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Sharp solvability for singular SDEs*
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Abstract

The attracting inverse-square drift provides a prototypical counterexample to solvabil-
ity of singular SDEs: if the coefficient of the drift is larger than a certain critical value,
then no weak solution exists. We prove a positive result on solvability of singular
SDEs where this critical value is attained from below (up to strict inequality) for the
entire class of form-bounded drifts. This class contains e.g. the inverse-square drift,
the critical Ladyzhenskaya-Prodi-Serrin class. The proof is based on a Lp variant of
De Giorgi’s method.
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1 Introduction and main result

The paper addresses the question: what are the minimal assumptions on a locally
unbounded vector field b : [0,∞[×Rd → Rd, d ≥ 3, also called a drift, such that the
stochastic differential equation (SDE)

dXt = −b(t,Xt)dt+
√

2dBt, X0 = x ∈ Rd (1.1)

admits a martingale (or weak) solution? Here Bt is a standard Brownian motion in Rd.
There is an extensive literature devoted to the search for such minimal assumptions, as
well as to the question of what additional hypothesis on b is required in order to ensure
the uniqueness of the solution. The interest is motivated, in particular, by physical
applications and applications to the theory of stochastic optimal control.

It is known that if b is in the Ladyzhenskaya-Prodi-Serrin class

|b| ∈ Lqloc([0,∞[, Lr + L∞),
d

r
+

2

q
< 1, 2 < q ≤ ∞ (LPS)
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Sharp solvability for singular SDEs

then equation (1.1) has a unique in law martingale solution, see Portenko [15]. The
strong existence and uniqueness is due to Krylov-Röckner [14]. In 2014, Beck-Flandoli-
Gubinelli-Maurelli [1], extending an argument in [3], gave the following counterexample
to weak solvability of (1.1) (among many results on the strong existence and uniqueness
for (1.1) with b in the critical Ladyzhenskaya-Prodi-Serrin class

|b| ∈ Lqloc([0,∞[, Lr + L∞),
d

r
+

2

q
≤ 1, 2 < q ≤ ∞). (LPSc)

Example 1.1. Consider the inverse-square drift b(x) =
√
δ d−22 |x|

−2x (d ≥ 3).
The following are true:
(a) If δ > 4( d

d−2 )2, then equation (1.1) with the initial point x = 0 has no weak solution.
(b) If δ > 4, then for every x 6= 0 the solution to (1.1) arrives at the origin in finite

time with positive probability.

The vector field in Example 1.1 has a stronger singularity than any vector field in
(LPSc). Intuitively, when δ > 4, the attraction to the origin is so strong that the process,
even starting at x 6= 0, does not look like a Brownian motion. See also [19] regarding (b).

The fact that the value δ = 4 is critical was known, although in a different context:
the theory of operator −∆ + b · ∇. More precisely, let b be a form-bounded vector field,
i.e.

|b|2 ≤ δ(−∆) + gδ in the sense of quadratic forms (see below)

(e.g. b in Example 1.1 is form-bounded). Consider Cauchy problem

(∂t −∆ + b · ∇)u = 0, u(0) = f ∈ Lp. (1.2)

(Regarding the relationship with SDE (1.1), one expects, of course, in the time-homo-
geneous case b = b(x), u(t, x) = E[f(Xt)].) Multiplying the equation in (1.2) by u|u|p−2,
integrating by parts and using quadratic inequality and form-boundedness, one obtains
that the admissible p that give e.g. an energy inequality turn out to be p > 2/(2−

√
δ). In

fact, it was proved in [11] that if b = b(x) has form-bound δ < 4, then there exists a quasi
contraction strongly continuous Markov semigroup in Lp, p > 2/(2−

√
δ) that provides a

strong solution to Cauchy problem (1.2). The interval of contraction solvability can be
extended to [2/(2−

√
δ),∞[ and is sharp, see [7]. Now, as δ ↑ 4, this interval disappears,

and with it the theory of the operator −∆ + b · ∇. (Regarding time-inhomogeneous b, see
[17].)

Definition 1.2. A Borel measurable vector field b : [0,∞[×Rd → Rd is said to be
form-bounded if |b| ∈ L2

loc([0,∞[×Rd) and there exist a constant δ > 0 and a function
0 ≤ gδ ∈ L1

loc([0,∞[) such that∫ ∞
0

‖b(t, ·)ξ(t, ·)‖22dt ≤ δ
∫ ∞
0

‖∇ξ(t, ·)‖22dt+

∫ ∞
0

gδ(t)‖ξ(t, ·)‖22dt

for all ξ ∈ C∞c ([0,∞[×Rd) (written as b ∈ Fδ).
Here ‖ · ‖p := ‖ · ‖Lp(Rd).
Examples of form-bounded vector fields include: b ∈ (LPSc), the vector field in

Example 1.1 (by Hardy’s inequality) or, more generally, vector fields b = b(x) with |b|
in the weak Ld class or the scale-invariant Campanato-Morrey class with integrability
constant > 2. One can construct, for every ε > 0, a form-bounded b = b(x) with |b| 6∈ L2+ε.
See [6, 7] for details and other examples.

The present paper deals with SDE (1.1) having form-bounded vector field b ∈ Fδ. In
[6] it was proved that if the form-bound δ satisfies δ < d−2, then, for every x ∈ Rd, (1.1)
has a weak solution, given by a Feller evolution family, and is unique in a large class. In
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the time-homogeneous case b = b(x) the result is stronger, that is, b is required to be

form-bounded with δ <
(
2(d−2)−1∧1

)2
[8], or even only weakly form-bounded [9], which

allows to treat vector fields b that are a priori only in L1
loc. In both cases the solutions

are determined by a Feller semigroup, and are unique among weak solutions that are
constructed using an approximation of b by smooth vector fields that do not increase the
form-bound δ of b.

See also Krylov [13] regarding Markov weak solvability of (1.1) for |b| ∈ Lqloc([0,∞[, Lr+

L∞), dr + 1
q ≤ 1, r ≥ d, q ≥ 1 (in [13] the SDE can in fact have just measurable diffusion

coefficients).
In [6, 8, 9], the construction of the Feller evolution family (semigroup) and the

weak solution to (1.1) is based on gradient estimates on solution u to the parabolic
equation (1.2) (solution v to the elliptic equation (λ−∆ + b · ∇)v = f ) with b ∈ Fδ. In [6]
and [8] these estimates are, respectively,

‖∇u‖L∞([0,T ],Lq), ‖∇|∇u|
q
2 ‖

2
q

L2([0,T ],L2) ≤ C‖∇f‖q for q ∈]d, k(δ)[ if δ < d−2

and

‖∇v‖Lq , ‖∇|∇v|
q
2 ‖

2
q

L2 ≤ C ′‖f‖q for q ∈]2 ∨ (d− 2), k′(δ)[ if δ <
(
2(d− 2)−1 ∧ 1

)2
.

It is not clear how to extend these estimates to δ greater than
(
2(d− 2)−1 ∧ 1

)2
, not to

mention δ going up to 4. Thus, there is a gap between the hypothesis on δ in [6, 8, 9]
and in Example 1.1. The purpose of this paper is to fill this gap.

Theorem 1.3. Let d ≥ 3, b ∈ Fδ. If δ < 4, then for every x ∈ Rd there exists a martingale
solution of SDE (1.1).

Theorem 1.3 shows that Example 1.1 is essentially sharp, at least as d→∞. A crucial
feature of Theorem 1.3 is that it attains δ = 4, up to the strict inequality, for the entire
class of form-bounded vector fields.

We leave aside the important issues of the Feller property and the uniqueness of the
constructed martingale solution when δ < 4. Let us only mention that if one is willing to
impose additional assumptions on div b (namely, the Kato class condition), then Nash’s
method allows to obtain two-sided Gaussian bounds on the heat kernel of (1.2), see [10],
from which the Feller property of course follows.

We prove the main analytic result (Proposition 2.7 below) using De Giorgi’s iterations.
They are carried out in Lp, p > 2

2−
√
δ
, p ≥ 2 rather than in the standard for the De Giorgi

method L2 space, as is needed to handle 1 ≤ δ < 4. In this regard, let us make a trivial
observation that passing to Lp right away, using the fact that u

p
2 is a subsolution and

then applying to u
p
2 the standard De Giorgi iteration procedure in L2, does not allow to

treat 1 ≤ δ < 4. We will have to follow the iteration procedure from the very beginning
and adjust it accordingly.

Earlier, De Giorgi’s method in L2 was used by Zhang-Zhao [21], Zhao [23], Röckner-
Zhao [16]. They prove, in particular, results on weak well-posedness of (1.1) with b

having not too singular divergence and satisfying

|b| ∈ Lqloc([0,∞[, Lr + L∞),
d

r
+

2

q
< 2.

Similarly to these papers, we apply a tightness argument to construct a martingale
solution once Proposition 2.7 is established, see Section 2.2. We also refer to Hara
[5] and Kinzebulatov-Vafadar [12] for the proofs of a posteriori Harnack inequality and
Hölder continuity of solutions to divergence-form elliptic equations, using De Giorgi’s
and Moser’s methods, with, respectively, b = b(x) in Fδ, δ < 1, and with b = b(x) in a
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substantially larger class of vector fields satisfying the multiplicative form-boundedness
condition

|b| ∈ L1
loc and ‖|b| 12ϕ‖22 ≤ δ‖∇ϕ‖2‖ϕ‖2 + cδ‖ϕ‖22, ∀ϕ ∈ C∞c (Rd)

with δ <∞, cδ <∞, but additionally having form-bounded divergence.

Finally, we note that passing to the Lp variant of De Giorgi’s method does not exclude
other singular drift perturbations known to be amenable in L2 (cf. [5, 20]). For instance,
the assertion of Theorem 1.3 is also valid for b = b1 + b2, where b1 ∈ Fδ1 , δ1 < 4 and b2
satisfies:

1) there exists 0 < a ≤ 1 such that |b2| ∈ L1+a
loc ([0,∞[×Rd) and∫ ∞

0

〈|b2(t, ·)|1+aξ2(t, ·)〉dt ≤ δ2
∫ ∞
0

‖∇ξ(t, ·)‖22dt+

∫ ∞
0

gδ(t)‖ξ(t, ·)‖22dt (1.3)

for all ξ ∈ C∞c ([0,∞[×Rd), for some 0 < δ2 < ∞ and 0 ≤ gδ2 ∈ L1
loc([0,∞[). Here and

everywhere below,

〈f, g〉 = 〈fg〉 :=

∫
Rd
fgdx.

2) the divergence (div b2)+ ∈ L1
loc([0,∞[×Rd) and∫ ∞

0

〈
(div b2)+(t, ·)ξ2(t, ·)

〉
dt ≤ ν

∫ ∞
0

‖∇ξ(t, ·)‖22dt+

∫ ∞
0

gν(t)‖ξ(t, ·)‖22dt (1.4)

with ν < 4− 2
√
δ1 for some 0 ≤ gν ∈ L1

loc([0,∞[). We say that (div b2)+ is a form-bounded

potential (for instance, it can be a function in the weak L
d
2 space). For details, see

Remark 2.8 below. There we explain that ν < 4− 2
√
δ1 suffices, provided that we prove

the energy inequality in Lp for p such that ν < 4p−1p − 2
√
δ1. If we stay in L2, then we

have to impose more restrictive condition ν < 2− 2
√
δ1.

The class (1.3) is essentially twice more singular than Fδ. It first appeared in
Q. S. Zhang [20], where the author used Moser’s method in L2 to prove, assuming that
the vector field has zero divergence and satisfies (1.3), the local boundedness of weak
solutions to the corresponding parabolic equation, and applied this result to study
Navier-Stokes equations in R3.

Let us mention that the results of this paper in principle can be extended to SDEs

dXt = −b(t,Xt)dt+
√

2σ(t,Xt)dBt, X0 = x ∈ Rd

having form-bounded b and “form-bounded diffusion coefficients”, i.e. such that matrix
a = σ>σ is bounded, uniformly non-degenerate and such that the derivatives ∇iσjk are in
Fδ1 with δ1 sufficiently small. (Such diffusion coefficients in the time-homogeneous case
σ = σ(x), considered in [8], include e.g. the class σjk ∈W 1,d, as well as some matrices
having critical discontinuities.) Indeed, since ∇iσjk are form-bounded, we can rewrite
the corresponding non-divergence form parabolic equation in divergence form, now
having form-bounded drift ∇σ + b, and then apply De Giorgi’s method which, of course,
can handle −∇ · a · ∇ instead of −∆.
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2 Proof of Theorem 1.3

2.1 De Giorgi’s iterations in Lp

In the next two propositions, u is the solution to Cauchy’s problem for inhomogeneous
Kolmogorov equation

(∂t −∆ + b · ∇)u = |h|f, u(0) = 0, (2.1)

where

b ∈ Fδ ∩ C∞c (]0,∞[×Rd), δ < 4,

h ∈ Fν ∩ C∞c (]0,∞[×Rd), ν <∞ and f ∈ Cc.

Since the coefficients of (2.1) are smooth with compact support, the solution u exists
and is sufficiently regular to justify the manipulations with the equation below.

Set

pδ :=
2

2−
√
δ
.

Definition 2.1. We will call a constant generic if it only depends on d, p, δ, ν, gδ, gν (and
T > 0, in case we work over a fixed finite time interval [0, T ]).

Proposition 2.2 (Caccioppoli’s inequality). Let u be the solution to Cauchy problem (2.1).
Let p > pδ, p ≥ 2. Set uc := (u − c)+, c ∈ R. Fix T > 0 and η ∈ C∞c (Rd). Then,
0 < t− s ≤ T ,

sup
ϑ∈[s,t]

〈upc(ϑ)η2〉+

∫ t

s

〈|∇(ηu
p
2
c )|2〉 (2.2)

≤C1〈upc(s)η2〉+C2

∫ t

s

〈upc |∇η|2〉+C3

∫ t

s

〈(
1{|h|≥1}+1{|h|<1}|h|p

)
1{u>c}|f |pη2

〉
for generic constants C1-C3 > 0.

The last term in the RHS has this form because this is what will be needed in
the next section. There we will fix a general discontinuous b ∈ Fδ and will apply
Proposition 2.2 (or rather its consequence, Proposition 2.9) to bounded smooth vector
field {bn} ⊂ Fδ ∩ C∞c (]0,∞[×Rd) that approximate b in L2

loc([0,∞[×Rd,Rd) and preserve
its form-bound δ (and have g independent of n). The right-hand side in (2.1) will be
chosen as follows:

1) h = bn, in order to apply a tightness argument to construct a candidate for the
martingale solution to (1.1)

2) h = bm1 − bm2 , in order to pass to the limit in the martingale problem; we will take
f = |∇ϕ|, where ϕ ∈ C2

c is a test function in the martingale problem.

The construction of such bn is discussed in Appendix A.

Remark 2.3. Let us emphasize that the constants C1-C3 in Proposition 2.2 are generic,
so, by definition, they are allowed to depend on form-bounds δ and ν of b and h, respec-
tively. However, since bn’s preserve form-bound δ of b, once we apply Proposition 2.2
with choices 1), 2), we will be able to take n→∞ while still controlling constants C1-C3.
This remark also applies to Propositions 2.7 and 2.9.

Remark 2.4. If we were to multiply equation (2.1) by a constant, this would scale the
LHS in (2.2) and the first two terms in the RHS, but this would also change the form-
bound ν of h (and function gν) and hence would change constant C3 in front of the third
term in the RHS.)
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Proof of Proposition 2.2. Put for brevity v := uc. It suffices to prove

sup
ϑ∈[s,t]

〈vp(ϑ)η2〉+

∫ t

s

〈|∇v
p
2 |2η2〉 (2.3)

≤C1〈vp(s)η2〉+C2

∫ t

s

〈vp|∇η|2〉+C3

∫ t

s

〈(
1{|h|≥1}+1{|h|<1}|h|p

)
1{v>0}|f |pη2

〉
.

We multiply equation (2.1) by vp−1η2 and integrate to obtain

〈vp(t)η2〉 − 〈vp(s)η2〉+
4(p− 1)

p

∫ t

s

〈|∇v
p
2 |2η2〉

≤ 4

∣∣∣∣∫ t

s

〈∇v
p
2 , v

p
2 η∇η〉

∣∣∣∣+ 2

∣∣∣∣∫ t

s

〈b · ∇v
p
2 , v

p
2 η2〉

∣∣∣∣+

∣∣∣∣∫ t

s

〈|h|fvp−1η2〉
∣∣∣∣

where we estimate in the RHS:

1.

4

∣∣∣∣∫ t

s

〈∇v
p
2 , v

p
2 η∇η〉

∣∣∣∣ ≤ 2ε1

∫ t

s

〈|∇v
p
2 |2η2〉+

2

ε1

∫ t

s

〈vp|∇η|2〉 (ε1 > 0).

2.

2

∣∣∣∣∫ t

s

〈b · ∇v
p
2 , v

p
2 η2〉

∣∣∣∣ ≤ 1√
δ

∫ t

s

〈|b|2vpη2〉+
√
δ

∫ t

s

〈|∇v
p
2 |2η2〉

(we are using b ∈ Fδ)

≤ 1√
δ

(
δ

∫ t

s

〈|∇(ηv
p
2 )|2〉+

∫ t

s

gδ〈vpη2〉
)

+
√
δ

∫ t

s

〈|∇v
p
2 |2η2〉.

We bound |∇(ηv
p
2 )|2 ≤ (1 + ε2)〈|∇v

p
2 |2η2〉+ (1 + ε−12 )〈vp|∇η|2〉, ε2 > 0. Then

sup
ϑ∈[s,t]

〈vp(ϑ)η2〉+

[
4(p− 1)

p
− (2 + ε2)

√
δ − 2ε1

] ∫ t

s

〈|∇v
p
2 |2η2〉

≤ 〈vp(s)η2〉+
1√
δ

∫ t

s

gδ〈vpη2〉+ C ′2

∫ t

s

〈vp|∇η|2〉+

∣∣∣∣∫ t

s

〈|h|fvp−1η2〉
∣∣∣∣ .

Now, assuming first that T > 0 is sufficiently small so that 1√
δ

(∫ t
s
gδ
)
< 1

3 , we obtain

2

3
sup
ϑ∈[s,t]

〈vp(ϑ)η2〉+

[
4(p− 1)

p
− (2 + ε2)

√
δ − 2ε1

] ∫ t

s

〈|∇v
p
2 |2η2〉

≤ C ′1〈vp(s)η2〉+ C ′2

∫ t

s

〈vp|∇η|2〉+ C ′3

∣∣∣∣∫ t

s

〈|h|fvp−1η2〉
∣∣∣∣ . (2.4)

Next, using the reproduction property, we extend the last inequality to arbitrary T > 0

(at expense of increasing C ′i = C ′i(T ), i = 1, 2, 3).

It remains to estimate the last term in the RHS of (2.4):∣∣∣∣∫ t

s

〈|h|fvp−1η2〉
∣∣∣∣

≤
∫ t

s

〈1|h|≥1|h|
2
p′ |f ||v|p−1η2〉+

∫ t

s

〈1|h|<1|h||f ||v|p−1η2〉 =: I1 + I2, (2.5)
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where, by Young’s inequality,

I1 ≤
εp
′

3

p′

∫ t

s

〈1|h|≥1|h|2vpη2〉+
ε−p3

p

∫ t

s

〈1|h|≥11{v>0}|f |pη2〉 (ε3 > 0)

(we are using h ∈ Fν)

≤ εp
′

3

p′

(
ν

∫ t

s

|∇(ηv
p
2 )|2〉+

∫ t

s

gν〈vpη2〉
)

+
ε−p3

p

∫ t

s

〈1|h|≥11{v>0}|f |pη2〉,

and

I2 ≤
εp
′

4

p′

∫ t

s

〈1|h|<1v
pη2〉+

ε−p4

p

∫ t

s

〈1|h|<1|h|p1{v>0}|f |pη2〉 (ε4 > 0).

Inserting these estimates in (2.4) and taking care of the term
∫ t
s
gν〈vpη2〉 in the same

way as we did above, we arrive at

C sup
r∈[s,t]

〈vp(r)η2〉+

[
4(p− 1)

p
− (2 + ε2)

√
δ − 2ε1 −

εp
′

3

p′
ν − εp

′

4

p′

] ∫ t

s

〈|∇v
p
2 |2η2〉

≤ C ′′1 〈vp(s)η2〉+ C ′′2

∫ t

s

〈vp|∇η|2〉+ C ′′3

∫ t

s

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)
1{v>0}|f |pη2

〉
,

where the appropriate constant C is positive provided that ε3, ε4 are sufficiently small.
Note that 4(p−1)

p − 2
√
δ > 0 if and only if p > pδ. Since the latter is a strict inequality, we

can and will select εi (i = 1, 2, 3, 4) sufficiently small so that the coefficient of
∫ t
s
〈|∇v

p
2 |2η2〉

is positive. We arrive at (2.3), as needed.

Remark 2.5. Apart from the weight η with compact support, we will also consider the
weight

ρ(x) = (1 + κ|x|−2)−β , β >
d

4
, κ > 0

(clearly, with our choice of β, we have ρ ∈ L2). Then, in the assumptions of Proposi-
tion 2.2, assuming that κ is chosen sufficiently small, we have for every p > pc, p ≥ 2, for
all 0 ≤ s ≤ t,

sup
ϑ∈[s,t]

〈upc(ϑ)ρ2〉+

∫ t

s

〈|∇(ρu
p
2
c )|2〉

≤ C1〈upc(s)ρ2〉+ C2

∫ t

s

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)
1{u>c}|f |pρ2

〉
. (2.6)

The proof essentially repeats the proof of (2.2) (we use |∇ρ| ≤ β
√
κρ at the last step to

get rid of the C2 term in (2.2)).

Lemma 2.6 ([4, Sect.7.2]). If {ym}∞m=0 ⊂ R+ is a nondecreasing sequence such that

ym+1 ≤ NCm0 y1+αm

for some C0 > 1, α > 0, and

y0 ≤ N−
1
αC
− 1
α2

0 .

Then

lim
m
ym = 0.
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Proposition 2.7. Let u be the solution to Cauchy problem (2.1). Fix T > 0 and 1 < θ <
d
d−1 . For all p > pδ, p ≥ 2, there exists a generic constant K such that

sup
[0,T ]×B(0, 12 )

u+ ≤ 2

(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′1B(0,1)

〉) 1
pθ′

(2.7)

+K

(∫ T

0

〈up+1B(0,1)〉+

(∫ T

0

〈upθ+ 1B(0,1)〉
) 1
θ
) 1
p

, θ′ =
θ

θ − 1
.

Proof of Proposition 2.7. Set

Rm :=
1

2
(1 + 2−m), Bm := B(0, Rm),

Mm := M(2− 2−m)

for a constant M > 0 to be determined later. Put ηm := ηRm,Rm−1
where ηr,R is a fixed

family of smooth cutoff functions

ηr,R = 1 in B(0, r), ηr,R = 0 in Rd −B(0, R), |∇ηr,R| ≤
c0
4

(R− r)−1 for 0 < r < R.

(2.8)
Then |∇ηm| ≤ c02m. Define

um := (u−Mm)+

and

Em := sup
ϑ∈[0,T ]

〈upm(ϑ)η2m〉+

∫ T

0

〈|∇(ηmu
p
2
m)|2〉,

Um :=

∫ T

0

〈upm1Bm〉+

(∫ T

0

〈upθm1Bm〉
) 1
θ

.

By Proposition 2.2, using Hölder’s inequality, we have for all 0 ≤ t ≤ T

sup
ϑ∈[0,t]

〈upm+1(ϑ)η2m+1〉+

∫ t

0

〈|∇(ηm+1u
p
2
m+1)|2〉

≤ C2c
2
04m

∫ t

0

〈upm+11Bm〉+ C3H
1
θ′
∣∣{um+1 > 0} ∩ [0, t]×Bm

∣∣ 1θ ,
(2.9)

where

H :=

∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′1B(0,1)

〉
.

We estimate the last term in (2.9):

∣∣{um+1 > 0} ∩ [0, t]×Bm
∣∣ 1θ =

(∫ t

0

〈1{um>M2−m−1}1Bm〉
) 1
θ

≤ (M2−m−1)−p
(∫ t

0

〈upθm1{um>M2−m−1}1Bm〉
) 1
θ

. (2.10)

We assume from now on that M satisfies Mp ≥ H 1
θ′ . Then (2.9) and (2.10) yield

Em+1 ≤ Cm4 Um for appropriate constant C4. (2.11)

Next, using the Sobolev Embedding Theorem, we have

sup
[0,T ]

〈upm+11Bm+1〉+ cS

∫ T

0

‖1Bm+1um+1‖ppd
d−2

≤ Em+1
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Applying Hölder’s inequality and Young’s inequality, we have

c‖1Bm+1um+1‖p
L2p([0,T ],L

pd
d−1 )

≤ sup
[0,T ]

〈upm+11Bm+1〉+ cS

∫ T

0

‖1Bm+1um+1‖ppd
d−2

for a c > 0. Next, applying Hölder’s inequality to both terms in the definition of Um+1,
we obtain, for appropriate α > 0,

Um+1 ≤ c2‖1Bm+1um+1‖p
L2p([0,T ],L

pd
d−1 )

∣∣{um+1 > 0} ∩ [0, T ]×Bm
∣∣αθ .

Combining this with the previous estimate, we have

Um+1 ≤ c2c−1Em+1

∣∣{um+1 > 0} ∩ [0, T ]×Bm
∣∣αθ (2.12)

Now, (2.11) and (2.12) yield

Um+1 ≤ c2c−1Cm4 Um
∣∣{um+1 > 0} ∩ [0, T ]×Bm

∣∣αθ .
Applying (2.10) to the last multiple, we obtain

Um+1 ≤M−pαCm5 U1+α
m

for constant C5 = C5(C4, c, c2, α).

To end the proof, we fix M by M = H
1
pθ′ + C

1
pα2

5 U
1
p

0 . Then U0 ≤ C
− 1
α2

5 Mp. We now
apply Lemma 2.6 (with N = M−pα) to obtain

lim
m
Um = 0.

On the other hand, ∫ T

0

(u− 2M)p+1B(0, 12 )
≤ lim

m
Um.

It follows that

sup
[0,T ]×B(0, 12 )

u+ ≤ 2M ≤ 2

(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′1B(0,1)

〉) 1
pθ′

+K

(∫ T

0

〈up+1B(0,1)〉+

(∫ T

0

〈upθ+ 1B(0,1)〉
) 1
θ
) 1
p

for a generic constant K, as claimed.

Remark 2.8. Let η ∈ C∞c be a refined cutoff function satisfying |∇η| ≤ cη1−γ for some
0 < γ < 1, c > 0. In fact, the weights η = ηr,R in (2.8) can be chosen to satisfy this bound
with generic γ, c0:

|∇ηr,R| ≤ c0(R− r)−1η1−γr,R , 0 < r < R

(such weights were used in [2, 20]). With such choice of η, Proposition 2.2 and thus Propo-
sition 2.7 are also valid for b = b1 + b2 where b1 ∈ Fδ1 , δ1 < 4, and b2 satisfies (1.3), (1.4)
with ν < 4(p−1)

p − 2
√
δ1, p >

2
2−
√
δ1

, and h satisfies (1.3) with some form-bound ν < ∞.
Indeed, we only need to complement the proof of Proposition 2.2 by evaluating, using
the integration by parts,

−2

∫ t

s

〈b2 · ∇v
p
2 , v

p
2 η2〉 =

∫ t

s

〈div b2, v
pη2〉+ 2

∫ t

s

〈b2vpη∇η〉
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and then estimating the RHS from above as follows. We apply the form-boundedness
condition on (div b2)+, i.e. (1.4). As for the last term, we have for every ε5 > 0, by Young’s
inequality,

2

∫ t

s

〈b2vp, η∇η〉 ≤
ε1+a5

1 + a

∫ t

s

〈|b2|1+avpη2〉+
a

a+ 1
ε
− a+1

a
5

∫ t

s

〈vp|∇η|
a+1
a 〉

≤ ε1+a5

1 + a

∫ t

s

〈|b2|1+avpη2〉+ Cε5(R− r)−
a+1
a

∫ t

s

〈vpη
a+1
a (1−γ)〉.

We apply (1.3) in the first term and η
a+1
a (1−γ) ≤ 1{η>0} in the second term. Finally,

assuming that p is chosen so that 1+a
p′ ≥ 1, we modify (2.5) as∣∣∣∣∫ t

s

〈|h|fvp−1η2〉
∣∣∣∣ ≤ ∫ t

s

〈1|h|≥1|h|
1+a
p′ |f ||v|p−1η2〉+

∫ t

s

〈1|h|<1|h||f ||v|p−1η2〉,

so, after applying Young’s inequality as in the proof, we can use condition (1.3) for h.
Now we can repeat the rest of the proof of Proposition 2.2. (We arrive at (2.2) with
(R− r)− a+1

a 1{η>0} instead of |∇η|2, but this is what we need in Proposition 2.7 anyway.)
Of course, the form-bound δ2 of b2 can be arbitrarily large since we can choose ε5 as
small as needed.

Recall: ρ(x) = (1 + κ|x|−2)−β , β > d
4 , κ > 0 is sufficiently small.

Proposition 2.9. Let u be the solution to Cauchy problem (2.1). Fix T > 0 and θ′ ∈]d,∞[.
Then, for all p > pδ, p ≥ 2, there exists a generic constant C such that

‖u‖L∞([0,T ]×Rd) ≤ C sup
z∈Zd

(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′ρ2z〉) 1
pθ′

where ρz(x) := ρ(x− z).

Proof of Proposition 2.9. Applying ρ ≥ c01B(0,1) and (2.6) to the last term in (2.7) of
Proposition 2.7, we arrive at

sup
[0,T ]×B(0, 12 )

u+ ≤ C ′
(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′ρ2〉) 1
pθ′

+ C ′′
(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)
|f |pρ2

〉) 1
p

+ C ′′′
(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ|f |pθρ2〉) 1
pθ

≡ I1 + I2 + I3.

Applying Hölder’s inequality to I2 and I3 (using that θ′ > θ > 1), we arrive at

‖u‖L∞([0,T ]×B(0, 12 ))
≤ C

(∫ T

0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′ρ2〉) 1
pθ′

Since the choice of the centre of the ball B(0, 12 ) was arbitrary, this ends the proof.

2.2 Proof of Theorem 1.3

Once Proposition 2.9 is established, one can construct a martingale solution to (1.1)
via a standard tightness argument. The proof below, included for reader’s convenience,
follows [16, 21, 23].
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Definition 2.10. A probability measure Px on the canonical space
(
C([0, 1],Rd),Bt =

σ{ωs | 0 ≤ s ≤ t}
)

is called a martingale solution to the SDE (1.1) if
1) Px[ω0 = x] = 1.
2)

Ex

∫ t

0

|b(s, ωs)| <∞, 0 < t ≤ 1 (Ex := EPx).

3) For every ϕ ∈ C2
c the process

Mϕ
t := ϕ(ωt)− ϕ(ω0) +

∫ t

0

(−∆ϕ+ b · ∇ϕ)(s, ωs)ds

is a martingale:
Ex[Mϕ

t1 | Bt0 ] = Mϕ
t0

for all 0 ≤ t0 < t1 ≤ 1 Px-a.s.

Let b be a vector field in Fδ, δ < 4, so in general it is locally unbounded. Let us fix
bounded smooth vector fields bn ∈ C∞c ([0,∞[×Rd,Rd) ∩ Fδ (with g = gδ independent of
n) such that

bn → b in L2
loc([0,∞[×Rd,Rd)

and also bn → b a.e. Such vector fields can be constructed by multiplying b by
1{0≤|t|≤n,|x|≤n,|b(x)|≤n}, which preserves form-bound δ and function g, and then applying
a K. Friedrichs mollifier in (t, x), see Appendix A for details. (In fact, we don’t even need
to include the indicator function, which allows to control the form-bound of div b [10,
Sect. 3, 4], cf. Remark 2.8.)

Fix x ∈ Rd. By a classical result, there exist strong solutions Xn to the SDEs

Xn
t = x−

∫ t

0

bn(s,Xn
s )ds+

√
2Bt, n = 1, 2, . . . ,

where Bt is a Brownian motion in Rd on a fixed complete probability space (Ω,F ,Ft,P).
Let 0 ≤ t0 < t1 ≤ 2. Consider the terminal-value problem for t ≤ t1

∂tun + ∆un + bn · ∇un + F = 0, un(t1) = 0,

where F ∈ Cc(Rd+1). Then the Itô formula yields

E

∫ t1

t0

F (r,Xn
r )dr = un(t0, X

n
t0).

Hence, selecting F = |h|f , where h ∈ Fν ∩ C∞c (Rd,Rd) and f ∈ Cc are as in the previous
section, we have by Proposition 2.9∣∣∣∣E∫ t1

t0

|h(s,Xn
s )|f(s,Xn

s )ds

∣∣∣∣ ≤ C sup
z∈Zd

(∫ t1

t0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′ρ2z〉) 1
pθ′

.

(2.13)
The following two instances of estimate (2.13) will yield the sought martingale

solution:
1. (2.13) with h = bn and f ≡ 1 (here f ∈ Cc ⇒ f ≡ 1 using Fatou’s Lemma):

E

∫ t1

t0

|bn(s,Xn
s )|ds ≤ C sup

z∈Zd

(∫ t1

t0

〈(
1{|bn|≥1} + 1{|bn|<1}|bn|p

)θ′
ρ2z

〉) 1
pθ′

≤ C0(t1 − t0)µ for generic µ > 0 and C0 (indep. of x). (2.14)
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(Note that since C0 is a generic constant, Remark 2.3 also applies to inequality (2.14),
and yields that C0 does not depend on n.) Inequality (2.14) allows to verify tightness of
probability measures

Pnx := (P ◦Xn)−1

on
(
C([0, 1],Rd),Bt

)
. Here we argue as in [16, proof of Theorem 1.1]. Namely, first note

that we have, for a stopping time 0 ≤ τ ≤ 1,

Xn
τ+σ,x −Xn

τ,x =

∫ τ+σ

τ

bn(s,Xn
s,x)ds+

√
2(Bτ+σ −Bτ ), 0 < σ < 1. (2.15)

Next, note that (2.14) yields

E

∫ τ+σ

τ

|bn(s,Xn
s,x)|ds ≤ C0σ

µ, (2.16)

see Remark 1.2 in [21] (to show that (2.14)⇒ (2.16), the authors of [21] use a decreasing
sequence of stopping times τm converging to τ and taking values in S = {k2−m | k ∈
{0, 1, 2, . . . }}, and note that the proof of estimate (2.16) with τm in place of τ can be
reduced to applying (2.14) on intervals [t0, t1] := [c, c+ σ], c ∈ S.) Thus, applying (2.16)
in (2.15), one obtains

E sup
σ′∈[0,σ]

|Xn
τ+σ′,x −Xn

τ,x| ≤ C0σ
µ + C1σ

1
2 =: H(σ).

Now, applying [22, Lemma 2.7] (a Chebyshev-type argument), we obtain: there exists a
constant Ĉ independent of n such that

sup
n

sup
x∈Rd

E

[
sup

t∈[0,1],σ′∈[0,σ]
|Xn

t+σ′,x −Xn
t,x|

1
2

]
≤ ĈH(σ). (2.17)

Now, applying Chebyshev’s inequality in (2.17), since H(σ) ↓ 0 as σ ↓ 0, we have for
every ε > 0

lim
σ↓0

sup
n

sup
x∈Rd

P

[
sup

t∈[0,1],σ′∈[0,σ]
|Xn

t+σ′,x −Xn
t,x| > ε

]
= 0.

It follows that {Pnx}∞n=1 is a tight family of probability measures (see [18, Theorem 1.3.2]).
Therefore, for every x ∈ Rd there exists a subsequence {Pnkx } and a probability measure
Px such that

Pnkx → Px weakly. (2.18)

Let us rewrite (2.13) as∣∣∣∣Enx ∫ t1

t0

|h(s, ωs)|f(s, ωs)ds

∣∣∣∣ ≤ C sup
z∈Zd

(∫ t1

t0

〈(
1{|h|≥1} + 1{|h|<1}|h|p

)θ′ |f |pθ′ρ2z〉) 1
pθ′

,

(2.19)
where Enx := EPnx .

Using (2.19) with h := bm and then applying (2.18), we obtain

Ex

∫ t1

t0

|bm(s, ωs)|ds ≤ C0(t1 − t0)µ,

and hence, using e.g. Fatou’s Lemma,

Ex

∫ t1

t0

|b(s, ωs)|ds ≤ C0(t1 − t0)µ
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(in view of (2.19) and (2.18), changing b on a measure zero set does not affect the
previous estimate). Our goal now is to show that the limit measure Px solves the
martingale problem for (1.1). It suffices to show that Ex[Mϕ

t1G] = Ex[Mϕ
t0G] for every

Bt0 -measurable G ∈ Cb
(
C([0, T ],Rd)

)
. The task reduces to passing to the limit in n in

Enx [Mϕ,n
t1 G] = Enx [Mϕ,n

t0 G], where

Mϕ,n
t = ϕ(ωt)− ϕ(ω0) +

∫ t

0

(−∆ϕ+ bn · ∇ϕ)(s, ωs)ds.

That is, we need to prove

lim
nk
Enkx

∫ t

0

(bnk · ∇ϕ)(s, ωs)G(ω)ds = Ex

∫ t

0

(b · ∇ϕ)(s, ωs)G(ω)ds. (2.20)

This is done using the weak convergence (2.18) and the next estimate.
2. (2.19) with h := bm1

− bm2
∈ F√2δ, f := |∇ϕ|:

Enx

∫ t1

t0

∣∣bm1(s, ωs)− bm2(s, ωs)
∣∣|∇ϕ(s, ωs)|ds

≤ sup
z∈Zd

(∫ t1

t0

〈(
1{|bm1

−bm2
|≥1} + 1{|bm1

−bm2
|<1}|bm1 − bm2 |p|∇ϕ|pθ

′)θ′
ρ2z

〉) 1
pθ′

.

Since ϕ has compact support, the RHS converges to 0 as m1, m2 →∞. It follows from
the weak convergence (2.18) (and an argument similar to the one in 1) that

Ex

∫ t1

t0

∣∣b(s, ωs)− bm(s, ωs)
∣∣|∇ϕ(s, ωs)|ds

≤ sup
z∈Zd

(∫ t1

t0

〈(
1{|b−bm|≥1} + 1{|b−bm|<1}|b− bm|p|∇ϕ|pθ

′)θ′
ρ2z

〉) 1
pθ′

,

where the RHS converges to 0 as m→∞. Now, we prove (2.20):∣∣∣∣Enkx ∫ t

0

(bnk · ∇ϕ)(s, ωs)G(ω)ds− Ex
∫ t

0

(b · ∇ϕ)(s, ωs)G(ω)ds

∣∣∣∣
≤
∣∣∣∣Enkx ∫ t

0

|bnk − bm||∇ϕ|(s, ωs)|G(ω)|ds
∣∣∣∣

+

∣∣∣∣Enkx ∫ t

0

(bm · ∇ϕ)(s, ωs)G(ω)ds− Ex
∫ t

0

(bm · ∇ϕ)(s, ωs)G(ω)ds

∣∣∣∣
+

∣∣∣∣Ex ∫ t

0

|bm − b||∇ϕ|(s, ωs)|G(ω)|ds
∣∣∣∣ ,

where the first and the third terms in the RHS can be made arbitrarily small using the
estimates above and the boundedness of G by selecting m, and then nk, sufficiently large.
The second term can be made arbitrarily small in view of (2.18) by selecting nk even
larger. This ends the proof of Theorem 1.3.

Remark 2.11. Let b = b(x), b ∈ Fδ, δ < 4. Let un be defined by

(∂t −∆ + bn · ∇)un = 0, un(0) = g ∈ Cb ∩ L1,

where bn are as above.
1. For every p > pδ, the limit

u := s-Lp- lim
n
un loc. uniformly in t ≥ 0, (2.21)
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exists and determines a weak solution (in Lp) to Cauchy problem (∂t −∆ + b · ∇)u = 0,
u(0+) = g. For the proof see [7] and [11].

2. One can apply Moser’s method in Lp, p > pδ, p ≥ 2 to show Hölder continuity of the
weak solution u. Combined with (2.21), this allows to conclude that un → u everywhere
on Rd. We plan to address these matters in detail elsewhere.

A Appendix

Let b ∈ Fδ with function g = gbδ ∈ L1
loc([0,∞[). The following construction of bounded

smooth vector fields {bm} satisfying

bm → b in L2
loc([0,∞[×Rd,Rd) (A.1)

and ∫ ∞
0

‖bm(t, ·)ξ(t, ·)‖22dt ≤ δ
∫ ∞
0

‖∇ξ(t, ·)‖22dt+

∫ ∞
0

g(t)‖ξ(t, ·)‖22dt (A.2)

for all ξ ∈ C∞c ([0,∞[×Rd), for the same function g, is taken from [6, Sect.3.].
Define bm by the following formula (extending b to t < 0 by 0):

bm := cmγεm ∗ (1mb), cm, εm > 0,

where 1m is the indicator of {(t, x) | |b(t, x)| ≤ m, |x| ≤ m, |t| ≤ m} and γε is a Friedrichs
mollifier on R×Rd. Let us show that, for appropriate choice of εm ↓ 0 and cm ↑ 1, (A.1)
and (A.2) are satisfied. Put b̃m = γεm ∗ (1mb) and write

b̃m = 1mb+
(
b̃m − 1mb

)
.

Clearly, the first term 1mb ∈ Fδ with the same g = gbδ. In turn, since for all m = 1, 2, . . .

we have

1mb ∈ L∞([0,∞[, Lr) for every d ≤ r <∞, sprt1mb ⊂ [0,m]×B(0,m),

the following is true: given any αm ↓ 0 we can select εm ↓ 0 so that e.g.

‖b̃m − 1mb‖Lr([0,∞[,Lr) ≤ αm, (A.3)

and so the second term b̃m − 1mb ∈ FCSα2
m

with g ≡ 0, where CS is the constant in the
Sobolev inequality (for details, if needed, see Appendix A in [6]). Hence,

b̃m ∈ Fδm with δm = (
√
δ +

√
CSα2

m)2 and g = gbδ,

Now, selecting cm = δ
δm

(clearly, cm ↑ 1) and recalling that bm = cmb̃m, we have bm ∈ Fδ
with the same g = gbδ, i.e. (A.2) holds. In turn, (A.1) is clear from 1m ↑ 1 and the
Dominated Convergence Theorem, (A.3) and cm ↑ 1.
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