
2

∥∥∥2
HS(YK ,H)

≤ ‖(λ−A)S(t)DK‖2HS(YK ,H) · Tr(Q̃),

it is enough to verify that∫ T

0

‖(λ−A)S(t)DK‖2HS(YK ,H) dt < +∞. (3.8)

Using a standard energy argument (or, alternatively, Parseval’s formula), it follows that∫ T

0

‖(λ−A)S(t)DK‖2HS(YK ,H) dt ≤ cT ·
∥∥∥(λ−A)

1
2DK

∥∥∥2
HS(YK ,H)

. (3.9)

Since
DK : YK → D(AK,max)

and
D(AK,max) =

{
u ∈ H2 : IvU(v) = 0, v ∈ V

}
↪→ D(a),

see (2.10), DK can be regarded as a bounded operator into D(a).
On the other hand, we obtain that the form

aλ(u, v) := a(u, v) + λ · 〈u, v〉H, u, v ∈ D(a) (3.10)
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is coercive, symmetric and continuous, see Proposition 2.3 and [14, Rem. 7.3.3]. It is
straightforward that the operator associated with aλ is λ − A. For the form-domain
D(aλ) = D(a), see (2.10), equipped with the usual H1-norm, we have that

D((λ−A)
1
2 ) ∼= D(a) (3.11)

holds with equivalence of norms, see e.g. [1, Prop. 5.5.1].
Hence DK is a bounded linear operator into D((λ−A)

1
2 ). Since the range of DK is

finite dimensional, ∥∥∥(λ−A)
1
2DK

∥∥∥
HS(YK ,H)

< +∞

holds. Thus, using (3.9), the assertion in (3.8), hence (3.7) holds, the stochastic convolu-
tion ZK(·) is well-defined in H.

Finally, since the semigroup (S(t))t≥0 is contractive, [15, Rem. 1] implies the continu-
ity of the trajectories.

Next, we define the mild solution of (3.1) as in [23, Sec. 15.1] (and also [9, Sec. 1]).
Let

u(t)(·) = u(t, ·) = (ue(t, ·))e∈E , F = (Fe)e∈E , F (u(s)) = (Fe(ue(s)))e∈E

.

Definition 3.4. If XK(·) ∈ C
(
[0, T ], L2(Ω,H)

)
, {XK(t)}t∈[0,T ] is (Ft)t∈[0,T ]-adapted and

for all t ∈ [0, T ],

XK(t) = XK(t, u0) = S(t)u0 +

∫ t

0

S(t− s)F (XK(s)) ds+ ZK(t), (3.12)

P-almost surely, where ZK is defined by (3.5), then XK is called a mild solution of the
problem (3.1).

Theorem 3.5. For all u0 ∈ H, equation (3.1) has a unique mild solution. The mild
solution has an H-valued continuous version and it is Markov and Feller.

Proof. Existence and uniqueness of a mild solution of (3.1) follow by a simple stan-
dard fixed point argument in the closed subspace of (Ft)t∈[0,T ]-adapted processes
of the Banach space C

(
[0, T ], L2(Ω,H)

)
using Theorem 3.3 which asserts that ZK ∈

C
(
[0, T ], L2(Ω,H)

)
(ZK is clearly (Ft)t∈[0,T ]-adapted). Since, also by Theorem 3.3, ZK

has an H-valued continuous version, it can be easily seen in view of by (3.12), that so
does XK .

To prove that XK is Markov, we may use the same reasoning as in the proof of [10,
Thm. 9.21] with E = H noting that ZK has a continuous version by Theorem 3.3.

Finally, let u0, v0 ∈ H arbitrary given initial values. Then, by (3.12), the contractivity
of (S(t))t≥0 and the global Lipschitz continuity of F , a simple Gronwall argument shows
that

sup
t∈[0,T ]

‖XK(t, u0)−XK(t, v0)‖2H ≤ C(T ) · ‖u0 − v0‖2H, almost surely,

and thus XK is Feller (c.f. [23, Rem. 9.33]).

Remark 3.6. Observe that D(A) ⊂ H1, and by the Rellich-Kondrachov theorem,H1 ↪→ H
is a continuous, compact embedding. If λ ∈ ρ(A) is arbitrary, for the resolvent operator
ran(R(λ,A)) ⊂ D(A) holds, and we obtain that R(λ,A) : H → H is bounded and compact.
That is, A has compact resolvent and thus A has only point spectrum. Since A is self-
adjoint and dissipative, its eigenvalues (λk)k∈N form a sequence of negative real numbers
and

λk → −∞, k →∞.
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We may then choose a set (fk)k∈N ⊂ D(A) of eigenfunctions such that

Afk = λkfk, k ∈ N, (3.13)

and the functions (fk)k∈N form a complete orthonormal system in H.

Remark 3.7. In the view of [9, (9)–(11)] we can also consider adding a space-time white
noise term to the first equations of (3.1). To obtain the statements of Theorem 3.5 for
this new equation, by [9, (17)] it is enough to show that∫ T

0

‖S(t)‖2HS dt <∞.

Let (fk)k∈N be the complete orthonormal system consisting of eigenfunctions of A, see
Remark 3.6. Then we have∫ T

0

‖S(t)‖2HS dt =

∫ T

0

∞∑
k=1

‖S(t)fk‖2 dt =

∫ T

0

∞∑
k=1

e−2λkt dt

=

∫ T

0

1 dt+

∫ T

0

∞∑
k=2

e−2λkt dt = T +

∞∑
k=2

1

2λk

(
1− e−2λkT

)
≤ T +

∞∑
k=2

1

2λk
<∞

by Proposition B.1.

It turns out that if we assume uniform boundedness for the vertex values of the
eigenfunctions (fk), the mild solution has a continuous version in Hα for α < 1

4 .
We introduce now the boundary operator L : D(L)→ YK defined by

D(L) =

{
u ∈

∏
e∈E

C[0, `e] : IvU(v) = 0, v ∈ V

}
,

Lu := (u(v))v∈V ∈ YK ,

(3.14)

where u(v) denotes the common vertex value of the function u ∈ D(L) on the edges
incident to v. That is, L assigns to each function u that is continuous on G the vector of
the vertex values of u. Observe that D(A) ⊂ D(L) holds.

Theorem 3.8. Suppose that there exists c > 0 such that

‖Lfk‖2YK ≤ c, k ∈ N, (3.15)

where (fk)k∈N is the complete orthonormal system consisting of eigenfunctions of A (see
Remark 3.6) and L is the operator (3.14).

Then, for α < 1
4 the stochastic convolution process ZK(·) defined in (3.5) has a

continuous version in Hα.

Proof. By a straightforward modification of [9, Thm. 2.3] to include the covariance
matrix Q̃ (see also, [9, Thm. 5.9]), we have to show that if α < 1

4 , then for a fixed λ > 0

and DK = DBK ,λ, there exists γ > 0 such that∫ T

0

t−γ
∥∥∥(λ−A)S(t)DKQ̃

1
2

∥∥∥2
HS(YK ,Hα)

dt < +∞,

As noted before,∥∥∥(λ−A)S(t)DKQ̃
1
2

∥∥∥2
HS(YK ,Hα)

≤ ‖(λ−A)S(t)DK‖2HS(YK ,Hα) · Tr(Q̃)
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and thus it is enough to prove that∫ T

0

t−γ ‖(λ−A)S(t)DK‖2HS(YK ,Hα) dt < +∞. (3.16)

Using Remark 3.2 and proceeding as in [9, Sec. 3], we obtain that (3.16) holds if

∞∑
k=1

(λ− λk)2α+γ+1 ‖D∗Kfk‖
2
YK <∞. (3.17)

We will show that under the assumptions,

‖D∗Kfk‖
2
YK ≤

c

(λ− λk)2
, k ∈ N, (3.18)

where c ∈ R is the constant from (3.15). By Proposition B.1, there exist constants
l1, l2 > 0 such that

l1 · k2 ≤ λ− λk ≤ l2 · k2, k ∈ N. (3.19)

Hence, if (3.18) holds, by (3.19) the terms of the series (3.17) can be estimated as

(λ− λk)2α+γ+1 ‖D∗Kfk‖
2
YK ≤ C ·

k4α+2γ+2

k4

for an appropriate constant C > 0. Thus, the series (3.17) converges if and only if

4α+ 2γ + 2− 4 < −1⇐⇒ 4α+ 2γ < 1.

This means that there exists appropriate γ > 0 if and only if

α <
1

4
.

Now we turn to the proof of (3.18). First notice that

‖D∗Kfk‖
2
YK =

n∑
i=1

〈ei, D∗Kfk〉2YK , (3.20)

where

ei =


0
...
1
...
0

← ith row

the usual ith basis vector in Rn and 〈·, ·〉YK denotes the scalar product in YK .

By definition, for each i = 1, . . . , n,

〈ei, D∗Kfk〉YK = 〈DKei, fk〉H = 〈ui, fk〉H, (3.21)

where ui ∈ D(AK,max)

AK,maxu
i = λui, BKu

i = ei, (3.22)
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see (3.4). Integration by parts then yields

〈ui, fk〉H =
1

λ
〈AK,maxu

i, fk〉H

=
1

λ

∑
e∈E

∫ `e

0

(
ce(u

i
e)
′)′ (x) · fk,e(x) dx− 1

λ

∑
e∈E

∫ `e

0

pe(x) · uie(x) · fk,e(x) dx

=
1

λ

∑
e∈E

[
ce(x) · (uie)′(x) · fk,e(x)

]`e
0

− 1

λ

∑
e∈E

(∫ `e

0

ce(x) · (uie)′(x) · f ′k,e(x) dx+

∫ `e

0

pe(x) · uie(x) · fk,e(x) dx

)

=
1

λ

(∑
e∈E

[
ce(x) · (uie)′(x) · fk,e(x)

]`e
0
− a(ui, fk)

)

=
1

λ

(∑
e∈E

[
ce(x) · (uie)′(x) · fk,e(x)

]`e
0

+ 〈ui, Afk〉H

)

=
1

λ

(∑
e∈E

[
ce(x) · (uie)′(x) · fk,e(x)

]`e
0

+ λk · 〈ui, fk〉H

)
,

where we have used Proposition 2.3 and (3.13). This implies that

〈ui, fk〉H =
1

λ− λk

∑
e∈E

[
ce(x) · (uie)′(x) · fk,e(x)

]`e
0
.

Since fk ∈ D(L), we have by similar calculations as in the proof of [18, Prop. A.1]

〈ui, fk〉H =
1

λ− λk
〈BKui, Lfk〉YK =

1

λ− λk
〈ei, Lfk〉YK , (3.23)

where we used (3.22).
Hence by (3.15), (3.20), (3.21) and (3.23) we obtain

‖D∗Kfk‖
2
YK =

1

(λ− λk)2

n∑
i=1

〈ei, Lfk〉2YK =
‖Lfk‖2YK
(λ− λk)2

≤ c

(λ− λk)2
,

which is exactly (3.18) and the proof is complete.

Corollary 3.9. Under the hypothesis of Theorem 3.8, if u0 ∈ Hα for some α < 1
4 , then

the unique mild solution of equation (3.1) has a version with continuous paths in Hα.

Proof. By Theorem 3.8 ZK has a version with continuous paths in Hα for α < 1
4 , and

in particular, this version is H-continuous. For all ω ∈ Ω we then obtain a unique
solution X̃K(·, ω) of (3.12) using a standard fixed point argument in the Banach space
C([0, T ],H). By uniqueness, X̃K(·, ω) is a version of the mild solution of (3.1). On the
right-hand side of (3.12) the first and the last terms are elements of C([0, T ],Hα) for α
for all ω ∈ Ω. Finally, the convolution term on the right-hand-side of (3.12), with XK

replaced by X̃K , is an element of the space C([0, T ],Hη) by [25, Lem. 3.6] for all η < 1,
as X̃K(·, ω) ∈ C([0, T ],H), F has linear growth and the semigroup (S(t))t≥0 is analytic.
Therefore, X̃K has continuous paths in Hα.

Example 3.10. Let ce ≡ 1 and `e ≡ 1, e ∈ E in (3.1). Then (3.1) has a mild solution of the
form (3.12) with continuous paths in Hα for α < 1

4 .
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Proof. By [7, Lem. 2.1] and [16, Sec. 2], we have that

‖Lfk‖2YK ≤ c, k ∈ N,

hence (3.15) holds with an appropriate positive c. Thus, by Theorem 3.8, problem (3.1)
has a mild solution of the form (3.12) with continuous paths in Hα for α < 1

4 .

Remark 3.11. In the first equations of (3.1) we may also consider odd-degree polynomial
nonlinearities of the form

Fe(x) = −x2ke+1 +

2ke∑
j=0

ae,jx
j , e ∈ E

as in [9, Example after Thm. 4.2] provided that the hypothesis of Theorem 3.8 is satisfied.
Then the mapping F = (Fe)e∈E satisfies the conditions of [9, Thm. 4.2] with

K :=
∏
e∈E

L2(2ke+1)(0, `e), J :=
∏
e∈E

L2(2ke+1)2(0, `e).

Using Theorem 3.8 and Sobolev’s embedding, we obtain that the stochastic convolution
process ZK(·) has a J -continuous version. Therefore, by [9, Thm. 4.2], equation (3.1),
has a H-continuous mild solution. Uniqueness in this case follows the same way as in
the proof of [8, Thm. 4.8(i)] using the one sided Lipschitz property

〈F (u)− F (v), u− v〉H ≤ C‖u− v‖2H, u, v ∈ H, C > 0,

and the dissipativity of A.

4 Stochastic perturbation of the vertex conditions

Here we briefly investigate the problem where all the boundary conditions are
perturbed by some noise, but due to the low regularity shown below, only in the linear
case. That is, we consider the problem

u̇e(t, x) = (ceu
′
e)
′(t, x)− pe(x)ue(t, x), x ∈ (0, `e), t ∈ (0, T ], e ∈ E,

Φ̇v(t) = IvU(t, v), t ∈ (0, T ], v ∈ V,

β̇v(t) = C(v)>U ′(t, v), t ∈ (0, T ], v ∈ V,

ue(0, x) = u0,e(x), x ∈ [0, `e], e ∈ E,

see (1.6). The process

Θ :=

(
(Φv)v∈V
(βv)v∈V

)
.

is an R2m-valued Brownian motion (Wiener process) with covariance matrix

Q ∈ R2m×2m. (4.1)

For the sake of simplicity we fix again λ > 0, denote D := DB,λ, and analogously
to (3.5) we define the stochastic convolution process by

Z(t) :=

∫ t

0

(λ−A)S(t− s)DdΘ(t).

We next prove that Z(·) has values in the fractional domain space of A of order
α < − 1

4 only. Therefore, Nemytskii type nonlinearities, as in the previous section, cannot
be considered as point evaluation is not well-defined any more.

EJP 28 (2023), paper 74.
Page 13/20

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP962
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the parabolic Cauchy problem for quantum graphs

Theorem 4.1. The stochastic convolution process Z(·) has continuous paths in Hα for
α < − 1

4 .

Proof. Let δ > 1
4 arbitrary fixed and we will prove the result for α := −δ. Without loss of

generality we may assume that δ is close to 1
4 .

By a straightforward modification of [9, Thm. 2.3] to include the covariance matrix Q,
see (4.1), we have to show that for some γ > 0,∫ T

0

t−γ
∥∥∥(λ−A)S(t)DQ

1
2

∥∥∥2
HS(Y,H−δ)

dt < +∞, (4.2)

where HS denotes the Hilbert–Schmidt-norm between the appropriate spaces (see also,
[9, Theorem 5.9]). As∥∥∥(λ−A)S(t)DQ

1
2

∥∥∥2
HS(Y,H−δ)

≤ ‖(λ−A)S(t)D‖2HS(Y,H−δ)
· Tr(Q),

it suffices to prove that∫ T

0

t−γ ‖(λ−A)S(t)D‖2HS(Y,H−δ)
dt < +∞. (4.3)

First we will prove that the Dirichlet operator D maps Y into Hρ for 0 < ρ < 1
4 . By (3.11)

and Remark 3.2, we have

D(a) ∼= D((λ−A)
1
2 ) ∼= D((−A)

1
2 )

with equivalent norms. Using this, similarly as in [17, Lem. 3.6] one can show that

D((−A)
1
2 ) ∼=

∏
e∈E

H1
0 (0, `e)×Rn.

By [24, Sec. 4.3.3] we have that if θ < 1
2 , for the complex interpolation space[

D((−A)
1
2 ),H

]
θ

∼=
∏
e∈E

Hθ(0, `e)× {0Rn} (4.4)

holds – see also [4] –, where we have used H ∼= H× {0Rn} and [2, Thm. 4.2.2]. Further-
more, [14, Thm. 6.6.9] implies that for 0 < θ < 1,[

D((−A)
1
2 ),H

]
θ

∼= [D(A),H] θ
2
. (4.5)

Using [1, Thm. in § 4.7.3] and [1, Prop. in § 4.4.10], we obtain that for any 0 < ρ < 1,

[D(A),H]ρ
∼= D((−A)ρ) = Hρ. (4.6)

Combining (4.4), (4.5) and (4.6) yields that for 0 < ρ < 1
4∏

e∈E

H2ρ(0, `e)× {0Rn} ∼= Hρ (4.7)

holds. Hence, by (2.3) and (4.7) we have that for 0 < ρ < 1
4

D : Y → D(Amax) ↪→
∏
e∈E

H2ρ(0, `e) ∼=
∏
e∈E

H2ρ(0, `e)× {0Rn} ∼= Hρ. (4.8)
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Now we are in the position to prove (4.3). We take a small ε > 0, to be specified later, and
estimate the integral in the following way, where we use the analyticity of the semigroup
(S(t))t≥0 from Proposition 2.3,∫ T

0

t−γ ‖(λ−A)S(t)D‖2HS(Y,H−δ))
dt ≤ c ·

∫ T

0

t−γ
∥∥(λ−A)1−δS(t)D

∥∥2
HS(Y,H)

dt

= c ·
∫ T

0

t−γ
∥∥(λ−A)εS(t)(λ−A)1−δ−εD

∥∥2
HS(Y,H)

dt

≤ CT ·
∫ T

0

t−γ−2ε dt ·
∥∥(λ−A)1−δ−εD

∥∥2
HS(Y,H)

. (4.9)

In the last expression,∫ T

0

t−γ−2ε dt <∞⇐⇒ γ + 2ε < 1⇐⇒ ε <
1

2
− γ

2
. (4.10)

Since the range of D is finite dimensional, if we take a suitable ε > 0 such that (λ −
A)1−δ−εD is a bounded operator, then the Hilbert-Schmidt norm in (4.9) is finite. To
satisfy this, by (4.8),

0 < 1− δ − ε < 1

4
(4.11)

should hold. On the other hand, by (4.10),

1− δ − ε > 1

2
+
γ

2
− δ.

Hence, we have to find γ > 0 such that

1

2
+
γ

2
− δ < 1

4
⇐⇒ 1

4
+
γ

2
< δ

holds true. Since, by assumption, δ > 1
4 , an appropriate 0 < γ < 1 can be chosen. Taking

any ε > 0 satisfying (4.10) and (4.11), that is

3

4
− δ < ε <

1

2
− γ

2
,

the estimate (4.9) yields a finite bound for the left-hand-side of (4.3). This means that
for γ chosen this way, (4.3), hence (4.2) is satisfied, and the proof is complete.

A Surjectivity of the boundary operator B

In this section we complete the proof of Theorem 2.2.

Proposition A.1. For the operator (B,D(B)) defined in (2.6), ImB = R2m holds.

Proof. We show that for z ∈ R2m given arbitrarily, there exists u ∈ D(Amax) = H2

(see (2.3)) such that
Bu = z. (A.1)

We will seek u ∈ H2 in the form

u(x) =

 α1e−γx + β1e−γ(`1−x)

...
αme−γx + βme−γ(`m−x)

 (A.2)

for suitable vectors α = (α1, . . . , αm)
>, β = (β1, . . . , βm)

> and constant γ > 0, where
`1, . . . , `m denote the edges lengths in the graph G.
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We introduce the notation

u(`) :=

u(`1)
...

u(`m)

 , u′(`) :=

u′(`1)
...

u′(`m)

 , u ∈ H2,

and

zC :=

 z1
...

z2m−n

 , zK :=

z2m−n+1

...
z2m


for the two “blocks” of the vector z ∈ R2m. Using the idea of the proof of [19, Prop. 3.2],
there exist (2m− n)×m matrices V0 and V1 and n×m matrices W0 and W1 such that
equation (A.1) can be rewritten as

V0u(0) + V1u(`) = zC , W0u
′(0)−W1u

′(`) = zK . (A.3)

A straightforward computation shows that for the function in (A.2), equations (A.3) turn
into

(V0 + V1Eγ) · α+ (V0Eγ + V1) · β = zC ,

(−γW0 + γW1Eγ) · α+ (γW0Eγ − γW1) · β = zK
(A.4)

where Eγ is the diagonal matrix

Eγ :=

e−γ`1

. . .

e−γ`m


We rewrite now (A.4) with (2m)× (2m) block-matrices as(

V0 V1
−γW0 −γW1

)
·
(
α

β

)
+

(
V1 V0
γW1 γW0

)
·
(
Eγ 0

0 Eγ

)
·
(
α

β

)
= z. (A.5)

Denoting by

Nγ :=

(
V0 V1
−γW0 −γW1

)
, Ñγ :=

(
V1 V0
γW1 γW0

)
, Fγ :=

(
Eγ 0

0 Eγ

)
,

we have to show that
Im
(
Nγ + Ñγ · Fγ

)
= R2m. (A.6)

First we show that Nγ is invertible. Using again ideas from the proof of [19, Prop. 3.2],
we can permute rows and columns of Nγ such that we obtain a block diagonal matrix
Mγ ∈ R(2m)×(2m), consisting of n blocks of size dv × dv for v ∈ V. Denoting by Mv the
block corresponding to vertex v in Mγ we have that if dv = 1 then Mv = −γ · ce(v) for
Ev = {e}. Otherwise,

Mv =


1 −1

. . .
. . .

1 −1

−γ · ce1(v) . . . . . . −γ · cedv (v)


for Ev = {e1, . . . , edv}. A straightforward computation yields that

detMv = −γ ·
(
ce1(v) + · · ·+ cedv (v)

)
6= 0 (A.7)
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because of the assumption on the ce’s. Hence, we obtain that

detMγ =
∏
v∈V

detMv = (−γ)n ·Kc 6= 0

with
Kc =

∏
v∈V

Ev={e1,...,edv}

(
ce1(v) + · · ·+ cedv (v)

)
.

Hence, Mγ is invertible. Since permutations do not change the determinant of a matrix,
we also have that Nγ is invertible. That is, in (A.6) we have

Nγ + Ñγ · Fγ = Nγ ·
(

Id +N−1γ · Ñγ · Fγ
)

(A.8)

with Id = Id(2m)×(2m). If for an appropriate γ > 0,∥∥∥N−1γ · Ñγ · Fγ
∥∥∥
max

< 1 (A.9)

is satisfied, then the matrix (A.8) is invertible, hence (A.6) holds.
First we estimate the max-norm of N−1γ , or, which is the same, the max-norm of

M−1γ . Clearly, M−1γ is the block-diagonal matrix of blocks M−1v . Each cofactor Mk,l of
Mv is the determinant of a matrix of the same type as Mv itself (but having dimension
(dv − 1)× (dv − 1)), expect those in the last row of M−1v which are all equal to 1. Thus we
obtain by (A.7) that for γ big enough,∥∥M−1v

∥∥
max

=
1

|detMv|
· max
k,l=1,...,dv

|Mk,l| =
γ · Lc,v

γ ·
(
ce1(v) + · · · cedv (v)

) =: Kc,v

with constants Lc,v, Kc,v > 0. Hence, for γ big enough,∥∥N−1γ ∥∥
max

=
∥∥M−1γ ∥∥

max
= max

v∈V

∥∥M−1v

∥∥
max

= max
v∈V

Kc,v =: Kc. (A.10)

Similarly as above, we can permute rows and columns of Ñγ such that we obtain a

block diagonal matrix M̃γ consisting of 1× 1 blocks {γ · ce(v)} and blocks of size dv × dv
(for dv > 1)

M̃v =


1 −1

. . .
. . .

1 −1

γ · ce1(v) . . . . . . γ · cedv (v)

 .

Hence, if γ is big enough,∥∥∥Ñγ∥∥∥
max

=
∥∥∥M̃γ

∥∥∥
max

= γ ·max
v∈V
e∈Ev

{ce(v)} =: γ · K̃c. (A.11)

Equations (A.10) and (A.11) imply that we have∥∥∥N−1γ · Ñγ · Fγ
∥∥∥
max
≤ e−γ·l · γ ·Kc · K̃c < 1, if γ is big enough,

where l is defined as
l := min

e∈E
`e > 0

Thus for γ big enough (A.9) holds. This implies that (A.6) is true; that is, for arbitrary
z ∈ R2m there exist γ > 0, α, β ∈ Rm such that (A.5) is satisfied. Hence, by defining u as
in (A.2) with the constants γ, αj , βj , j = 1, . . . ,m, we obtain

u ∈ D(Amax) and Bu = z,

and the proof is complete.
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B Asymptotics of the spectrum of A

Proposition B.1. Let (λk)k∈N be the sequence of eigenvalues of the generator (A,D(A))

from Remark 3.6. Then for any λ > 0 there exist constants l1, l2 > 0 such that

l1 · k2 ≤ λ− λk ≤ l2 · k2, k ∈ N. (B.1)

Proof. Let us fix λ > 0 and recall that λ−A is the operator associated with the coercive,
symmetric, continuous form aλ defined in (3.10) by

aλ(f, g) = a(f, g) + λ · 〈f, g〉H,
D(aλ) =

{
u ∈ H1 : IvU(v) = 0, v ∈ V

}
.

Let v1 ∈ V arbitrary, and define the form
(
a1, D(a1)

)
acting in the same way as aλ but

having Dirichlet condition in the vertex v1 in its domain. That is,

a1(f, g) = aλ(f, g),

D(a1) =
{
u ∈ H1 : IvU(v) = 0, v 6= v1, U(v1) = 0

R
dv1

}
,

cf. (1.1). Denote by (A1, D(A1)) the operator associated with
(
a1, D(a1)

)
. We can now

carry out the proof of [3, Thm. 3.1.8] applied to the forms aλ and a1. We only have to
use the facts that D(a1) is a subspace of co-dimension 1 of D(aλ), aλ and a1 agree on
D(a1), and the “min-max principle” for coercive, symmetric forms holds, see e.g. [20,
Thm. 6.5]. Thus we obtain that denoting by (λ1k)k∈N the eigenvalues of (A1, D(A1))

labelled in non-increasing order,

λ− λk+1 ≤ λ1k ≤ λ− λk, k ∈ N

holds. Continuing this process by defining the finite sequence of symmetric and accretive
forms ai, i = 1, . . . , n for an ordering of the vertices V = {v1, . . . , vn} such that

ai+1(f, g) = ai(f, g),

D(ai+1) =
{
u ∈ D(ai) : U(vi+1) = 0

}
,

we can apply the proof of [3, Thm. 3.1.8] for each pair of forms ai and ai+1. Hence, if we
denote by (λik)k∈N the eigenvalues of (Ai, D(Ai)), the operator associated to (ai, D(ai)),
labelled in non-increasing order, we obtain that

λik+1 ≤ λi+1
k ≤ λik, k ∈ N, i = 1, . . . n− 1. (B.2)

Clearly,

an(f, g) = aλ(f, g),

D(an) =
∏
e∈E

H1
0 (0, `e).

It is straightforward that the operator (An, D(An)) associated with an is the operator
acting as λ−A with Dirichlet conditions in all vertices. Using that ce > 0, pe ≥ 0, e ∈ E,
and the min-max principle holds, we have that for the set (λnk )k∈N of eigenvalues of An
there exist constants l1, l2 > 0 such that

l1 · k2 ≤ λnk ≤ l2 · k2, k ∈ N,

see also [20, Probl. 6.1]. Thus, by (B.2) also (B.1) holds which finishes the proof.
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