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Scaling limits of directed polymers in
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Yingxia Chen* Fuqging Gao®

Abstract

We consider a directed polymer model in dimension 1 4+ 1, where the random walk
is attracted to stable law and the environment is independent in time variable and
correlated in space variable. We obtain the scaling limit in the intermediate disorder
regime for partition function, and show that the rescaled point-to-point partition
function of directed polymers converges in the space of continuous functions to the
solution of a stochastic heat equation driven by time-white spatial-colored noise. The
scaling limit of the polymer transition probability is also established in the path space.
The proof of the tightness is based on the gradient estimates for symmetric random
walks in the domain of normal attraction of a-stable law which are established in this

paper.
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1 introduction

The directed polymer model in random environment was originally introduced in [31].
It was formulated as the polymer measure in [10, 33]. The directed polymer is described
by a random probability distribution on the path space (Zd)Z+ of random walks on the
d-dimensional lattice. For fixed environment w = {w(i, ), (i,2) € Z, x Z?} which is a
family of real valued, non-constant, and identically distributed random variables on a
probability space (2, G, P), any n > 1, the polymer measure is the probability measure
on the path space ((Z%)%+, F,P) defined by

1

w — B3y w(i,5%)
PY 4(S) : A P(S), (1.1)
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Scaling limits of directed polymers

where 8 > 0 is the inverse temperature, S = {S,,,n > 0} is a random walk starting from
origin in Z%, Z,,(3,w) is the point-to-line partition function defined by

Zn(Biw) = E (eﬂ i W’vsw‘)) . (1.2)

Here, we denote by E and E the expectation with respect to P and P. The quantity
pn(B) := Llog Z,(B;w) is called the free energy. Let Z, .(3;w) be the point-to-point

T n

partition function

Zna(Bw) =B (F S0 Y. (1.3)
The distribution density for the polymer endpoint is thus
Zn,u(B;w)
Y 5(Sp =1) 1= " (1.4)
ol )= 75w
Assume that for § sufficiently small,
A(B) = log Eef@0:?) « o0, (1.5)

The normalized partition function is defined by
Wy, := Z,(B;w) exp{—nA(B)}, n > 1. (1.6)

It is known that if the environment variables are independent, then

p(B) :== lim 1 log Z,,(B;w), Wy = lim W, (1.7)
n—oo N n—o0

exist P-a.s. and either the limit W, is P-a.s. positive, or it is P-a.s. zero (cf. Theorem

2.1 and Theorem 3.1 in [15]). The polymer is in weak disorder regime if W, is P-a.s.

positive, and in strong disorder regime if W, is P-a.s. zero. When d = 1, all 5 > 0 are in

the strong disorder regime.

For the d = 1 case, Alberts, Khanin and Quastel [1] introduced a new disorder
regime for directed polymers by scaling the inverse temperature § with the length of the
polymer n. They showed that when the environment consists of i.i.d. random variables
and {S,,n > 0} is the simple symmetric random walk, the following convergences hold:
the rescaled partition function

Zn(n_1/4ﬁ;w)e_"k("fl/%) ), Z 34

and the rescaled point-to-point partition function

1 _ _ax(n-143) (d) .
iﬁz’nt,\/ﬁx(n 1/46;“})6 A A) — Zﬂﬁ(tax) mn C((O7 1] X ]R)a

where {Z;,; t € R,z € R} is a linear interpolation of {Z,,; m € Zi,k € Z},
255 = [ 255(1,2)dr and Z(t,x) := Z sz4(t,z) is the mild solution of the stochastic
heat equation
W2 =1AZ+V282W,
(1.8)
Z(0,z) = do(x).
Here, ﬂ denotes the convergence in law. The result illustrates an intermediate disorder
regime between weak and strong disorder regime.
Caravenna, Sun and Zygouras [14] extended the invariant principle of multi-linear
polynomials of independent random variables in [39], and provided a unified framework
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to study the continuum and weak disorder scaling limits of statistical mechanics systems
that are disorder relevant. In particular, a directed polymer with random walks attracted
to stable laws (long-range directed polymer) was also studied in [14] and the convergence
in the sense of the finite dimensional distributions was obtained. The intermediate
disorder regime of the directed polymer with a heavy-tail disorder was studied in [3],
[4] and [23]. Joseph [34] considered a model of discrete space-time stochastic heat
equations, and showed that an appropriate scaling limit of the model with Lipschitz
continuous initial data can get the following stochastic partial differential equation

WZ = —v(=N)Y2Z 4 o(Z2)W. (1.9)

Rang [43] first considered time independent and space correlated environment. Fur-
thermore, see [20] for multiple non-intersecting random walks, [21] for the Brownian
directed polymer in Poissonian environment, [45] for the polymer given by the occupation
field of a Poisson system of independent random walks, and the references therein.

Caravenna, Sun and Zygouras ([14], P.25) expected that the convergence in the sense
of the finite dimensional distributions can be upgraded to convergence in the space
of continuous functions equipped with uniform topology for the long-range directed
polymer. In this paper, we study the problem for general long-range directed polymers in
an environment which is independent in time variable and correlated in space variable.
That is, the random walk {S,,,n > 0} is in the domain of normal attraction of a stable law
of index « € (0,2] with period ¢, and the environment w = {w(i,z), (i,7) € Z, x Z%} is
an autoregressive integrated moving average model (cf. [27] [28] [43]):

x):Zayé(i,a:—&—y), ay ~clyl™", ¢ >0, <7‘<1
YEZ

where {£(i,z) : i € Zy,x € Z} is a family of i.i.d. centered variables with an exponential
moment. We show that when a € (2r — 1, 2], the rescaled partition function converges in
distribution, and when « € (1, 2], the rescaled point-to-point partition function converges
weakly in path space to the solution of a stochastic heat equation driven by time-white
spatial-colored noise, i.e.,

1
SRV Z e (Buiw)e B Dz 2 in 0((0,1] % R), (1.10)
. ,

where 3, = fn~ 2 2ata, Z(t,z) := Z4(t, x) is the mild solution of the following fractional
stochastic heat equation with initial Z(0,x) = do(z):

Z = —v(—A)2Z 4+ B2W, (1.11)

where W is a time-white spatial-colored noise. The scaling limit of the polymer transition
probability is also established in this paper.

In particular, when environment variables are independent, Wis a time-space white
noise, our result on the rescaled point-to-point partition function upgrades Theorem 3.8
in [14] to the convergence in law in C'((0, 1] x R) equipped with locally uniform topology.
The result is exactly what Caravenna, Sun and Zygouras [14] expected.

Our approach is based on Lindeberg’s argument and the hypercontractive technique
in multilinear polynomials (cf. [39]), and a gradient estimate for symmetric random
walks in the domain of normal attraction of a-stable law. Precisely, we use Lindeberg’s
argument and the hypercontractive technique to study convergence of finite dimensional
distributions. This strategy converts the environment variables to Gaussian ones. Mossel,
O’Donnell and Oleszkiewicz [39] established an invariance principle which gives an error
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bound of the distributions of two random multilinear polynomial, when a multilinear
polynomial of a sequence of independent random variables is replaced by independent
Gaussian random variables with the same mean and the variance. The result was ex-
tended in [14]. Although the environment random variables in this paper are correlated
in space variable, they still have the hypercontractivity since the multilinear polynomials
in our model can be expanded into multilinear polynomials of independent random vari-
ables. This observation allows us to use Lindeberg’s argument and the hypercontractive
technique to our case. We use the characteristic function approach to obtain a gradient
estimate for symmetric random walk in the domain of normal attraction of a-stable law,
and apply the gradient estimate to establish the tightness for the rescaled point-to-point
partition function. Hardy-Littewood’s inequality, Minkowski’s integral inequality and
the gradient estimate for symmetric random walks play important role in the proof of
tightness.

The rest of the paper is organized as follows. In Section 2, we state the main results
and give some notation. The proofs of the main results are presented in sections 3-5. In
Section 3, we first study the scaling limit of a modified point-to-line partition function
and then show Theorem 2.1. In Section 4, we prove Theorem 2.2. A sketch proof of
Theorem 2.3 is given in Section 5. In Appendix A, we recall briefly the elementary theory
of time-white spatial-colored noise and stochastic integral with respect to a time-white
spatial-colored noise. In appendix B, we present a gradient estimate for symmetric
random walk in the domain of normal attraction of a-stable law. In appendix C, we give
a proof existence and uniqueness of the mild solution to the fractional stochastic heat
equation with the ¢ initial data. In appendix D, we give some moment estimates for an
autoregressive integrated moving average model.

Since the completion of this paper, there has been a recent work [44] on the scaling
limit of a long-range directed polymer in a random environment that is correlated in
time and independent in space, which complements the result of this paper.

2 Main results

In this section, we first introduce the model and some conditions in this paper, then
state the main results.

(A.1). Let {S,,n > 0} be a symmetric random walk with period q starting from the
origin on Z and in the domain of normal attraction of a stable law of index a € (0,2], i.e.,

Sn,
ﬂ) Y asn — oo,
nl/a

where the random variable Y has characteristic function

E (eLuY) _ e—u\u|°‘,
for some v > 0 and « = /—1. We assume that there exists a function h(u) such that
h(u) — 0 as |u| — 0 and the characteristic function ¢ of Sy satisfies

d(u) =1 —v|u|* + |Ju|*h(u) asu — 0. (2.1)

O

Remark 2.1. In this paper, we only deal with a symmetric random walk, in the normal
domain of attraction to a stable law. In this case, the characteristic function has a simple
approximation which can simplify the proofs of the asymptotics and the gradient estimate.
For the general case in the domain of attraction of a stable law, some properties of slowly
varying functions should be required (cf. [9]).
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By the inversion formula, it is known that Y has a bounded and differentiable density
function g(z). Define

1 x

Let P(S; € ¢Z + ¢) =1 for some ¢ € {0,1,--- ,q — 1}. Since S} is symmetric, for the case
£ #£0,if ¢ # 1, then ¢ is an even number and ¢ = ¢/2. Define

p(n, k) :==P(S, = k), n>0, keZ.
Let F(z) := P(S1 < x) be the distribution function of S;. Then in the o = 2 case,
E(S)) =0, 0? =E(S}) =2v < 00, Y ~ N(0,0?);

in the a € (0,2) case, there exist constant ¢ > 0 and function §(z) (cf. Theorem 2.6.7 in
[32]) such that
1- F(z) = %i(x) forall z > 0, and B(z) — 0 as |z| — . (2.2)
By Lemma 3.1 in [5], if B(x)z~“ is decreasing in z on [z, 00) for some xy > 0, then (2.1)
is valid.
(A.2). Let the environment w = {w(i, ), (i,x) € Z4 x Z} have the following form as
in [43]:
w(i,x) = ZyEZ ayf(i7 z + y) lfT € (%7 1);

w(i,z) =E&(i,x) if r =1,

where a, > 0, ay ~ ¢ |y|™", ¢, >0, and {{(i,x);i € Z4,x € Z} is a family of independent
and identically distributed random variables with E(£(i,x)) = 0, E(|£(4,2)]?) = 1. We
assume that £(i, x) satisfies

for 3 sufficiently small which implies (1.5). For convenience, in the r e (l 1) case, we
take c, such that \, % = H(2H — 1), where H = 5 —r. Set
’Y(Z) = E(W(la x) y L — Z Z AyCy—z - (24)
YyeEZ

O

Remark 2.2. An example of the environment satisfying (A.2) is a version of autoregres-
sive integrated moving average model ARIM A (0,1 —r,0) (cf. [27] [28]).

Let 7 € (3,1) and take ¢ = H(2H— 12£(T1)F(1 "), Set

¢c Tk+1-r)
_— >0, k> 1.
ST+ T —r) =" *=

Then (see Theorem 1 in [27]),

A1)k r@2r—1) ATy (—i+k—r)T(2r —1)

k)= = >0
") = S Tk £ ) T(k+r) =5
By Stirling formula, aj ~ g%
EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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Ar(2r —1)
~ |2 — H(2H — 1)k 2,
")~ Fra =) ( )
O
By Remark 2.2, under the condition (A.2), we have that for r € (1, 1),
v([2]) ~ K(z) as |z] = o (2.5)
where [z] denotes the integer part of z, and the function K is defined by
H(2H —1)|z|*%72 ifr € (3,1),
K(z) = (2.6)

60(2) ifr=1.
The third assumption in this paper is the following (A.3).
A3). s <r<i(1+a).
Remark 2.3. In this paper, some basic estimates are based on the inequality that the

norm || - ||z in L% can be controlled with the L?"-norm || - ||z, in (see (3.16)). When
0 < r < 1/2, the inequality does not hold. The condition « > 2r — 1 should be optimal.

O
2.1 Stochastic heat equation
Consider the following fractional stochastic heat equation:
Z=—v(-DN)Y2Z L oZW, (2.7)

where o > 0 is a constant, and )V is a Gaussian noise with the covariance

CovW(y / / / s, o) K(x — y)y(s,y)dsdzdy (2.8)

and K(x) is defined as (2.6). The scaling limit of the polymer transition probability is
also established in this paper.
We rewrite it in Duhamel form

Z(t,x):/]R (t,z —y)Z(0,y dy—l—a/ / (t— s,z —y)Z(s,y)W(dsdy). (2.9)

A mild solution of (2.7) is a progressively measurable process Z(t, z) such that

¢
/ /g(tfs,:rfy)E(|Z(s,y)|2)dyds<oo fort >0, z € R, (2.10)
0o JR

and (2.9) holds.

We use the notion Z,(-) = Z(0, -) to denote the initial data of the fractional stochastic
heat equation (2.7). For the bounded initial data Z; case, the existence and uniqueness
of a mild solution of (2.7) can be founded in [25]. Foondun Joseph and Li [24] studies
the approximation problem of a class of SPDEs including (2.7) by systems of interacting
stochastic differential equations. The following proposition includes the initial data
Zy = dg case. For convenience, we will give a proof of the proposition in Appendix C.

Proposition 2.1. Let Z; be a Fy-measurable initial data. If Z, = Jy or bounded, then
there exists a unique mild solution to equation (2.7) with initial data Z;. The solution
can be written by

Z(t,x :/gt,x— y)dy + / /
(t.2) R ( Z Ag(t) JREHL

g(t - tk, xr — l‘k) Hg(ti — ti—la T — Z‘i_l)ZQ(Z‘o)dl‘()W(dtidIi),
i=1

(2.11)
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where Ag(t) = {0 < t; < -+ < tx < t}, to = 0. Furthermore, The series in (2.11)
converges in L2. In particular, when Z; = &y, there exists a positive constant C such that
for any ¢t € [0, 77,

E(|Z(t,z)]?) < Cg?(t,z). (2.12)
When Z, is bounded, sup;c(y 1) .er E(|2(t,7)[?) < o0.
Denote by
Vi ifr=1,
o(B,q) = (2.13)
B ifi<r<l.

Remark 2.4. The quantity o(f, ¢) is the diffusion coefficient of the scaling limit (see the
following main results). An interesting phenomenon is that the o (8, ¢) is independent of
q in space-correlated environment case. The phenomenon is due to the difference in the
variance of sum of random variables in the two environments (see Lemma 3.5).

2.2 Main results

Theorem 2.1. Let Z,,(5;w) be the partition function which is defined by (1.2), i.e.,
Zn(B;w) = (eﬂ i wu,s,.,)) .

Assume that (A.1), (A.2) and (A.3) hold. Set 3, = fn 2 2a+&. Then we have the
following convergences for the rescaled point-to-line partition function

d
Zo(Bnsw)e ) 1Dz (1,9, (2.14)
and
2
: . —nA(Bn _ 2
lim B ((Zn(ﬁn,w)e o) ) =E ((Zo5.0(1,9)"), (2.15)

where Z,5.4)(1,%) = [ Z,(3,9(1,2)dx, and Z,s ) (t, z) is the mild solution of (2.7) with
o = o(f, q) and initial data Zy = do.

Remark 2.5. Caravenna,Sun and Zygouras [12] proposed a new point of view to inter-
pret disorder relevance for disordered systems. The viewpoint focuses on the existence
of a non-trivial, random continuum limit when disorder scales to zero in a particular
way as a function of the lattice spacing. Theorem 2.1 proves that for a class of directed
polymer models where the increments of the walk lie in the domain of attraction of an
a-stable law, and the environment is a r-fractional autoregressive moving average model,
with r € (1/2,1] and 1/2 < r < (1 + «)/2, the rescaled partition function has a non-trivial,
random limit when the disorder scales to zero in the speed n~%~2«+&. Furthermore, the
following theorem establishes the convergence of the rescaled point-to-point partition
function in path space. The results also show that there is a transition between weak
and strong disorder at S = 0 for the class of directed polymer models.

Theorem 2.2. Let Z,, ,(8;w) be the point-to-point partition function which is defined
by (1.3), i.e.,

Zna(Bw) =B (7 Zim S0 ).

Let @ € (1,2], (A.1) and (A.2) hold. Then we have the following convergences for the
rescaled point-to-point partition function

1 _ (d)
(nl/"‘Znt7n1/um(5n; w)e nA(Bn)> — (Za(ﬁ,q)(t> x))te(o,l],zE]R (2.16)
q tc(0,1],2€R

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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with respect to the locally uniform topology on C((0,1] x R), and for any ¢ € (0, 1],z € R,

lim E ((nl/azm,nm(ﬁn;w)e‘"“5n>/q)2) =E ((Zaw,q) (ux))?) : (2.17)

n— oo

Theorem 2.3. Let o € (1, 2}, (A.1) and (A.2) hold. Then we have the following conver-
gences for the rescaled polymer transition probabilities

<1n1/"P:jﬁn(Sm = nl/agc|5nS = nl/ay))

q (s,y;t,x)ED

), <Za(ﬂ,q)(3a yit,x) [ Zo(.9)(t 73 1, N) d/\>
fza(ﬂ,q)(57y§ la)‘)d)‘ (s,y:t,2)ED

(2.18)

with respect to the locally uniform topology on C(D), where © = {(s,y;t,2); 0 < s <t <
Lz,y € R}, Z,(5,9)(s,¥;t,x) is the mild solution of the stochastic heat equation

DZ = —v(=0.) P2+ 0(8,9)2W, Z(s,y;5,7) = do(z — y). (2.19)

Remark 2.6. The field (t,7) = Z,; ,,1/a,(Bn;w) is defined exactly on the points where
(nt,n'/*x) takes values in {(i,k); i € Z,k € ¢Z + il}, but we can use a linear interpola-
tion scheme to extend it to the whole space (see [1]). The linear interpolation scheme
is defined concretely in Section 4. We also extend the field (s,y;t,z) — P} 5 (Spe =
n'/g|S, s = n'/*y) to the domain {(s,y;t,z); 0 < s <t <1,z,y € R}.

Remark 2.7. For the r = 1 case, Theorem 2.2 upgrades Theorem 3.8 in [14] to the con-
vergence in law in C((0, 1] x R) which is expected in [14]. Hardy-Littewood’s inequality,
Minkowski’s integral inequality and the gradient estimate for symmetric random walks
play important role in the proof of tightness.

Remark 2.8. In this paper, we only consider the auto-regressive environment with
exponential moments. Our study depends on the auto-regressive representation of the
environment. It is expected that some results of the directed polymer with heavy-tailed
disorder (cf. [3], [4], [23]) can be extended to correlated environments with heavy tails.

Remark 2.9. Berger and Lacoin (Theorem 2.4 and Theorem 2.7 in [3]) considered the
joint convergence of a modified partition function together with environment. For the
auto-regressive environment, we can also study the joint convergence of the modified
partition function and the environment.

3 The scaling limit of the point-to-line partition function

In this section, we give the proof of Theorem 2.1. We first study the scaling limit of a
modified point-to-line partition function defined by

n
3.(0;w) = E (H(Hb’w(i, sz->>>, (3.1)
i=1
The modified point-to-line partition function 3,, is an approximation of the point-to-line
partition function and it is more convenient to study the convergence of the modified
partition function than that of the partition function. On the other hand, we can write
that

Zn(Biw)e P =E (H (1 + Ba(i, sz))) :

where

Bu(i:x)=A(B) _ 1
Slia) =

B

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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Therefore, by estimating the error between two environment variables w and w, we
can obtain the convergence of the partition function from that of the modified partition
function. In the first subsection of this section, we study the convergence of the modified
partition function. This is the crucial part. In the second subsection of this section, we
estimate the error between two environment variables w and w, and prove Theorem 2.1.

Note that 3,,(8; w) can be approximated by a multilinear polynomials of w(%, ), (i,x) €
Z, x 7. We use Lindeberg’s argument to replace the environment variables w(i, z),
(i,x) € Z4 x Z by some Gaussian variables u(i,z), (i,2) € Zy x Z, and apply the
hypercontractive technique in multilinear polynomials (cf. [39]) to control the error of
3,(B;w) and 3,,(B; ). This strategy converts the environment variables to Gaussian ones.
Then we can use techniques of weighted U-statistics for Gaussian variables to show
that 3, (8; ) converges in law to the Wiener chaos of Z, s 4 (1, *). Theorem 2.1 will be
obtained by estimating L?-error between Z,,(8,; w)e‘"/\(ﬁ") and the modified point-to-line
partition function 3,,(5,;w).

The following weak convergence result will be applied repeatedly (cf. Chapter 1,
Theorem 4.2. in [8]).

Lemma 3.1. Let Y*,Y;,Y", Y be real-valued random variables and assume that for
each fixed n the Y, and Y are defined on a common probability space. If ¥, — Y™ in
probability uniformly in n as & — oo, Y| — Y}, in distribution as n — oo, and Y — Y in
distribution as £ — oo, then Y — Y in distribution as n — oc.

We also use the following Beta integral formula

n

-1 n
- I(8) [Tj—; (o)
a;—1 =1 J
1-) t t9 7 dt; = J ) (3.2)
/tq‘,ZO,t1+“'+tn§l ( zz:; > 11;[1 J J F(Oél + - +a, + 5)

where 3 >0,0; >0,j=1,---,n.

3.1 The scaling limit of the modified point-to-line partition function

In this subsection, we show the following scaling limit theorem for the modified point-
to-line partition function 3,,(8;w). This is the main step of the proof of Theorem 2.1.

Theorem 3.1. Assume that (A.1), (A.2) and (A.3) hold. Set 3, = ﬁn‘%‘iJrﬁ. Then we
have the following convergences for the rescaled point-to-line partition function.

3B w) D Z, 5.0 (1, %), (3.3)

and

lim E ((3(60:0))°) = B ((Zo50(1,%)7)

n—oo

The proof of Theorem 3.1 proceeds in three steps.

Step 1. We expand the modified point-to-line partition function 3, (5;w) into a discrete
chaos expansion, and give some estimates for the coefficients of the chaos expansion.
The main estimates in this step are Lemma 3.2 and Lemma 3.3.

Let us first introduce some notations. Set Ay (t) = {0 <t < -+ <ty <t},

rJI‘::{(i,:zc) € 72 i€Z+,x€qZ+i€}7

JDn:_{<Z,ﬁ);(i,x)er,lgign}, (3.4)
n na
ADE = {(t,x) = ((t1,21), -, (tr, 2x)) EDE;0 <ty <o <ty < 1},
Define
pﬁ(t,x) = P(Spt, = nY gy, Sty = nl/axk), (t,x) € A]DZ, (3.5)
EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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where zg = 0 and
k
X) = Hw (nti,néxi> ., (t,x) € DE.
i=1

We extend p% (t,x) from AD¥ to Ax(1) x R* by defining
k

ph(t,x) := pr(s,y) forall (t,x) € Ci(s,y) i= [ [ Culsi, i), (s,y) € ADY,

where
1 q
Cu(t,z) =t ——t| x |z — —,x|. (3.6)
Then, for each t € Ag(1),
k
Ph(6,%) = (a7 'n% ) ph(t,x) (3.7)

is a probability density on R¥. Similarly, w” (t,x) can be extended to the whole space
[0,1]¥ x R* by setting

wk (t,x) = wk (s,y) forall (t,x) € C¥(s,y), (s,y) € DE. (3.8)

We abbreviate pl to p,, p. to p,, and w? to wy,.
Now, by expanding the product []"_, (1 + 3,w(i, S;)) along each path of the random
walk, we obtain

n n k
i=1 k=1 (t,x)eADE 1=1

Then by the Markov property for random walk, we can give a series expansion of

3n(Bn;w):
ﬁnz = <H ]- + 5nw Z S ) =1+ Zﬁfb Z pﬁ(t,X)UJﬁ (t,X) . (3.9)
i=1 k=1 (t,x)eADE

Define

G (8, %) 1= Sym{p} (t, %) Ia, (1)xme (6,X)}, (6,%) € [0,1]% x RF, (3.10)

where the symmetrization of a function f on [0, 1]* x R* is defined by

Sym{ f}(t,x) o Z f(rt, mx)

" eSSy

and Sy, is the group of permutations on {1,2,--- ,k}.
Note that when t; = t; for some i # j, ¥¥(t,x) = 0. We have that ¢*(t,x) = 0 for any
k > n + 1. Therefore, we can write

30(Buiw)=1+ Y BV 0L > Wkt x)wk (£,%), (3.11)
k=1 (t,x)eDk
where
0, =qin 2 zaTa. (3.12)
EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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Since the volume of each cell C*(s,y) equals gn—(®*1)/*, we have

30 (Bn;w)=1+ Z(,@’\/&)kequ_knk(aﬂ)/a/ VE (¢, x)wk (t,x) dtdx. (3.13)
k=1

[0,1]k JR*

In order to study the convergence of 3,,(5,;w), we need to estimate some moments
and covariance of w” (t,x). For any k > 1, we define the rescaled covariance of w* by

VE(x —y) =nFCrTV/OE (wk(t, x)wk (t,y))

(3.14)
k(27’ 1)/(1ny( 1/ax —n/ y), (t,X),(tQ’)G]Di,

and extend it to the whole space R* x R¥ by defining

’75 (X/ - y/) = 75 (X - y) ’ (t7xl) € Cﬁ(tax)v (tay/) € C:vc(t7y)7

for any (t,x), (t,y) € DE. We abbreviate v, to v,.

By the definition of K (z) in (2.6), in the r € (3,1) case, K(z) = H(2H — 1)|z|*# 2
for = € R, and by (2.5), ¥([z]) ~ K(z) as |z| — oo, i.e., lim;| Ig[(zz]) = 1, and so,
there exist positive constants C; and L such that 0 < v([z]) < C1K(z) for |z| > L. Set
C2 = sup, < V([#]) and C5 = inf|,|<f, K(z) > 0. Then

=

0 < 7([2]) < C4K(z) for z € R,

where Cy = max {%7 Cl}. Therefore, for any function ¢ € £¥ ([0, 1]* x RF),

/ / o(t, %) (x —y) o(t, y)dtdxdy
[0 l]k ]R2Ic

S/ / lp(t, %) |7 (x — ¥) [@(t, y)|dtdxdy
[0,1]F JR2k

1oty B2 1. ’ ’oo ! gl gl
= > / lo(t',x")n" = 7<na(x—y)>|s0(t,y)|dtdxdy
(6,x)€DE (t,y)eDk  Cn(E:X)xCr(t.y)
<t ¥ [ [t X 0 K (0 (= ) (8,5 ' dy’
(£,x)€Dk (t,y)eDk ¥ Cr(tX)XCr(ty)
—CHlellZ, .
where

k
ol = / / o(t,) TT K (2 — y)(t, y)dtdxdy.
b= [ el )

i=1

Therefore, we have

[ et x = y) et v)dtaxdy| < Cliel (3.15)
0,1% JR2 K

For the r = 1 case, (3.15) is obvious. For the norm || - |z« , if

sup [l xldx < A <,
te(0,1]k

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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then by Hardy-Littewood’s inequality (cf. Theorem 1 in [46], P.119) and Holder’s inequal-
ity, there exists a positive constant Ay such that

3—2r
2
el < dn [ ([ ot o=max)

k
§AHA2*2T/ / lo(t, x)|*"dxdt.
[0,1]* JR¥

The following two lemmas give some estimates of ¥*.

Lemma 3.2. Assume that (A.1), (A.2) and (A.3) hold. Then there exists a positive
constant C such that foranyn > 1, k> 1,

(3.16)

CHTRHL (1 4+ L220)

2 < 3.17
||9k||y;( =T ((k+ 1) (1 I 1—azr)) ( )
and kpk+1 ( 1-2 )
Cr T 14 ==
EllE12, < o , 3.18
||¢n”[)’;( = F((k+ 1) (1+ 1—(127")) ( )
where
k
ge(t,x) = [[o(ti — tiov, 2 — 2i21),  (£,%) € Ak(1) x R, (3.19)
=1
In particular, by a > 2r — 1, (3.17) and (3.18) are summable, and so,
> BV lgrllZ < oo, (3.20)
k=1
and
lim hmsupz (BV9) %k'”wk”ﬁk = 0. (3.21)
=00 nooco
k>1

Proof. The proofs of (3.17) and (3.18) are similar. Next, we prove (3.18). Noting that for
any t € (0,1]

/q lnapn(tscdz—ZP Sne =1) = 1.
i€Z

By Hardy-Littewood’s inequality and Holder’s inequality,

kUln 2
2k
q_lna / / pE(t, x)pk (t HK — y;)dt;dzx;dy;
Ap(1) JR2k

<¢* /Ak(l)il:[l/ﬁ ((q ln‘v)p( (t; —tifl),nl/axi))% da;dt;. (3.22)

By the Gnedenko local limit theorem (see Lemma B.1 in Appendix for a proof),

1/«

sup p(n, k) — g(k/n'/*)| = 0asn — occ. (3.23)

(n,k)eT q

Since the density g is bounded, there exists A € (0, +o0) such that

p(n, k) < gAn~Y*  forallne Z,, ke Z. (3.24)

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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Therefore,
k2 K : -1, 1 1/a 2
Wkl <o [ T [ ((a7n#) plotts — tia)on o) dids
A1) ;27 JR
k
SCkAk(Qr_l) / H/ (q_ln%) p(n(ti — ti—1)7 ’I’Ll/al‘i)(ti — ti—l) 1_“27‘ d.%‘idti
A1) i IR
k 1—2
SckAk(QT’—l)/ H(tl _ti—l) ) dtl
Ap(1) ;29
CkAk(erl)l"k 1+ 1—2r
< 1,2 < ), (3.25)
I(k(1+2)+1)
and so, (3.18) is valid. O
Lemma 3.3. Assume that (A.1), (A.2) and (A.3) hold. Then for every k£ > 1,
lim ||[¢% — Gi|2 =0, (3.26)
n— oo K
where
Gp(t,x) == Sym{gx(t,x)}, (t,x)€[0,1]* x RF. (3.27)

Proof. By the local limit theorem (see Lemma B.1 in Appendix),

lim ¥F(t,x) = Gi(t,x) for any (t,x) € Ax(1) x RF.

n—oo

For any § > 0 and M > 1, we can write
e = Grlllze. <2ll¥n = Gillp, |2y +4llvnlpgllZy +4IGilpg|Zs .

where
D = ﬁi-gzl {tl —ti_1 > 5, |£L’l| < M, |yz‘ < M} .

Since ¥ — G}, is bounded and Hf;l K (x; — y;) is integrable on Dy, by the dominated
convergence theorem,
||k — Gk|ID1||2U;< — 0asn — oo.

Note that D{ = Dy U D3, where
Dy = Uiy {t; —tio1 <0}, Dz = UL, {|s] > MY U (U {|yil > M}).

By the proof of Lemma 3.2,

k
1—2r
k!”wﬁIDzHZL;{ <ck / / Hsi @ ds; — 0 uniformly inn as § — 0
5;>0,i=1,-- k,s1+ - +sp <1 =1
Uk {s;<6}

and
)

Dk(1+1=2)+1)

ok oy, < P ((muax [5i > ¥ b1
By the Montgomery-Smith inequality (cf. [38]),

P ( max |S;| > niM> < 9P (|5n| > néM/so) — 9P (Y] > M/30)

1<i<n

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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uniformly in M as n — oo, where Y is the symmetric a-stable variable. Noting
P(Y|>M) - 0as M — oo, for any ¢ > 0, for small 6 > 0 enough and M > 1

large enough, we have that

lim sup ||1/J,’§ID§
n— oo

2
<e.
Ly

Similarly, for any € > 0, for small § > 0 enough and M > 1 large enough,

lim sup || G I pe ||2£,;< <e.

n— oo

Thus, (3.26) is valid. O

Step 2. We define a discrete Gaussian chaos 3, (3,; 1) which has the same coefficients
as the chaos expansion of 3, (8;w). We use Lindeberg’s argument and the hypercon-
tractive technique to show that the two chaos have the same asymptotic distribution.
Then we study the convergence of the Gaussian chaos 3, (8,; 1) using techniques of
weighted U-statistics for Gaussian variables. This step includes Lemma 3.4, Lemma 3.5
and Lemma 3.6.

Let {n(i,x), (i,x) € Z4 x Z} be a family of i.i.d. standard Gaussian random variables,
and independent of {£(i,z) € Z, x Z}. Set

“+oo
pli,x) =Y ayn(i,z +y). (3.28)

Then {n(i,x), (i,z) € Z x Z} and {w(i,x), (i,x) € Z4 x Z} have the same correlation
structure. Define

pk(t,x) = ﬁ,u (nti,némi) ., (t,x) € DE. (3.29)
i=1
We also extend ¥ to the whole space [0, 1]* x R* by defining
i, (6,%) = oy, (s.y) forall (t,x) € Ci(s,y), (s,y) € Dy,
Define -
30(Buip) =1+ Y BV O Y Ut x)uk (t,x). (3.30)
k=1 (t,x)€Dk

Let 35!(8,;w) be the sum of the first [ + 1 terms in 3,,(3,;w), i.e.,

l
35 Brsw) =14 Y BV 05 > vkt x)wk (t,%),
k=1

(t,x)eDE

and let 35!(8,; 1) be defined in same way.

We first use Lindeberg’s argument and the hypercontractive technique in multilinear
polynomials (cf. [39]) to prove that both 3,%1(5”; w) and 3,%1(6”; 1) have the same limiting
distribution as n — oco. Let us first recall the conception of hypercontractivity (cf. [39]).

Let1 <p<g<oo, 7€ (0,1). Avariable X is said to be (p, ¢, 7)- hypercontractive if

la+ 717X, <|la+ X]|, foralla € R.

It is known that if F(X) = 0 and E(]X|?) < co where ¢ > 2, then X is (2, ¢, 7)- hypercon-

tractive with 7 = %
2(g-D2 1 XMlg .
Generally, let n be a positive integer and let X; be a collection of orthonormal real

random variables, one of which is the constant 1, i = 1,--- ,n. We call X = {&},--- , X, }

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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an orthonormal ensemble. X is said to be independent if X7, .- , X, are independent
families of random variables. A multi-index o is a sequence (o1, - ,0,) in Z%. The
, is the number of elements in {1 < i < n;0; > 0}. Let
{zi ;}1<i<n,j>0 be a doubly-indexed set of real constants. We write z, := II7_ 2, ,,. A
multilinear polynomial over X is defined by

)= Zc,xc,.

For 0 < 7 < 1, define

= g rloleg 0.
o

For1 <p<g<ooand0< 7 <1, we say that X is (p, q, 7)-hypercontractive if

IT-Q [lg=<Il @ Il

for every multilinear polynomial @) over X.

Lemma 3.4. Assume that (A.1), (A.2) and (A.3) hold. Then for each [ > 1, both 35!(3,;w)
and 35'(,; 1) have the same limiting distributions as n — oo, that is, for any ¢ € R,

Jim [E (exp {it35 (Buw)}) — B (exp {it35' (Ba: n)}) | = 0.

Equivalently, for any bounded continuous function f € C[E?’) (R),

Jim B (f (35" (Bniw))) —E(f (35" (Bni )| = 0.

Proof. Since the w(i,z) and pu(i,x), i € Zy, x© € Z, are correlated in space variable, some
invariance principles in [14] and [39] can not be applied directly to our model. But
by time-independence, the multilinear polynomials in our model can be expanded into
multilinear polynomials of independent random variables. This observation allows us to
apply Lindeberg’s argument and the hypercontractive technique to our case. Next, we
use Lindeberg’s argument and the hypercontractive technique to show the lemma.

Recall that T := {(i,x) € Z?%; i € Z,x € qZ + il}. We choose a sequence of finite
subsets

T ={(,xim) €ET;1<i<M,1<m<M}, M>1

in T such that T); C Ty for M’ > M, and Ty, T T as M 1 co. In fact, we can take
Tim =q(m—[M/2])+il,i=1,---,M,m=1,--- ,M. Foreach ! > 1 and M > 1, define

BSZ (ﬂn?w)
l
= Z kgk Z 1/12(’5, x)wﬁ(t, X)
k=1 (¢, x)G]D” o

= (@\f) kgk (g~ Lplt1/a)k /0 o /Rkj iM s, ¥)UF (s, y)wk (s, y)dsdy,

where I¢ is the indicator function of C,

Dy p = {(Z x) (i,z) € ’]TM} C,’f)M = U(MX)eDZ’MC,’f(t,x), Ch(t,x) = HCn(ti,xi),

nna

and C,(t, x) is defined in (3.6).
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For given f : R — R with
Cy = max{|[f'loo; [l lloo; 1/ llsc} < o0,
we have
B (1 (35 (Bui)) = £ (35 (Buin) |
<[B (7 (35Buiw)) — 1 (35 Bui)) ) |+ [B (£ B3 Buim) = £ (350 (Bui)) ) |
+ B (7 (334 (Buiw) = £ (35 (Buim)) ) | (3.31)
Let us first estimate the third term on the right side. Set
wi = (Lw(i, 1), - ,w(E,zim)), =1, pwlE,zi1), -, pw(,xim), 1<i<M.
Define the intermediate sequences between (p1,- -, pas) and (wy, -+ ,wpr) as follows:
X () — (ng)’... ,ng}) = (Wi, Wi s e gy = 0,1, M.

Then the components X(J) (X,%,X,g]i, 7)(/83\4), k=1,---,M,j=0,1,--- , M have
the following forms:

XA =1, X7 =wlk,ar), 1<k<ji XU =p(kans), j+1<k <M, i=1,- M.

For each o = (017"' aUM) € {0717 ,M}]W' let 1 <41 < ig, -+ < Z\a’\ < M be
the integer such that o, # 0, k = 1,---,|o|. Denote by m, = (i1, -+ ,i|) and x, =
(Tiy,ory s T, i, ). Then we can write SE,ZM(Bn; 1) as a multilinear polynomial of X(©):

! i x i x
<l
3 (Buip) =1+ BV o, Y v (n nl/a) fin (n nl/a)
k=1 (i,x)GTf’W
l < M
ol |0 o o (0
1+ > (sl (52 55 ) T X,
k=1 o=(0y, - ,0p1)€{0,1,--- ,M}M =1
lo|=k

- Y ellaea)

o=(o1, ,op)E€{0,1, ,M}M
lo|<t

where
= (Bvas) ol (52, 5.

We define Q(X)) to be the multilinear polynomial of X) by substituting X () with
X0 in Q(X(). Then for each j = 1,--- , M, we can write

M
QX)) = > o [T X0,
o=(o1, ,op0)€{0,1,-- ,M}M k=1
o<t
= > o Il xho+ X ewGme) [I X2,
oilo|<lo;=0  k#j1<k<M ailo|<l,0;>0 k#j1<k<M
::Qj+Rj.

Similarly, we write Q(XU~1) = Q; + S;, where

Si= Y cubime) [[ X,

oilo|<l,o;>0 k#j 1<k<M

EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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Then

M=

£ (35 Bus)) = £ (35 Busi)) =3 (£ (Q(XD)) = £ (Q(x71)))

= <.
|l
S e

(f (@j +Rj> —f (@j + Sj)) . (3.32)

1

.
I

Using the Taylor expansion:

G

3
6|y|,

F+9) ~ (F@) + @y + 5 @) <
in particular, we have
‘E (f (@j + Rj) - (f(@j) + Q)R + ;f”(@vj)Ri))‘ < %E(|Rj|3)
and ) o
’E (f (@j + Sj) - (f(@j) + Q)85 + 2f”(@j)3?>)‘ < %EUSJ‘\S)-

are independent, and p; and Hk# L<h<nr XU are

koK

Note that w; and [ ], ;1 <p<ns X/i];,c
also independent. Then

E(f@Q)R;)= Y. B(Ff@) JI x0 |E@6wm.,)

oilo|<l,0;>0 k#j,1<k<M

= Y wE(r@) I X9, | B0 =E(f(Q)s;),

oilol<lo;>0 k#j,1<k<M
and
E (f(g)(@j)R?>
_ 2) () . . (4) (4)
= Z corco2E| f1 )(Qj)w(j,xj,g;)w(j,xj,gjz_) H kaf’;lc H Xk,a,ﬁ
o150,0250, k#5,1<k<M k#j,1<k<M

J J =
lot|<t,|o?|<t

_ 2: 2) () (4) (4)

= Calcc2E f( )(QJ) H Xk,a,i H Xkﬁi
o1>0,a2>0, ktj 1<k<M ktj1<k<M
lod|<t,|02|<t

xE (w(j7 wj,o‘} )W(j, wj,o‘?))

— 2)() ©) ©)

- Z Ccrlca'QE f( )(QJ) H Xk,a’i H Xkyf’i
010,020, k#j,1<k<M k#j,1<k<M
loli<t,102]<t

X E (10,5000 707))
=E (f@)(@j)55> .
Therefore, we have that

B(r(@+R) -7 (@ +8,))| < F BORP) +BAS,H). 333)
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Next, we estimate E(|R;|®) and E(|S;|®). For each L > 1, define

wr(i,x) == Z ay(i,x +y),

ly|<L
pr(i,x) = Z aypu(t,z +y), ve€{xi, -, zim}, 1 <i <M.
ly|I<L
Set
wi = (wr(i,21), - wr(i,zin)),  pr = (po(i,zi), - po(i,zin)), 1<i< M,

and substituting w and p with wy, and 7, we can define XU-D), X,(Cj’L), X,i{;L), k=
1,--- M,s=1,--- M, 5=0,1,--- , M. Denote by

— ; (4,L)
Rir= Y cwloe) [[ X5
o:lo|<l,o;>0 k#§,1<k<M

— § : ; (4,L)
Sj,L - CO'/J/L(.77xj,oj) H Xkygk .
o:lo|<l,o;>0 k£ 1<k<M

Then R, ;, and S, ;, can be expanded into two multilinear polynomials with degree <

over XL+M — (LM . yLtMy where N = max{|zil, - win|} + 1,
X = {1, €Gi,2), mli,@)s ol S2AL+D)J, =100,
Since XL+M ig (2,3, 7)-hypercontractive independent ensemble with

. 1 1
T = min , ,
{23/2||§||3 25/2|In]ls }

by Proposition 3.12 in [39], we have that

E(IRy,.*) + B850 ) < 7% (B(RyL12)*? + (B(S;.2)72)
Letting L. — oo, we obtain
E(IR, ) + E(S;%) < 7= ((B(Ry[%)*2 + (E(IS,)*?) .
Therefore
B (5 (@4 R,) 7 (@+8)) | < Lo (R + (B(S,)*?) . 3.30)

()

For (t,x) € ]D’fL’M, 1 ¢ t means that £ is a component of t. Note that X;’ and
Xg.j b are independent of ng ), e ,X§{) 1 X;Ql, e ,Xg\f[), and have the same mean and

variance. Therefore, by (3.15) and noting that wﬁ(t, x) is a probability density,

E(R;[*) + E(|S;[*)
l

k
=2E (> Bvarter > ) <H X”/>
k=1 (t;x)e]DﬁJuand %Et =1

l
23 (B ik /R L phele (. x0 oy h ey , (69) (Odtdedy.

k=1 [0,1]F
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where CS,M = U(t,x)e]thMcs(t X)'

k

L) =) Tz ay(t), b= (t1,--- ),

n ‘n
=1

and I¢ is the indicator function of C. Then by (3.15),
l
>y
k=1 0,
1
<y
k=1
where C(l) are positive constants independent of n and M. By (3.18),

l
> 1wkl < €2
k=1

where C5(1) is a positive constant independent of n and M. Therefore,

/}Rk Rkw ~(t, X)Ick (t )Y (x—y) VE(t, Y)IC’» (t y)I7(t)dtdxdy

[0,1]%

n
I ICw M

9

Ml

l
sup {E(R;|*) +E(S;)} <Ci() > Wﬁ”if;{ < Cr(D)C(1). (3.35)

1<j<M
From (3.26), we have that, foreach 1 < k </,
. k 2
lim [y = Gyl =0.

From (3.17), and for each t > 0, Ij”(t) — 0 uniformly in j as n — oo,

2

n,M || ok

HG,J I =0
K
uniformly in j, M as n — oco. Then

ko . <2l - -0 (3.36)

2
12 HG,CIJ’?I%M

k
|71 0% o

k‘”ﬁ’;(

uniformly in j, M as n — oo, where C' is a positive constant independent of n, M. Note

that
M k
PRHOED DAY
j=1 i=1

We have
|
j=1

=[] ket 600 -y ke,
[0,1)* JrE JRE :

2
n k

t)dtdxdy

uM:

—2 / /R [0y (0 () ) e, (6:9) (1)t

SkHt/%’iIIL;( < 1|kl -
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Now, by (3.32) and (3.34), there exists a positive constant C5(!) independent of n and
M such that
) 1/2

E(s (nM(ﬁn, ))—f(sswn;u)))\
2
z’;;) o

1<j<M

C’ 2
<Clcrra (o e AL ) o, (5 e ot

Cs ()l
g%chﬂl Skl (Hw:z ~Guly + [eurpter |
k=1

uniformly in M as n — oc.
For any ¢ > 0, choose n. > 1 such that forall n > n., M > 1,

‘E (f (3” aa (Bnj )) —f <3§,lzw(5n§ﬂ))) ’ <e

Since for each n > n. fixed, as M — oo, C}'\ Cf ,, — 0 where C§ = Uy x)eprCh(t, x), we
have that as M — oo,

l
E ((3§l</3n;w> =35 (B >)2) < OV By hk ey — Tex k[, =0,
k=1

Ly
Therefore, as M — oo,

35 Bniw) = 350 (Buiw) 2 0, 35 (Bui i) — 355 (Bai i) 22 0,
and so, for f € Cy(R),

B (f (33 (Buiw)) — £ (35 (Buiw))) ‘ 2225,

M—o0
E (£ (35" (Bui ) = £ (35 (Bui))) | Mo,
Now, in (3.31), letting M — oo, we get that for all n > n,,

[B(f (35" (5us)) — £ 35 (Buim)) | < e

Finally, letting first n — oo, then € — 0, we obtain that
i (B (f (35 (Bsw) — £ (35" (Bui ) | = 0. 0

Next, we study the convergence of 35!(3,; u).

Lemma 3.5. Assume that (A.1), (A.2) and (A.3) hold. Let £ > 1 and ¢ € L?"([0, 1]* x RF).
Assume that

sup / lo(t, x)|dx < cc. (3.37)
tel0,1]k JRF

Set
?(s,y) = (¢! 1+1/a Z ok, x) (8, ) </ cp(s,y)dsdy) ,
(t X)G]D’f CvkL(tax)
and define the weighted U-statistics via

SI?(QD) = erkz Z @(ta X)MZ (ta X) >

(t,x)eDk
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M\»—l
M\»—l
|
“‘w

where 6,, = ¢ «Ta and uk (t,x) is defined by (3.29). Then, as n — oo,

Siouap S (. 3X) W (dt dx) ifr=1,
S (p) — (3.38)
# f[0,1]k fle o(t, X)W (dtdx) ifr < 1.

Proof. By the definition of i, we have
1% — o35 = / / [B(t,x) — o(t,x)|[*" dtdx — 0 as n — oo. (3.39)
[0,1] JRF

When k = 1, S7(p) is a Gaussian random variable with zero mean. We first consider
0(t, ) = Ltg,t]% (w0,21) (t, ), where 0 < tg < t; < 1, —00 < 29 < w1 < 00, then

2
E||ST(p) —0n Z o(t, z)pn (L, )
(t,z)€D,
< / Bt ") — ot ")y (z" =YDt y") — ot y)|dt da’ dy’
Chp (t,2)XCh (t,y)

(t,x) €Dy, (t y)€D,

= [ [ 70— pttabnGe () — otttz

Therefore, by (3.15), (3.16), and (3.39), we have

2
nlin;o E [ |S7(¢) —0n Z o(t, ) pn (t, 2) =0.
(t,z)€Dy
2
Next, let us estimate E ((Z(M)E]Dn o(t, ) (t, x)) )
2
El{ S eta)mta)
(t,z)eD,
= Z Z V(gk +il — (qj + if)) + O(n)

nto<t<nti nl/exo<qgk+il,qj+ib<nt/ezq

> > ~(ql) > 1+ O(n).

nto<i<nty 0<I<nl/o(x,—x [k—jl=t
- (@1—z0)/a (nl/ %z —it) /q<k,j<(nl/ %z —it)/q

Noting that

Z 1=n"(zy — x9),

[k—j|=0
(1 @zg—it)/q<k,j<(nl/*zq—it)/q

and for [ # 0,
Z 1= 2n1/a(a:1 - 1‘0),

[k—j|=1
(nl/ g —it)/q<k,j<(nl/®ax) —it)/q
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we have

E D et (t )

(t,z)€D,,

nt/*(z1-m0)/q
1
:a”(h —to) (nl/a(fﬂl — 20)7(0) + 20/ (21 — o) Z v(ql)
1=1
nl/“(wl—xg)/q
—2q Z l’y(ql)) + O(n).

=1

Thus, if r = 1, then

lim 62E > et x)n () = (t1 — to) (21 — wo)

n—oo
(t,z)eDy,

If r <1, then

2

lim *E Z o(t, ), (t, x)

n—oo
(t:2)€D,

nt/® (x1—10)/q

= lim n¥(t1 —to) (2(x1 —20) Mg " Z i

n— o0
=1

n*/*(z1-20)/q

_ 2qn7% Z )\Tq12rl22r>

=1

1 . 2r—2 1 1a 2—2r
=— lim n" = (t1 —to)| 2(z1 — x0)Ar(2 — 27) (n (r1 — 170))

q n—oo

3—2r
- 2n_§/\r(3 —2r)7! (nl/o‘(ajl - x0)> )
1 3—2r 1
=—(t1 —to)(®1 —w0)”" " = — o(t, z)K(x — y)p(t, y)dtdedy,
q q Ji0,1] JR2
where . = (1 —r)(3 — 2r). Thus, for ©(t,z) = I(+,t,]x (z0,21] (£, T),

() Jo.1 Jr (&, 2)W(dt dx) ifr =1,
St(p) —

% f[O,l] Jr et x)W(dtdr) ifr <1

which implies that this also holds for any simple function.

Let us now complete the proof in the case £ = 1. We only consider the r» < 1 case. For
any ¢ € L?([0,1] x R) with

sup [ p(t,)lde < .
t€l0,1] JR

choose a sequence of simple functions <p(m) such that

l™(t,z)| < |@(t,z)| for all (t,z) € [0,1] x R and ||¢™ — ¢||p2r — 0 as m — oo,
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By (3.16), (3.39), we have

lim E (( / / (t,2)K (z — y) p(t,y)dtdzdy,
n—oo [0 1 R2

and so

ST (p) @ \1[ = \[/ / (t, x)W(dtdx).

Therefore, we complete the proof of (3.38) in £ = 1 case.
By the Cramér-Wold method, for any m > 1, @1, -+ , o, € L?7([0,1] x R), if

sup sup / lpi(t, x)|dx < oo,
1<i<m t€[0,1]

then we have the joint convergence
n n (d)
(87 (@1), -+ ST em)) — (W (1), - IV (o).
Next, let us extend the conclusion to £ > 2. We first consider functions of the form

o(t,x) = p1(t1, 21) - - - or(tr, 21), (3.40)

where o1, -+, € L?7([0,1] x R) satisfies

sup sup /|<pi(t,z)|d1:<oo.
1<i<k te[0,1] /R

If p;(t,z)p;(t,y) =0,t € [0,1], z,y € R, 1 < i < j <k, then for such functions ¢, by
Lemma A.2, as n — oo,

HS1 ) k/2H/ /(p]ta: W(dtdx)= 72 /01]k/]Rk (t,x)W(dt dx).

For general ¢ € L?7([0,1]* x R¥) satisfying (3.40), for each m > 2, we define

SDET)( ):@J(tﬂr)l[l*l,#)(t)v Z:]-vvmv]:]-v;ka

and

k
P (t, %) = 3 [T 5, 25) = o(t,%)I5,,.
1<y, ig<m,ij#£i; for i#l j=1
[ik -1 zk>
X ,— | -
m m

Then for each 1 < iy, -+ ,ix < mwithi; # i forany j # 1, o\ (t1,z1), -, o2 (b, 1) €

L27([0,1] x R) satisfy o (t, )¢\ (t,y) =0, t € [0,1], 2,y € R, 1 <1 < j <k, and

lﬂ,l

where

B, =

{ = ll)
,—

m m

1<iy, ig<myij#i for j#l

™) (£, %)| < |p(t,x)| for all (t,x) € [0,1]* x RF.

By the Lebesgue measure |BS,| — 0 as m — oo, we have

||(p(m) — ¢l < |l@IBe || 12r — 0 @as m — oo.
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Since for each m > 2, asn — oo,

k
SE(e™) = > s¢ | [T e
1<ty ig <myij#i; for j#l j=1
(@) -
oy () -wee)
1<iy, - i <m,ij 7 for j#l j=1

By (3.15), (3.16) and (3.39), there exists a positive constant A only depending on ¢ such
that forany n > 1,

L2r,

m

2
B (5866 - 5t(6™))") < Ale™ - ol < All
and
2
B((1 () - 10 (+™))") £ Ale™ = el < AllpIn 1

Therefore, S7(¢) @, IV ().

Finally, for any ¢ € L?"([0,1]* x R*) satisfying (3.37), choose a sequence of functions
o™ (6,x) = S " (1, 21) - ") (tr, x1,), such that

|o™) (t,%)| < |o(t,x)| for all (t,x) € [0,1]* x R and ||¢\™ — ¢ 2- — 0 as m — co.
Then by (3.16), (3.39), we accomplish the proof. O

Remark 3.1. It is obvious that the operators ¢ — S/'(¢), k > 1, have a natural sym-
metrizing property. Thus S} (¢) = S;(Sym{¢}).

Remark 3.2. Note that 7 is already constant on C¥(t, x), (t,x) € AD¥, so that ¢k = ¥,
Thus, by the definition of S},

SEWR) =0r D ekt ) (6,%).

(t,x)eDk

By the definition of the Z; g ) (1, %) (see Theorem 2.1), we have that

9] k
Zopa (LX) =14 (a(B, Q))k/ / [T ot = tios, 2 — 2 )W(dtida),
k=1 Ar(1) JRE Gy

where 20 =0, tp =0 and Ai(1) = {0 < t; < --- <ty < 1}. Define

! k
Zf(lﬁ’,q)(l’ ¥) =1+ Z(U(ﬁ’ q))* /A 0 /R’v Hg(ti —ti—1, i — Ti—1)W(dtidz;).
k=1 k i=1

Lemma 3.6. Assume that (A.1), (A.2) and (A.3) hold. Then for each I > 1, 35(8,;w)
converges in distribution to Zf(lﬂ q)(L ).

Proof. Since g(x) is the density function of the symmetric stable distribution on R,
a € (2r — 1,2], it is known that g(¢, ) is continuous on (0, 1] x R and

/ g(t,x)dx =1,
R
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an
/ /|gt x)|*dadt = / /t(l 0/ g()|?" dadt = /|g )2 dx < oo.
Set
gr(s,y) = (' VNN Ton ) (s,) (/ gk(&y)dsdy).
(t,x)eDk Ch(tx)
Define .
35l(g) = Z BV Si (gr)-
k=1

Therefore, Lemma 3.5 yields

3%( )@ (d) @) Z<i

o (6, )(17*) as n — oo.

We write

E((35'(9) - 35 (Busw)”)
= zl: 2k .| /

By (3.15), we have

[ () = gk (e 0)2% (x = ) (whe.y) = gk )by,

1]k

S o 500 gk ) () — (e iy
< CH k(%) — o811,
< C* (119t - GillZy +lllgk — Gl ) -
Therefore, by Lemma 3.3,
E ((35'(9) = 35 (Buiw))”) —» 0as n = oc.

(&)
)

and so, 35! (B w) — Zf(lﬁ’q)(l, %). O

Step 3. Combining the conclusions in previous two steps, we show Theorem 3.1 via
Lemma 3.1.

Proof of Theorem 3.1. Define

3<l ﬂna = Z k:gk Z ’lpfz(tH X)wfz (t7 X) )

k=1 (t,x)eDk

l
l = - . .
Y Zg(ﬁ Q) 1’*) =1 + ;( 6’ /Ak 1) /]Rk Hg t tz 1, L5 — Tj— 1)W(dt1d’£1)v

and

Y" = 3n(6n;w)7 Y= Zo(ﬂ7q)(la *)

Then
oo
2
E((-Y))= Y 08).0% gl
k=l+1
EJP 28 (2023), paper 68. https://www.imstat.org/ejp
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and

B (07 - v) = > (an) | UA(6,309E (x — y) v (6, )dbdxdy.

k=i+1 Ax(1) R%

By the conditions (3.15), we have
Ap R2k K

Therefore, by Lemma 3.2, ¥} — Y in probability uniformly inn as! — oo, and ¥; = Y
in probability as I — co. By Lemma 3.4 and Lemma 3.6, for each [ > 1, Y — Y in
distribution as n — oo. Therefore, by Lemma 3.1, Y — Y in distribution as n — co. O

3.2 Proof of Theorem 2.1

In this subsection, we show Theorem 2.1 by estimating the L?-error between
Z(Bn;w)e~"Bn) and the modified point-to-line partition function 3,,(5,,;w).
Denote by
2w (i,2)—A(Bn
S(ia) = eBnw(i,z)—A(B )_17

Bn

and set
i, x) = w(i, x) —w(i, x),
where A(3) = log Ee#*(%) and 3, = fn~2 "2« +a. Then E(&(i,z)) = 0, and we can write

Zy(Bn; W)ein)\(ﬁn) =E (ﬁ (1 + Baw(i, Si)))

=1
=14+ > (BVFol > Ykt x)@k(t,x).
k=1 (t,x)eDk

The following lemma gives an error estimate between the two environments.

Lemma 3.7. Assume that (A.1), (A.2) and (A.3) hold. Then we can choose a positive
integer My > 1 such that for any M > M,

M (=5 =55 +5)+ 21 <0,
[E(@(i, 2)@(i,y))| < Cuy(z —y) + O(BM), (3.41)
|EW(i,2)9(i,y))| < Cuy(z —y) + O(BM),

where O(f,) is independent of (i, z,y), and C), is a positive constant independent of n.

2r1

Proof. We only prove the r € (1/2,1) case. The r = 1 case is similar. Since <1, we
can choose M; > 1 such that for all M > M,,

1 1 2r — 1

M(—z-—+-)+T— <0

2 2a « o
For any integer M > M, by a Taylor expansion, we have

M+1

E (eﬁn(w(z,m)+w(l7y))> =1+ Z w(i, —|—0J(’L y))k) + O(BS/I+2)
M+1 k k
“14+ 3 3 ROE (2t (1) + OB,

k=1 1=1
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and

E (eﬁmm)) E (eﬁnwu,y))

M+1 M+1
<1+ Z )+ 0By +?) ) Z (i,y) + O(B,"2)
M+1 k )
=1+ Z Z an )) ( k— l( )) +O(61V[+2)
k=1 I=1 k!

By Lemma D.1, for any k,j > 1, there is a positive constant C}, ; such that
|E (&' (i, 2)w* ! (i,y)) — E (@' (6, 2)) E (W* (0, 9)| < Cryv(z —y).

Therefore, there is a positive constant C v such that

E@(i, 2)@(, )] ezgf") B (P (artelian) g (ehelio)) B (eheio)]
e—2X(Bn) "
<= (OuBinte —y) + 0N )

<Cuy(w —y) + O(BM).
Finally, we show the third estimate in (3.41). It is obvious that

E(9(i, 2)0(i,y))
=E ((0(i,z) —w(i, z))(@(i, y) — w(i,y)))
=E(w(i, z)w(i,y)) — E(w(i, 2)w(i, y)) — E(w(i, 2)@(i,y)) + y(z — y).

Then, we can write

eﬂnw(ivx)_A(ﬂn) -1 ( ) e_A(ﬁn)
. 1,y =
/B'n/ 6774

Using again a Taylor expansion, we have

M+1
(Z y)w* (i, 2)) + omf“)) ‘

chv(:c —y)+O0(BAT).

E(@(i, 2)w(i,y)) = E ( E (w(i, y)eﬁnw”»ﬂ) .

e~ ABn)

[E((i, 2)w (i, y))| =

Therefore, the third estimate in (3.41) holds. O

Proof of Theorem 2.1. Denote by

l o]
(Zu(Bui)e ™) = S (By@eh S wh(6 T (,%). (3.42)
k=i+1 (t,x)eDk
l
(Za(Buiw)e @)™ =14 S (Bya0E Y vkt (e x). (343)
k=1 (t,x) €Dk

Let v* and p¥ be defined by (3.7) and (3.14), i.e.,
k
Ph(t,%) = (a7'n% ) ph(6,x), Ah(x = y) = n" VIR (W, x)wh (b y))
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Recall 3, = Bn*%*ﬁ =. By Lemma 3.7, there exist posmve integer M > 1 and positive
constant C); such that (3.41) holds. In particular, B n-a < 1. Then by (3.41), we have

. <(Z"(ﬂn; W)e*m(gn)> >z> 2

k
< Ak/ / (6, x)s (6 y) [ | ( +O( ]y)>dtid$idyi
k=i+1 Ax(1) JR2E i=1
k L. _ ¢ ) oL (t — s .
Z A pn(tz tio1, @)Y (2 — yi) P (i — ti1, yi)dasdy; + O(1) | dt;,
k=l+1 k(l)z 1

where A is a positive constant. Note that
~ oy ) ) i Y- ) ) o
/ pn(t1 - tz—la xi)'yn (xz - yz)pn(tz - tz—la yz)dxzdyi
]R2
<C Pn( —tic1, @) K (zi — yi) Dy (t — tie1, yi)dwidy;

<Cl/| z_ 1— 1,$2)| dei

1—2r

<Co(t; —ti—1) =,

where C, C1, C5 are positive constants. Noting that (¢; — ¢;— 1) “ > 1, we have
A
E«%%wk“%ﬂ) (3.44)
< Z Ak@/ H (ti —ti_1) = +O(1))dti
k=i+1 (1) =1
gZC’“/ Ht—t“la”dti
k=1+1 Ar(1) j=1

oo Cécrk (1+ 1— 27‘)

—Z (k(14+2)+1)

k= l+1

—0 (3.45)

uniformly in n as [ — oo, where C5, C3 are positive constants.
Define

Sp=08 > Ykt x)Tf (t.x),

(t,x)eDk

and

Sp=08 Y wh(t,x)wh (t,x).

(t,x)eDk
Next, we prove that for any £ > 1,

lim E ((5;; - Sg)2> =0. (3.46)

n—00

Fork>2,1<I[<E,set

k

Skl_ek Z ok (t,x Hwn ti, i) On(ti, 21) H wn (t5, ;)

(t,x)eDk j=l+1
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Then
k 1

(5((s-52))) <2 (m(s20")’

Foreach 1 <[ <k, by (3.41) and the assumption (A.3), we have
o\ 2
E ((s,w) )
k(z -1) =1
pn t X t % (
/Ak(l) /]R% E

k
X (n_%;l’y (x;—y)+ O ﬁM ) H - 1 zj — y;)dtdxdy

—4)+0(8)))

k

“6m0) TI K(es - yy)dtdxdy

j=l+1

l
<Cl/ / pntxpntyH< —Yi +O(77, “
A1 R2k =1

SCg/ H(t —tie 1) S dt; — 0as n — 0o.
Ag(1) ;24

Therefore, (3.46) holds, and so

2
nlggoE(((Zn(ﬁn; )—"Wm) ) 30 (B )< ) —0. (3.47)

Combining (3.44) and (3.47), we get

2

lim E ((Zn(ﬂn;w) =nA(Bn) ) 30 (B )) —0.

n—oo

Thus, the conclusion of Theorem 2.1 holds. O

4 The scaling limit of the point-to-point partition function

In this section, we give the proof of Theorem 2.2. The convergence of the finite
dimensional distributions in Theorem 2.2 is similar to the proof of Theorem 2.1. An
important estimate in the tightness is the following gradient estimate for symmetric
random walk in the domain of normal attraction of a-stable law.

Lemma 4.1. Let {S,,,n > 0} be a symmetric random walk starting from the origin on Z
and in the domain of normal attraction of a stable law of index a € (0, 2]. Assume that
the characteristic function ¢(u) of Sy satisfies (2.1). Then there exists a constant such
that foranyn > 1, m e Z, y € Z,

C
sup [p(n, z +y) — p(n,z)| < 2|}ya|, (4.1)
rE€EZ n
Cm
2161% lp(n +m,x) — p(n,x)| < Tija (4.2)

One can see [37] for a proof of the a = 2 case. A proof for general case is given in
Appendix B. The proof also gives the local limit theorem for symmetric random walk in
the domain of normal attraction of a-stable law.

We consider the modified point-to-point partition function defined by

3n,x(ﬁ; w) =K <H (1 + Bw(i7 St)) I{Sn—w}> .

i=1
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For each n > 1, we first define a stochastic process z, (¢, ) which is right continuous
in time and space,

1
zn(t,x) = gnl/QBntml/am(ﬁn;w) for any (¢,x) € D, (4.3)

and takes a constant value in interior of each cell C, (¢, x), (¢t,z) € D,,.
For each n > 1, we also define a linear interpolation process Z,(t,z) which is a
continuous process in time and space, and

Zn(t,x) = z,(t,x) for any (¢,z) € D,. (4.4)

Set R,, = {Cn(t,z); (t,x) € D, }. For each n > 1, we define a linear interpolation process
that extends Z,, to a continuous process. The definition is as follows (see [1]): if (¢, ) is
a corner point of the left-hand side of a rectangle in R,,, define Z, (¢, z) = 2, (¢, z); then
for space-time points (¢, ) on the left edges of rectangles in R,,, define Z,, (¢, z) by linear
interpolation of the values on the corners that the edge connects, and finally for (¢,z) on
the interior points of rectangles, define Z,, (¢, z) by linear interpolation of the values at
the four boundary corners.

Theorem 4.1. Let a € (1,2], (A.1) and (A.2) hold. Then

(d)
(zn(t,2))te0,1).0er — (Zo(8,q) (1)) te(0,1],2€Rs (4.5)

with respect to the Skorohod topology on D((0,1] x R), and

(d)
(Zn(t,2))te01],0er — (Zo(8,q) (6 T))te(0,1),2€R> (4.6)
with respect to the locally uniform topology on C((0,1] x R), where Z, g (¢, z) is the
mild solution of (2.7) with o = ¢(f, ¢), and initial data Zy(x) = do(z). Furthermore,

lim E ((zn(t,x))Q) — lim E ((Zn(t,o:))2) —E ((zo(ﬂ,q)(t,x)f) . 4.7)

n—oo n—oo

The convergence of the finite dimensional distributions is the same as the proof of
Theorem 3.1. The proof of the tightness is based on Minkowski’s integral inequality, and
the gradient estimates for symmetric random walks.

4.1 Convergence of finite dimensional distributions
For each t € (0,1], set

ADE(t) = {(t,x) = ((t1,21), -, (tr, k) €DE0 <t <o <ty <t}

For each (¢,x) € D, let p,’,j,w(t,x) be the joint probability of (S,;, = n*/®x1,--- , Sy, =

nl/axk) under the condition S,; = n'/?z, i.e.,
k
pn,t,m(ta X)
= P(Sntl = nl/axla to aSntk = nl/axk|snt = nl/o‘x)

1/a k
_ pn(t = te),n!/*(z — a1)) [ p(n(t; — t; 1), nM/(x; —;1)), (6,%) € ADE,

p(nt,nt/oz)

where (to,z9) = (0,0). We extend p. , ,(t,x) from AD}(t) to Ak(t) x R in the same way
as p* (t,x). Set

k
U o) = (7' n1®) Symiph o (6,30 Lo, e (6:%)), (6,5) € 0,1 x RE.
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Then for any (¢,z) € D,

n

3npmisaa(Buiw) =p(nt, %) [ 1+ 60 > Uh, L (Ex)wp(tx) |,
k=1 (t,x)eADk(t)
where 8, = fn=2 2 ta, Wk (t,x) = [[_, w (nti,némi),
Therefore, using the same approach as proof of Theorem 3.1, we can obtain that for
any finite points (¢t1, 1), - , (tm, Tm) € (0,00) x R, as n — oo,

d
(Zn(tlv 'rl)v e 7Zn(t7”n,7 l'm)> Q} (ZO'(B,q) (tla xl)a e 720'(5,11) (tm7 Im)) ;

and so

(d)
(Zn(th $1>, T 7Zn(tm7 xm)) — (Za(ﬁ,q)(th xl)a T 720'(6,q) (tm7 xm)) .

4.2 Tightness
By the symmetry and Markov property of {S,,,n > 0}, foranyn > 1, k < n, © € ¢Z+n/,

k k—1
i=1

i=1
k—1
=Y E (H (1+ Bw(i, S;)) I{skl_y}> E (Bw(k,y + S1)p(n —k,z — (y + 51)))
YEZ i=1
= > 3ewBw) Y p(1,2)Bw(k,y + 2)pn — kw —y - 2)
YyE€QZA+(k—1)L 2€EqZA+L
= Z Bk—l,y(ﬁaw) Z p(17z_y)ﬁo‘)(kﬂz)p(n_kax_z)
yeEqZ+(k—1)¢ z€qZ+kL
= Z gkfl,z(ﬁvw)ﬁw(kv Z)p(n - k7 z— .'17), (48)
z€qZ+kL

where

gk—l,z(ﬁ;w) = Z p(l,z — y)3k—1,y(5§w)-

yEQZA+(k—1)e

Suming (4.8) from 1 to n, we have

3na(Biw) —pn, ) =BY D pln—i,x—y)3i_1y(Biw)w(i,y). (4.9)

i=1 yeqZ+il

We define the rescaled transition probability p,, (¢, ) which is right continuous in time
and space,

nl/a L

p(nt,n'/*z) for any (t,z) € D, (4.10)

Pn(t, @) = q
and takes a constant value in interior of each cell C,(t,z), (t,z) € D,. Similarly, let
Zn(t,z) be a right continuous piecewise constant extension of 3:

1/«

n
fn(t,l') = Tant,nl/“;c(ﬁn;w)v (ta .’E) € Dy,.
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We also extend w,(f, ) := w(nt,n=z) to a right continuous piecewise constant function.
Then for any (¢,z) € D,

Zota) = > By (/n.a—y) z((t —1/n)F y)gn=/*

yen—1/ayz

(4.11)
= [ o (V= )zt = 1) )i
and
Zﬂ(tv :C) :ﬁn(t7 I) + ﬁqnilii Z Z ﬁn(t — 5T = y)zn(& y)wn('S? y)
se[o,t]mnflzyEn—%Z (4.12)

Pt ) + 8 /O /}R Balt — 5,2 — 4)Zn (s, )@n(s, y)dsdy,

where @, (s,y) :=nz "2 taw, (s, y).
Next, we show the tightness of z,(¢t,z). Let us first prove the following a priori
estimate.

Lemma 4.2. Let a € (1,2], (A.1) and (A.2) hold. Then there exists a positive constant
Cyn such that foranyn > 1, t € (0,1], z € R,
[22(t, )|, < ConBn(t, @)/t (4.13)

and
|Z2(t, )|, < Cb(t, )/t (4.14)

where || Z],,, = (E(|2]™)"™
Proof. By the condition (2.3) and the definition of z, (¢, z),
E (22"(t,x)) < oo and E (22" (t,z)) < co forany m > 1,n > 1,t € (0,1],z € R.

We only need to consider (¢, z) € D,,.
Let us first consider the r € (1/2,1) case. We write

n(t,z) =P, (tx) + Bgn " Y X,

s€[0,tjNn—17Z
where
Xoi= > Palt—s,2—9)Zal(s,)@n(s,y), s€[0,6]Nn""Z.
yEn_éZ
Note that the %, (s, -) terms are independent of G, := o (wy(s,y),y € n~ = Z). It is known
that {X,,s € [0,t]) N n~1Z} is a sequence of martingale differences. Then by discrete

Burkholder’s inequality (cf. [26], Theorem 2.10), and Minkowski’s integral inequality, we
have that for any m > 1,

1/m
E[n"v| Y X,
s€l0,tNn—1Z

m 1/m
<72mn~?"% | E >oox?
s€[0,tjNn—1Z

<2mn T YT X e

s€[0,tjNn—17Z
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For s € [0,t] N n~'Z, we have

E(|X,[*")

_ Zl Zl (ljﬁlpn(t—s,x—yj))E(jlin[lzn(s,yj) (ﬁ SZ/;)

y1€EN o Z  yam€En a7

SDIETEDS (f{ t—sx—yj)(ﬁm(s,yﬂnzm) (f[ ).

y1EN «Z YomEN OZ

Next, we first compute E (Hj:”l w(i,z;)). For each w := (ur,u2, - ,usm) € Z>™,
there exist integer numbers 1 < k < 2m and ly,--- ,l; > 1, and a k-division Aq,--- , Ay
of {1,2,---,2m} such that |4,| = I, 1 < h < k and the mapping {1,2,--- ,2m} > j —
u; € Z is different constant on each A;, 1 < h < k. Let U, denote the set of all such
k-divisions. For each such division (41, --- , Ay), we write A, = {vp,1,--- , v, } and set

ZAM a4, ={ue Z™; j — uy; is different constant on each Ay, 1 < h < k}.

Then we can write

2m 2m 2m

Hw(i,xj) = Z Hauj—ij Hf(l’uj)

ucZ2m j=1

RIS 2. Hau,._% [Teu) ).

=1 (A1, Ak)euk ueZQ7"
e >2

zl>2 AL

where the last equality is due to E (H?:l &(1, uj)) =0ifl, =1 forsome 1 < h < k.

Foreach 1 <k <m, any (Ay,---,Ax) € Uy with [y > 2,--- |l > 2, we have

2m 2m
§ : Hau].,ij Hf(l,uj)
UEZE{?,-”,A,C Jj=1 Jj=1

113

k
=2 2 e,

u1EZ ur€Z h=1

(f“’(171))|

I

<C,, Z Z ﬁ

auh—xvh,j ,
wi€Z  up€Zh=1 \j=1

1 +-+1lp=2m

where C,,, = SUp2<i,<2m,1<h<ik<m, ’Hszl E (¢ (1,1)) ’ Therefore

2m m k ln

| )RS DD SRD DRED o) 4| CFSY

k=1 (Ay,---, Ap)eUy, u1 €Z up€Z h=1 \j=1
1122, 122

Now, let us return the estimate of E(|X,|?>™). Then by the above inequality, we have
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that

gcmz; 3 Y Y Yy

k=1 (?11,2214%6214;, y1€n7éZ y2m€n7%Zu1€Z uy EZ
k ln X )
X H ni_%-i_ﬁ(J,Uh 7néy HEn(& yvh,j)HQMﬁn(t - 5T = yvh,j)
h=1 \j=1 ' Uhsd
m k
<.y ¥ “'ZH( DS
k=1 (?1’2”2.,-’%)?1):;2]’” uy €EZ ur€Z h=1 91)},,,16"7%% Yo, anéZ

1_ 1, r — —
X Hn2 et 1 ‘||zn(s,yvh7j)||2mpn(t—s,ac—yvh7j)>
. J

Uh =N Yy,

<y ¥ Y-yl

k=1 (A1, Ap)€Uy, w1 €Z  up€Z h=1
1122, 0 >2

lp
1_ 1 4r — —
><< Z nz zatag 1 zn(s,yh)HQmpn(ts,xyh)) .

Up—naYp

I

L ”En(syyh)H?mTjn(t_87x_yh)

up—neyp

™
[
3
Wl
|
|
Q‘“
+
Qs
IS

14 2r _ —
=( DRSBTS L G0 P Gl

lh/2
xmts,xyh)pn(ts,zyg)) ,

and that [,,/2 > 1 for all 1 < h < m. Using the Minkowski inequality: (3°, ., |z.[?)"/? <
> uez |Tu| for p > 1, we have that

173
k
Z H Z néfiﬂLﬁau’l_néyhHzn(s,yh)”g,nf?n(t—S,]J—yh)
u1EZ ur€Z h=1 thn‘éZ
k 1
=31 D DRED DD DTt SO C O] S O TR 9%

yhénfiZ y;,En*% Z un€Z

1h/2
KB (t— 8,0 — yn)Ba(t — 5,0 — ym)

:( Y% mn(y—y’)nzn(s,y>||2m||zn<s7y'>||2mpn<t—m—y)pn(t—s,x—y'))

1 1
yen aZy'en” o Z
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We can write

S = 90 1Fa () lemlEa (s Y lamBa(t — 5,2 — y)B(t — 5,2 — o)

yEn_%Zy’en_éZ
=2 [ 5w = s = I ) ey — o oy
Thus, there exists a positive constant Xm such that foranyn > 1, ¢t € (0,1], z € R,
(E(|X, ™)t
<Apn'ts /}R/Rﬁn(t — 5,2 = y)Po(t = s, — Y)IE (5, )12 (5, )|y — o dydy/

and

2m 1/m

E|{n'"v| Y X,

s€[0,t]Nn—17Z

<t2mn 5 > X2,

€[0,t]Nn—17Z
- t 1 1
<tzmily [ [ [ pult=sia-u)palt = s = ) (5 IR 5.0 Ry ~ o)y ds.
0 RJR

Therefore, there exists a positive constant C,, such that for any n > 1, ¢ € (0,1], s € [0, ],
rz €R,

122(t,2)||,, <Con(Bo(t:2)) + Crm / /R /R Bt — 5,2 — )Pt — 5,7 — /)

(4.15)
1 1
122 (s, I1Z5 (s, 4 |13 (y — ) dydy'ds.
By the proof of (3.15), there exists a positive constant C5 such that
0 <~([z]) < C2K(z) for z € R.
1
Set 1.(5,y) =P, (t — 5,0 — y)||Z2(s,y)||7, 0 < s < t,z € R, then
1 1
/ [ [ pate= 5.0 = patt = 5.0 = Il )l o)/

< X /C o )@t,z(slay/)nh‘;l’}/( ne (y' fz)> Ora(s',2)ds dy' dz'
$,Y) XCn(s,2

(5,9),(s,2)EDnp
s<t

< Y / %w(sgy/)n”;—*[((n%(g/_z'>)%w(s’,z’)ds/dy’dz’
Cn(5,y)XCrn(s,z)

(s,4),(s,2)EDnp
s<t

t 1 1
0, / /R /R Balt — 5,2 — )Pt — 5,7 — ) K (y — )12 (5, ) | Bl (5, ) | dydy/ds.
0

Therefore, by Hardy-Littewood’s inequality and Hoélder’s inequality we have
t 1 1
L[] att= sz =m0 = s = )12 )RR 5.0 = o/ s
0
t
<Gy [ [ 1putt = 5.0 = 0PI 5. s
o JR
t
§C4/ / / D, (t — s, — y)|2779n(1/n,y —z) Hzi((s —1/n)", Z)Hm dzdyds,
0o JRJR
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where C3 and C are universal constants independent of n and t. Therefore, there exists
a positive constants C,,, such that foranyn >1,¢ € (0,1], z € R,
[zt 2)]],,

< O (P, (8, 2))?

+ Cn ///|pn —s,x =)D, (1/n,y — 2) ||z2((s — 1/n) T zH dzdyds. (4.16)

Iterating the inequality, we can obtain
[nt]

[22(t,2)]|,, < Con(Bn(t,2)* + > CEL it 2),
k=1

where

In,k(t,x)
=[] =t =) (e )
Ak (t,1/n) JR2E

(H [Pu(tjo1 =t = 1/n,xa(—1) — 22-1)["Pn(1/, 2251 — ﬂfzj))
x P2 (ty — 1/n, xop)dxy - - - daogdty - - - diy,
and To =2, Ak(t, l/ﬂ) = {1/n < tj < tj—l — l/ﬂ,] = 2, s ,k,tl < tO = t}
By (3.23) and (3.24), there exists a positive constant C such that

‘ﬁn(tftlaxfx1)|2rﬁn(1/n7z1 — 2 <H|pn -1 7t 1/”7932(]'—1) 7x2j—1)|2r

X f)n(l/anijl - x2g)>p%(tk - 1/n,x2k)

ck k 1
< Bt —t1, @ — 21)p, (1 -
,(tk — 1/n)1/a(t _ tl)(2r71)/a g (ti—l _ tifl/n)@rfl)/@p"( 1, l'l)pn( /TL7£L'1 1’2)

X (Hpn(tjl =t — 1/n,@9j-1) — T2j-1)Pp(1/1, 2251 — »TZj))Pn(tk —1/n, zay).

Since

k
/ Pn(t —ti, @ — 21)D, (1/n, 21 — 22) ( [Pt —t5 = 1/, a1y — 22;-1)
R2F

X Pp(1/n, w251 — $2j)>pn(tk —1/n,xor)dzy - - - dzar = P, (¢, 2),
and

k

1 1
dty---dt
/Ak(t,l/n) (tr — 1/n)V/e(t —t;,)@r—D/a H (tioy — ti — 1/n)@r=D/a g

< (- By L 0 )
U FE(+ ) +1-3)
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we have

T (1 1 ) Fk (1 1727") .
x) < « @ x).
In,k(ta ) =T (k (1 1—2r) 1 1 ) Clpn(tv )

Therefore, there exists a positive constants C,, such that foranyn > 1, ¢ € (0,1], z € R,

|20t 2)],,, < Con(Pn(t, 2))* + ConDy (t, )

(4.13) is valid. Finally, by (4.11) and Jensen’s inequality, we obtain (4.14).

Next, we consider the » = 1 case. For each n > 1, (¢, z) € D,,, and any positive integer
M > 2, define

X(s,y) = T?n(t — 5T = y)zn(&y)wn(&y% s € [O>t] N n_lzuy € n_éZ N [_M7 ML

Note that the Z, (s, -) terms are independent of w,(s,y),y € n~ = Z, and for each s € [0,2N
n=17Z), wn(s,y),y € n~ =7 are also independent. Then, applying discrete Burkholder’s
inequality (cf. Theorem 2.10 in [26]) and Minkowski’s integral inequality in the order of
temporal and spatial variables, we have that for any m > 1,

2m 1/m

E n_l_% Z Z X(s,y)

SE[O’t]QTﬁIZyEnféZﬂ[fﬂl,M]
2m 1/m
<r2mn~*5 Y |E > Xs )
s€[0,tjNn—17Z yEnféZﬁ[fMJM]
_2_2
<(72m)*n %" Z Z ||X(25,y)Hm-
sE[O,t]ﬂn*lZyEH—éZm[iM’]w]
Letting M — oo, we obtain
2m 1/m

E 71717é Z Z X(S7y)

-1 1
s€[0,tjNn—17Z yen~ =7

_9_2
<(rmpPnrE Y > X lm

-1 1
s€[0,tjNn—17Z yen"3Z

t
<(72m)? / / B2t — 5,2 — )22 (5, ) |mdyds.
0 R

Therefore, there exists a positive constants C,, such that foranyn > 1,¢ € (0,1], z € R,

22(t,x m (D, (T, x 2 m t D —S5,T — 2 2721 s — n'ﬂz S.
[z (t 2)|[,,, < Con(Pn(t,2))* +C /O/Rlpn(t 9 ||z ((s = 1/n)*, 2)|],, dyd

Finally, using the above inequality, we can obtained (4.13) and (4.14) via the same as the
proof of the r € (1/2,1) case. O

Next, let us estimate the modulus of continuity of z,.

Lemma 4.3. Let a € (1,2], (A.1) and (A.2) hold. Then there exist constants x; > 0,
ko > 0 and a positive function (0,1/4] > € — C. such that for any n € Z, withn > 1+ 1/,
te2e,1]]z€R, h>0,§>0,

1/m

(E ((zn(t Fhya+8) — zalt, x))Qm)) < O, (B + 62 (4.17)

where h, =hV £ and 6, =6 V .
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Proof. Without of loss generality, we assume ¢ = % for some integer i, < n/4, and
(t,.]?), (t + hvx + 6) € ]Dn

Zn (€, ) =D, (6, 2) + 6/0 /Rﬁn(€ — 5,y — x)Zn (s, y)wn (s, y)dsdy.

For any 0 < 2e < t, we can rewrite

t
et ) = /R Polt — ey — 2)zn(e,y)dy + B / /R Bt — 8, — 2)Zn (5, y)on (5, y)dsdy

=: A, (t,z) + BU,.(t, x).
Then for h > 0and § > 0,
H Zn(t+ hyz+0) — 2,(t, ) H
gH Ap(t+hyx+6) — A, (t,x)) H +ﬁ2H Up.e(t +h,x+6) — ne(tx))QHm

By Holder’s inequality, we have that for 2¢ <t <1,

H(An’e(t Y hoa+0) — An’e(t,:c))QHm

< (/R |pn(t+h—€,y+5)—pn(t—e,y)|2dy> (E((/Rzg(e,y)dy)"))”m.

By Minkowski’s integral inequality, (4.14) and (3.24),

=((/ Zi(ﬁ’y”y)m))l/m < [(E®EEen) " a

By the gradient estimate (4.1) and (4.2), we have

R
R

<C/ ne nh D,(t+h—ey)+D,(t—¢vy))dy

On
Jrc/ l(pn(th—e y—06)+DP,(t+h—ey))dy
R (ne)=
Ch, C6é,
<

< + .
s e

Next, we estimate the term U. By Minkowski’s inequality,

H(Unyé(t Rz 8) — Un,e(t,x)me
2

(Ltﬁ(p7l<t+h—s’y—x— 8) = Byt — s,y—x—5>>zn<s,y>wn<s7y>dsdy>

t+h 2
[ [Pt b= sy o= 0zl (s, p)dsdy

t R

+ 2
(/ / (Pn(t = s,y =2 —0) =D, (t — 5,y — 2)) Zn(s, y)wn (s, y)dsdy)
€ R m
=:Q1 + Q2 + Q3.
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Using the same way in the proof of (4.16), by discrete Burkholder’s inequality,
Holder’s inequality and Minkowski’s integral inequality, we can obtain that

t
Ql S/ / |ﬁn(t+ h — $Y —T — 5) _Tjn(t —S5Y—T— 6)|2T Hzi(&y)umdyds
€ R

Z2 (s, y)H ,Sa. Thus,

C t—e e’} -
e/ 0 0

Ifr < g2ty ie, (1—2r)(141/a) + 1 > 0, then by (4.2) and (3.24),

t—e [e’e)
/ / B + 1) — B, )| dyds

h2r 1 B B
/ [ ey Bals ) 4 P 0)) duds < Gt

Ifr> 22(311) choose € > 0 such that n := (2(a+ 1)r — (2a+ 1))(1/a + €) < 2r — 1, then

(1475 —2r)(1+1/a) —n/a+1>0and

t—e o] 5

h2r 1-n B 1
/ / s(2r—1-n)(1+1/a)+n/a (s + s y) + Puls, y)) dyds < Clhi .

Ifr = 22(33:}) then forany 0 <n < 2r — 1,

t—e [e'e) 5
/ / B + ) — Bo(s,9) | dyds

h2r 1-n B 1
/ / T ATy Pals 0 y) +Pa(s,y)) dyds < Cohy .
We also have in the same way

C t+h 9
Q2 <7 /Iﬁn(t+h—s,y—x—5)lrdyd8
€ t R

1 o 2r—1 Gy (1 27
S%/t /(t—i—h—s)_(’_)/"‘f?n(t—l—h—s,y—x—é)dde— e pta=2r)/a

Ifr < ZTTC‘, then @ + 1 > 0, by the gradient estimate (4.1)

2r—1

¢ t 2r 201
S Pt =8y =2 =0) =Pp(l = 8y — < 2%
Q3_62/a/e/1R|p"(t 5,y =& —0) =Pyt — s,y — )" dyds < +ir/a
If r = 242, then forany 0 <7 < 2r — 1,
t
/ / Put = 5,y =2 = 8) =Pu(t = s,y — @) dyds < Cro77 17",
e JR

If > 242, choose € > 0 such that  := (47 — (2+))(1 +€) < 2r — 1, then 2(1+7—2r)a —
n/oa+1>0and

t
/ / |ﬁn(t —5Yy—-T— 5) - ﬁn(t —5Y—- I)|2T dde S 01572;«71777‘
€ R

Thus, (4.17) holds. O
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We will use the following lemma to show the tightness.
Lemma 4.4 ([35]). Let Y,,(¢,2) be a sequence of stochastic processes on [0,1] x [0,1].
Denote by
ws(Y") = sup Y™ (t,z) =Y"(s,)]-
(t2), (s,y)€[0,1]%,
[t—s|+|z—y|<d
Suppose there exist positive constants x > 2, A, C' and a sequence ¢,, | 0, such that for
all large enough n, for all (¢,z), (s,y) € [0,1]? and |t — s| + |z — y| > 0p,
E (V" (ta) = Y"(s,9)") < C (It ="+ |z~ yI"),
and for all €, p > 0, for all large n,
P (ws,(Y™) > €) < p.
Then for all €, p > 0, there is a 0 < § < 1 such that for all large n,
P (ws(Y™) > €) < p.
O

The proof of theorem 4.1. We only need to show the tightness. By Lemma 4.3, for any
€€ (0,1/4), M € (0,00), there exist strictly positive constants m > 1, k > 4, C(e, M) such
that for any n > 14 1/, for all u,v € [e, 1], |z| V |y| < M with |u —v| + |z — y| > 1/n'/,

E (|zn(u,x) — zn(v,y)|2m) <C(e, M) (Ju—v|" + |z —y|"). (4.18)

Set
ws(2n) = sup lzn(t, ) — zn(s,y)] -
(t,z), (s,y)€[0,1]x [—M,M],
[t—s|+|z—y|<d
Noting that the number of points in D,, N ([0, 1] x [~M, M]) is less than 2(M + 2)n x n'/®,
we have

P (w/p1/a(2n) > €) < > P (|zn(t,z) — 2zp(t—, x—)| > €)
(t,x) €D, N([0,1]x [— M, M])

1 E (|20(t.2) = za(t—,2-)]"")
< Cin'ta sup o

(t,z)ED,N([0,1] x [—M,M]) €
< CVQTLLFé 1
~ 6277”% —0asn — oQ,

where C; and C5 are universal constants independent of n and e. Therefore, by
Lemma 4.4 and Theorem 15.5 in [8], {z,,n > 1} is tight in D([e, 1] x [-M, M]), and
so {Z,,n > 1} is tight in C([¢,1] x [-M, M]). By arbitrariness of ¢ and M, we ob-
tain the tightness of {z,,n > 1} in D((0,1] x R), and the tightness of {Z,,,n > 1} in
C((0,1] x R). O

4.3 The proof of Theorem 2.2

Proof of Theorem 2.2. We only show the r € (1/2,1) case. By Lemma 3.7, the conver-
gence of the finite dimensional distributions can be obtained via the same as the proof of
Theorem 2.1.
Next, we give a sketch of the tightness. Define the right continuous processes in time
and space:
Zu(t,2) = 17 3 p1/eg (B ©)
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and
Zalts) = 13 300 (B @) = p (L2 (@ = ) Zal(t = 1/m)* ).
Then
Zn(t, @) =D, (tx +6n/ /pn — 5,2 — Y)Zn(s,y)0n(s,y)dsdy. (4.19)

Set F,(z — y) = n"a E(&, (nt,n'/*z)&, (nt,n'/*y)). By Lemma 3.7, Hardy-Littewood’s
inequality and Holder’s inequality, we have

t
/ / / Pt — 8,2 —y1)Pp(t — 8,2 — y2)Vn (Y1 — Y2)2n (8, Y1) 2n (8, y2)dy1dy2ds
0o JRJR

2)

t
< [ [ [ Bt so—mpt - 5.0 - ) (K - ) + 00
0 RJR
Zn(8,91)Zn (8, Y2)dy1dyads
t - t -
<, / / Pt — 5,2 — ) P52 (5, y)dyds + / / Dot — 5,2 — )25 (s, y)dyds
0 R 0 R

SCg/O /]R/]R(|ﬁn(t—s,x_y)|2r+\ﬁn(t—s,m— y)| )pn(l/n y — 2)22 (s, 2)dzdyds,

where C7, Cs and Cj5 are universal constants independent of n and ¢. Therefore, using
the same approach as the proof of (4.16), there exists a positive constants C,,, such that
foranyn >1,t € (0,1], z € R,

1z )],
t
< C (D, (t, 1)) + Cm/ /R/R (|pn(t = s,2 — YI* + B, (t— s,z — y)|2)
0
Pn(1/n,y — 2) ||Z2(s, z)Hm dzdyds. (4.20)

Iterating the inequality, there exists a positive constants C), such that for any n > 1,
te (0,1, z €R,
[nt]

22t )|, < Con(Pn(t,2))* + Co Y CR I it ),
k=1

where

In’k(t, :L‘)
k

_ 1 1
Spn(t,l‘) /Ak(t L) (tk _ l/n)l/o‘(t _ tl)l/a Z:HQ (tifl —t; — 1/n)1/a dty - - dty
r{- )F’“ (1- *)

and zg = =z, Ak(t,l/n) = {1/n <t; <tj_1—1/n,j =2, ,kt;1 <ty =t} Therefore,
there exists a positive constants C,, such that foranyn > 1,¢ € (0,1], z € R,

Hg;zl(t,a?)Hm < Cm(ﬁn(t»‘T))Q + Cmﬁn(t7x)v ‘i(

La)|| < CunlBa(t,2))* + Cond (1),
" (4.21)
Similarly, there exist constant x; > 0, k2 > 0 and a positive function (0,1/4] 3 ¢ — C.
such that for any n € Z, withn >1+4+1/e, t € 2¢,1], 2 € R, h >0, > 0,

1/m
(E ((En(t +hya+8) — Zalt, x))2m>) < O, (h5 + 672). (4.22)
We complete the proof of Theorem 2.2. O
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5 The scaling limit of the polymer transition probability

In this section, we give the proof of Theorem 2.3. This follows the same scheme
as before. For 0 < m < k < n and z,y € Z, we define the four-parameter field
Z°(m,y; k, x; B) by

Zw(m,y;k,x;ﬁ):IP<exp{B Z (i, S; }1{Sk—x}’5 —y) (5.1)

1=m-+1
Then the polymer transition probabilities are
Z¥(m,y; k,z; B)Z% (k, 31, %; B)
Z(m,y;n, *; B) ’

Py 5(Sk = 2|Sm = y) =

where

79k, wim, % B) = > Z%(k, win, 2 B).

2€Z
We consider the modified partition function

k
3°(m,ys k,x; 8) = P( II 1+ Bw(i, S))1{s, = w}‘Sm = y)- (5.2)
i=m+1
Then -
e~ I=DAED) 79 (s, oyt n s B,) = 37 (ns, 'y nt, n s By),
where &(i, ) = w(i,x) + Y¥(4, z) and (3.41) holds. Thus, using the same approach as the
proof of Theorem 2.2, we only need to show the following result.

Theorem 5.1. Let a € (1,2], (A.1) and (A.2) hold. Then

1
(nl/”‘B“ (ns,ny;nt, n'/*z; ﬁn)>

q (s,y3t,2)€D

(@) (Zcr(a,q)(& it 1) [ Zo(p.q(t 21, 0) dA)
-4
/ Zo(p,9) (8,3 1, A)dA (s,y:t,7)ED

(5.3)

with respect to the locally uniform topology on C(D), where © = {(s,y;t,2); 0 < s <t <
1,z,y € R}.

Proof. Let pfhw(t, x) be the joint probability of (S, = nt/ogy, .. , Snt, = n'/®z;) under
the condition S,,, = n'/%y, Sp; = n'/“x, where s < t; < --- < t, <t, i.e.,

pn s,y3t, (%) = P(Sn, = =n' 1,0, Spty, = nl/axk‘sns = nl/ay Snt = nl/ax)

_ 1/a —
p§<(t<t_t’2)> e Tt =ty 550

where (tg, zo) = (s,¥).
These kernels are space-time shifts of the kernels pfl,m. By shift invariance of the
random walk and the environment, we have

nl/oc () l/a

3¢ (ns7 Y%y nt, nt/ ﬁn)

3°(0,0;n(t — s),n*(x — y); Bn).

For a finite collection of space-time points (s;, y;; t;, ;), the joint convergence of

nl/oz

3% (nsg, n “ysnt, n “xi; B)
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follows from the above subsection approach.
Note that the law of the environment field is invariant under a similar time reversal.
More precisely, define a field w,, by w, (i, ) = w(n — i,2). Then it is clear that

(14 Bw(n —m,y))3* (m,y; k,2; 8) = (1 + Bw(n — k,2)) 3" (n — k,z;n — m, y; B).

Following the explanation in [1] and the reversibility of the random walk, the tightness
of the field (¢,2) = n'/“3,, ,1/a,(8n;w) is sufficient to prove tightness of the field

(s,y:t,2) = n'/*3% (ns,nY *y;nt, n/*z; B,).

Indeed, the tightness of n'/®3,, .1/a,(B,;w) implies tightness of n'/*3%(ns,n'/*y;nt,

n'/og; [37,,) in the forward (¢, ) variables, and tightness in the (s, y) variables follows from
the reversibility of the random walk and the invariance of the law of the environment
under a similar time reversal. O

A Stochastic integral with respect to a time-white spatial-colored
noise

In this section, we briefly introduce the time-white spatial-colored noise and stochastic
integral with respect to a time-white spatial-colored noise (cf. [1] [22] [29] [30] [40] [43]
[471).

Let K(x) = H(2H — 1)|z|*=2, 1 < H < 1. A time-white spatial-colored noise W with
the kernel K is a mean zero Gaussian process {W(p),p € C°([0,1] x R)} defined on
some probability space (Qyy, Fyy, E) with covariance

Cov(W(p), W()) = /[ . /R /R (5, 2)K (2 — y)(s, y)dsdady, (A1)

where C2°([0,1] x R) is the space of smooth functions with compact support on [0, 1] x R.
Set W, = W([0,1]x [0, z]), and let W denote the derivative 8;2’5’;” in the sense of Schwartz
distribution, that is,

- p(t,x)
- L2280 e, ([0, 1 .
Wip = [ [T e, e < o0, 1] xR

Then W(p) = W(yp). Therefore, we also use W to denote this time-white spatial-colored
noise.

A.1 1Ito stochastic integral

Next, let us define the stochastic integral with respect to WW. Consider the Hilbert
space:

Lx = {f; 01 xR =R | f |2, = / / F(t 2V K ( — ) f(t,y)dbdedy < oo} ,
01 Jr

Remark A.1l. By Hardy-Littlewood’s inequality (Theorem 1 in [46], P.119), for some
positive constant Ay,

/[0’1]/]R/Rf(s,u)K(u—v)f(s,v)dsdudvgAH /[m </]R|f(57u)}1du>2Hds. (A.2)

For any f € Lk, choose f,, € C2°([0,1] x R) such that

||fn—f|\%K—>0asn—>oo,
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and define

n—oo

/f(t,:c)W(dtda:): lim W(f,) in L*(Qw, Fw, P).
0,1]

We now define the stochastic integral with respect to W. For each t > 0, define F; to
be the o-field generated by

{ / / 0, (5 W(dsdz); ¢ is smooth function on R with compact support} .
[0,1]

Define

n 0<ar<by < ---<ap<b, <o,
S:=1Q f(t,x) =Y Xil(q, 4, (t)pi(x); Xi € Fa,, p: is smooth function on R with

compact support,i =1,--- ;n,n>1

For f € S, we define the stochastic integral as

_ /[071] /}R | f(t,x)W(dtdx):iXi /[ / Loy (Dp(@W(dtdr).  (A3)

Let P denote the o-fields generated by S and set
Lx(QP)={f;[0,1] x Rx Q2 —R; P, — measurable and E(|| f [|%,) < oo}.

Then S is dense in L (2, P,). Consequently, if f € Lk (£, Ps), then there exist f,, € S,
n > 1 such that

Tim B (1o~ fI%,) =
Thus, there is a limit 7 := lim,, o, fR+ Jg fn(t, )W (dtdx) in Lk (Q, Ps) which we call the

stochastic integral
- / / £t 2)W(dtda). (A4)
Ry JR
Then from (A.1),

CovW(f1),W(f2)) = E ((f1, f2),) forany fi, f2 € Lix(Q,Ps), (A.5)

where

s f2) 2 /0 i / it @)K (x — y) folt, y)didedy.

Lemma A.1 (Burkholder’s inequality). For any p > 2, there exists a positive constant C),

such that v
E( / / £t 2)W(dtda)
Ry JR
Proof. Since

M, —/ /f s, x)W(dsdx) / /I[Ot x)W(dsdx), t >0
Ry

is a martingle and [M]; = fo J f( —y) f(s,y)dsdzdy, by Burkholder’s inequality
for martingale, there exists a p051t1ve constant C)p such that

E (sup Mt|p) <C,E (\[M]OOW) .

t>0

) < GE (\H f IIiK!m) : (A.6)

Thus, (A.6) holds. O
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A.2 Multiple stochastic integral
For k € Z,., define the following Hilbert space:

ch = { £;10,1]* x RF - R; symmetric function, and
k
[071]k R2k i=1

where t = (¢1,t9,- - ,tx), x = (z1,22, - ,Zk), Yy = (Y1,%2, - ,Yk). Let f be a function on
[0,1]¥ x R*. The symmetrization of f is defined by

Sym(f)(t, x) :% > frt, mx)
" wEeSy

where Sy, is the group of permutations on {1,2,--- ,k}.

For fi1, fo, -, fx € Lk, i® f2@---® fr, = fi(t1,71) fa(ta, x2) - - - fu(ty, z,) denotes the
tensor product of fi, fa, -, fr. When f; = fforall j =1,---,k, abbreviate f; ® fo ®
- ® fr to f®*. We also denote by

WEF (dtdx) = W(dt dzy) - - - W(dtpday,).

For f € L with | f|z, = 1, define the multiple stochastic integral of f®* with
respect to W by

V() = / FE (b, )W (dbdx) = Hy (W (f),
[0,1% JRE

where H,, is the Hermite polynomial of degree k, i.e., Hy(z) = (—1)k612/2%6_$2/2. For

f1, fos -+, fx € Lk, using the polarization identity (cf. (2.12) in [30]):

1
Sym(fi@ fr@:@ fi) = 2np! E: e enlerfi + -+ enfr)®F,
T ee{-1,1}*

the multiple stochastic integral of Sym(f; ® fo ® -+ ® fi) is defined by

Do he o) =gy L aad (@ + s af)®).
ec{—1,1}k

Then we can extend to symmetric functions f in ,C’}( by the density argument:

2= [ reswe e,
[0,1]k JRK
The multiple stochastic integral has the following property:

0 if j # k. &.7)

con(t 0. 200 - {
For general functions f with || ||, < oo, define
K

LY(f) = LY (Symf).

Remark A.2. Let f: Ay, x RF = R, where A, = {0 =ty < t; <ty < --- < 13, < 1}, satisfy

k
1 71= [, [ 500 TLR G e y)asanay < o
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We extend f to a function on [0, 1]¥ x R* by defining f(¢,z) = 0 for (t,x) ¢ Aj. Then

RY(f) = Y (Symf) = / £, x)W®F (dtdx).
Ay JRF
and )
B[ [ exminax) =172, = ks, (18)
Ay JRF

Lemma A.2. Let f(t,z) € Lk, k=1, --- ,n be a collection of orthonormal functions in
Lr,n>2, ie, forany k # j, (fi, fj)cx = 0. Then

DV(hefo--of) =] 1Y) (A.9)
k=1

Proof. Firstly, by the orthonormality condition, we have that I}V(f;), -, I}V(f.) are
independent normal random variables, E(1}Y(fx)) = 0, E(I1Y(f)?) = | fell%,, 1 < k <
n, and

" 1/2
Helfl'f"""‘enanﬁK = (Z ||fk||2£K> = Afa for allee{—l,l}”
k=1

Then, by the definition of multiple stochastic integral, we have

V(e & f
(Ap)"

= o] Z SRERETY Add ((erf1+- -+ enfn)®")
T ee{-1,1}
_ (A" w(€ifit -+ enfn
= ol Z €1 ean Il Af
ec{-1,1}n |
A" 1 &
= <2nfn)/' Z €1 6an <A Z €k1¥v(fk)> .
T ee{-1,1}" f =

It is known that (cf. Theorem A.1 in [30])

/2] nl(—1)7gn=2I

H,(z)= 27, z€eR, n>0.
= 27 4(n — 2j)!

Then
1 n

A 3 61...€an<AZek11W(fk)>
ec{-1,1}" ! k=1

= > 61...6n<zekflw(fk)>

ec{-1,1}" k=1
n/2] . . n n—2j

nl(=1)7(Ap)¥ W

SR e T D DRC TR OOLE (V) I
Jj=1 ec{-1,1}» k=1

For any j > 1, we consider the following n(n — 2j)-order multilinear polynomial

n n—2j
flay, - an) = Z €1 en <Z€kl‘k> )
k=1

ec{—-1,1}»
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If f(x1,--- ,2,) £ 0, then the zeros of multilinear polynomial f have at most n(n — 2j). It
is clear that f(0,--- ,0) =0. Forany 1 < k <mn, set

Bn,k = {(a’,‘l’-.- 7.’I,'n) S {O’l}YL’ $1++xn :k}

Then when n is a even, for any odd 1 < k <mn, and (z1, - ,Zn) € Bpr, f(z1, -+ ,2,) =0,

and so, the zeros of polynomial f have
n/2-1

n!

s ];0 @k Dl(n— 2k 1))

> n(n — 2).

In fact, n = 2, 4 or 6, the above inequality is obvious. When n > 8,

n/2—1

n! n(n —1)(n — 2)
1 >1+2 —_— X 2> —2).
+ ; @kt Din—kr1) — ot 6 nn—2)
Similarly, when nis a odd, foranyevenl < k <n, and (z1,--- ,&,) €Bn g, f(z1, - ,2n) =

0. In this case, the zeros of polynomial f have

[n/2]
n!
1 —_——— —2).
* ; i =2 > 2
Therefore, f(x1,---,z,) = 0. In particular,
[7"/2] 1 ; n n—2j
nl(=1)7(Ay)* ( "
> S 2 ae|all’Uh] =0
Jj=1 2051(n — 2j)! ec{-1,1}» k=1
Thus
w Ap)" 1<
In (f1®®fﬂ) = o | Z €1 67,H" Tzekll (fk)
D ee{-1,1}n f k=1
1 " v
=Sl Y. o ae <Z€1J}/V(fk)> =[[(r). O
Cee{—1,1}n k=1 k=1

B Proof of Lemma 4.1 and the local central limit

Proof of Lemma 4.1. Without loss of generality, we assume ¢ = 1 by the transformation
S| = %. Choose § € (0,1/4) such that for |u| < 4,

¢(u) — 1] <

DO | =

and )
log ¢(u) = —vful® + |u[*h(u) < —Zv]ul®.

Therefore, for all |u| < én'/e,
(6 (un=1/e)) " = vl hn 1) < oot (B.1)
Noting ¢ = 1, by Theorem 1.4.2 in [32], there exists § > 0 such that

|p(u)| < e P ford < |u| < .
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Thus, by the inversion formula, we can write

1 n —1/a
p(n,z) = 7/ (¢ (snfl/a» e
27T7”Ll/°‘ [—nt/eq nl/ax]
1 @ % -1/ -1/«
—¢ , + —v|s|¥+|s|*h(sn ) ,—tzsn d ,
(TL JC) Ornl/e /S|<5n1/0‘ € e S

where )
Un.x) = ( ( 71/o¢>> 7L:nsn71/ad )
(TL x) 2mnl/a /(;n1/a<|s|<ﬂ.n1/a ¢ s ¢ g

Note that |e¥ — 1] < |y| for y € R. For any z,y € R,
;/ =5l +]s|"h(sn=1/*)
27TTL1/O‘ |s|<ont/e
<1 / |S||y|e*%|s|ads
=2t/ f g <spie nt/e

|| / —x|s|®
< e 21517 s|ds
~ 2mn2/e Jg i

n — « — (3
411/ / (¢’ (8"_1/a)) ‘e‘“”y)s" Ve gmwen TV g
2mnl/e Snl/a<|s|<mnl/a

< |y2\ e_ﬁ”/ |s|ds
2mn2/e sni/a<|s|<mnl/a

- |y\ -8

= ornt/a©
Therefore, (4.1) holds.
Next, let us show (4.2). we write

1 n+1 e — 1/
1, — ( ( —1/@)) —Lxsn d
p(n+1,2) Srmi/a /[_nl/aml/aﬂ ¢ (sn e s

— n,z) + ;/ S (sl | h(sn ™Y %) g mas /7 g
|s|<éni/o

-~ 1/a _ 1o
e v(z+y)s/n —e wxs/n ds

and

nrn?/e.

2mnl/

where ) o
~ n 1/«
l(n,x) = 71/ (¢ (snil/o‘» et g,
27TTL /O‘ 6n1/o¢<‘5|§ﬂ-nl/a

Noting that for any o > 0, fooo e~5"ds < co, we have that

sup max{?(n, z),l(n,z)} = O(e "™,

T€EZ

and

lp(n,z) — p(n+1,z)|

< 0@ ) + ;/ o= 3ls | R (—vlslo s hsn ™)) _ | 4

2mnl/a |s|<onl/a
1 1 lale
< —pn - —sv|s| «
<O(e ") + 27m1+1/aO(1) /]Re 2 |s|*ds
1

o4
Therefore, (4.2) is valid. O
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The same as the proof of Lemma 4.1 is also to give the following the Gnedenko local
limit theorem (cf. Theorem 4.2.1 in [32]).

Lemma B.1 (Local limit theorem). Let {S,,,n > 0} be a symmetric random walk starting
from the origin on Z and in the domain of normal attraction of a stable law of index
a € (0,2]. Assume that the characteristic function ¢(u) of S; satisfies (2.1). Then

1
lim supn'/® -p(n, k) —g(n, k)| =0. (B.2)
n=00 kT q

Proof. Without loss of generality, we assume ¢ = 1. Then choose § € (0,1/4) such that
for |u| <4,

N =

y (u) 1] <

DN | =

p(u) — 1] <
where ¢(u) = e~*1*I", and
1
log ¢(u) = —v[ul® + |u[*h(u) < —Zv]ul*.
Choose 8 > 0 such that
|p(w)] < e™# and |1h(u)| < e P for § < |u| < 7.

Thus, by the inversion formula, we can write

1 « « -1/ -1/
p(n, k) = 0(e™™) + = / VIS Hs| h(sn ™M) min T ks g
2mnl/e |s|<énl/e
and )
- -1/« " —in~ Vs
9(n.k) = 2mnl/ /]R (1/) (sn )) ¢ ds
1 o4 -1/
-0 —ntf + / —v|s|* J—un ksd )
(6 ) 2rnl/a o] <o/ € € S
Therefore
sup nl/a |p(na k) - g(n7 k)‘
keZ
<O(e ")+ i/ e~vlsl” ‘e's‘ah(s’fl/a) —1|ds,
2 |s|<énl/e
which yields (B.2) by the dominated convergence. O

C Proof of Proposition 2.1

Proof of Proposition 2.1. We only give the proof for the case % < r < 1. Without loss of
generality we can assume the initial data is non-random because we could always take
the conditional expectation given Fj.

Let us first give a priori estimate. By (2.9), we have

E(|Z(t,2)]*)

2
- ( / g(t,x—wzo(y)dy)
R
t
ot [ gt = so K- 2ot~ 5.2 - DB(Z(5.0)2 (s, 2))dydads.
0 R2
By Holder inequality,

E(Z(s,y)2(s,2)) < E(Z(s,9) ) ?E(|2(s, 2)[*)%.
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Thus, by Hardy-Littewood’s inequality and Holder’s inequality, there exists a positive
constant C such that

/0 /]R2 gt —s,x—y)K(y—2)g(t — s,z — 2)E(Z(s,y)Z(s, z))dydzds

= / /Rg”‘@ — 5,2~ y)B(|Z(s,y)|*)dyds.

Then, there exists a positive constant C such that

E(|Z(t,x)]?) < (/}Rg(t, T — y)Zo(y)dy>2

; (C.1)
+ C/ / g (t = 5,2 — y)E(|2(s,y)[*)dyds.
0 JR
Iterating the inequality, we obtain that
o0
E(Z(t,2)]*) <) CE(I(tx)), (C.2)
n=0
where )
In(t,x) = / / I 9t = tiva, i = wiga)
An(t) JR™ 1=
(C.3)

2 n
X </ g(tn, xn — y)Zo(y)dy> Hdmidti.
R i=1

Noting that there exists a positive C'; such that for any n > 1,

n—1 n—1
» 1
I | g7 (ti — tiv1,x; — xig1) < CF | I <(t T g(ti —tiyr, @ — $i+1)> ,
-

i=0 i=0 1)
we have
E(1,(t, x))
crrr (1 — %) (n—1)(at12r)
Tr(n(1-2=7)

/ot(t —s) /}Rg(t —s,z—2)E <(/Rg(8, z— y)Zo(y)dy>2> dzds.

Therefore, there exists positive constant C’ such that for any ¢ € [0,7], z € R,

E(|Z(t o))

<3 CUB(IL (1,0))
n=0

< CE (( [ stz - Z/)Zo(y)dy>2> 4
e /Ot(t gy /]Rg(t _so— ) ((/Rg(s, - y)Zo(y)dy)2> dzds.

In particular, if Zy = dp, then for some constant C' € (0, c0),

B ( [ otz - y)Zo(y)dy>2 — (s,2)), (€5
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and

/Ot(t —5) et /]Rg(t — s, —2) </}Rg(5,z - y)ZO(y)dy)2 dzds < Cy(t, z). (C.6)

Therefore, for some constant C € (0, c0),

E(|Z(t,z)]?) < Cg?(t,z). (C.7)
If Z, is bounded, then
sup  E(|Z(t,z)*) < oc. (C.8)
tel0,1],z€R

Next, we prove the existence and the uniqueness. Let first show the uniqueness.
Let Z,(t,x), i = 1,2, be the two mild solutions of (2.7) with initial data Z(0,-) = Z,. Set
Z(t,x) = Z1(t,x) — Z5(t,x). Then

B(Z(t,2)) < C / /R Gt — 5,2 — 1) E(1Z(s,)[?)dyds.

Iterating the inequality, we obtain that for any N > 1,

. ON+IPN+1 (1 _ M) N(at1-2r)
E Z 2 < 1 (8] - a
(12(t:2)F) =g (N+1)(1-27))

. (C.9)
X / (t—s) = / g(t — s,x — 2)E(Z%(s, 2))dzds.
0 R

Therefore, let N — oo, we obtain E(|Z(¢,z)|?) = 0 for any ¢ € [0,7] and z € R. The
uniqueness is proved.
We use the Picard iteration to prove the existence. Let Z°(¢,z) = 0, for n > 0 define

204, ) = /

t
ot -2y +o [ [ glt= 092" y)Widsdy).  (€10)
R 0 R

and
ZM(t,x) = 2" (t, x) — 2" (t, x).

Then these processes are progressively measurable by construction, and
— t —
2 a) = [ [ glt =50 )2" (5. Widsdy).
0 JR

Therefore, there exists positive constant C such that for any ¢ € [0, T,

— t —

B(Z" o)) <C [ [ 6750 = B2 (5.0)P)dyds,
0o JR

For Z; = g case, set

iy = sup  sCTUE(Z0(s,2)?).

z€R,s€(0,t]
Then
2
ffiy= sup  sCrD/OE <</ g(s,xy)Zl(y)dy) )
z€R,s€[0,t] R
S
<C sup 5(2“1)/0‘/ (s —u) 3720/ oy =gy < 0o
z€R,s€[0,t] 0
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and
n+1
f <C/ (27 1)/(xd

where C, C; are positive constants. Iterating the inequality, we have

n fn 1(”) ! ‘ n—
e <C// = su))(27”1)/adUd8<C/0 " (u)du,

(Clt)‘n,/Q

where C, C’ are positive constants. Therefore, f"(t) < T and
x) = Z Z
k=0

is progressively measurable. By

sup  sPTTV/OB(1Z(s, 1) %) < oo,
z€R,s€[0,t]

we have
t
/ / g(t — s,z —y)E(|Z"(s,y)|*)dyds < .
0 R

Thus, Z(t,x) solves the equation (2.7) with initial data Z(0, ) = 2.
For Z, is bounded case, set

M)y = sup  E(Z"(s,2)]%).
z€R,s€[0,t]

Then f1(t) < oo, and f*H1(t) < Cfo /™(s)ds. Therefore, f"(t) < (C t) ,and so, Z(t,z) =
Yoo Z2(t, x) is progresswely measurable and solves the equation (2 7) with initial data
2. O

D Some moment estimates for an autoregressive integrated mov-
ing average model

In this section, we give some moment estimates for an autoregressive integrated
moving average model. These moment estimates play an important role in Lemma 3.7.

Lemma D.1. Let ; < r < 1 and the environment w = {w(i, ), (i,z) € Z, x Z} satisfy
(A.2). Then for any k, j > 1, there is positive constant C}, ; such that

B (3, 2) (i,y)) — B(" (1,2) B (i,9))| < Cr 1z — ). (D.1)

Proof. Let us recall the definition of w as follows

z) = Zayf(i,aﬁ—&-y),

YyEZ

where a, >0, ay ~ ¢, |y|™", ¢, >0, and {{(i,z); i € Z1,x € Z} is a family of independent
and identically distributed random variables with E(£(i, z)) = 0, E(|£(4,2)|?) = 1, and
EcPlE(:0)l < oo for B sufficiently small. For N, M > 1, set

Zé”’N = {(u1, - yunrgn) € ZMN {1 <m < MY 0 {uprin,1 <n < N} =0},
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and Ziw’N = ZMAN\ Zéw’N. Note that for w = (u1,ug, -, Uk, Ukt1," - , Uktj) € Zlg’j,
Hf;lzl (i, + uy,) is independent of [[? _, £(4, 2 + ug4n). We can write that

E (wk(i,x)wj(i,y))

k J
=E (Z au.f(l,:chu)) (Z avg(]-vijv))

UEZ VEZ

=E (Zaufleru) (Zam y+vglx+v)>

u€e”Z vEZ
k J
= Z E (H (aumg(l,x—l—um ) (H Qg — y+Uk,+n 1 x"'uk-‘rn)))
uEZg’j m=1 =1
k J
+ Z E (H (au,, E(1, 2 4 upm) H U —ytup s §(1 x—l—uk+n))) .
uEZ’f’j m=1 n=1

Then

J
(aumf(lax+um))>E H Qg — y+“k+n ]- x+uk+n))>

n=1

af—ll+uk+n€(17 T+ uk+n))>

k J
( I (w6002 + um))> E (H (Gr—ysup nE(L, 2 + uk+n))>

k J
_ Z E(H(aumf(l,aﬁ—l—um)) E H(awaranf(l,x—i—ukJrn))).
Next, let us estimate
J
Z E<H aumg(la*f"_um ) (H Qg — y+uk+n 1$+uk+n)>>
n=1

uezki m

and

k j
Z E(H(au (1I,z 4+ um)) H Ao —ytuppn§ 1x+uk+n))>.
m=1 n=1

uEZ’f’J

For u € Zlf’j, there exist 1 < mg < k, 1 < ng < j such that u,,, = ugtn,. For each
such couple (Umq, Uk+n,) fixed, let N(u) denote the number of components in u that are
not equal to u,,,, and define

Zi] =757 0 {u; N(u) =1}, 1=0,1,-- k+j—2
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Then

k J
Z E(H (au,, (1,2 + upm)) ) (H Ao —ytuppn§ (1,x+uk+n))>

k,j =
UEZ T Umy=Uk4ny m=1

k+j-2 k J
= Z Z E <H (au, £(1, 2 + um))) E (H (am,eran{(l,x + “k+n))> :

= k,j —1
=0 u€eZy} m

Next, we show the following claim:
Claim A. Foranyk > 1,5 > 1, there exists a positive constant C, ; such that for

any 0 <[ < k+j—2, any couple (Unmyg, Uktny) With Uy, = Uktn, for some 1 < mg < k and
1<no <y,

Z E(H (au,, (1,2 + um)) > (H az ytunin§ (17$+uk+n))> < Ckjv(x —y).

ueZk 3 m=1

(D.2)
When [ =0,

k J
Z E(H (aumg(lax"'um ) (H Az —y+upin (17x+uk+n))>
n=1

ueZ;":g m=1

=1 Y dbal i BERL + um)JEE (L2 + umy))| < Crz — ),
Umy EL

where C' = L*7—2E(¢%(1,1))E(¢(1,1)), and L = sup, .y a,. That is, the Claim A holds
for [ = 0.

If the Claim A holds forany 0 <[ <[y < k+j—2,1i,e, forany £ > 1 and j > 1, there
exists a positive constant Cj, ; such that for all 0 < < Iy, all couple (wm,, Ug4n,) With
Umy = Uk+n, fOrsome 1 <mp < kand 1 <ng <j,

k J
Z E(H (A, §(1, 2 + um) ) <H Az —y+upin (1ax+uk+n))> < Cjv(z —y),

uezy] m=1

then for [ = Iy + 1, for any u € le,there existl; > 1,1 <my, <k s=1,---,l1 or
1<mg<j,s=1,---,l; such that

k J
E (H (au, £(1, 2 + um))> E (H (Gr—yrup n E(L, 2 + uk+n))>

m=1 n=1

m#Emg
s=1,---,l1

j
_auml (511(1 1))E H (@, E(1, 2 4+ um)) <H Ap—ytup i n (1,x+uk+n))>,

or

k j
E(H (G, (1, 2 + up,) ) (H A —y g (1,x+uk+n))>
n=1

m=1

k
:aﬁjmlE (€"(1,1)E ( H (au,, (1, + um))> E H (az—ytup nE(L, T+ Upgn))

m=1 n#mg
s=1,.- 11
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Therefore, noting E (£(1,1)) = 0, we have that

k J
Z E <H (@, &(1, 2 + um))) E (H (aw—y-&-uwnf(lvx + uk-&-ﬂ)))

uGZ;c:lj m=1 n=1

min{k—1,l} k-1, J
<C Z Z E (H (aw,,&(1, 2 + Um))) E (H (aﬂc—y-l-uwng(l:x + uk-l-n)))

11=2 uEZk.ll—lllj m=1 n=1

min{;j—1,l} k i—l
+C Z Z E (H (aunlf(lvx‘kuvn))) E (H (aw—y+uk+nf(17x + uk+n))>

11=2 uer;gf m=1 n=1

L20Ck jv(x —y),

where C = SUPo<y, <jotj ZuGZ JE (fll(l 1)) ,
That is, when [ = [y + 1, the Claim A also holds. Thus, the Claim A is true, and so,

k J
Z E(H (u,, E(1, 2 4 ) ) (H Ap—ytupin & (1,$+uk+n))>

ueZ’f’j m=1

k J
<kj lg}”%)ik Z E(H(aum,§(17x+um ) (H Qp—y+uptr (17I+uk+n))>

1<ng<j ueZ’f'j m=1 n=1

<lp.

sUmg=Uk+n(
=kj(k+j —2)Cr,;v(x —y).

Similarly, we can also obtain that for some constant Cj, ;,

k J
Z E(H (Gu,, (1, 2 4+ um)) H Ay tupnb (17m+uk+n))> < Cr vz —y).
n=1

u€Z71€-,j m=1

Now, we complete the proof of (D.1). O
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