

Electron. J. Probab. **28** (2023), article no. 69, 1–15. ISSN: 1083-6489 https://doi.org/10.1214/23-EJP957

Sharp solvability for singular SDEs^{*}

Damir Kinzebulatov[†]

Yuliy A. Semënov[‡]

Abstract

The attracting inverse-square drift provides a prototypical counterexample to solvability of singular SDEs: if the coefficient of the drift is larger than a certain critical value, then no weak solution exists. We prove a positive result on solvability of singular SDEs where this critical value is attained from below (up to strict inequality) for the entire class of form-bounded drifts. This class contains e.g. the inverse-square drift, the critical Ladyzhenskaya-Prodi-Serrin class. The proof is based on a L^p variant of De Giorgi's method.

Keywords: parabolic equations, stochastic equations, singular drifts. **MSC2020 subject classifications:** 60H10; 35J75. Submitted to EJP on October 25, 2021, final version accepted on May 3, 2023.

1 Introduction and main result

The paper addresses the question: what are the minimal assumptions on a locally unbounded vector field $b : [0, \infty[\times \mathbb{R}^d \to \mathbb{R}^d, d \ge 3]$, also called a drift, such that the stochastic differential equation (SDE)

$$dX_t = -b(t, X_t)dt + \sqrt{2}dB_t, \quad X_0 = x \in \mathbb{R}^d$$

$$(1.1)$$

admits a martingale (or weak) solution? Here B_t is a standard Brownian motion in \mathbb{R}^d . There is an extensive literature devoted to the search for such minimal assumptions, as well as to the question of what additional hypothesis on b is required in order to ensure the uniqueness of the solution. The interest is motivated, in particular, by physical applications and applications to the theory of stochastic optimal control.

It is known that if b is in the Ladyzhenskaya-Prodi-Serrin class

$$|b| \in L^{q}_{loc}([0,\infty[,L^{r}+L^{\infty}), \frac{d}{r}+\frac{2}{q} < 1, 2 < q \le \infty$$
 (LPS)

^{*}The research of D.K. is supported by the NSERC (grant RGPIN-2017-05567).

[†]Université Laval, Québec, Canada. E-mail: damir.kinzebulatov@mat.ulaval.ca

[‡]University of Toronto, Toronto, Canada. E-mail: semenov.yu.a@gmail.com

then equation (1.1) has a unique in law martingale solution, see Portenko [15]. The strong existence and uniqueness is due to Krylov-Röckner [14]. In 2014, Beck-Flandoli-Gubinelli-Maurelli [1], extending an argument in [3], gave the following counterexample to weak solvability of (1.1) (among many results on the strong existence and uniqueness for (1.1) with b in the critical Ladyzhenskaya-Prodi-Serrin class

$$|b| \in L^{q}_{loc}([0,\infty[,L^{r}+L^{\infty}), \frac{d}{r}+\frac{2}{q} \le 1, 2 < q \le \infty).$$
 (LPS_c)

Example 1.1. Consider the inverse-square drift $b(x) = \sqrt{\delta} \frac{d-2}{2} |x|^{-2} x$ ($d \ge 3$).

The following are true:

(a) If $\delta > 4(\frac{d}{d-2})^2$, then equation (1.1) with the initial point x = 0 has no weak solution. (b) If $\delta > 4$, then for every $x \neq 0$ the solution to (1.1) arrives at the origin in finite time with positive probability.

The vector field in Example 1.1 has a stronger singularity than any vector field in (LPS_c) . Intuitively, when $\delta > 4$, the attraction to the origin is so strong that the process, even starting at $x \neq 0$, does not look like a Brownian motion. See also [19] regarding (b).

The fact that the value $\delta = 4$ is critical was known, although in a different context: the theory of operator $-\Delta + b \cdot \nabla$. More precisely, let b be a form-bounded vector field, i.e.

 $|b|^2 \leq \delta(-\Delta) + g_\delta$ in the sense of quadratic forms (see below)

(e.g. *b* in Example 1.1 is form-bounded). Consider Cauchy problem

$$(\partial_t - \Delta + b \cdot \nabla)u = 0, \quad u(0) = f \in L^p.$$
(1.2)

(Regarding the relationship with SDE (1.1), one expects, of course, in the time-homogeneous case b = b(x), $u(t, x) = \mathbf{E}[f(X_t)]$.) Multiplying the equation in (1.2) by $u|u|^{p-2}$, integrating by parts and using quadratic inequality and form-boundedness, one obtains that the admissible p that give e.g. an energy inequality turn out to be $p > 2/(2 - \sqrt{\delta})$. In fact, it was proved in [11] that if b = b(x) has form-bound $\delta < 4$, then there exists a quasi contraction strongly continuous Markov semigroup in L^p , $p > 2/(2 - \sqrt{\delta})$ that provides a strong solution to Cauchy problem (1.2). The interval of contraction solvability can be extended to $[2/(2 - \sqrt{\delta}), \infty[$ and is sharp, see [7]. Now, as $\delta \uparrow 4$, this interval disappears, and with it the theory of the operator $-\Delta + b \cdot \nabla$. (Regarding time-inhomogeneous b, see [17].)

Definition 1.2. A Borel measurable vector field $b : [0, \infty[\times \mathbb{R}^d \to \mathbb{R}^d]$ is said to be form-bounded if $|b| \in L^2_{loc}([0, \infty[\times \mathbb{R}^d)]$ and there exist a constant $\delta > 0$ and a function $0 \le g_{\delta} \in L^1_{loc}([0, \infty[)]$ such that

$$\int_0^\infty \|b(t,\cdot)\xi(t,\cdot)\|_2^2 dt \le \delta \int_0^\infty \|\nabla\xi(t,\cdot)\|_2^2 dt + \int_0^\infty g_\delta(t)\|\xi(t,\cdot)\|_2^2 dt$$

for all $\xi \in C_c^{\infty}([0,\infty[\times \mathbb{R}^d) \text{ (written as } b \in \mathbf{F}_{\delta}).$ Here $\|\cdot\|_p := \|\cdot\|_{L^p(\mathbb{R}^d)}.$

Examples of form-bounded vector fields include: $b \in (LPS_c)$, the vector field in Example 1.1 (by Hardy's inequality) or, more generally, vector fields b = b(x) with |b|in the weak L^d class or the scale-invariant Campanato-Morrey class with integrability constant > 2. One can construct, for every $\varepsilon > 0$, a form-bounded b = b(x) with $|b| \notin L^{2+\varepsilon}$. See [6, 7] for details and other examples.

The present paper deals with SDE (1.1) having form-bounded vector field $b \in \mathbf{F}_{\delta}$. In [6] it was proved that if the form-bound δ satisfies $\delta < d^{-2}$, then, for every $x \in \mathbb{R}^d$, (1.1) has a weak solution, given by a Feller evolution family, and is unique in a large class. In

EJP 28 (2023), paper 69.

the time-homogeneous case b = b(x) the result is stronger, that is, b is required to be form-bounded with $\delta < (2(d-2)^{-1} \wedge 1)^2$ [8], or even only weakly form-bounded [9], which allows to treat vector fields b that are a priori only in L^1_{loc} . In both cases the solutions are determined by a Feller semigroup, and are unique among weak solutions that are constructed using an approximation of b by smooth vector fields that do not increase the form-bound δ of b.

See also Krylov [13] regarding Markov weak solvability of (1.1) for $|b| \in L^q_{loc}([0, \infty[, L^r + L^\infty), \frac{d}{r} + \frac{1}{q} \leq 1, r \geq d, q \geq 1$ (in [13] the SDE can in fact have just measurable diffusion coefficients).

In [6, 8, 9], the construction of the Feller evolution family (semigroup) and the weak solution to (1.1) is based on gradient estimates on solution u to the parabolic equation (1.2) (solution v to the elliptic equation $(\lambda - \Delta + b \cdot \nabla)v = f$) with $b \in \mathbf{F}_{\delta}$. In [6] and [8] these estimates are, respectively,

$$\|\nabla u\|_{L^{\infty}([0,T],L^{q})}, \|\nabla |\nabla u|^{\frac{q}{2}}\|_{L^{2}([0,T],L^{2})}^{\frac{d}{q}} \leq C \|\nabla f\|_{q} \quad \text{ for } q \in]d, k(\delta)[\quad \text{ if } \delta < d^{-2}]$$

and

$$\|\nabla v\|_{L^q}, \|\nabla |\nabla v|^{\frac{q}{2}}\|_{L^2}^{\frac{2}{q}} \le C' \|f\|_q \quad \text{for } q \in]2 \lor (d-2), k'(\delta)[\quad \text{if } \delta < \left(2(d-2)^{-1} \land 1\right)^2.$$

It is not clear how to extend these estimates to δ greater than $(2(d-2)^{-1} \wedge 1)^2$, not to mention δ going up to 4. Thus, there is a gap between the hypothesis on δ in [6, 8, 9] and in Example 1.1. The purpose of this paper is to fill this gap.

Theorem 1.3. Let $d \ge 3$, $b \in \mathbf{F}_{\delta}$. If $\delta < 4$, then for every $x \in \mathbb{R}^d$ there exists a martingale solution of SDE (1.1).

Theorem 1.3 shows that Example 1.1 is essentially sharp, at least as $d \to \infty$. A crucial feature of Theorem 1.3 is that it attains $\delta = 4$, up to the strict inequality, for the entire class of form-bounded vector fields.

We leave aside the important issues of the Feller property and the uniqueness of the constructed martingale solution when $\delta < 4$. Let us only mention that if one is willing to impose additional assumptions on div b (namely, the Kato class condition), then Nash's method allows to obtain two-sided Gaussian bounds on the heat kernel of (1.2), see [10], from which the Feller property of course follows.

We prove the main analytic result (Proposition 2.7 below) using De Giorgi's iterations. They are carried out in L^p , $p > \frac{2}{2-\sqrt{\delta}}$, $p \ge 2$ rather than in the standard for the De Giorgi method L^2 space, as is needed to handle $1 \le \delta < 4$. In this regard, let us make a trivial observation that passing to L^p right away, using the fact that $u^{\frac{p}{2}}$ is a subsolution and then applying to $u^{\frac{p}{2}}$ the standard De Giorgi iteration procedure in L^2 , does not allow to treat $1 \le \delta < 4$. We will have to follow the iteration procedure from the very beginning and adjust it accordingly.

Earlier, De Giorgi's method in L^2 was used by Zhang-Zhao [21], Zhao [23], Röckner-Zhao [16]. They prove, in particular, results on weak well-posedness of (1.1) with b having not too singular divergence and satisfying

$$|b| \in L^q_{\text{loc}}([0,\infty[,L^r+L^\infty), \quad \frac{d}{r} + \frac{2}{q} < 2.$$

Similarly to these papers, we apply a tightness argument to construct a martingale solution once Proposition 2.7 is established, see Section 2.2. We also refer to Hara [5] and Kinzebulatov-Vafadar [12] for the proofs of a posteriori Harnack inequality and Hölder continuity of solutions to divergence-form elliptic equations, using De Giorgi's and Moser's methods, with, respectively, b = b(x) in \mathbf{F}_{δ} , $\delta < 1$, and with b = b(x) in a

substantially larger class of vector fields satisfying the multiplicative form-boundedness condition

$$|b| \in L^1_{\text{loc}} \quad \text{and} \quad ||b|^{\frac{1}{2}} \varphi||_2^2 \le \delta \|\nabla \varphi\|_2 \|\varphi\|_2 + c_\delta \|\varphi\|_2^2, \quad \forall \varphi \in C^\infty_c(\mathbb{R}^d)$$

with $\delta < \infty$, $c_{\delta} < \infty$, but additionally having form-bounded divergence.

Finally, we note that passing to the L^p variant of De Giorgi's method does not exclude other singular drift perturbations known to be amenable in L^2 (cf. [5, 20]). For instance, the assertion of Theorem 1.3 is also valid for $b = b_1 + b_2$, where $b_1 \in \mathbf{F}_{\delta_1}$, $\delta_1 < 4$ and b_2 satisfies:

1) there exists $0 < a \leq 1$ such that $|b_2| \in L^{1+a}_{\mathrm{loc}}([0,\infty[imes \mathbb{R}^d)$ and

$$\int_0^\infty \langle |b_2(t,\cdot)|^{1+a} \xi^2(t,\cdot) \rangle dt \le \delta_2 \int_0^\infty \|\nabla \xi(t,\cdot)\|_2^2 dt + \int_0^\infty g_\delta(t) \|\xi(t,\cdot)\|_2^2 dt$$
(1.3)

for all $\xi \in C_c^{\infty}([0,\infty[\times \mathbb{R}^d))$, for some $0 < \delta_2 < \infty$ and $0 \le g_{\delta_2} \in L^1_{\text{loc}}([0,\infty[))$. Here and everywhere below,

$$\langle f,g \rangle = \langle fg \rangle := \int_{\mathbb{R}^d} fg dx.$$

2) the divergence $(\operatorname{div} b_2)_+ \in L^1_{\operatorname{loc}}([0,\infty[\times \mathbb{R}^d) \text{ and }$

$$\int_{0}^{\infty} \left\langle (\operatorname{div} b_{2})_{+}(t, \cdot)\xi^{2}(t, \cdot) \right\rangle dt \leq \nu \int_{0}^{\infty} \|\nabla\xi(t, \cdot)\|_{2}^{2} dt + \int_{0}^{\infty} g_{\nu}(t)\|\xi(t, \cdot)\|_{2}^{2} dt$$
(1.4)

with $\nu < 4 - 2\sqrt{\delta_1}$ for some $0 \le g_\nu \in L^1_{\text{loc}}([0,\infty[))$. We say that $(\operatorname{div} b_2)_+$ is a form-bounded potential (for instance, it can be a function in the weak $L^{\frac{d}{2}}$ space). For details, see Remark 2.8 below. There we explain that $\nu < 4 - 2\sqrt{\delta_1}$ suffices, provided that we prove the energy inequality in L^p for p such that $\nu < 4\frac{p-1}{p} - 2\sqrt{\delta_1}$. If we stay in L^2 , then we have to impose more restrictive condition $\nu < 2 - 2\sqrt{\delta_1}$.

The class (1.3) is essentially twice more singular than \mathbf{F}_{δ} . It first appeared in Q. S. Zhang [20], where the author used Moser's method in L^2 to prove, assuming that the vector field has zero divergence and satisfies (1.3), the local boundedness of weak solutions to the corresponding parabolic equation, and applied this result to study Navier-Stokes equations in \mathbb{R}^3 .

Let us mention that the results of this paper in principle can be extended to SDEs

$$dX_t = -b(t, X_t)dt + \sqrt{2\sigma(t, X_t)}dB_t, \quad X_0 = x \in \mathbb{R}^d$$

having form-bounded b and "form-bounded diffusion coefficients", i.e. such that matrix $a = \sigma^{\top} \sigma$ is bounded, uniformly non-degenerate and such that the derivatives $\nabla_i \sigma_{jk}$ are in \mathbf{F}_{δ_1} with δ_1 sufficiently small. (Such diffusion coefficients in the time-homogeneous case $\sigma = \sigma(x)$, considered in [8], include e.g. the class $\sigma_{jk} \in W^{1,d}$, as well as some matrices having critical discontinuities.) Indeed, since $\nabla_i \sigma_{jk}$ are form-bounded, we can rewrite the corresponding non-divergence form parabolic equation in divergence form, now having form-bounded drift $\nabla \sigma + b$, and then apply De Giorgi's method which, of course, can handle $-\nabla \cdot a \cdot \nabla$ instead of $-\Delta$.

Acknowledgements

We are grateful to the referees for careful reading of our manuscript and making a number of valuable comments.

2 Proof of Theorem 1.3

2.1 De Giorgi's iterations in L^p

In the next two propositions, u is the solution to Cauchy's problem for inhomogeneous Kolmogorov equation

$$(\partial_t - \Delta + b \cdot \nabla)u = |\mathbf{h}|f, \quad u(0) = 0, \tag{2.1}$$

where

$$b \in \mathbf{F}_{\delta} \cap C_{c}^{\infty}(]0, \infty[\times \mathbb{R}^{d}), \quad \delta < 4,$$

 $\mathsf{h} \in \mathbf{F}_{\nu} \cap C_{c}^{\infty}(]0, \infty[\times \mathbb{R}^{d}), \quad \nu < \infty \qquad \text{and } f \in C_{c}$

Since the coefficients of (2.1) are smooth with compact support, the solution u exists and is sufficiently regular to justify the manipulations with the equation below.

Set

$$p_{\delta} := \frac{2}{2 - \sqrt{\delta}}.$$

Definition 2.1. We will call a constant generic if it only depends on d, p, δ , ν , g_{δ} , g_{ν} (and T > 0, in case we work over a fixed finite time interval [0, T]).

Proposition 2.2 (Caccioppoli's inequality). Let u be the solution to Cauchy problem (2.1). Let $p > p_{\delta}$, $p \ge 2$. Set $u_c := (u - c)_+$, $c \in \mathbb{R}$. Fix T > 0 and $\eta \in C_c^{\infty}(\mathbb{R}^d)$. Then, $0 < t - s \le T$,

$$\sup_{\vartheta \in [s,t]} \langle u_c^p(\vartheta)\eta^2 \rangle + \int_s^t \langle |\nabla(\eta u_c^{\frac{p}{2}})|^2 \rangle$$

$$\leq C_1 \langle u_c^p(s)\eta^2 \rangle + C_2 \int_s^t \langle u_c^p |\nabla\eta|^2 \rangle + C_3 \int_s^t \langle \left(\mathbf{1}_{\{|\mathbf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathbf{h}|<1\}} |\mathbf{h}|^p \right) \mathbf{1}_{\{u>c\}} |f|^p \eta^2 \rangle$$
(2.2)

for generic constants C_1 - $C_3 > 0$.

The last term in the RHS has this form because this is what will be needed in the next section. There we will fix a general discontinuous $b \in \mathbf{F}_{\delta}$ and will apply Proposition 2.2 (or rather its consequence, Proposition 2.9) to bounded smooth vector field $\{b_n\} \subset \mathbf{F}_{\delta} \cap C_c^{\infty}(]0, \infty[\times \mathbb{R}^d)$ that approximate b in $L^2_{\text{loc}}([0, \infty[\times \mathbb{R}^d, \mathbb{R}^d)$ and preserve its form-bound δ (and have g independent of n). The right-hand side in (2.1) will be chosen as follows:

1) $h = b_n$, in order to apply a tightness argument to construct a candidate for the martingale solution to (1.1)

2) $h = b_{m_1} - b_{m_2}$, in order to pass to the limit in the martingale problem; we will take $f = |\nabla \varphi|$, where $\varphi \in C_c^2$ is a test function in the martingale problem.

The construction of such b_n is discussed in Appendix A.

Remark 2.3. Let us emphasize that the constants C_1 - C_3 in Proposition 2.2 are generic, so, by definition, they are allowed to depend on form-bounds δ and ν of b and h, respectively. However, since b_n 's preserve form-bound δ of b, once we apply Proposition 2.2 with choices 1), 2), we will be able to take $n \to \infty$ while still controlling constants C_1 - C_3 . This remark also applies to Propositions 2.7 and 2.9.

Remark 2.4. If we were to multiply equation (2.1) by a constant, this would scale the LHS in (2.2) and the first two terms in the RHS, but this would also change the formbound ν of h (and function g_{ν}) and hence would change constant C_3 in front of the third term in the RHS.)

EJP 28 (2023), paper 69.

Proof of Proposition 2.2. Put for brevity $v := u_c$. It suffices to prove

$$\sup_{\vartheta \in [s,t]} \langle v^{p}(\vartheta)\eta^{2} \rangle + \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2}\eta^{2} \rangle \tag{2.3}$$

$$\leq C_{1} \langle v^{p}(s)\eta^{2} \rangle + C_{2} \int_{s}^{t} \langle v^{p}|\nabla \eta|^{2} \rangle + C_{3} \int_{s}^{t} \langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}}|\mathsf{h}|^{p}\right) \mathbf{1}_{\{v>0\}} |f|^{p}\eta^{2} \rangle.$$

We multiply equation (2.1) by $v^{p-1}\eta^2$ and integrate to obtain

$$\begin{split} \langle v^{p}(t)\eta^{2}\rangle - \langle v^{p}(s)\eta^{2}\rangle + \frac{4(p-1)}{p} \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2}\eta^{2}\rangle \\ & \leq 4 \left| \int_{s}^{t} \langle \nabla v^{\frac{p}{2}}, v^{\frac{p}{2}}\eta\nabla\eta\rangle \right| + 2 \left| \int_{s}^{t} \langle b \cdot \nabla v^{\frac{p}{2}}, v^{\frac{p}{2}}\eta^{2}\rangle \right| + \left| \int_{s}^{t} \langle |\mathbf{h}| f v^{p-1}\eta^{2}\rangle \right| \end{split}$$

where we estimate in the RHS:

1.

$$4\left|\int_{s}^{t} \langle \nabla v^{\frac{p}{2}}, v^{\frac{p}{2}} \eta \nabla \eta \rangle\right| \leq 2\varepsilon_{1} \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2} \eta^{2} \rangle + \frac{2}{\varepsilon_{1}} \int_{s}^{t} \langle v^{p} |\nabla \eta|^{2} \rangle \qquad (\varepsilon_{1} > 0).$$
2.

$$\begin{split} 2\left|\int_{s}^{t} \langle b \cdot \nabla v^{\frac{p}{2}}, v^{\frac{p}{2}} \eta^{2} \rangle\right| &\leq \frac{1}{\sqrt{\delta}} \int_{s}^{t} \langle |b|^{2} v^{p} \eta^{2} \rangle + \sqrt{\delta} \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2} \eta^{2} \rangle \\ & (\text{we are using } b \in \mathbf{F}_{\delta}) \\ &\leq \frac{1}{\sqrt{\delta}} \left(\delta \int_{s}^{t} \langle |\nabla (\eta v^{\frac{p}{2}})|^{2} \rangle + \int_{s}^{t} g_{\delta} \langle v^{p} \eta^{2} \rangle \right) + \sqrt{\delta} \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2} \eta^{2} \rangle. \end{split}$$

We bound $|\nabla(\eta v^{\frac{p}{2}})|^2 \leq (1+\varepsilon_2)\langle |\nabla v^{\frac{p}{2}}|^2\eta^2\rangle + (1+\varepsilon_2^{-1})\langle v^p|\nabla\eta|^2\rangle$, $\varepsilon_2 > 0$. Then

$$\begin{split} \sup_{\vartheta \in [s,t]} \langle v^p(\vartheta) \eta^2 \rangle + \left[\frac{4(p-1)}{p} - (2+\varepsilon_2)\sqrt{\delta} - 2\varepsilon_1 \right] \int_s^t \langle |\nabla v^{\frac{p}{2}}|^2 \eta^2 \rangle \\ & \leq \langle v^p(s) \eta^2 \rangle + \frac{1}{\sqrt{\delta}} \int_s^t g_\delta \langle v^p \eta^2 \rangle + C_2' \int_s^t \langle v^p |\nabla \eta|^2 \rangle + \left| \int_s^t \langle |\mathsf{h}| f v^{p-1} \eta^2 \rangle \right|. \end{split}$$

Now, assuming first that T>0 is sufficiently small so that $\frac{1}{\sqrt{\delta}} \left(\int_s^t g_\delta \right) < \frac{1}{3}$, we obtain

$$\frac{2}{3} \sup_{\vartheta \in [s,t]} \langle v^{p}(\vartheta)\eta^{2} \rangle + \left[\frac{4(p-1)}{p} - (2+\varepsilon_{2})\sqrt{\delta} - 2\varepsilon_{1} \right] \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2}\eta^{2} \rangle \\
\leq C_{1}' \langle v^{p}(s)\eta^{2} \rangle + C_{2}' \int_{s}^{t} \langle v^{p}|\nabla \eta|^{2} \rangle + C_{3}' \left| \int_{s}^{t} \langle |\mathsf{h}| f v^{p-1}\eta^{2} \rangle \right|.$$
(2.4)

Next, using the reproduction property, we extend the last inequality to arbitrary T>0 (at expense of increasing $C_i'=C_i'(T)$, i=1,2,3).

It remains to estimate the last term in the RHS of (2.4):

$$\left| \int_{s}^{t} \langle |\mathbf{h}| f v^{p-1} \eta^{2} \rangle \right| \\
\leq \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}| \geq 1} |\mathbf{h}|^{\frac{2}{p'}} |f| |v|^{p-1} \eta^{2} \rangle + \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}| < 1} |\mathbf{h}| |f| |v|^{p-1} \eta^{2} \rangle =: I_{1} + I_{2}, \quad (2.5)$$

EJP 28 (2023), paper 69.

Page 6/15

where, by Young's inequality,

$$\begin{split} I_{1} &\leq \frac{\varepsilon_{3}^{p'}}{p'} \int_{s}^{t} \langle \mathbf{1}_{|\mathsf{h}| \geq 1} |\mathsf{h}|^{2} v^{p} \eta^{2} \rangle + \frac{\varepsilon_{3}^{-p}}{p} \int_{s}^{t} \langle \mathbf{1}_{|\mathsf{h}| \geq 1} \mathbf{1}_{\{v > 0\}} |f|^{p} \eta^{2} \rangle \qquad (\varepsilon_{3} > 0) \\ (\text{we are using } \mathsf{h} \in \mathbf{F}_{\nu}) \\ &\leq \frac{\varepsilon_{3}^{p'}}{p'} \left(\nu \int_{s}^{t} |\nabla(\eta v^{\frac{p}{2}})|^{2} \rangle + \int_{s}^{t} g_{\nu} \langle v^{p} \eta^{2} \rangle \right) + \frac{\varepsilon_{3}^{-p}}{p} \int_{s}^{t} \langle \mathbf{1}_{|\mathsf{h}| \geq 1} \mathbf{1}_{\{v > 0\}} |f|^{p} \eta^{2} \rangle, \end{split}$$

and

$$I_{2} \leq \frac{\varepsilon_{4}^{p'}}{p'} \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}|<1} v^{p} \eta^{2} \rangle + \frac{\varepsilon_{4}^{-p}}{p} \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}|<1} |\mathbf{h}|^{p} \mathbf{1}_{\{v>0\}} |f|^{p} \eta^{2} \rangle \qquad (\varepsilon_{4}>0).$$

Inserting these estimates in (2.4) and taking care of the term $\int_s^t g_\nu \langle v^p \eta^2 \rangle$ in the same way as we did above, we arrive at

$$C \sup_{r \in [s,t]} \langle v^{p}(r)\eta^{2} \rangle + \left[\frac{4(p-1)}{p} - (2+\varepsilon_{2})\sqrt{\delta} - 2\varepsilon_{1} - \frac{\varepsilon_{3}^{p'}}{p'}\nu - \frac{\varepsilon_{4}^{p'}}{p'} \right] \int_{s}^{t} \langle |\nabla v^{\frac{p}{2}}|^{2}\eta^{2} \rangle$$

$$\leq C_{1}'' \langle v^{p}(s)\eta^{2} \rangle + C_{2}'' \int_{s}^{t} \langle v^{p} |\nabla \eta|^{2} \rangle + C_{3}'' \int_{s}^{t} \langle \left(\mathbf{1}_{\{|\mathsf{h}| \ge 1\}} + \mathbf{1}_{\{|\mathsf{h}| < 1\}} |\mathsf{h}|^{p} \right) \mathbf{1}_{\{v > 0\}} |f|^{p}\eta^{2} \rangle,$$

where the appropriate constant C is positive provided that ε_3 , ε_4 are sufficiently small. Note that $\frac{4(p-1)}{p} - 2\sqrt{\delta} > 0$ if and only if $p > p_{\delta}$. Since the latter is a strict inequality, we can and will select ε_i (i = 1, 2, 3, 4) sufficiently small so that the coefficient of $\int_s^t \langle |\nabla v^{\frac{p}{2}}|^2 \eta^2 \rangle$ is positive. We arrive at (2.3), as needed.

Remark 2.5. Apart from the weight η with compact support, we will also consider the weight

$$\rho(x) = (1 + \kappa |x|^{-2})^{-\beta}, \quad \beta > \frac{d}{4}, \quad \kappa > 0$$

(clearly, with our choice of β , we have $\rho \in L^2$). Then, in the assumptions of Proposition 2.2, assuming that κ is chosen sufficiently small, we have for every $p > p_c$, $p \ge 2$, for all $0 \le s \le t$,

$$\sup_{\vartheta \in [s,t]} \langle u_c^p(\vartheta) \rho^2 \rangle + \int_s^t \langle |\nabla(\rho u_c^{\frac{p}{2}})|^2 \rangle \\
\leq C_1 \langle u_c^p(s) \rho^2 \rangle + C_2 \int_s^t \langle \left(\mathbf{1}_{\{|\mathsf{h}| \ge 1\}} + \mathbf{1}_{\{|\mathsf{h}| < 1\}} |\mathsf{h}|^p \right) \mathbf{1}_{\{u > c\}} |f|^p \rho^2 \rangle. \quad (2.6)$$

The proof essentially repeats the proof of (2.2) (we use $|\nabla \rho| \leq \beta \sqrt{\kappa} \rho$ at the last step to get rid of the C_2 term in (2.2)).

Lemma 2.6 ([4, Sect.7.2]). If $\{y_m\}_{m=0}^{\infty} \subset \mathbb{R}_+$ is a nondecreasing sequence such that

$$y_{m+1} \le N C_0^m y_m^{1+\alpha}$$

for some $C_0 > 1$, $\alpha > 0$, and

$$y_0 \le N^{-\frac{1}{\alpha}} C_0^{-\frac{1}{\alpha^2}}.$$

Then

$$\lim_{m} y_m = 0.$$

EJP 28 (2023), paper 69.

Proposition 2.7. Let u be the solution to Cauchy problem (2.1). Fix T > 0 and $1 < \theta < \frac{d}{d-1}$. For all $p > p_{\delta}$, $p \ge 2$, there exists a generic constant K such that

$$\sup_{[0,T]\times B(0,\frac{1}{2})} u_{+} \leq 2 \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p} \right)^{\theta'} |f|^{p\theta'} \mathbf{1}_{B(0,1)} \right\rangle \right)^{\frac{1}{p\theta'}} + K \left(\int_{0}^{T} \left\langle u_{+}^{p} \mathbf{1}_{B(0,1)} \right\rangle + \left(\int_{0}^{T} \left\langle u_{+}^{p\theta} \mathbf{1}_{B(0,1)} \right\rangle \right)^{\frac{1}{\theta}} \right)^{\frac{1}{p}}, \quad \theta' = \frac{\theta}{\theta - 1}.$$

$$(2.7)$$

Proof of Proposition 2.7. Set

$$R_m := \frac{1}{2}(1+2^{-m}), \quad B_m := B(0, R_m),$$
$$M_m := M(2-2^{-m})$$

for a constant M > 0 to be determined later. Put $\eta_m := \eta_{R_m,R_{m-1}}$ where $\eta_{r,R}$ is a fixed family of smooth cutoff functions

$$\eta_{r,R} = 1 \text{ in } B(0,r), \quad \eta_{r,R} = 0 \text{ in } \mathbb{R}^d - B(0,R), \quad |\nabla \eta_{r,R}| \le \frac{c_0}{4} (R-r)^{-1} \text{ for } 0 < r < R.$$
(2.8)

Then $|\nabla \eta_m| \leq c_0 2^m$. Define

$$u_m := (u - M_m)_+$$

and

$$E_m := \sup_{\vartheta \in [0,T]} \langle u_m^p(\vartheta) \eta_m^2 \rangle + \int_0^T \langle |\nabla(\eta_m u_m^{\frac{p}{2}})|^2 \rangle,$$
$$U_m := \int_0^T \langle u_m^p \mathbf{1}_{B_m} \rangle + \left(\int_0^T \langle u_m^{p\theta} \mathbf{1}_{B_m} \rangle \right)^{\frac{1}{\theta}}.$$

By Proposition 2.2, using Hölder's inequality, we have for all $0 \le t \le T$

$$\sup_{\vartheta \in [0,t]} \langle u_{m+1}^{p}(\vartheta) \eta_{m+1}^{2} \rangle + \int_{0}^{t} \langle |\nabla(\eta_{m+1}u_{m+1}^{\frac{p}{2}})|^{2} \rangle \\
\leq C_{2}c_{0}^{2}4^{m} \int_{0}^{t} \langle u_{m+1}^{p} \mathbf{1}_{B_{m}} \rangle + C_{3}H^{\frac{1}{\theta'}} |\{u_{m+1} > 0\} \cap [0,t] \times B_{m}|^{\frac{1}{\theta}},$$
(2.9)

where

$$H := \int_0^T \left\langle \left(\mathbf{1}_{\{|\mathsf{h}| \ge 1\}} + \mathbf{1}_{\{|\mathsf{h}| < 1\}} |\mathsf{h}|^p \right)^{\theta'} |f|^{p\theta'} \mathbf{1}_{B(0,1)} \right\rangle.$$

We estimate the last term in (2.9):

$$\{u_{m+1} > 0\} \cap [0,t] \times B_m \Big|^{\frac{1}{\theta}} = \left(\int_0^t \langle \mathbf{1}_{\{u_m > M2^{-m-1}\}} \mathbf{1}_{B_m} \rangle \right)^{\frac{1}{\theta}}$$

$$\leq (M2^{-m-1})^{-p} \left(\int_0^t \langle u_m^{p\theta} \mathbf{1}_{\{u_m > M2^{-m-1}\}} \mathbf{1}_{B_m} \rangle \right)^{\frac{1}{\theta}}.$$
 (2.10)

We assume from now on that M satisfies $M^p \geq H^{\frac{1}{\theta'}}.$ Then (2.9) and (2.10) yield

$$E_{m+1} \le C_4^m U_m$$
 for appropriate constant C_4 . (2.11)

Next, using the Sobolev Embedding Theorem, we have

$$\sup_{[0,T]} \langle u_{m+1}^p \mathbf{1}_{B_{m+1}} \rangle + c_S \int_0^T \| \mathbf{1}_{B_{m+1}} u_{m+1} \|_{\frac{pd}{d-2}}^p \le E_{m+1}$$

EJP 28 (2023), paper 69.

Applying Hölder's inequality and Young's inequality, we have

$$c\|\mathbf{1}_{B_{m+1}}u_{m+1}\|_{L^{2p}([0,T],L^{\frac{pd}{d-1}})}^{p} \leq \sup_{[0,T]} \langle u_{m+1}^{p}\mathbf{1}_{B_{m+1}} \rangle + c_{S} \int_{0}^{T} \|\mathbf{1}_{B_{m+1}}u_{m+1}\|_{\frac{pd}{d-2}}^{p}$$

for a c > 0. Next, applying Hölder's inequality to both terms in the definition of U_{m+1} , we obtain, for appropriate $\alpha > 0$,

$$U_{m+1} \le c_2 \|\mathbf{1}_{B_{m+1}} u_{m+1}\|_{L^{2p}([0,T], L^{\frac{pd}{d-1}})}^p |\{u_{m+1} > 0\} \cap [0,T] \times B_m|^{\frac{\alpha}{\theta}}.$$

Combining this with the previous estimate, we have

$$U_{m+1} \le c_2 c^{-1} E_{m+1} | \{u_{m+1} > 0\} \cap [0,T] \times B_m |^{\frac{1}{\theta}}$$
(2.12)

Now, (2.11) and (2.12) yield

$$U_{m+1} \le c_2 c^{-1} C_4^m U_m \big| \{u_{m+1} > 0\} \cap [0, T] \times B_m \big|^{\frac{m}{\theta}}.$$

Applying (2.10) to the last multiple, we obtain

$$U_{m+1} \leq M^{-p\alpha} C_5^m U_m^{1+\alpha}$$

for constant $C_5 = C_5(C_4, c, c_2, \alpha)$.

To end the proof, we fix M by $M = H^{\frac{1}{p\theta'}} + C_5^{\frac{1}{p\alpha^2}} U_0^{\frac{1}{p}}$. Then $U_0 \leq C_5^{-\frac{1}{\alpha^2}} M^p$. We now apply Lemma 2.6 (with $N = M^{-p\alpha}$) to obtain

$$\lim_{m} U_m = 0$$

On the other hand,

$$\int_0^T (u - 2M)_+^p \mathbf{1}_{B(0,\frac{1}{2})} \le \lim_m U_m.$$

It follows that

$$\sup_{\substack{[0,T]\times B(0,\frac{1}{2})}} u_{+} \leq 2M \leq 2\left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p}\right)^{\theta'} |f|^{p\theta'} \mathbf{1}_{B(0,1)} \right\rangle \right)^{\frac{1}{p\theta'}} \\ + K\left(\int_{0}^{T} \left\langle u_{+}^{p} \mathbf{1}_{B(0,1)} \right\rangle + \left(\int_{0}^{T} \left\langle u_{+}^{p\theta} \mathbf{1}_{B(0,1)} \right\rangle \right)^{\frac{1}{\theta}} \right)^{\frac{1}{p}}$$

for a generic constant *K*, as claimed.

Remark 2.8. Let $\eta \in C_c^{\infty}$ be a refined cutoff function satisfying $|\nabla \eta| \leq c\eta^{1-\gamma}$ for some $0 < \gamma < 1$, c > 0. In fact, the weights $\eta = \eta_{r,R}$ in (2.8) can be chosen to satisfy this bound with generic γ , c_0 :

$$|\nabla \eta_{r,R}| \le c_0 (R-r)^{-1} \eta_{r,R}^{1-\gamma}, \quad 0 < r < R$$

(such weights were used in [2, 20]). With such choice of η , Proposition 2.2 and thus Proposition 2.7 are also valid for $b = b_1 + b_2$ where $b_1 \in \mathbf{F}_{\delta_1}$, $\delta_1 < 4$, and b_2 satisfies (1.3), (1.4) with $\nu < \frac{4(p-1)}{p} - 2\sqrt{\delta_1}$, $p > \frac{2}{2-\sqrt{\delta_1}}$, and h satisfies (1.3) with some form-bound $\nu < \infty$. Indeed, we only need to complement the proof of Proposition 2.2 by evaluating, using the integration by parts,

$$-2\int_{s}^{t} \langle b_{2} \cdot \nabla v^{\frac{p}{2}}, v^{\frac{p}{2}}\eta^{2} \rangle = \int_{s}^{t} \langle \operatorname{div} b_{2}, v^{p}\eta^{2} \rangle + 2\int_{s}^{t} \langle b_{2}v^{p}\eta\nabla\eta \rangle$$

EJP 28 (2023), paper 69.

and then estimating the RHS from above as follows. We apply the form-boundedness condition on $(\operatorname{div} b_2)_+$, i.e. (1.4). As for the last term, we have for every $\varepsilon_5 > 0$, by Young's inequality,

$$2\int_{s}^{t} \langle b_{2}v^{p}, \eta \nabla \eta \rangle \leq \frac{\varepsilon_{5}^{1+a}}{1+a} \int_{s}^{t} \langle |b_{2}|^{1+a}v^{p}\eta^{2} \rangle + \frac{a}{a+1}\varepsilon_{5}^{-\frac{a+1}{a}} \int_{s}^{t} \langle v^{p}|\nabla \eta|^{\frac{a+1}{a}} \rangle$$
$$\leq \frac{\varepsilon_{5}^{1+a}}{1+a} \int_{s}^{t} \langle |b_{2}|^{1+a}v^{p}\eta^{2} \rangle + C_{\varepsilon_{5}}(R-r)^{-\frac{a+1}{a}} \int_{s}^{t} \langle v^{p}\eta^{\frac{a+1}{a}(1-\gamma)} \rangle.$$

We apply (1.3) in the first term and $\eta^{\frac{a+1}{a}(1-\gamma)} \leq \mathbf{1}_{\{\eta>0\}}$ in the second term. Finally, assuming that p is chosen so that $\frac{1+a}{p'} \geq 1$, we modify (2.5) as

$$\left| \int_{s}^{t} \langle |\mathbf{h}| f v^{p-1} \eta^{2} \rangle \right| \leq \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}| \geq 1} |\mathbf{h}|^{\frac{1+a}{p'}} |f| |v|^{p-1} \eta^{2} \rangle + \int_{s}^{t} \langle \mathbf{1}_{|\mathbf{h}| < 1} |\mathbf{h}| |f| |v|^{p-1} \eta^{2} \rangle,$$

so, after applying Young's inequality as in the proof, we can use condition (1.3) for h. Now we can repeat the rest of the proof of Proposition 2.2. (We arrive at (2.2) with $(R-r)^{-\frac{a+1}{a}} \mathbf{1}_{\{\eta>0\}}$ instead of $|\nabla \eta|^2$, but this is what we need in Proposition 2.7 anyway.) Of course, the form-bound δ_2 of b_2 can be arbitrarily large since we can choose ε_5 as small as needed.

Recall: $\rho(x) = (1 + \kappa |x|^{-2})^{-\beta}$, $\beta > \frac{d}{4}$, $\kappa > 0$ is sufficiently small.

Proposition 2.9. Let u be the solution to Cauchy problem (2.1). Fix T > 0 and $\theta' \in]d, \infty[$. Then, for all $p > p_{\delta}$, $p \ge 2$, there exists a generic constant C such that

$$\|u\|_{L^{\infty}([0,T]\times\mathbb{R}^{d})} \leq C \sup_{z\in\mathbb{Z}^{d}} \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}}|\mathsf{h}|^{p}\right)^{\theta'} |f|^{p\theta'}\rho_{z}^{2} \right\rangle \right)^{\frac{1}{p\theta'}}$$

where $\rho_z(x) := \rho(x-z)$.

Proof of Proposition 2.9. Applying $\rho \geq c_0 \mathbf{1}_{B(0,1)}$ and (2.6) to the last term in (2.7) of Proposition 2.7, we arrive at

$$\begin{split} \sup_{[0,T]\times B(0,\frac{1}{2})} u_{+} &\leq C' \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p} \right)^{\theta'} |f|^{p\theta'} \rho^{2} \right\rangle \right)^{\frac{1}{p\theta'}} \\ &+ C'' \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p} \right) |f|^{p} \rho^{2} \right\rangle \right)^{\frac{1}{p}} \\ &+ C''' \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\geq 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p} \right)^{\theta} |f|^{p\theta} \rho^{2} \right\rangle \right)^{\frac{1}{p\theta}} \equiv I_{1} + I_{2} + I_{3}. \end{split}$$

Applying Hölder's inequality to I_2 and I_3 (using that $\theta' > \theta > 1$), we arrive at

$$\|u\|_{L^{\infty}([0,T]\times B(0,\frac{1}{2}))} \le C \left(\int_{0}^{T} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}|\ge 1\}} + \mathbf{1}_{\{|\mathsf{h}|<1\}} |\mathsf{h}|^{p} \right)^{\theta'} |f|^{p\theta'} \rho^{2} \right\rangle \right)^{\frac{1}{p\theta'}}$$

Since the choice of the centre of the ball $B(0, \frac{1}{2})$ was arbitrary, this ends the proof. \Box

2.2 Proof of Theorem 1.3

Once Proposition 2.9 is established, one can construct a martingale solution to (1.1) via a standard tightness argument. The proof below, included for reader's convenience, follows [16, 21, 23].

EJP 28 (2023), paper 69.

Definition 2.10. A probability measure \mathbb{P}_x on the canonical space $(C([0,1], \mathbb{R}^d), \mathcal{B}_t = \sigma\{\omega_s \mid 0 \leq s \leq t\})$ is called a martingale solution to the SDE (1.1) if

1) $\mathbb{P}_{x}[\omega_{0} = x] = 1.$

$$\mathbb{E}_x \int_0^t |b(s, \omega_s)| < \infty, \quad 0 < t \le 1 \qquad (\mathbb{E}_x := \mathbb{E}_{\mathbb{P}_x})$$

3) For every $\varphi \in C_c^2$ the process

$$M_t^{\varphi} := \varphi(\omega_t) - \varphi(\omega_0) + \int_0^t (-\Delta \varphi + b \cdot \nabla \varphi)(s, \omega_s) ds$$

is a martingale:

$$\mathbb{E}_x[M_{t_1}^{\varphi} \mid \mathcal{B}_{t_0}] = M_{t_0}^{\varphi}$$

for all $0 \le t_0 < t_1 \le 1 \mathbb{P}_x$ -a.s.

Let b be a vector field in \mathbf{F}_{δ} , $\delta < 4$, so in general it is locally unbounded. Let us fix bounded smooth vector fields $b_n \in C_c^{\infty}([0, \infty[\times \mathbb{R}^d, \mathbb{R}^d) \cap \mathbf{F}_{\delta}$ (with $g = g_{\delta}$ independent of n) such that

$$b_n \to b$$
 in $L^2_{\text{loc}}([0,\infty[\times \mathbb{R}^d,\mathbb{R}^d)$

and also $b_n \to b$ a.e. Such vector fields can be constructed by multiplying b by $\mathbf{1}_{\{0 \le |t| \le n, |x| \le n, |b(x)| \le n\}}$, which preserves form-bound δ and function g, and then applying a K. Friedrichs mollifier in (t, x), see Appendix A for details. (In fact, we don't even need to include the indicator function, which allows to control the form-bound of div b [10, Sect. 3, 4], cf. Remark 2.8.)

Fix $x \in \mathbb{R}^d$. By a classical result, there exist strong solutions X^n to the SDEs

$$X_t^n = x - \int_0^t b_n(s, X_s^n) ds + \sqrt{2}B_t, \quad n = 1, 2, \dots,$$

where B_t is a Brownian motion in \mathbb{R}^d on a fixed complete probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbf{P})$. Let $0 \le t_0 < t_1 \le 2$. Consider the terminal-value problem for $t \le t_1$

 $\partial_t u_n + \Delta u_n + b_n \cdot \nabla u_n + F = 0, \quad u_n(t_1) = 0,$

where $F \in C_c(\mathbb{R}^{d+1})$. Then the Itô formula yields

$$\mathbf{E} \int_{t_0}^{t_1} F(r, X_r^n) dr = u_n(t_0, X_{t_0}^n).$$

Hence, selecting $F = |\mathsf{h}|f$, where $\mathsf{h} \in \mathbf{F}_{\nu} \cap C_c^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ and $f \in C_c$ are as in the previous section, we have by Proposition 2.9

$$\left| \mathbf{E} \int_{t_0}^{t_1} |\mathbf{h}(s, X_s^n)| f(s, X_s^n) ds \right| \le C \sup_{z \in \mathbb{Z}^d} \left(\int_{t_0}^{t_1} \left\langle \left(\mathbf{1}_{\{|\mathbf{h}| \ge 1\}} + \mathbf{1}_{\{|\mathbf{h}| < 1\}} |\mathbf{h}|^p \right)^{\theta'} |f|^{p\theta'} \rho_z^2 \right\rangle \right)^{\frac{1}{p\theta'}}.$$
(2.13)

The following two instances of estimate (2.13) will yield the sought martingale solution:

1. (2.13) with $h = b_n$ and $f \equiv 1$ (here $f \in C_c \Rightarrow f \equiv 1$ using Fatou's Lemma):

$$\mathbf{E} \int_{t_0}^{t_1} |b_n(s, X_s^n)| ds \leq C \sup_{z \in \mathbb{Z}^d} \left(\int_{t_0}^{t_1} \left\langle \left(\mathbf{1}_{\{|b_n| \geq 1\}} + \mathbf{1}_{\{|b_n| < 1\}} |b_n|^p \right)^{\theta'} \rho_z^2 \right\rangle \right)^{\frac{1}{p\theta'}} \\ \leq C_0 (t_1 - t_0)^{\mu} \quad \text{for generic } \mu > 0 \text{ and } C_0 \text{ (indep. of } x\text{).}$$
(2.14)

EJP 28 (2023), paper 69.

(Note that since C_0 is a generic constant, Remark 2.3 also applies to inequality (2.14), and yields that C_0 does not depend on n.) Inequality (2.14) allows to verify tightness of probability measures

$$\mathbb{P}^n_r := (\mathbf{P} \circ X^n)^{-1}$$

on $(C([0,1], \mathbb{R}^d), \mathcal{B}_t)$. Here we argue as in [16, proof of Theorem 1.1]. Namely, first note that we have, for a stopping time $0 \le \tau \le 1$,

$$X_{\tau+\sigma,x}^n - X_{\tau,x}^n = \int_{\tau}^{\tau+\sigma} b_n(s, X_{s,x}^n) ds + \sqrt{2}(B_{\tau+\sigma} - B_{\tau}), \quad 0 < \sigma < 1.$$
(2.15)

Next, note that (2.14) yields

$$\mathbf{E} \int_{\tau}^{\tau+\sigma} |b_n(s, X_{s,x}^n)| ds \le C_0 \sigma^{\mu}, \tag{2.16}$$

see Remark 1.2 in [21] (to show that (2.14) \Rightarrow (2.16), the authors of [21] use a decreasing sequence of stopping times τ_m converging to τ and taking values in $S = \{k2^{-m} \mid k \in \{0, 1, 2, ...\}\}$, and note that the proof of estimate (2.16) with τ_m in place of τ can be reduced to applying (2.14) on intervals $[t_0, t_1] := [c, c + \sigma], c \in S$.) Thus, applying (2.16) in (2.15), one obtains

$$\mathbf{E} \sup_{\sigma' \in [0,\sigma]} |X_{\tau+\sigma',x}^n - X_{\tau,x}^n| \le C_0 \sigma^{\mu} + C_1 \sigma^{\frac{1}{2}} =: H(\sigma).$$

Now, applying [22, Lemma 2.7] (a Chebyshev-type argument), we obtain: there exists a constant \hat{C} independent of n such that

$$\sup_{n} \sup_{x \in \mathbb{R}^{d}} \mathbf{E} \left[\sup_{t \in [0,1], \sigma' \in [0,\sigma]} |X_{t+\sigma',x}^{n} - X_{t,x}^{n}|^{\frac{1}{2}} \right] \leq \hat{C}H(\sigma).$$
(2.17)

Now, applying Chebyshev's inequality in (2.17), since $H(\sigma) \downarrow 0$ as $\sigma \downarrow 0$, we have for every $\epsilon > 0$

$$\lim_{\sigma \downarrow 0} \sup_{n} \sup_{x \in \mathbb{R}^d} \mathbf{P} \left[\sup_{t \in [0,1], \sigma' \in [0,\sigma]} |X_{t+\sigma',x}^n - X_{t,x}^n| > \epsilon \right] = 0$$

It follows that $\{\mathbb{P}_x^n\}_{n=1}^{\infty}$ is a tight family of probability measures (see [18, Theorem 1.3.2]). Therefore, for every $x \in \mathbb{R}^d$ there exists a subsequence $\{\mathbb{P}_x^{n_k}\}$ and a probability measure \mathbb{P}_x such that

$$\mathbb{P}_x^{n_k} \to \mathbb{P}_x \text{ weakly.} \tag{2.18}$$

Let us rewrite (2.13) as

$$\left| \mathbb{E}_{x}^{n} \int_{t_{0}}^{t_{1}} |\mathsf{h}(s,\omega_{s})| f(s,\omega_{s}) ds \right| \leq C \sup_{z \in \mathbb{Z}^{d}} \left(\int_{t_{0}}^{t_{1}} \left\langle \left(\mathbf{1}_{\{|\mathsf{h}| \geq 1\}} + \mathbf{1}_{\{|\mathsf{h}| < 1\}} |\mathsf{h}|^{p} \right)^{\theta'} |f|^{p\theta'} \rho_{z}^{2} \right\rangle \right)^{\frac{1}{p\theta'}},$$
(2.19)

where $\mathbb{E}_x^n := \mathbb{E}_{\mathbb{P}_x^n}$.

Using (2.19) with $h := b_m$ and then applying (2.18), we obtain

$$\mathbb{E}_x \int_{t_0}^{t_1} |b_m(s,\omega_s)| ds \le C_0 (t_1 - t_0)^{\mu},$$

and hence, using e.g. Fatou's Lemma,

$$\mathbb{E}_x \int_{t_0}^{t_1} |b(s,\omega_s)| ds \le C_0 (t_1 - t_0)^{\mu}$$

EJP 28 (2023), paper 69.

Sharp solvability for singular SDEs

(in view of (2.19) and (2.18), changing b on a measure zero set does not affect the previous estimate). Our goal now is to show that the limit measure \mathbb{P}_x solves the martingale problem for (1.1). It suffices to show that $\mathbb{E}_x[M_{t_1}^{\varphi}G] = \mathbb{E}_x[M_{t_0}^{\varphi}G]$ for every \mathcal{B}_{t_0} -measurable $G \in C_b(C([0,T], \mathbb{R}^d))$. The task reduces to passing to the limit in n in $\mathbb{E}_x^n[M_{t_1}^{\varphi,n}G] = \mathbb{E}_x[M_{t_0}^{\varphi,n}G]$, where

$$M_t^{\varphi,n} = \varphi(\omega_t) - \varphi(\omega_0) + \int_0^t (-\Delta \varphi + b_n \cdot \nabla \varphi)(s, \omega_s) ds.$$

That is, we need to prove

$$\lim_{n_k} \mathbb{E}_x^{n_k} \int_0^t (b_{n_k} \cdot \nabla \varphi)(s, \omega_s) G(\omega) ds = \mathbb{E}_x \int_0^t (b \cdot \nabla \varphi)(s, \omega_s) G(\omega) ds.$$
(2.20)

This is done using the weak convergence (2.18) and the next estimate.

2. (2.19) with $h := b_{m_1} - b_{m_2} \in \mathbf{F}_{\sqrt{2}\delta}$, $f := |\nabla \varphi|$:

$$\mathbb{E}_{x}^{n} \int_{t_{0}}^{t_{1}} \left| b_{m_{1}}(s,\omega_{s}) - b_{m_{2}}(s,\omega_{s}) \right| |\nabla\varphi(s,\omega_{s})| ds$$

$$\leq \sup_{z \in \mathbb{Z}^{d}} \left(\int_{t_{0}}^{t_{1}} \left\langle \left(\mathbf{1}_{\{|b_{m_{1}}-b_{m_{2}}|\geq1\}} + \mathbf{1}_{\{|b_{m_{1}}-b_{m_{2}}|<1\}} |b_{m_{1}}-b_{m_{2}}|^{p} |\nabla\varphi|^{p\theta'} \right)^{\theta'} \rho_{z}^{2} \right\rangle \right)^{\frac{1}{p\theta'}}.$$

Since φ has compact support, the RHS converges to 0 as $m_1, m_2 \to \infty$. It follows from the weak convergence (2.18) (and an argument similar to the one in 1) that

$$\mathbb{E}_{x} \int_{t_{0}}^{t_{1}} \left| b(s,\omega_{s}) - b_{m}(s,\omega_{s}) \right| \left| \nabla \varphi(s,\omega_{s}) \right| ds$$

$$\leq \sup_{z \in \mathbb{Z}^{d}} \left(\int_{t_{0}}^{t_{1}} \left\langle \left(\mathbf{1}_{\{|b-b_{m}|\geq 1\}} + \mathbf{1}_{\{|b-b_{m}|<1\}} |b-b_{m}|^{p} |\nabla \varphi|^{p\theta'} \right)^{\theta'} \rho_{z}^{2} \right\rangle \right)^{\frac{1}{p\theta'}},$$

where the RHS converges to 0 as $m \to \infty.$ Now, we prove (2.20):

$$\begin{split} & \left| \mathbb{E}_{x}^{n_{k}} \int_{0}^{t} (b_{n_{k}} \cdot \nabla \varphi)(s, \omega_{s}) G(\omega) ds - \mathbb{E}_{x} \int_{0}^{t} (b \cdot \nabla \varphi)(s, \omega_{s}) G(\omega) ds \right| \\ & \leq \left| \mathbb{E}_{x}^{n_{k}} \int_{0}^{t} |b_{n_{k}} - b_{m}| |\nabla \varphi|(s, \omega_{s})|G(\omega)| ds \right| \\ & + \left| \mathbb{E}_{x}^{n_{k}} \int_{0}^{t} (b_{m} \cdot \nabla \varphi)(s, \omega_{s}) G(\omega) ds - \mathbb{E}_{x} \int_{0}^{t} (b_{m} \cdot \nabla \varphi)(s, \omega_{s}) G(\omega) ds \right| \\ & + \left| \mathbb{E}_{x} \int_{0}^{t} |b_{m} - b| |\nabla \varphi|(s, \omega_{s})|G(\omega)| ds \right|, \end{split}$$

where the first and the third terms in the RHS can be made arbitrarily small using the estimates above and the boundedness of G by selecting m, and then n_k , sufficiently large. The second term can be made arbitrarily small in view of (2.18) by selecting n_k even larger. This ends the proof of Theorem 1.3.

Remark 2.11. Let b = b(x), $b \in \mathbf{F}_{\delta}$, $\delta < 4$. Let u_n be defined by

$$(\partial_t - \Delta + b_n \cdot \nabla)u_n = 0, \qquad u_n(0) = g \in C_b \cap L^1,$$

where b_n are as above.

1. For every $p > p_{\delta}$, the limit

$$u := s \cdot L^p \cdot \lim_n u_n \quad \text{loc. uniformly in } t \ge 0, \tag{2.21}$$

EJP 28 (2023), paper 69.

exists and determines a weak solution (in L^p) to Cauchy problem $(\partial_t - \Delta + b \cdot \nabla)u = 0$, u(0+) = g. For the proof see [7] and [11].

2. One can apply Moser's method in L^p , $p > p_{\delta}$, $p \ge 2$ to show Hölder continuity of the weak solution u. Combined with (2.21), this allows to conclude that $u_n \to u$ everywhere on \mathbb{R}^d . We plan to address these matters in detail elsewhere.

A Appendix

Let $b \in \mathbf{F}_{\delta}$ with function $g = g_{\delta}^{b} \in L^{1}_{loc}([0, \infty[)$. The following construction of bounded smooth vector fields $\{b_{m}\}$ satisfying

$$b_m \to b \quad \text{in } L^2_{\text{loc}}([0,\infty[\times\mathbb{R}^d,\mathbb{R}^d])$$
 (A.1)

and

$$\int_{0}^{\infty} \|b_m(t,\cdot)\xi(t,\cdot)\|_2^2 dt \le \delta \int_{0}^{\infty} \|\nabla\xi(t,\cdot)\|_2^2 dt + \int_{0}^{\infty} g(t)\|\xi(t,\cdot)\|_2^2 dt$$
(A.2)

for all $\xi \in C_c^{\infty}([0,\infty[\times \mathbb{R}^d))$, for the same function g, is taken from [6, Sect.3.].

Define b_m by the following formula (extending b to t < 0 by 0):

$$b_m := c_m \gamma_{\varepsilon_m} * (\mathbf{1}_m b), \quad c_m, \varepsilon_m > 0,$$

where $\mathbf{1}_m$ is the indicator of $\{(t,x) \mid |b(t,x)| \leq m, |x| \leq m, |t| \leq m\}$ and γ_{ε} is a Friedrichs mollifier on $\mathbb{R} \times \mathbb{R}^d$. Let us show that, for appropriate choice of $\varepsilon_m \downarrow 0$ and $c_m \uparrow 1$, (A.1) and (A.2) are satisfied. Put $\tilde{b}_m = \gamma_{\varepsilon_m} * (\mathbf{1}_m b)$ and write

$$\tilde{b}_m = \mathbf{1}_m b + (\tilde{b}_m - \mathbf{1}_m b).$$

Clearly, the first term $\mathbf{1}_m b \in \mathbf{F}_{\delta}$ with the same $g = g_{\delta}^b$. In turn, since for all m = 1, 2, ... we have

$$\mathbf{1}_m b \in L^{\infty}([0, \infty[, L^r) \quad \text{ for every } d \le r < \infty, \qquad \operatorname{sprt} \mathbf{1}_m b \subset [0, m] \times B(0, m),$$

the following is true: given any $\alpha_m \downarrow 0$ we can select $\varepsilon_m \downarrow 0$ so that e.g.

$$\|b_m - \mathbf{1}_m b\|_{L^r([0,\infty[,L^r)]} \le \alpha_m,\tag{A.3}$$

and so the second term $\tilde{b}_m - \mathbf{1}_m b \in \mathbf{F}_{C_S \alpha_m^2}$ with $g \equiv 0$, where C_S is the constant in the Sobolev inequality (for details, if needed, see Appendix A in [6]). Hence,

$$ilde{b}_m \in \mathbf{F}_{\delta_m} \quad ext{with } \delta_m = (\sqrt{\delta} + \sqrt{C_S lpha_m^2})^2 ext{ and } g = g_{\delta_S}^b$$

Now, selecting $c_m = \frac{\delta}{\delta_m}$ (clearly, $c_m \uparrow 1$) and recalling that $b_m = c_m \tilde{b}_m$, we have $b_m \in \mathbf{F}_{\delta}$ with the same $g = g_{\delta}^b$, i.e. (A.2) holds. In turn, (A.1) is clear from $\mathbf{1}_m \uparrow 1$ and the Dominated Convergence Theorem, (A.3) and $c_m \uparrow 1$.

References

- [1] L. Beck, F. Flandoli, M. Gubinelli, M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. *Electron. J. Probab.*, 24 (2019), Paper No. 136, 72 pp. MR4040996
- [2] A.G. Belyi and Yu.A. Semënov. On the L^p-theory of Schrödinger semigroups. II. Sibirsk. Mat. Zh., 31 (1990), p. 16–26; English transl. in Siberian Math. J., 31 (1991), 540-549. MR1083727
- [3] A. S. Cherny and H.-J. Engelbert. Singular Stochastic Differential Equations. LNM 1858. Springer-Verlag, 2005. MR2112227

Sharp solvability for singular SDEs

- [4] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003. MR1962933
- [5] T. Hara, A refined subsolution estimate of weak subsolutions to second order linear elliptic equations with a singular vector field, *Tokyo J. Math.*, **38**(1) (2015), 75–98. MR3334220
- [6] D. Kinzebulatov, K.R. Madou, Stochastic equations with time-dependent singular drift, J. Diff. Equations, 337 (2022), 255–293. MR4464545
- [7] D. Kinzebulatov, Yu. A. Semënov, On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} . Ann. Sc. Norm. Sup. Pisa (5), **21** (2020), 1573–1647. MR4288642
- [8] D. Kinzebulatov, Yu.A. Semënov, Feller generators and stochastic differential equations with singular (form-bounded) drift, Osaka J. Math., 58 (2021), 855–883. MR4335377
- [9] D. Kinzebulatov, Yu.A. Semënov, Brownian motion with general drift, Stoch. Proc. Appl., 130 (2020), 2737–2750. MR4080729
- [10] D. Kinzebulatov, Yu. A. Semënov, Heat kernel bounds for parabolic equations with singular (form-bounded) vector fields, Math. Ann., 384 (2022), 1883–1929. MR4498488
- [11] V. F. Kovalenko, Yu. A. Semënov, C_0 -semigroups in $L^p(\mathbb{R}^d)$ and $C_{\infty}(\mathbb{R}^d)$ spaces generated by differential expression $\Delta + b \cdot \nabla$. (Russian) *Teor. Veroyatnost. i Primenen.*, **35** (1990), 449-458; translation in *Theory Probab. Appl.*, **35** (1991), 443–453. MR1091201
- [12] D. Kinzebulatov, R. Vafadar, On divergence-free (form-bounded type) drifts, *Discrete Contin. Dyn. Syst. Ser. S*, to appear.
- [13] N. V. Krylov, On time inhomogeneous stochastic Itô equations with drift in L^{d+1} , Preprint, arXiv:2005.08831. MR4252191
- [14] N. V. Krylov, M. Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 131 (2005), 154–196. MR2117951
- [15] N. I. Portenko, Generalized Diffusion Processes. AMS, 1990. MR1104660
- [16] M. Röckner, G. Zhao, SDEs with critical time dependent drifts: weak solutions, *Bernoulli*, 29 (2023), 757–784. MR4497266
- [17] Yu. A. Semënov, Regularity theorems for parabolic equations, J. Funct. Anal., 231 (2006), 375–417. MR2195337
- [18] D. W. Stroock, S. Varadhan, Multidimensional Diffusion Processes, Springer, 2007. MR2190038
- [19] R. J. Williams, Brownian motion with polar drift, Trans. Amer. Math. Soc., 292 (1985), 225–246. MR0805961
- [20] Q. S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys. 244 (2004) 245–260. MR2031029
- [21] X. Zhang, G. Zhao, Stochastic Lagrangian path for Leray solutions of 3D Naiver-Stokes equations, Comm. Math. Phys., 381(2) (2021), 491–525. MR4207449
- [22] X. Zhang, G. Zhao, Singular Brownian diffusion processes, Communications in Mathematics and Statistics (2018), 1–49. MR3877717
- [23] G.Zhao, Stochastic Lagrangian flows for SDEs with rough coefficients, *Preprint*, arXiv:1911.05562.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS¹)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by IMS³, BS⁴, ProjectEuclid⁵
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

 $^{^2} EJMS: Electronic \ Journal \ Management \ System: \ \texttt{https://vtex.lt/services/ejms-peer-review/}$

³IMS: Institute of Mathematical Statistics http://www.imstat.org/

⁴BS: Bernoulli Society http://www.bernoulli-society.org/

⁵Project Euclid: https://projecteuclid.org/

⁶IMS Open Access Fund: https://imstat.org/shop/donation/