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Scaling limits of directed polymers in
spatial-correlated environment*†
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Abstract

We consider a directed polymer model in dimension 1 + 1, where the random walk
is attracted to stable law and the environment is independent in time variable and
correlated in space variable. We obtain the scaling limit in the intermediate disorder
regime for partition function, and show that the rescaled point-to-point partition
function of directed polymers converges in the space of continuous functions to the
solution of a stochastic heat equation driven by time-white spatial-colored noise. The
scaling limit of the polymer transition probability is also established in the path space.
The proof of the tightness is based on the gradient estimates for symmetric random
walks in the domain of normal attraction of α-stable law which are established in this
paper.

Keywords: directed polymer; stochastic heat equation; random walk; stable law; spatial-
correlated environment.
MSC2020 subject classifications: 60G50; 60H15; 60K37; 82B44.
Submitted to EJP on April 21, 2022, final version accepted on May 2, 2023.

1 introduction

The directed polymer model in random environment was originally introduced in [31].
It was formulated as the polymer measure in [10, 33]. The directed polymer is described
by a random probability distribution on the path space (Zd)Z+ of random walks on the
d-dimensional lattice. For fixed environment ω = {ω(i, x), (i, x) ∈ Z+ × Zd} which is a
family of real valued, non-constant, and identically distributed random variables on a
probability space (Ω,G,P), any n ≥ 1, the polymer measure is the probability measure
on the path space ((Zd)Z+ ,F ,P) defined by

Pωn,β(S) :=
1

Zn(β, ω)
eβ

∑n
i=1 ω(i,Si)P(S), (1.1)
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Scaling limits of directed polymers

where β > 0 is the inverse temperature, S = {Sn, n ≥ 0} is a random walk starting from
origin in Zd, Zn(β, ω) is the point-to-line partition function defined by

Zn(β;ω) := E
(
eβ

∑n
i=1 ω(i,Si)

)
. (1.2)

Here, we denote by E and E the expectation with respect to P and P. The quantity
pn(β) := 1

n logZn(β;ω) is called the free energy. Let Zn,x(β;ω) be the point-to-point
partition function

Zn,x(β;ω) := E
(
eβ

∑n
i=1 ω(i,Si)I{Sn=x}

)
. (1.3)

The distribution density for the polymer endpoint is thus

Pωn,β(Sn = x) :=
Zn,x(β;ω)

Zn(β;ω)
. (1.4)

Assume that for β sufficiently small,

λ(β) := logEeβω(i,x) <∞. (1.5)

The normalized partition function is defined by

Wn := Zn(β;ω) exp{−nλ(β)}, n ≥ 1. (1.6)

It is known that if the environment variables are independent, then

p(β) := lim
n→∞

1

n
logZn(β;ω), W∞ = lim

n→∞
Wn (1.7)

exist P-a.s. and either the limit W∞ is P-a.s. positive, or it is P-a.s. zero (cf. Theorem
2.1 and Theorem 3.1 in [15]). The polymer is in weak disorder regime if W∞ is P-a.s.
positive, and in strong disorder regime if W∞ is P-a.s. zero. When d = 1, all β > 0 are in
the strong disorder regime.

For the d = 1 case, Alberts, Khanin and Quastel [1] introduced a new disorder
regime for directed polymers by scaling the inverse temperature β with the length of the
polymer n. They showed that when the environment consists of i.i.d. random variables
and {Sn, n ≥ 0} is the simple symmetric random walk, the following convergences hold:
the rescaled partition function

Zn(n−1/4β;ω)e−nλ(n−1/4β) (d)−→ Z√2β

and the rescaled point-to-point partition function

1

2

√
nZnt,

√
nx(n−1/4β;ω)e−nλ(n−1/4β) (d)−→ Z√2β(t, x) in C((0, 1]×R),

where {Zt,x; t ∈ R+, x ∈ R} is a linear interpolation of {Zm,k; m ∈ Z+, k ∈ Z},
Z√2β =

∫
Z√2β(1, x)dx and Z(t, x) := Z√2β(t, x) is the mild solution of the stochastic

heat equation 
∂tZ = 1

2∆Z +
√

2βZẆ ,

Z(0, x) = δ0(x).

(1.8)

Here,
(d)−→ denotes the convergence in law. The result illustrates an intermediate disorder

regime between weak and strong disorder regime.
Caravenna, Sun and Zygouras [14] extended the invariant principle of multi-linear

polynomials of independent random variables in [39], and provided a unified framework
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Scaling limits of directed polymers

to study the continuum and weak disorder scaling limits of statistical mechanics systems
that are disorder relevant. In particular, a directed polymer with random walks attracted
to stable laws (long-range directed polymer) was also studied in [14] and the convergence
in the sense of the finite dimensional distributions was obtained. The intermediate
disorder regime of the directed polymer with a heavy-tail disorder was studied in [3],
[4] and [23]. Joseph [34] considered a model of discrete space-time stochastic heat
equations, and showed that an appropriate scaling limit of the model with Lipschitz
continuous initial data can get the following stochastic partial differential equation

∂tZ = −ν(−∆)α/2Z + σ(Z)Ẇ . (1.9)

Rang [43] first considered time independent and space correlated environment. Fur-
thermore, see [20] for multiple non-intersecting random walks, [21] for the Brownian
directed polymer in Poissonian environment, [45] for the polymer given by the occupation
field of a Poisson system of independent random walks, and the references therein.

Caravenna, Sun and Zygouras ([14], P.25) expected that the convergence in the sense
of the finite dimensional distributions can be upgraded to convergence in the space
of continuous functions equipped with uniform topology for the long-range directed
polymer. In this paper, we study the problem for general long-range directed polymers in
an environment which is independent in time variable and correlated in space variable.
That is, the random walk {Sn, n ≥ 0} is in the domain of normal attraction of a stable law
of index α ∈ (0, 2] with period q, and the environment ω = {ω(i, x), (i, x) ∈ Z+ × Zd} is
an autoregressive integrated moving average model (cf. [27] [28] [43]):

ω(i, x) =
∑
y∈Z

ayξ(i, x+ y), ay ∼ cr|y|−r, cr > 0,
1

2
< r < 1,

where {ξ(i, x) : i ∈ Z+, x ∈ Z} is a family of i.i.d. centered variables with an exponential
moment. We show that when α ∈ (2r − 1, 2], the rescaled partition function converges in
distribution, and when α ∈ (1, 2], the rescaled point-to-point partition function converges
weakly in path space to the solution of a stochastic heat equation driven by time-white
spatial-colored noise, i.e.,

1

q
n1/αZnt,n1/αx(βn;ω)e−nλ(βn) (d)−→ Zβ(t, x) in C((0, 1]×R), (1.10)

where βn = βn−
1
2−

1
2α+ r

α , Z(t, x) := Zβ(t, x) is the mild solution of the following fractional
stochastic heat equation with initial Z(0, x) = δ0(x):

∂tZ = −ν(−∆)α/2Z + βZẆ, (1.11)

where Ẇ is a time-white spatial-colored noise. The scaling limit of the polymer transition
probability is also established in this paper.

In particular, when environment variables are independent, Ẇ is a time-space white
noise, our result on the rescaled point-to-point partition function upgrades Theorem 3.8
in [14] to the convergence in law in C((0, 1]×R) equipped with locally uniform topology.
The result is exactly what Caravenna, Sun and Zygouras [14] expected.

Our approach is based on Lindeberg’s argument and the hypercontractive technique
in multilinear polynomials (cf. [39]), and a gradient estimate for symmetric random
walks in the domain of normal attraction of α-stable law. Precisely, we use Lindeberg’s
argument and the hypercontractive technique to study convergence of finite dimensional
distributions. This strategy converts the environment variables to Gaussian ones. Mossel,
O’Donnell and Oleszkiewicz [39] established an invariance principle which gives an error
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Scaling limits of directed polymers

bound of the distributions of two random multilinear polynomial, when a multilinear
polynomial of a sequence of independent random variables is replaced by independent
Gaussian random variables with the same mean and the variance. The result was ex-
tended in [14]. Although the environment random variables in this paper are correlated
in space variable, they still have the hypercontractivity since the multilinear polynomials
in our model can be expanded into multilinear polynomials of independent random vari-
ables. This observation allows us to use Lindeberg’s argument and the hypercontractive
technique to our case. We use the characteristic function approach to obtain a gradient
estimate for symmetric random walk in the domain of normal attraction of α-stable law,
and apply the gradient estimate to establish the tightness for the rescaled point-to-point
partition function. Hardy-Littewood’s inequality, Minkowski’s integral inequality and
the gradient estimate for symmetric random walks play important role in the proof of
tightness.

The rest of the paper is organized as follows. In Section 2, we state the main results
and give some notation. The proofs of the main results are presented in sections 3–5. In
Section 3, we first study the scaling limit of a modified point-to-line partition function
and then show Theorem 2.1. In Section 4, we prove Theorem 2.2. A sketch proof of
Theorem 2.3 is given in Section 5. In Appendix A, we recall briefly the elementary theory
of time-white spatial-colored noise and stochastic integral with respect to a time-white
spatial-colored noise. In appendix B, we present a gradient estimate for symmetric
random walk in the domain of normal attraction of α-stable law. In appendix C, we give
a proof existence and uniqueness of the mild solution to the fractional stochastic heat
equation with the δ0 initial data. In appendix D, we give some moment estimates for an
autoregressive integrated moving average model.

Since the completion of this paper, there has been a recent work [44] on the scaling
limit of a long-range directed polymer in a random environment that is correlated in
time and independent in space, which complements the result of this paper.

2 Main results

In this section, we first introduce the model and some conditions in this paper, then
state the main results.

(A.1). Let {Sn, n ≥ 0} be a symmetric random walk with period q starting from the
origin on Z and in the domain of normal attraction of a stable law of index α ∈ (0, 2], i.e.,

Sn
n1/α

(d)−→ Y as n→∞,

where the random variable Y has characteristic function

E
(
eιuY

)
= e−ν|u|

α

,

for some ν > 0 and ι =
√
−1. We assume that there exists a function h(u) such that

h(u)→ 0 as |u| → 0 and the characteristic function φ of S1 satisfies

φ(u) = 1− ν|u|α + |u|αh(u) as u→ 0. (2.1)

Remark 2.1. In this paper, we only deal with a symmetric random walk, in the normal
domain of attraction to a stable law. In this case, the characteristic function has a simple
approximation which can simplify the proofs of the asymptotics and the gradient estimate.
For the general case in the domain of attraction of a stable law, some properties of slowly
varying functions should be required (cf. [9]).
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Scaling limits of directed polymers

By the inversion formula, it is known that Y has a bounded and differentiable density
function g(x). Define

g(t, x) :=
1

t1/α
g
( x

t1/α

)
, t > 0, x ∈ R.

Let P(S1 ∈ qZ+ `) = 1 for some ` ∈ {0, 1, · · · , q − 1}. Since S1 is symmetric, for the case
` 6= 0, if q 6= 1, then q is an even number and ` = q/2. Define

p(n, k) := P(Sn = k), n ≥ 0, k ∈ Z.

Let F (x) := P(S1 ≤ x) be the distribution function of S1. Then in the α = 2 case,

E(S1) = 0, σ2 = E(S2
1) = 2ν <∞, Y ∼ N(0, σ2);

in the α ∈ (0, 2) case, there exist constant c > 0 and function β(x) (cf. Theorem 2.6.7 in
[32]) such that

1− F (x) =
c+ β(x)

xα
, for all x > 0, and β(x)→ 0 as |x| → ∞. (2.2)

By Lemma 3.1 in [5], if β(x)x−α is decreasing in x on [x0,∞) for some x0 ≥ 0, then (2.1)
is valid.

(A.2). Let the environment ω = {ω(i, x), (i, x) ∈ Z+ ×Z} have the following form as
in [43]: 

ω(i, x) =
∑
y∈Z ayξ(i, x+ y) if r ∈ ( 1

2 , 1),

ω(i, x) = ξ(i, x) if r = 1,

where ay ≥ 0, ay ∼ cr|y|−r, cr > 0, and {ξ(i, x); i ∈ Z+, x ∈ Z} is a family of independent
and identically distributed random variables with E(ξ(i, x)) = 0,E(|ξ(i, x)|2) = 1. We
assume that ξ(i, x) satisfies

Eeβ|ξ(i,x)| <∞ (2.3)

for β sufficiently small which implies (1.5). For convenience, in the r ∈ ( 1
2 , 1) case, we

take cr such that λr :=
4c2rΓ(2r−1)Γ(1−r)

Γ(r) = H(2H − 1), where H = 3
2 − r. Set

γ(z) = E(ω(1, x)ω(1, x− z)) =
∑
y∈Z

ayay−z. (2.4)

Remark 2.2. An example of the environment satisfying (A.2) is a version of autoregres-
sive integrated moving average model ARIMA (0, 1− r, 0) (cf. [27] [28]).

Let r ∈ ( 1
2 , 1) and take c =

√
H(2H−1)Γ(r)Γ(1−r)

Γ(2r−1) . Set

a0 = c, ak = a−k =
c

2

Γ(k + 1− r)
Γ(k + 1)Γ(1− r)

≥ 0, k ≥ 1.

Then (see Theorem 1 in [27]),

γ(k) =
c2(−1)kΓ(2r − 1)

Γ(k + r)Γ(−k + r)
=
c2Γ(r)

∏k−1
j=0 (−j + k − r)Γ(2r − 1)

Γ(k + r)
≥ 0,

By Stirling formula, ak ∼ c
2

k−r

Γ(1−r) ,
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Scaling limits of directed polymers

γ(k) ∼ c2Γ(2r − 1)

Γ(r)Γ(1− r)
k1−2r = H(2H − 1)k2H−2.

By Remark 2.2, under the condition (A.2), we have that for r ∈ ( 1
2 , 1),

γ([z]) ∼ K(z) as |z| → ∞ (2.5)

where [z] denotes the integer part of z, and the function K is defined by

K(z) =


H(2H − 1)|z|2H−2 if r ∈ ( 1

2 , 1),

δ0(z) if r = 1.

(2.6)

The third assumption in this paper is the following (A.3).
(A.3). 1

2 < r < 1
2 (1 + α).

Remark 2.3. In this paper, some basic estimates are based on the inequality that the
norm ‖ · ‖LkK in LkK can be controlled with the L2r-norm ‖ · ‖2r in (see (3.16)). When
0 < r ≤ 1/2, the inequality does not hold. The condition α > 2r − 1 should be optimal.

2.1 Stochastic heat equation

Consider the following fractional stochastic heat equation:

∂tZ = −ν(−∆)α/2Z + σZẆ, (2.7)

where σ > 0 is a constant, and Ẇ is a Gaussian noise with the covariance

Cov(W(ϕ),W(ψ)) =

∫ 1

0

∫
R

∫
R

ϕ(s, x)K(x− y)ψ(s, y)dsdxdy (2.8)

and K(x) is defined as (2.6). The scaling limit of the polymer transition probability is
also established in this paper.

We rewrite it in Duhamel form

Z(t, x) =

∫
R

g(t, x− y)Z(0, y)dy + σ

∫ t

0

∫
R

g(t− s, x− y)Z(s, y)W(dsdy). (2.9)

A mild solution of (2.7) is a progressively measurable process Z(t, x) such that∫ t

0

∫
R

g(t− s, x− y)E(|Z(s, y)|2)dyds <∞ for t > 0, x ∈ R, (2.10)

and (2.9) holds.
We use the notion Z0(·) = Z(0, ·) to denote the initial data of the fractional stochastic

heat equation (2.7). For the bounded initial data Z0 case, the existence and uniqueness
of a mild solution of (2.7) can be founded in [25]. Foondun Joseph and Li [24] studies
the approximation problem of a class of SPDEs including (2.7) by systems of interacting
stochastic differential equations. The following proposition includes the initial data
Z0 = δ0 case. For convenience, we will give a proof of the proposition in Appendix C.

Proposition 2.1. Let Z0 be a F0-measurable initial data. If Z0 = δ0 or bounded, then
there exists a unique mild solution to equation (2.7) with initial data Z0. The solution
can be written by

Z(t, x) =

∫
R

g(t, x− y)Z0(y)dy +

∞∑
k=1

σk
∫

∆k(t)

∫
Rk+1

g(t− tk, x− xk)

k∏
i=1

g(ti − ti−1, xi − xi−1)Z0(x0)dx0W(dtidxi),

(2.11)
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Scaling limits of directed polymers

where ∆k(t) = {0 ≤ t1 < · · · < tk ≤ t}, t0 = 0. Furthermore, The series in (2.11)
converges in L2. In particular, when Z0 = δ0, there exists a positive constant C such that
for any t ∈ [0, T ],

E(|Z(t, x)|2) ≤ Cg2(t, x). (2.12)

When Z0 is bounded, supt∈[0,1],x∈RE(|Z(t, x)|2) <∞.

Denote by

σ(β, q) =


√
qβ if r = 1,

β if 1
2 < r < 1.

(2.13)

Remark 2.4. The quantity σ(β, q) is the diffusion coefficient of the scaling limit (see the
following main results). An interesting phenomenon is that the σ(β, q) is independent of
q in space-correlated environment case. The phenomenon is due to the difference in the
variance of sum of random variables in the two environments (see Lemma 3.5).

2.2 Main results

Theorem 2.1. Let Zn(β;ω) be the partition function which is defined by (1.2), i.e.,

Zn(β;ω) := E
(
eβ

∑n
i=1 ω(i,Si)

)
.

Assume that (A.1), (A.2) and (A.3) hold. Set βn = βn−
1
2−

1
2α+ r

α . Then we have the
following convergences for the rescaled point-to-line partition function

Zn(βn;ω)e−nλ(βn) (d)−→ Zσ(β,q)(1, ∗), (2.14)

and

lim
n→∞

E

((
Zn(βn;ω)e−nλ(βn)

)2
)

= E
((
Zσ(β,q)(1, ∗)

)2)
, (2.15)

where Zσ(β,q)(1, ∗) =
∫
Zσ(β,q)(1, x)dx, and Zσ(β,q)(t, x) is the mild solution of (2.7) with

σ = σ(β, q) and initial data Z0 = δ0.

Remark 2.5. Caravenna,Sun and Zygouras [12] proposed a new point of view to inter-
pret disorder relevance for disordered systems. The viewpoint focuses on the existence
of a non-trivial, random continuum limit when disorder scales to zero in a particular
way as a function of the lattice spacing. Theorem 2.1 proves that for a class of directed
polymer models where the increments of the walk lie in the domain of attraction of an
α-stable law, and the environment is a r-fractional autoregressive moving average model,
with r ∈ (1/2, 1] and 1/2 < r < (1 + α)/2, the rescaled partition function has a non-trivial,
random limit when the disorder scales to zero in the speed n−

1
2−

1
2α+ r

α . Furthermore, the
following theorem establishes the convergence of the rescaled point-to-point partition
function in path space. The results also show that there is a transition between weak
and strong disorder at β = 0 for the class of directed polymer models.

Theorem 2.2. Let Zn,x(β;ω) be the point-to-point partition function which is defined
by (1.3), i.e.,

Zn,x(β;ω) := E
(
eβ

∑n
i=1 ω(i,Si)I{Sn=x}

)
.

Let α ∈ (1, 2], (A.1) and (A.2) hold. Then we have the following convergences for the
rescaled point-to-point partition function(

1

q
n1/αZnt,n1/αx(βn;ω)e−nλ(βn)

)
t∈(0,1],x∈R

(d)−→
(
Zσ(β,q)(t, x)

)
t∈(0,1],x∈R (2.16)
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with respect to the locally uniform topology on C((0, 1]×R), and for any t ∈ (0, 1], x ∈ R,

lim
n→∞

E

((
n1/αZnt,n1/αx(βn;ω)e−nλ(βn)/q

)2
)

= E
((
Zσ(β,q)(t, x)

)2)
. (2.17)

Theorem 2.3. Let α ∈ (1, 2], (A.1) and (A.2) hold. Then we have the following conver-
gences for the rescaled polymer transition probabilities(

1

q
n1/αPωn,βn(Snt = n1/αx|Sns = n1/αy)

)
(s,y;t,x)∈D

(d)−→
(Zσ(β,q)(s, y; t, x)

∫
Zσ(β,q)(t, x; 1, λ) dλ∫

Zσ(β,q)(s, y; 1, λ)dλ

)
(s,y;t,x)∈D

(2.18)

with respect to the locally uniform topology on C(D), where D = {(s, y; t, x); 0 ≤ s < t ≤
1, x, y ∈ R}, Zσ(β,q)(s, y; t, x) is the mild solution of the stochastic heat equation

∂tZ = −ν(−∆x))α/2Z + σ(β, q)ZẆ, Z(s, y; s, x) = δ0(x− y). (2.19)

Remark 2.6. The field (t, x) 7→ Znt,n1/αx(βn;ω) is defined exactly on the points where
(nt, n1/αx) takes values in {(i, k); i ∈ Z+, k ∈ qZ+ i`}, but we can use a linear interpola-
tion scheme to extend it to the whole space (see [1]). The linear interpolation scheme
is defined concretely in Section 4. We also extend the field (s, y; t, x) 7→ Pωn,βn(Snt =

n1/αx|Sns = n1/αy) to the domain {(s, y; t, x); 0 ≤ s < t ≤ 1, x, y ∈ R}.
Remark 2.7. For the r = 1 case, Theorem 2.2 upgrades Theorem 3.8 in [14] to the con-
vergence in law in C((0, 1]×R) which is expected in [14]. Hardy-Littewood’s inequality,
Minkowski’s integral inequality and the gradient estimate for symmetric random walks
play important role in the proof of tightness.

Remark 2.8. In this paper, we only consider the auto-regressive environment with
exponential moments. Our study depends on the auto-regressive representation of the
environment. It is expected that some results of the directed polymer with heavy-tailed
disorder (cf. [3], [4], [23]) can be extended to correlated environments with heavy tails.

Remark 2.9. Berger and Lacoin (Theorem 2.4 and Theorem 2.7 in [3]) considered the
joint convergence of a modified partition function together with environment. For the
auto-regressive environment, we can also study the joint convergence of the modified
partition function and the environment.

3 The scaling limit of the point-to-line partition function

In this section, we give the proof of Theorem 2.1. We first study the scaling limit of a
modified point-to-line partition function defined by

Zn(β;ω) = E

(
n∏
i=1

(1 + βω(i, Si))

)
, (3.1)

The modified point-to-line partition function Zn is an approximation of the point-to-line
partition function and it is more convenient to study the convergence of the modified
partition function than that of the partition function. On the other hand, we can write
that

Zn(β;ω)e−nλ(β) =E

(
n∏
i=1

(1 + βω̃(i, Si))

)
,

where

ω̃(i, x) =
eβω(i,x)−λ(β) − 1

β
.
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Therefore, by estimating the error between two environment variables ω̃ and ω, we
can obtain the convergence of the partition function from that of the modified partition
function. In the first subsection of this section, we study the convergence of the modified
partition function. This is the crucial part. In the second subsection of this section, we
estimate the error between two environment variables ω̃ and ω, and prove Theorem 2.1.

Note that Zn(β;ω) can be approximated by a multilinear polynomials of ω(i, x), (i, x) ∈
Z+ × Z. We use Lindeberg’s argument to replace the environment variables ω(i, x),
(i, x) ∈ Z+ × Z by some Gaussian variables µ(i, x), (i, x) ∈ Z+ × Z, and apply the
hypercontractive technique in multilinear polynomials (cf. [39]) to control the error of
Zn(β;ω) and Zn(β;µ). This strategy converts the environment variables to Gaussian ones.
Then we can use techniques of weighted U-statistics for Gaussian variables to show
that Zn(β;µ) converges in law to the Wiener chaos of Zσ(β,q)(1, ∗). Theorem 2.1 will be
obtained by estimating L2-error between Zn(βn;ω)e−nλ(βn) and the modified point-to-line
partition function Zn(βn;ω).

The following weak convergence result will be applied repeatedly (cf. Chapter 1,
Theorem 4.2. in [8]).

Lemma 3.1. Let Y nk , Yk, Y
n, Y be real-valued random variables and assume that for

each fixed n the Y nk and Y n are defined on a common probability space. If Y nk → Y n in
probability uniformly in n as k →∞, Y nk → Yk in distribution as n→∞, and Yk → Y in
distribution as k →∞, then Y n → Y in distribution as n→∞.

We also use the following Beta integral formula

∫
ti≥0,t1+···+tn≤1

(
1−

n∑
i=1

ti

)β−1 ∏
j=1

t
αj−1
j dtj =

Γ(β)
∏n
j=1 Γ(αj)

Γ(α1 + · · ·+ αn + β)
, (3.2)

where β > 0, αj > 0, j = 1, · · · , n.

3.1 The scaling limit of the modified point-to-line partition function

In this subsection, we show the following scaling limit theorem for the modified point-
to-line partition function Zn(β;ω). This is the main step of the proof of Theorem 2.1.

Theorem 3.1. Assume that (A.1), (A.2) and (A.3) hold. Set βn = βn−
1
2−

1
2α+ r

α . Then we
have the following convergences for the rescaled point-to-line partition function.

Zn(βn;ω)
(d)−→ Zσ(β,q)(1, ∗), (3.3)

and
lim
n→∞

E
(

(Zn(βn;ω))
2
)

= E
((
Zσ(β,q)(1, ∗)

)2)
.

The proof of Theorem 3.1 proceeds in three steps.
Step 1. We expand the modified point-to-line partition function Zn(β;ω) into a discrete

chaos expansion, and give some estimates for the coefficients of the chaos expansion.
The main estimates in this step are Lemma 3.2 and Lemma 3.3.

Let us first introduce some notations. Set ∆k(t) = {0 ≤ t1 < · · · < tk ≤ t},
T :=

{
(i, x) ∈ Z2; i ∈ Z+, x ∈ qZ+ i`

}
,

Dn :=

{(
i

n
,
x

n
1
α

)
; (i, x) ∈ T, 1 ≤ i ≤ n

}
,

∆Dkn :=
{

(t,x) = ((t1, x1), · · · , (tk, xk)) ∈ Dkn; 0 ≤ t1 < · · · < tk ≤ 1
}
.

(3.4)

Define
pkn(t,x) = P (Snt1 = n1/αx1, · · · , Sntk = n1/αxk), (t,x) ∈ ∆Dkn, (3.5)
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where x0 = 0 and

ωkn (t,x) =

k∏
i=1

ω
(
nti, n

1
αxi

)
, (t,x) ∈ Dkn.

We extend pkn(t,x) from ∆Dkn to ∆k(1)×Rk by defining

pkn(t,x) := pkn(s,y) for all (t,x) ∈ Ckn(s,y) :=

k∏
i=1

Cn(si, yi), (s,y) ∈ ∆Dkn,

where

Cn(t, x) :=

(
t− 1

n
, t

]
×
(
x− q

n
1
α

, x

]
. (3.6)

Then, for each t ∈ ∆k(1),

p̂kn(t,x) :=
(
q−1n

1
α

)k
pkn(t,x) (3.7)

is a probability density on Rk. Similarly, ωkn (t,x) can be extended to the whole space
[0, 1]k ×Rk by setting

ωkn (t,x) = ωkn (s,y) for all (t,x) ∈ Ckn(s,y), (s,y) ∈ Dkn. (3.8)

We abbreviate p1
n to pn, p̂1

n to p̂n, and ω1
n to ωn.

Now, by expanding the product
∏n
i=1 (1 + βnω(i, Si)) along each path of the random

walk, we obtain

n∏
i=1

(1 + βnω(i, Si)) = 1 +

n∑
k=1

βkn
∑

(t,x)∈∆Dkn

k∏
i=1

ω
(
nti, n

1
αxi

)
.

Then by the Markov property for random walk, we can give a series expansion of
Zn(βn;ω):

Zn(βn;ω) =E

(
n∏
i=1

(1 + βnω(i, Si))

)
= 1 +

n∑
k=1

βkn
∑

(t,x)∈∆Dkn

pkn(t,x)ωkn (t,x) . (3.9)

Define

ψkn(t,x) := Sym{p̂kn(t,x)I∆k(1)×Rk(t,x)}, (t,x) ∈ [0, 1]k ×Rk, (3.10)

where the symmetrization of a function f on [0, 1]k ×Rk is defined by

Sym{f}(t,x) =
1

k!

∑
π∈Sk

f(πt, πx)

and Sk is the group of permutations on {1, 2, · · · , k}.
Note that when ti = tj for some i 6= j, ψkn(t,x) = 0. We have that ψkn(t,x) = 0 for any

k ≥ n+ 1. Therefore, we can write

Zn(βn;ω)=1 +

∞∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ωkn (t,x) , (3.11)

where

θn = q
1
2n−

1
2−

3
2α+ r

α . (3.12)
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Since the volume of each cell Ckn(s,y) equals qn−(α+1)/α, we have

Zn(βn;ω)=1 +

∞∑
k=1

(β
√
q)kθknq

−knk(α+1)/α

∫
[0,1]k

∫
Rk
ψkn(t,x)ωkn (t,x) dtdx. (3.13)

In order to study the convergence of Zn(βn;ω), we need to estimate some moments
and covariance of ωkn (t,x). For any k ≥ 1, we define the rescaled covariance of ωkn by

γkn (x− y) =nk(2r−1)/αE
(
ωkn(t,x)ωkn(t,y)

)
=nk(2r−1)/α

k∏
i=1

γ
(
n1/αxi − n1/αyi

)
, (t,x), (t,y) ∈ Dkn,

(3.14)

and extend it to the whole space Rk ×Rk by defining

γkn (x′ − y′) = γkn (x− y) , (t,x′) ∈ Ckn(t,x), (t,y′) ∈ Ckn(t,y),

for any (t,x), (t,y) ∈ Dkn. We abbreviate γ1
n to γn.

By the definition of K(z) in (2.6), in the r ∈ ( 1
2 , 1) case, K(z) = H(2H − 1)|z|2H−2

for z ∈ R, and by (2.5), γ([z]) ∼ K(z) as |z| → ∞, i.e., lim|z|→∞
γ([z])
K(z) = 1, and so,

there exist positive constants C1 and L such that 0 ≤ γ([z]) ≤ C1K(z) for |z| ≥ L. Set
C2 = sup|z|≤L γ([z]) and C3 = inf |z|≤LK(z) > 0. Then

0 ≤ γ([z]) ≤ C4K(z) for z ∈ R,

where C4 = max
{
C2

C3
, C1

}
. Therefore, for any function ϕ ∈ LkK([0, 1]k ×Rk),∣∣∣∣∣

∫
[0,1]k

∫
R2k

ϕ(t,x)γn (x− y)ϕ(t,y)dtdxdy

∣∣∣∣∣
≤
∫

[0,1]k

∫
R2k

|ϕ(t,x)|γn (x− y) |ϕ(t,y)|dtdxdy

=
∑

(t,x)∈Dkn,(t,y)∈Dkn

∫
Ckn(t,x)×Ckn(t,y)

|ϕ(t′,x′)|n
k(2r−1)

α γ
(
n

1
α (x′ − y′)

)
|ϕ(t′,y′)|dt′dx′dy′

≤Ck4
∑

(t,x)∈Dkn,(t,y)∈Dkn

∫
Ckn(t,x)×Ckn(t,y)

|ϕ(t′,x′)|n
k(2r−1)

α K
(
n

1
α (x′ − y′)

)
|ϕ(t′,y′)| dt′dx′dy′

=Ck4 ‖|ϕ|‖2LkK ,

where

‖ϕ‖2LkK :=

∫
[0,1]k

∫
R2k

ϕ(t,x)

k∏
i=1

K(xi − yi)ϕ(t,y)dtdxdy.

Therefore, we have∣∣∣∣∣
∫

[0,1]k

∫
R2k

ϕ(t,x)γn (x− y)ϕ(t,y)dtdxdy

∣∣∣∣∣ ≤ C‖|ϕ|‖2LkK . (3.15)

For the r = 1 case, (3.15) is obvious. For the norm ‖ · ‖LkK , if

sup
t∈[0,1]k

∫
Rk
|ϕ(t,x)|dx ≤ A <∞,
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then by Hardy-Littewood’s inequality (cf. Theorem 1 in [46], P.119) and Hölder’s inequal-
ity, there exists a positive constant AH such that

‖|ϕ|‖2LkK ≤ AH
∫

[0,1]k

(∫
Rk
|ϕ(t,x)|

2
3−2r dx

)3−2r

dt

≤ AHA2−2r

∫
[0,1]k

∫
Rk
|ϕ(t,x)|2rdxdt.

(3.16)

The following two lemmas give some estimates of ψkn.

Lemma 3.2. Assume that (A.1), (A.2) and (A.3) hold. Then there exists a positive
constant C such that for any n ≥ 1, k ≥ 1,

‖gk‖2LkK ≤
CkΓk+1

(
1 + 1−2r

α

)
Γ
(
(k + 1)

(
1 + 1−2r

α

)) (3.17)

and

k!‖ψkn‖2LkK ≤
CkΓk+1

(
1 + 1−2r

α

)
Γ
(
(k + 1)

(
1 + 1−2r

α

)) , (3.18)

where

gk(t,x) :=

k∏
i=1

g(ti − ti−1, xi − xi−1), (t,x) ∈ ∆k(1)×Rk. (3.19)

In particular, by α > 2r − 1, (3.17) and (3.18) are summable, and so,

∞∑
k=1

(β
√
q)2k‖gk‖2LkK <∞, (3.20)

and
lim
l→∞

lim sup
n→∞

∑
k≥l

(β
√
q)2kk!‖ψkn‖2LkK = 0. (3.21)

Proof. The proofs of (3.17) and (3.18) are similar. Next, we prove (3.18). Noting that for
any t ∈ (0, 1] ∫

R

q−1n
1
α p1

n(t, x)dx =
∑
i∈Z

P (Snt = i) = 1.

By Hardy-Littewood’s inequality and Hölder’s inequality,

k!‖ψkn‖2LkK

=
(
q−1n

1
α

)2k
∫

∆k(1)

∫
R2k

pkn(t,x)pkn(t,y)

k∏
i=1

K(xi − yi)dtidxidyi

≤Ck
∫

∆k(1)

k∏
i=1

∫
R

((
q−1n

1
α

)
p(n(ti − ti−1), n1/αxi)

)2r

dxidti. (3.22)

By the Gnedenko local limit theorem (see Lemma B.1 in Appendix for a proof),

sup
(n,k)∈T

∣∣∣∣n1/α

q
p(n, k)− g(k/n1/α)

∣∣∣∣→ 0 as n→∞. (3.23)

Since the density g is bounded, there exists A ∈ (0,+∞) such that

p(n, k) ≤ qAn−1/α, for all n ∈ Z+, k ∈ Z. (3.24)
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Therefore,

k!‖ψkn‖2LkK ≤C
K

∫
∆k(1)

k∏
i=1

∫
R

((
q−1n

1
α

)
p(n(ti − ti−1), n1/αxi)

)2r

dxidti

≤CkAk(2r−1)

∫
∆k(1)

k∏
i=1

∫
R

(
q−1n

1
α

)
p(n(ti − ti−1), n1/αxi)(ti − ti−1)

1−2r
α dxidti

≤CkAk(2r−1)

∫
∆k(1)

k∏
i=1

(ti − ti−1)
1−2r
α dti

≤
CkAk(2r−1)Γk

(
1 + 1−2r

α

)
Γ
(
k
(
1 + 1−2r

α

)
+ 1
) , (3.25)

and so, (3.18) is valid.

Lemma 3.3. Assume that (A.1), (A.2) and (A.3) hold. Then for every k ≥ 1,

lim
n→∞

‖|ψkn −Gk|‖2LkK = 0, (3.26)

where
Gk(t,x) := Sym{gk(t,x)}, (t,x) ∈ [0, 1]k ×Rk. (3.27)

Proof. By the local limit theorem (see Lemma B.1 in Appendix),

lim
n→∞

ψkn(t,x) = Gk(t,x) for any (t,x) ∈ ∆k(1)×Rk.

For any δ > 0 and M ≥ 1, we can write

‖|ψkn −Gk|‖2LkK ≤2‖|ψkn −Gk|ID1
‖2LkK + 4‖ψknIDc1‖

2
LkK

+ 4‖GkIDc1‖
2
LkK
,

where
D1 := ∩ki=1 {ti − ti−1 > δ, |xi| < M, |yi| < M} .

Since ψkn −Gk is bounded and
∏k
i=1K(xi − yi) is integrable on D1, by the dominated

convergence theorem,
‖|ψkn −Gk|ID1

‖2LkK → 0 as n→∞.

Note that Dc
1 = D2 ∪D3, where

D2 := ∪ki=1 {ti − ti−1 ≤ δ} , D3 := ∪ki=1 {|xi| ≥M} ∪
(
∪ki=1 {|yi| ≥M}

)
.

By the proof of Lemma 3.2,

k!‖ψknID2
‖2LkK ≤ C

k

∫
· · ·
∫

si≥0,i=1,··· ,k,s1+···+sk≤1

∪k
i=1
{si≤δ}

k∏
i=1

s
1−2r
α

i dsi → 0 uniformly in n as δ → 0

and

k!‖ψknID3‖2LkK ≤ C
kP

(
max

1≤i≤n
|Si| ≥ n

1
αM

)
Γk
(
1 + 1−2r

α

)
Γ
(
k
(
1 + 1−2r

α

)
+ 1
) .

By the Montgomery-Smith inequality (cf. [38]),

P

(
max

1≤i≤n
|Si| ≥ n

1
αM

)
≤ 9P

(
|Sn| ≥ n

1
αM/30

)
→ 9P (|Y | ≥M/30)
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uniformly in M as n → ∞, where Y is the symmetric α-stable variable. Noting
P (|Y | ≥M) → 0 as M → ∞, for any ε > 0, for small δ > 0 enough and M ≥ 1

large enough, we have that
lim sup
n→∞

‖ψknIDc1‖
2
LkK
≤ ε.

Similarly, for any ε > 0, for small δ > 0 enough and M ≥ 1 large enough,

lim sup
n→∞

‖GkIDc1‖
2
LkK
≤ ε.

Thus, (3.26) is valid.

Step 2. We define a discrete Gaussian chaos Zn(βn;µ) which has the same coefficients
as the chaos expansion of Zn(β;ω). We use Lindeberg’s argument and the hypercon-
tractive technique to show that the two chaos have the same asymptotic distribution.
Then we study the convergence of the Gaussian chaos Zn(βn;µ) using techniques of
weighted U-statistics for Gaussian variables. This step includes Lemma 3.4, Lemma 3.5
and Lemma 3.6.

Let {η(i, x), (i, x) ∈ Z+ ×Z} be a family of i.i.d. standard Gaussian random variables,
and independent of {ξ(i, x) ∈ Z+ ×Z}. Set

µ(i, x) =

+∞∑
−∞

ayη(i, x+ y). (3.28)

Then {η(i, x), (i, x) ∈ Z+ × Z} and {ω(i, x), (i, x) ∈ Z+ × Z} have the same correlation
structure. Define

µkn(t,x) =

k∏
i=1

µ
(
nti, n

1
αxi

)
, (t,x) ∈ Dkn. (3.29)

We also extend µkn to the whole space [0, 1]k ×Rk by defining

µkn (t,x) = µkn (s,y) for all (t,x) ∈ Ckn(s,y), (s,y) ∈ Dkn.

Define

Zn(βn;µ) = 1 +

∞∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)µkn (t,x) . (3.30)

Let Z≤ln (βn;ω) be the sum of the first l + 1 terms in Zn(βn;ω), i.e.,

Z≤ln (βn;ω) := 1 +

l∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ωkn (t,x) ,

and let Z≤ln (βn;µ) be defined in same way.
We first use Lindeberg’s argument and the hypercontractive technique in multilinear

polynomials (cf. [39]) to prove that both Z≤ln (βn;ω) and Z≤ln (βn;µ) have the same limiting
distribution as n→∞. Let us first recall the conception of hypercontractivity (cf. [39]).

Let 1 ≤ p ≤ q <∞, τ ∈ (0, 1). A variable X is said to be (p, q, τ)- hypercontractive if

‖a+ τX‖q ≤ ‖a+X‖p for all a ∈ R.

It is known that if E(X) = 0 and E(|X|q) <∞ where q > 2, then X is (2, q, τ)- hypercon-
tractive with τ = ‖X‖2

2(q−1)
1
2 ‖X‖q

.

Generally, let n be a positive integer and let Xi be a collection of orthonormal real
random variables, one of which is the constant 1, i = 1, · · · , n. We call X = {X1, · · · ,Xn}
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an orthonormal ensemble. X is said to be independent if X1, · · · ,Xn are independent
families of random variables. A multi-index σ is a sequence (σ1, · · · , σn) in Zn+. The
degree of σ, denoted |σ|, is the number of elements in {1 ≤ i ≤ n;σi > 0}. Let
{xi,j}1≤i≤n,j≥0 be a doubly-indexed set of real constants. We write xσ := Πn

i=1xi,σi . A
multilinear polynomial over X is defined by

Q(x) :=
∑
σ

cσxσ.

For 0 < τ < 1, define
(TτQ)(x) :=

∑
σ

τ |σ|cσxσ.

For 1 ≤ p < q <∞ and 0 < τ < 1, we say that X is (p, q, τ)-hypercontractive if

‖ TτQ ‖q≤‖ Q ‖p

for every multilinear polynomial Q over X .

Lemma 3.4. Assume that (A.1), (A.2) and (A.3) hold. Then for each l ≥ 1, both Z≤ln (βn;ω)

and Z≤ln (βn;µ) have the same limiting distributions as n→∞, that is, for any t ∈ R,

lim
n→∞

∣∣E (exp
{
itZ≤ln (βn;ω)

})
−E

(
exp

{
itZ≤ln (βn;µ)

})∣∣ = 0.

Equivalently, for any bounded continuous function f ∈ C(3)
b (R),

lim
n→∞

∣∣E (f (Z≤ln (βn;ω)
))
−E

(
f
(
Z≤ln (βn;µ)

))∣∣ = 0.

Proof. Since the ω(i, x) and µ(i, x), i ∈ Z+, x ∈ Z, are correlated in space variable, some
invariance principles in [14] and [39] can not be applied directly to our model. But
by time-independence, the multilinear polynomials in our model can be expanded into
multilinear polynomials of independent random variables. This observation allows us to
apply Lindeberg’s argument and the hypercontractive technique to our case. Next, we
use Lindeberg’s argument and the hypercontractive technique to show the lemma.

Recall that T :=
{

(i, x) ∈ Z2; i ∈ Z+, x ∈ qZ+ i`
}
. We choose a sequence of finite

subsets
TM := {(i, xi,m) ∈ T; 1 ≤ i ≤M, 1 ≤ m ≤M}, M ≥ 1

in T such that TM ⊂ TM ′ for M ′ ≥ M , and TM ↑ T as M ↑ ∞. In fact, we can take
xi,m = q(m− [M/2]) + i`, i = 1, · · · ,M , m = 1, · · · ,M . For each l ≥ 1 and M ≥ 1, define

Z≤ln,M (βn;ω)

:= 1 +

l∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn,M

ψkn(t,x)ωkn(t,x)

= 1 +

l∑
k=1

(β
√
q)kθkn(q−1n1+1/α)k

∫
[0,1]k

∫
Rk
ICkn,M (s,y)ψkn(s,y)ωkn(s,y)dsdy,

where IC is the indicator function of C,

Dn,M :=

{(
i

n
,
x

n
1
α

)
; (i, x) ∈ TM

}
, Ckn,M = ∪(t,x)∈Dkn,M

Ckn(t,x), Ckn(t,x) =

k∏
i=1

Cn(ti, xi),

and Cn(t, x) is defined in (3.6).
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Scaling limits of directed polymers

For given f : R→ R with

Cf := max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞} <∞,

we have∣∣∣E (f (Z≤ln (βn;ω)
)
− f

(
Z≤ln (βn;µ)

)) ∣∣∣
≤
∣∣∣E(f (Z≤ln (βn;ω)

)
− f

(
Z≤ln,M (βn;ω)

)) ∣∣∣+
∣∣∣E(f (Z≤ln (βn;µ)

)
− f

(
Z≤ln,M (βn;µ)

)) ∣∣∣
+
∣∣∣E(f (Z≤ln,M (βn;ω)

)
− f

(
Z≤ln,M (βn;µ)

)) ∣∣∣. (3.31)

Let us first estimate the third term on the right side. Set

ωi := (1, ω(i, xi,1), · · · , ω(i, xi,M )), µi := (1, µ(i, xi,1), · · · , µ(i, xi,M )), 1 ≤ i ≤M.

Define the intermediate sequences between (µ1, · · · , µM ) and (ω1, · · · , ωM ) as follows:

X(j) = (X
(j)
1 , · · · ,X(j)

M ) := (ω1, · · · , ωj , µj+1, · · · , µM ), j = 0, 1, · · · ,M.

Then the components X
(j)
k = (X

(j)
k,0, X

(j)
k,1, · · · , X

(j)
k,M ), k = 1, · · · ,M , j = 0, 1, · · · ,M have

the following forms:

X
(j)
k,0 = 1, X

(j)
k,i = ω(k, xk,i), 1 ≤ k ≤ j; X

(j)
k,i = µ(k, xk,i), j + 1 ≤ k ≤M, i = 1, · · · ,M.

For each σ = (σ1, · · · , σM ) ∈ {0, 1, · · · ,M}M , let 1 ≤ i1 < i2, · · · < i|σ| ≤ M be
the integer such that σik 6= 0, k = 1, · · · , |σ|. Denote by mσ = (i1, · · · , i|σ|) and xσ =

(xi1,σi1 , · · · , xi|σ|,σi|σ| ). Then we can write Z≤ln,M (βn;µ) as a multilinear polynomial of X(0):

Z≤ln,M (βn;µ) =1 +

l∑
k=1

(β
√
q)kθkn

∑
(i,x)∈TkM

ψkn

(
i

n
,

x

n1/α

)
µkn

(
i

n
,

x

n1/α

)

=1 +

l∑
k=1

∑
σ=(σ1,··· ,σM )∈{0,1,··· ,M}M,

|σ|=k

(β
√
qθn)|σ|ψ|σ|n

(mσ

n
,
xσ
n1/α

) M∏
i=1

X
(0)
i,σi

=
∑

σ=(σ1,··· ,σM )∈{0,1,··· ,M}M,

|σ|≤l

cσ

M∏
k=1

X
(0)
k,σk

:= Q(X(0)),

where
cσ = (β

√
qθn)|σ|ψ|σ|n

(mσ

n
,
xσ
n1/α

)
.

We define Q(X(j)) to be the multilinear polynomial of X(j) by substituting X(0) with
X(j) in Q(X(0)). Then for each j = 1, · · · ,M , we can write

Q(X(j)) =
∑

σ=(σ1,··· ,σM )∈{0,1,··· ,M}M
|σ|≤l

cσ

M∏
k=1

X
(j)
k,σk

=
∑

σ:|σ|≤l,σj=0

cσ
∏

k 6=j,1≤k≤M

X
(j)
k,σk

+
∑

σ:|σ|≤l,σj>0

cσω(j, xj,σj )
∏

k 6=j,1≤k≤M

X
(j)
k,σk

=:Q̃j + Rj .

Similarly, we write Q(X(j−1)) = Q̃j + Sj , where

Sj =
∑

σ:|σ|≤l,σj>0

cσµ(j, xj,σj )
∏

k 6=j,1≤k≤M

X
(j)
k,σk

.
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Then

f
(
Z≤ln,M (βn;ω)

)
− f

(
Z≤ln,M (βn;µ)

)
=

M∑
j=1

(
f
(
Q(X(j))

)
− f

(
Q(X(j−1))

))

=

M∑
j=1

(
f
(
Q̃j + Rj

)
− f

(
Q̃j + Sj

))
. (3.32)

Using the Taylor expansion:

|f(x+ y)− (f(x) + f ′(x)y +
1

2
f ′′(x)y2)| ≤ Cf

6
|y|3,

in particular, we have∣∣∣∣E(f (Q̃j + Rj

)
−
(
f(Q̃j) + f ′(Q̃j)Rj +

1

2
f ′′(Q̃j)R

2
j

))∣∣∣∣ ≤ Cf
6
E(|Rj |3)

and ∣∣∣∣E(f (Q̃j + Sj

)
−
(
f(Q̃j) + f ′(Q̃j)Sj +

1

2
f ′′(Q̃j)S

2
j

))∣∣∣∣ ≤ Cf
6
E(|Sj |3).

Note that ωj and
∏
k 6=j,1≤k≤M X

(j)
k,σk

are independent, and µj and
∏
k 6=j,1≤k≤M X

(j)
k,σk

are
also independent. Then

E
(
f ′(Q̃j)Rj

)
=

∑
σ:|σ|≤l,σj>0

cσE

f ′(Q̃j) ∏
k 6=j,1≤k≤M

X
(j)
k,σk

E
(
ω(j, xj,σj )

)

=
∑

σ:|σ|≤l,σj>0

cσE

f ′(Q̃j) ∏
k 6=j,1≤k≤M

X
(j)
k,σk

E
(
µ(j, xj,σj )

)
=E

(
f ′(Q̃j)Sj

)
,

and

E
(
f (2)(Q̃j)R

2
j

)
=

∑
σ1
j
>0,σ2

j
>0,

|σ1|≤l,|σ2|≤l

cσ1cσ2E

f (2)(Q̃j)ω(j, xj,σ1
j
)ω(j, xj,σ2

j
)

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ1
k

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ2
k



=
∑

σ1
j
>0,σ2

j
>0,

|σ1|≤l,|σ2|≤l

cσ1cσ2E

f (2)(Q̃j)

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ1
k

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ2
k


×E

(
ω(j, xj,σ1

j
)ω(j, xj,σ2

j
)
)

=
∑

σ1
j
>0,σ2

j
>0,

|σ1|≤l,|σ2|≤l

cσ1cσ2E

f (2)(Q̃j)

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ1
k

 ∏
k 6=j,1≤k≤M

X
(j)

k,σ2
k


×E

(
µ(j, xj,σ1

j
)µ(j, xj,σ2

j
)
)

=E
(
f (2)(Q̃j)S

2
j

)
.

Therefore, we have that∣∣∣E(f (Q̃j + Rj

)
− f

(
Q̃j + Sj

)) ∣∣∣ ≤ Cf
6

(
E(|Rj |3) + E(|Sj |3)

)
. (3.33)
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Next, we estimate E(|Rj |3) and E(|Sj |3). For each L ≥ 1, define

ωL(i, x) :=
∑
|y|≤L

ayξ(i, x+ y),

µL(i, x) :=
∑
|y|≤L

ayµ(i, x+ y), x ∈ {xi,1, · · · , xi,M}, 1 ≤ i ≤M.

Set

ωLi := (ωL(i, xi,1), · · · , ωL(i, xi,M )), µLi := (µL(i, xi,1), · · · , µL(i, xi,M )), 1 ≤ i ≤M,

and substituting ω and µ with ωL and µL, we can define X(j,L), X
(j,L)
k , X(j,L)

k,i , k =

1, · · · ,M , i = 1, · · · ,M , j = 0, 1, · · · ,M . Denote by

Rj,L =
∑

σ:|σ|≤l,σj>0

cσωL(j, xj,σj )
∏

k 6=j,1≤k≤M

X
(j,L)
k,σk

,

Sj,L =
∑

σ:|σ|≤l,σj>0

cσµL(j, xj,σj )
∏

k 6=j,1≤k≤M

X
(j,L)
k,σk

.

Then Rj,L and Sj,L can be expanded into two multilinear polynomials with degree ≤ l

over XL+M̃ = {XL+M̃
1 , · · · ,XL+M̃

M }, where M̃ = max{|xi,1|, · · · , |xi,M |}+ 1,

XL+M̃
i =

{
1, ξ(i, x), η(i, x); |x| ≤ 2(L+ M̃)

}
, i = 1, · · · ,M.

Since XL+M̃ is (2, 3, τ)-hypercontractive independent ensemble with

τ = min

{
1

23/2‖ξ‖3
,

1

23/2‖η‖3

}
,

by Proposition 3.12 in [39], we have that

E(|Rj,L|3) + E(|Sj,L|3) ≤ τ−3l
(

(E(|Rj,L|2))3/2 + (E(|Sj,L|2))3/2
)
.

Letting L→∞, we obtain

E(|Rj |3) + E(|Sj |3) ≤ τ−3l
(

(E(|Rj |2))3/2 + (E(|Sj |2))3/2
)
.

Therefore∣∣∣E(f (Q̃j + Rj

)
− f

(
Q̃j + Sj

)) ∣∣∣ ≤ Cf
6
τ−3l

(
(E(|Rj |2))3/2 + (E(|Sj |2))3/2

)
. (3.34)

For (t,x) ∈ Dkn,M , j
n ∈ t means that j

n is a component of t. Note that X
(j)
j and

X
(j−1)
j are independent of X(j)

1 , · · · ,X(j)
j−1, X(j)

j+1, · · · ,X
(j)
M , and have the same mean and

variance. Therefore, by (3.15) and noting that ψkn(t,x) is a probability density,

E(|Rj |2) + E(|Sj |2)

=2E


 l∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn,M and

j
n∈t

ψkn(t,x)

(
k∏
i=1

X
(j)

nti,n1/αxi

)
2

=2

l∑
k=1

(β
√
q)2kk!k

∫
[0,1]k

∫
Rk

∫
Rk
ψkn(t,x)ICkn,M (t,x)γn (x−y)ψkn(t,y)ICkn,M (t,y)Inj (t)dtdxdy,

EJP 28 (2023), paper 68.
Page 18/57

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP955
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Scaling limits of directed polymers

where Ckn,M = ∪(t,x)∈Dkn,M
Ckn(t,x),

Inj (t) =

k∑
i=1

I( j−1
n , jn ](ti), t = (t1, · · · , tk),

and IC is the indicator function of C. Then by (3.15),

l∑
k=1

(β
√
q)2kk!k

∫
[0,1]k

∫
Rk

∫
Rk
ψkn(t,x)ICkn,M (t,x)γn (x−y)ψkn(t,y)ICkn,M (t,y)Inj (t)dtdxdy

≤C1(l)

l∑
k=1

∥∥∥Inj ICkn,Mψkn∥∥∥2

LkK
,

where C1(l) are positive constants independent of n and M . By (3.18),

l∑
k=1

∥∥ψkn∥∥2

LkK
≤ C2(l),

where C2(l) is a positive constant independent of n and M . Therefore,

sup
1≤j≤M

{
E(|Rj |2) + E(|Sj |2)

}
≤ C1(l)

l∑
k=1

∥∥ψkn∥∥2

LkK
≤ C1(l)C2(l). (3.35)

From (3.26), we have that, for each 1 ≤ k ≤ l,

lim
n→∞

∥∥|ψkn −Gk|∥∥2

LkK
= 0.

From (3.17), and for each t > 0, Inj (t)→ 0 uniformly in j as n→∞,∥∥∥GkInj ICkn,M∥∥∥2

LkK
→ 0

uniformly in j,M as n→∞. Then∥∥∥Inj ICkn,Mψkn∥∥∥2

LkK
≤ 2

∥∥|ψkn −Gk|∥∥2

LkK
+ 2

∥∥∥GkInj ICkn,M∥∥∥2

LkK
→ 0 (3.36)

uniformly in j,M as n→∞, where C is a positive constant independent of n,M . Note
that

M∑
j=1

Inj (t) =

k∑
i=1

I(0,Mn ](ti).

We have

M∑
j=1

∥∥∥Inj ICkn,Mψkn∥∥∥2

LkK

=

∫
[0,1]k

∫
Rk

∫
Rk
ψkn(t,x)ICkn,M (t,x)γn (x− y)ψkn(t,y)ICkn,M (t,y)

M∑
j=1

Inj (t)dtdxdy

=

k∑
i=1

∫
[0,1]k

∫
Rk

∫
Rk
ψkn(t,x)ICkn,M (t,x)γn (x− y)ψkn(t,y)ICkn,M (t,y)I(0,Mn ](ti)dtdxdy

≤k
∥∥ψkn∥∥2

LkK
≤ l
∥∥ψkn∥∥2

LkK
.

EJP 28 (2023), paper 68.
Page 19/57

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP955
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Scaling limits of directed polymers

Now, by (3.32) and (3.34), there exists a positive constant C3(l) independent of n and
M such that∣∣∣E(f (Z≤ln,M (βn;ω)

)
− f

(
Z≤ln,M (βn;µ)

))∣∣∣
≤C3(l)

3
Cfτ

−3l

 l∑
k=1

M∑
j=1

∥∥∥Inj ICkn,Mψkn∥∥∥2

LkK

 sup
1≤j≤M

(
l∑

k=1

∥∥∥Inj ICkn,Mψkn∥∥∥2

LkK

)1/2

≤C3(l)l

3
2Cfτ

−3l
l∑

k=1

∥∥ψkn∥∥2

LkK

(∥∥|ψkn −Gk|∥∥2

LkK
+
∥∥∥GkInj ICkn,M∥∥∥2

LkK

)
→ 0,

uniformly in M as n→∞.
For any ε > 0, choose nε ≥ 1 such that for all n ≥ nε, M ≥ 1,∣∣∣E(f (Z≤ln,M (βn;ω)

)
− f

(
Z≤ln,M (βn;µ)

)) ∣∣∣ ≤ ε.
Since for each n ≥ nε fixed, as M →∞, Ckn \ Ckn,M → ∅ where Ckn = ∪(t,x)∈DknC

k
n(t,x), we

have that as M →∞,

E

((
Z≤ln (βn;ω)− Z≤ln,M (βn;ω)

)2
)
≤ Cl

l∑
k=1

(β
√
q)2kk!k

∥∥∥(ICkn − ICkn,M )ψkn

∥∥∥2

LkK
→ 0,

Therefore, as M →∞,

Z≤ln (βn;ω)− Z≤ln,M (βn;ω)
P−→ 0, Z≤ln (βn;µ)− Z≤ln,M (βn;µ)

P−→ 0,

and so, for f ∈ Cb(R),∣∣∣∣∣E(f (Z≤ln (βn;ω)
)
− f

(
Z≤ln,M (βn;ω)

)) ∣∣∣∣∣ M→∞−−−−→ 0,

∣∣∣∣∣E(f (Z≤ln (βn;µ)
)
− f

(
Z≤ln,M (βn;µ)

)) ∣∣∣∣∣ M→∞−−−−→ 0.

Now, in (3.31), letting M →∞, we get that for all n ≥ nε,∣∣∣E (f (Z≤ln (βn;ω)
)
− f

(
Z≤ln (βn;µ)

)) ∣∣∣ ≤ ε.
Finally, letting first n→∞, then ε→ 0, we obtain that

lim
n→∞

∣∣∣E (f (Z≤ln (βn;ω)
)
− f

(
Z≤ln (βn;µ)

)) ∣∣∣ = 0.

Next, we study the convergence of Z≤ln (βn;µ).

Lemma 3.5. Assume that (A.1), (A.2) and (A.3) hold. Let k ≥ 1 and ϕ ∈ L2r([0, 1]k ×Rk).
Assume that

sup
t∈[0,1]k

∫
Rk
|ϕ(t,x)|dx <∞. (3.37)

Set

ϕ(s,y) = (q−1n1+1/α)k
∑

(t,x)∈Dkn

ICkn(t,x)(s,y)

(∫
Ckn(t,x)

ϕ(s,y)dsdy

)
,

and define the weighted U -statistics via

Snk (ϕ) = θkn
∑

(t,x)∈Dkn

ϕ(t,x)µkn (t,x) ,
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where θn = q
1
2n−

1
2−

3
2α+ r

α and µkn (t,x) is defined by (3.29). Then, as n→∞,

Snk (ϕ)
(d)−→


∫

[0,1]k

∫
Rk
ϕ(t,x)W⊗k(dt dx) if r = 1,

1
qk/2

∫
[0,1]k

∫
Rk
ϕ(t,x)W⊗k(dt dx) if r < 1.

(3.38)

Proof. By the definition of ϕ, we have

‖ϕ− ϕ‖2rL2r :=

∫
[0,1]

∫
Rk
|ϕ(t,x)− ϕ(t,x)|2r dtdx→ 0 as n→∞. (3.39)

When k = 1, Sn1 (ϕ) is a Gaussian random variable with zero mean. We first consider
ϕ(t, x) = I(t0,t1]×(x0,x1](t, x), where 0 ≤ t0 < t1 ≤ 1, −∞ < x0 < x1 <∞, then

E


∣∣∣∣∣∣Sn1 (ϕ)− θn

∑
(t,x)∈Dn

ϕ(t, x)µn (t, x)

∣∣∣∣∣∣
2


≤
∑

(t,x)∈Dn,(t,y)∈Dn

∫
Cn(t,x)×Cn(t,y)

|ϕ(t′, x′)− ϕ(t′, x′)|γn(x′ − y′)|ϕ(t′, y′)− ϕ(t′, y′)|dt′dx′dy′

=

∫ 1

0

∫
R2

|ϕ(t, x)− ϕ(t, x)|γn(x− y)|ϕ(t, y)− ϕ(t, y)|dtdxdy.

Therefore, by (3.15), (3.16), and (3.39), we have

lim
n→∞

E


∣∣∣∣∣∣Sn1 (ϕ)− θn

∑
(t,x)∈Dn

ϕ(t, x)µn (t, x)

∣∣∣∣∣∣
2
 = 0.

Next, let us estimate E

((∑
(t,x)∈Dn ϕ(t, x)µn (t, x)

)2
)

.

E


 ∑

(t,x)∈Dn

ϕ(t, x)µn (t, x)

2


=
∑

nt0<i≤nt1

∑
n1/αx0<qk+i`,qj+i`≤n1/αx1

γ(qk + i`− (qj + i`)) +O(n)

=
∑

nt0<i≤nt1

∑
0≤l≤n1/α(x1−x0)/q

γ(ql)
∑
|k−j|=l

(n1/αx0−i`)/q<k,j≤(n1/αx1−i`)/q

1 +O(n).

Noting that ∑
|k−j|=0

(n1/αx0−i`)/q<k,j≤(n1/αx1−i`)/q

1 = n1/α(x1 − x0),

and for l 6= 0, ∑
|k−j|=l

(n1/αx0−i`)/q<k,j≤(n1/αx1−i`)/q

1 = 2n1/α(x1 − x0),
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we have

E


 ∑

(t,x)∈Dn

ϕ(t, x)µn (t, x)

2


=
1

q
n(t1 − t0)

(
n1/α(x1 − x0)γ(0) + 2n1/α(x1 − x0)

n1/α(x1−x0)/q∑
l=1

γ(ql)

− 2q

n1/α(x1−x0)/q∑
l=1

lγ(ql)

)
+O(n).

Thus, if r = 1, then

lim
n→∞

θ2
nE


 ∑

(t,x)∈Dn

ϕ(t, x)µn (t, x)

2
 = (t1 − t0)(x1 − x0)

If r < 1, then

lim
n→∞

θ2
nE


 ∑

(t,x)∈Dn

ϕ(t, x)µn (t, x)

2


= lim
n→∞

n
2r−2
α (t1 − t0)

(
2(x1 − x0)λrq

1−2r

n1/α(x1−x0)/q∑
l=1

l1−2r

− 2qn−
1
α

n1/α(x1−x0)/q∑
l=1

λrq
1−2rl2−2r

)
=

1

q
lim
n→∞

n
2r−2
α (t1 − t0)

(
2(x1 − x0)λr(2− 2r)−1

(
n1/α(x1 − x0)

)2−2r

− 2n−
1
αλr(3− 2r)−1

(
n1/α(x1 − x0)

)3−2r
)

=
1

q
(t1 − t0)(x1 − x0)3−2r =

1

q

∫
[0,1]

∫
R2

ϕ(t, x)K(x− y)ϕ(t, y)dtdxdy,

where λr = (1− r)(3− 2r). Thus, for ϕ(t, x) = I(t0,t1]×(x0,x1](t, x),

Sn1 (ϕ)
(d)−→


∫

[0,1]

∫
R
ϕ(t, x)W(dt dx) if r = 1,

1√
q

∫
[0,1]

∫
R
ϕ(t, x)W(dt dx) if r < 1.

which implies that this also holds for any simple function.

Let us now complete the proof in the case k = 1. We only consider the r < 1 case. For
any ϕ ∈ L2r([0, 1]×R) with

sup
t∈[0,1]

∫
R

|ϕ(t, x)|dx <∞,

choose a sequence of simple functions ϕ(m) such that

|ϕ(m)(t, x)| ≤ |ϕ(t, x)| for all (t, x) ∈ [0, 1]×R and ‖ϕ(m) − ϕ‖L2r → 0 as m→∞.
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By (3.16), (3.39), we have

lim
n→∞

E
(

(Sn1 (ϕ))
2
)

=
1

q

∫
[0,1]

∫
R2

ϕ(t, x)K (x− y)ϕ(t, y)dtdxdy,

and so

Sn1 (ϕ)
(d)→ 1
√
q
IW1 (ϕ) :=

1
√
q

∫ 1

0

∫
R

ϕ(t, x)W(dtdx).

Therefore, we complete the proof of (3.38) in k = 1 case.
By the Cramér-Wold method, for any m ≥ 1, ϕ1, · · · , ϕm ∈ L2r([0, 1]×R), if

sup
1≤i≤m

sup
t∈[0,1]

∫
R

|ϕi(t, x)|dx <∞,

then we have the joint convergence(
Sn1 (ϕ1), · · · ,Sn1 (ϕm)

) (d)−→
(
IW1 (ϕ1), · · · , IW1 (ϕm)

)
.

Next, let us extend the conclusion to k ≥ 2. We first consider functions of the form

ϕ(t,x) = ϕ1(t1, x1) · · ·ϕk(tk, xk), (3.40)

where ϕ1, · · · , ϕk ∈ L2r([0, 1]×R) satisfies

sup
1≤i≤k

sup
t∈[0,1]

∫
R

|ϕi(t, x)|dx <∞.

If ϕi(t, x)ϕj(t, y) = 0, t ∈ [0, 1], x, y ∈ R, 1 ≤ i < j ≤ k, then for such functions ϕ, by
Lemma A.2, as n→∞,

Snk (ϕ) =

k∏
j=1

Sn1 (ϕj)
(d)−→ 1

qk/2

k∏
j=1

∫ 1

0

∫
R

ϕj(t, x)W(dt dx)=
1

qk/2

∫
[0,1]k

∫
Rk
ϕ(t,x)W(dt dx).

For general ϕ ∈ L2r([0, 1]k ×Rk) satisfying (3.40), for each m ≥ 2, we define

ϕ
(m)
j,i (t, x) = ϕj(t, x)I[ i−1

m , im )(t), i = 1, · · · ,m, j = 1, · · · , k,

and

ϕ(m)(t,x) =
∑

1≤i1,··· ,ik≤m,ij 6=il for i6=l

k∏
j=1

ϕ
(m)
j,ij

(tj , xj) = ϕ(t,x)IBm .

where

Bm =
⋃

1≤i1,··· ,ik≤m,ij 6=il for j 6=l

[
i1 − 1

m
,
i1
m

)
× · · · ×

[
ik − 1

m
,
ik
m

)
.

Then for each 1 ≤ i1, · · · , ik ≤ m with ij 6= il for any j 6= l, ϕ(m)
1,i1

(t1, x1), · · · , ϕ(m)
k,ik

(tk, xk)∈
L2r([0, 1]×R) satisfy ϕ(m)

l,il
(t, x)ϕ

(m)
j,ij

(t, y) = 0, t ∈ [0, 1], x, y ∈ R, 1 ≤ l < j ≤ k, and

|ϕ(m)(t,x)| ≤ |ϕ(t,x)| for all (t,x) ∈ [0, 1]k ×Rk.

By the Lebesgue measure |Bcm| → 0 as m→∞, we have

‖ϕ(m) − ϕ‖L2r ≤ ‖ϕIBcm‖L2r → 0 as m→∞.
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Since for each m ≥ 2, as n→∞,

Snk (ϕ(m)) =
∑

1≤i1,··· ,ik≤m,ij 6=il for j 6=l

Snk

 k∏
j=1

ϕ
(m)
j,ij


(d)−→

∑
1≤i1,··· ,ik≤m,ij 6=il for j 6=l

IWk

 k∏
j=1

ϕ
(m)
j,ij

 = IWk

(
ϕ(m)

)
.

By (3.15), (3.16) and (3.39), there exists a positive constant A only depending on ϕ such
that for any n ≥ 1,

E

((
Snk (ϕ)− Snk (ϕ(m))

)2
)
≤ A‖ϕ(m) − ϕ‖L2r ≤ A‖ϕIBcm‖L2r ,

and

E

((
IWk (ϕ)− IWk

(
ϕ(m)

))2
)
≤ A‖ϕ(m) − ϕ‖L2r ≤ A‖ϕIBcm‖L2r .

Therefore, Snk (ϕ)
(d)−→ IWk (ϕ).

Finally, for any φ ∈ L2r([0, 1]k ×Rk) satisfying (3.37), choose a sequence of functions

φ(m)(t,x) =
∑lm
j=1 φ

(m)
1,j (t1, x1) · · ·φ(m)

k,j (tk, xk), such that

|φ(m)(t,x)| ≤ |φ(t,x)| for all (t,x) ∈ [0, 1]k ×Rk and ‖φ(m) − φ‖L2r → 0 as m→∞.

Then by (3.16), (3.39), we accomplish the proof.

Remark 3.1. It is obvious that the operators ϕ → Snk (ϕ), k ≥ 1, have a natural sym-
metrizing property. Thus Snk (ϕ) = Snk (Sym{ϕ}).
Remark 3.2. Note that ψnk is already constant on Ckn(t,x), (t,x) ∈ ∆Dkn, so that ψkn = ψkn.
Thus, by the definition of Snk ,

Snk (ψkn) = θkn
∑

(t,x)∈Dkn

ψkn(t,x)µkn (t,x) .

By the definition of the Zσ(β,q)(1, ∗) (see Theorem 2.1), we have that

Zσ(β,q)(1, ∗) = 1 +

∞∑
k=1

(σ(β, q))k
∫

∆k(1)

∫
Rk

k∏
i=1

g(ti − ti−1, xi − xi−1)W(dtidxi),

where x0 = 0, t0 = 0 and ∆k(1) = {0 ≤ t1 < · · · < tk ≤ 1}. Define

Z≤lσ(β,q)(1, ∗) = 1 +

l∑
k=1

(σ(β, q))k
∫

∆k(1)

∫
Rk

k∏
i=1

g(ti − ti−1, xi − xi−1)W(dtidxi).

Lemma 3.6. Assume that (A.1), (A.2) and (A.3) hold. Then for each l ≥ 1, Z≤ln (βn;ω)

converges in distribution to Z≤lσ(β,q)(1, ∗).

Proof. Since g(x) is the density function of the symmetric stable distribution on R,
α ∈ (2r − 1, 2], it is known that g(t, x) is continuous on (0, 1]×R and∫

R

g(t, x)dx = 1,
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and∫ 1

0

∫
R

|g(t, x)|2rdxdt =

∫ 1

0

∫
R

t(1−2r)/α|g(x)|2rdxdt =
α

α+ 1− 2r

∫
R

|g(x)|2rdx <∞.

Set

gkn(s,y) = (q−1n1+1/α)k
∑

(t,x)∈Dkn

ICkn(t,x)(s,y)

(∫
Ckn(t,x)

gk(s,y)dsdy

)
.

Define

Z≤ln (g) := 1 +

l∑
k=1

(β
√
q)kSnk (gk).

Therefore, Lemma 3.5 yields

Z≤ln (g)
(d)→ Z≤lσ(β,q)(1, ∗) as n→∞.

We write

E
((

Z≤ln (g)− Z≤ln (βn;ω)
)2)

=

l∑
k=1

β2kk!

∫
[0,1]k

∫
R2k

(ψkn(t,x)− gkn(t,x))γkn (x− y) (ψkn(t,y)− gkn(t,y))dtdxdy.

By (3.15), we have∫
[0,1]k

∫
R2k

(ψkn(t,x)− gkn(t,x))γkn (x− y) (ψkn(t,y)− gkn(t,y))dtdxdy

≤ Ck‖|ψkn(t,x)− gkn|‖2LkK
≤ Ck

(
‖|ψkn(t,x)−Gk|‖2LkK + ‖|gkn −Gk|‖2LkK

)
.

Therefore, by Lemma 3.3,

E
((

Z≤ln (g)− Z≤ln (βn;ω)
)2)→ 0 as n→∞.

and so, Z≤ln (βn;ω)
(d)→ Z≤lσ(β,q)(1, ∗).

Step 3. Combining the conclusions in previous two steps, we show Theorem 3.1 via
Lemma 3.1.

Proof of Theorem 3.1. Define

Y nl = Z≤ln (βn;ω) := 1 +

l∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ωkn (t,x) ,

Yl = Z≤lσ(β,q)(1, ∗) = 1 +

l∑
k=1

(σ(β, q))k
∫

∆k(1)

∫
Rk

k∏
i=1

g(ti − ti−1, xi − xi−1)W(dtidxi),

and
Y n = Zn(βn;ω), Y = Zσ(β,q)(1, ∗).

Then

E
(

(Yl − Y )
2
)

=

∞∑
k=l+1

(σ(β), q)2k‖gk‖Lk
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and

E
(

(Y nl − Y n)
2
)

=

∞∑
k=l+1

(
√
qβ)2k

∫
∆k(1)

∫
R2k

ψkn(t,x)γkn (x− y)ψkn(t,y)dtdxdy.

By the conditions (3.15), we have∫
∆k(1)

∫
R2k

ψkn(t,x)γkn (x− y)ψkn(t,y)dtdxdy ≤ Ck‖ψkn(t,x)‖2LkK .

Therefore, by Lemma 3.2, Y nl → Y n in probability uniformly in n as l→∞, and Yl → Y

in probability as l → ∞. By Lemma 3.4 and Lemma 3.6, for each l ≥ 1, Y nl → Yl in
distribution as n→∞. Therefore, by Lemma 3.1, Y n → Y in distribution as n→∞.

3.2 Proof of Theorem 2.1

In this subsection, we show Theorem 2.1 by estimating the L2-error between
Zn(βn;ω)e−nλ(βn) and the modified point-to-line partition function Zn(βn;ω).

Denote by

ω̃(i, x) :=
eβnω(i,x)−λ(βn) − 1

βn
,

and set
ϑ(i, x) := ω̃(i, x)− ω(i, x),

where λ(β) = logEeβω(i,x) and βn = βn−
1
2−

1
2α+ r

α . Then E(ω̃(i, x)) = 0, and we can write

Zn(βn;ω)e−nλ(βn) =E

(
n∏
i=1

(1 + βnω̃(i, Si))

)

=1 +

∞∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ω̃kn(t,x).

The following lemma gives an error estimate between the two environments.

Lemma 3.7. Assume that (A.1), (A.2) and (A.3) hold. Then we can choose a positive
integer M0 ≥ 1 such that for any M ≥M0,

M
(
− 1

2 −
1

2α + r
α

)
+ 2r−1

α < 0,

|E(ω̃(i, x)ω̃(i, y))| ≤ CMγ(x− y) +O(βMn ),

|E(ϑ(i, x)ϑ(i, y))| ≤ CMγ(x− y) +O(βMn ),

(3.41)

where O(βn) is independent of (i, x, y), and CM is a positive constant independent of n.

Proof. We only prove the r ∈ (1/2, 1) case. The r = 1 case is similar. Since 2r−1
α < 1, we

can choose M0 ≥ 1 such that for all M ≥M0,

M

(
−1

2
− 1

2α
+
r

α

)
+

2r − 1

α
< 0.

For any integer M ≥M0, by a Taylor expansion, we have

E
(
eβn(ω(i,x)+ω(i,y))

)
=1 +

M+1∑
k=1

βkn
k!

E((ω(i, x) + ω(i, y))k) +O(βM+2
n )

=1 +

M+1∑
k=1

k∑
l=1

βkn
k!
ClkE

(
ωl(i, x)ωk−l(i, y)

)
+O(βM+2

n ),
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and

E
(
eβnω(i,x)

)
E
(
eβnω(i,y)

)
=

(
1 +

M+1∑
k=1

βkn
k!

E(ωk(i, x)) +O(βM+2
n )

)1 +

M+1∑
j=1

βjn
j!

E(ωj(i, y) +O(βM+2
n )


=1 +

M+1∑
k=1

k∑
l=1

βkn
k!
ClkE

(
ωl(i, x)

)
E
(
ωk−l(i, y)

)
+O(βM+2

n ).

By Lemma D.1, for any k, j ≥ 1, there is a positive constant Ck,j such that∣∣E (ωl(i, x)ωk−l(i, y)
)
−E

(
ωl(i, x)

)
E
(
ωk−l(i, y)

)∣∣ ≤ Ck,jγ(x− y).

Therefore, there is a positive constant C̃M such that

|E(ω̃(i, x)ω̃(i, y))| =e−2λ(βn)

β2
n

∣∣∣E(eβn(ω(i,x)+ω(i,y))
)
−E

(
eβnω(i,x)

)
E
(
eβnω(i,y)

)∣∣∣
≤e
−2λ(βn)

β2
n

(
C̃Mβ

2
nγ(x− y) +O(βM+2

n )
)

≤ĈMγ(x− y) +O(βMn ).

Finally, we show the third estimate in (3.41). It is obvious that

E(ϑ(i, x)ϑ(i, y))

=E ((ω̃(i, x)− ω(i, x))(ω̃(i, y)− ω(i, y)))

=E(ω̃(i, x)ω̃(i, y))−E(ω̃(i, x)ω(i, y))−E(ω(i, x)ω̃(i, y)) + γ(x− y).

Then, we can write

E(ω̃(i, x)ω(i, y)) = E

(
eβnω(i,x)−λ(βn) − 1

βn
· ω(i, y)

)
=
e−λ(βn)

βn
E
(
ω(i, y)eβnω(i,x)

)
.

Using again a Taylor expansion, we have

|E(ω̃(i, x)ω(i, y))| =e−λ(βn)

βn

∣∣∣∣∣
(
M+1∑
k=1

βkn
k!

E(ω(i, y)ωk(i, x)) +O(βM+2
n )

)∣∣∣∣∣
≤CMγ(x− y) +O(βM+1

n ).

Therefore, the third estimate in (3.41) holds.

Proof of Theorem 2.1. Denote by(
Zn(βn;ω)e−nλ(βn)

)>l
:=

∞∑
k=l+1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ω̃kn(t,x). (3.42)

(
Zn(βn;ω)e−nλ(βn)

)≤l
:= 1 +

l∑
k=1

(β
√
q)kθkn

∑
(t,x)∈Dkn

ψkn(t,x)ω̃kn(t,x). (3.43)

Let γkn and p̂kn be defined by (3.7) and (3.14), i.e.,

p̂kn(t,x) :=
(
q−1n

1
α

)k
pkn(t,x), γkn(x− y) = nk(2r−1)/αE

(
ωkn(t,x)ωkn(t,y)

)
.
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Recall βn = βn−
1
2−

1
2α+ r

α . By Lemma 3.7, there exist positive integer M ≥ 1 and positive
constant CM such that (3.41) holds. In particular, βMn n

2r−1
α ≤ 1. Then by (3.41), we have

E

((
Zn(βn;ω)e−nλ(βn)

)>l)2

≤
∞∑

k=l+1

Ak
∫

∆k(1)

∫
R2k

p̂kn(t,x)p̂kn(t,y)

k∏
i=1

(
γn
(
xi − yi

)
+O(n

2r−1
α βMn )

)
dtidxidyi

=

∞∑
k=l+1

Ak
∫

∆k(1)

k∏
i=1

(∫
R2

p̂1
n(ti − ti−1, xi)γn

(
xi − yi

)
p̂1
n(ti − ti−1, yi)dxidyi +O(1)

)
dti,

where A is a positive constant. Note that∫
R2

p̂1
n(ti − ti−1, xi)γn

(
xi − yi

)
p̂1
n(ti − ti−1, yi)dxidyi

≤C
∫
R2

p̂1
n(ti − ti−1, xi)K

(
xi − yi

)
p̂1
n(ti − ti−1, yi)dxidyi

≤C1

∫
R

|p̂1
n(ti − ti−1, xi)|2rdxi

≤C2(ti − ti−1)
1−2r
α ,

where C,C1, C2 are positive constants. Noting that (ti − ti−1)
1−2r
α ≥ 1, we have

E

((
Zn(βn;ω)e−nλ(βn)

)>l)2

(3.44)

≤
∞∑

k=l+1

AkCk2

∫
∆k(1)

k∏
i=1

(
(ti − ti−1)

1−2r
α +O(1)

)
dti

≤
∞∑

k=l+1

Ck3

∫
∆k(1)

k∏
i=1

(ti − ti−1)
1−2r
α dti

≤
∞∑

k=l+1

Ck3 Γk
(
1 + 1−2r

α

)
Γ
(
k
(
1 + 1−2r

α

)
+ 1
) −→ 0 (3.45)

uniformly in n as l→∞, where C2, C3 are positive constants.
Define

S̃nk = θkn
∑

(t,x)∈Dkn

ψkn(t,x)ω̃kn (t,x) ,

and

Snk = θkn
∑

(t,x)∈Dkn

ψkn(t,x)ωkn (t,x) .

Next, we prove that for any k ≥ 1,

lim
n→∞

E

((
S̃nk − Snk

)2
)

= 0. (3.46)

For k ≥ 2, 1 ≤ l ≤ k, set

Snk,l = θkn
∑

(t,x)∈Dkn

ψkn(t,x)

l−1∏
i=1

ω̃n (ti, xi)ϑn(tl, xl)

k∏
j=l+1

ωn (tj , xj) .
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Then (
E

((
S̃nk − Snk

)2
)) 1

2

≤
k∑
l=1

(
E
((
Snk,l

)2)) 1
2

.

For each 1 ≤ l ≤ k, by (3.41) and the assumption (A.3), we have

E
((
Snk,l

)2)
≤Cn

k(2r−1)
α

∫
∆k(1)

∫
R2k

p̂kn(t,x)p̂kn(t,y)

l−1∏
i=1

(
n−

2r−1
α γn(xi − yi) +O(βMn )

)
×
(
n−

2r−1
α γn(xl − yl) +O(βMn )

) k∏
j=l+1

n−
2r−1
α γn(xj − yj)dtdxdy

≤C1

∫
∆k(1)

∫
R2k

p̂kn(t,x)p̂kn(t,y)

l∏
i=1

(
K(xi − yi) +O(n

2r−1
α βMn )

) k∏
j=l+1

K(xj − yj)dtdxdy

≤C3

∫
∆k(1)

k∏
i=1

(ti − ti−1)
1−2r
α dti −→ 0 as n→∞.

Therefore, (3.46) holds, and so

lim
n→∞

E

(((
Zn(βn;ω)e−nλ(βn)

)≤l)
− Zn(βn;ω)≤l

)2

= 0. (3.47)

Combining (3.44) and (3.47), we get

lim
n→∞

E
((
Zn(βn;ω)e−nλ(βn)

)
− Zn(βn;ω)

)2

= 0.

Thus, the conclusion of Theorem 2.1 holds.

4 The scaling limit of the point-to-point partition function

In this section, we give the proof of Theorem 2.2. The convergence of the finite
dimensional distributions in Theorem 2.2 is similar to the proof of Theorem 2.1. An
important estimate in the tightness is the following gradient estimate for symmetric
random walk in the domain of normal attraction of α-stable law.

Lemma 4.1. Let {Sn, n ≥ 0} be a symmetric random walk starting from the origin on Z
and in the domain of normal attraction of a stable law of index α ∈ (0, 2]. Assume that
the characteristic function ϕ(u) of S1 satisfies (2.1). Then there exists a constant such
that for any n ≥ 1, m ∈ Z, y ∈ Z,

sup
x∈Z
|p(n, x+ y)− p(n, x)| ≤ C|y|

n2/α
, (4.1)

sup
x∈Z
|p(n+m,x)− p(n, x)| ≤ Cm

n1+1/α
. (4.2)

One can see [37] for a proof of the α = 2 case. A proof for general case is given in
Appendix B. The proof also gives the local limit theorem for symmetric random walk in
the domain of normal attraction of α-stable law.

We consider the modified point-to-point partition function defined by

Zn,x(β;ω) = E

(
n∏
i=1

(1 + βω(i, Si)) I{Sn=x}

)
.
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For each n ≥ 1, we first define a stochastic process zn(t, x) which is right continuous
in time and space,

zn(t, x) =
1

q
n1/αZnt,n1/αx(βn;ω) for any (t, x) ∈ Dn, (4.3)

and takes a constant value in interior of each cell Cn(t, x), (t, x) ∈ Dn.
For each n ≥ 1, we also define a linear interpolation process Zn(t, x) which is a

continuous process in time and space, and

Zn(t, x) = zn(t, x) for any (t, x) ∈ Dn. (4.4)

Set Rn = {Cn(t, x); (t, x) ∈ Dn}. For each n ≥ 1, we define a linear interpolation process
that extends Zn to a continuous process. The definition is as follows (see [1]): if (t, x) is
a corner point of the left-hand side of a rectangle in Rn, define Zn(t, x) = zn(t, x); then
for space–time points (t, x) on the left edges of rectangles in Rn, define Zn(t, x) by linear
interpolation of the values on the corners that the edge connects, and finally for (t, x) on
the interior points of rectangles, define Zn(t, x) by linear interpolation of the values at
the four boundary corners.

Theorem 4.1. Let α ∈ (1, 2], (A.1) and (A.2) hold. Then

(zn(t, x))t∈(0,1],x∈R
(d)−→ (Zσ(β,q)(t, x))t∈(0,1],x∈R, (4.5)

with respect to the Skorohod topology on D((0, 1]×R), and

(Zn(t, x))t∈(0,1],x∈R
(d)−→ (Zσ(β,q)(t, x))t∈(0,1],x∈R, (4.6)

with respect to the locally uniform topology on C((0, 1] × R), where Zσ(β,q)(t, x) is the
mild solution of (2.7) with σ = σ(β, q), and initial data Z0(x) = δ0(x). Furthermore,

lim
n→∞

E
(

(zn(t, x))
2
)

= lim
n→∞

E
(

(Zn(t, x))
2
)

= E
((
Zσ(β,q)(t, x)

)2)
. (4.7)

The convergence of the finite dimensional distributions is the same as the proof of
Theorem 3.1. The proof of the tightness is based on Minkowski’s integral inequality, and
the gradient estimates for symmetric random walks.

4.1 Convergence of finite dimensional distributions

For each t ∈ (0, 1], set

∆Dkn(t) =
{

(t,x) = ((t1, x1), · · · , (tk, xk)) ∈ Dkn; 0 ≤ t1 < · · · < tk ≤ t
}
.

For each (t, x) ∈ Dn, let pkn,t,x(t,x) be the joint probability of (Snt1 = n1/αx1, · · · , Sntk =

n1/αxk) under the condition Snt = n1/αx, i.e.,

pkn,t,x(t,x)

= P(Snt1 = n1/αx1, · · · , Sntk = n1/αxk|Snt = n1/αx)

=
p(n(t− tk), n1/α(x− xk))

p(nt, n1/αx)

k∏
j=1

p(n(tj − tj−1), n1/α(xj − xj−1)), (t,x) ∈ ∆Dkn,

where (t0, x0) = (0, 0). We extend pkn,t,x(t,x) from ∆Dkn(t) to ∆k(t)×Rk in the same way
as pkn(t,x). Set

ψkn,t,x(t,x) :=
(
q−1n1/α

)k
Sym{pkn,t,x(t,x)I∆k(t)×Rk(t,x)}, (t,x) ∈ [0, t]k ×Rk.
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Then for any (t, x) ∈ Dn,

Znt,n1/αx(βn;ω) =p(nt, n1/αx)

1 +

n∑
k=1

βkn
∑

(t,x)∈∆Dkn(t)

ψkn,t,x(t,x)ωkn(t,x)

 ,

where βn = βn−
1
2−

1
2α+ r

α , ωkn (t,x) =
∏k
i=1 ω

(
nti, n

1
αxi

)
,

Therefore, using the same approach as proof of Theorem 3.1, we can obtain that for
any finite points (t1, x1), · · · , (tm, xm) ∈ (0,∞)×R, as n→∞,

(zn(t1, x1), · · · , zn(tm, xm))
(d)−→

(
Zσ(β,q)(t1, x1), · · · ,Zσ(β,q)(tm, xm)

)
,

and so

(Zn(t1, x1), · · · , Zn(tm, xm))
(d)−→

(
Zσ(β,q)(t1, x1), · · · ,Zσ(β,q)(tm, xm)

)
.

4.2 Tightness

By the symmetry and Markov property of {Sn, n ≥ 0}, for any n ≥ 1, k ≤ n, x ∈ qZ+n`,

E

(
k∏
i=1

(1 + βω(i, Si)) I{Sn=x}

)
− E

(
k−1∏
i=1

(1 + βω(i, Si)) I{Sn=x}

)

=
∑
y∈Z

E

(
k−1∏
i=1

(1 + βω(i, Si)) I{Sk−1=y}

)
E (βω(k, y + S1)p(n− k, x− (y + S1)))

=
∑

y∈qZ+(k−1)`

Zk−1,y(β, ω)
∑

z∈qZ+`

p(1, z)βω(k, y + z)p(n− k, x− y − z)

=
∑

y∈qZ+(k−1)`

Zk−1,y(β, ω)
∑

z∈qZ+k`

p(1, z − y)βω(k, z)p(n− k, x− z)

=
∑

z∈qZ+k`

Zk−1,z(β, ω)βω(k, z)p(n− k, z − x), (4.8)

where

Zk−1,z(β;ω) =
∑

y∈qZ+(k−1)`

p(1, z − y)Zk−1,y(β;ω).

Suming (4.8) from 1 to n, we have

Zn,x(β;ω)− p(n, x) = β

n∑
i=1

∑
y∈qZ+i`

p(n− i, x− y)Zi−1,y(β;ω)ω(i, y). (4.9)

We define the rescaled transition probability pn(t, x) which is right continuous in time
and space,

pn(t, x) =
n1/α

q
p(nt, n1/αx) for any (t, x) ∈ Dn, (4.10)

and takes a constant value in interior of each cell Cn(t, x), (t, x) ∈ Dn. Similarly, let
zn(t, x) be a right continuous piecewise constant extension of Z:

zn(t, x) :=
n1/α

q
Znt,n1/αx(βn;ω), (t, x) ∈ Dn.
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We also extend ωn(t, x) := ω(nt, n
1
αx) to a right continuous piecewise constant function.

Then for any (t, x) ∈ Dn,

zn(t, x) =
∑

y∈n−1/αZ

pn (1/n, x− y) zn((t− 1/n)+, y)qn−1/α

=

∫
pn (1/n, x− y) zn((t− 1/n)+, y)dy,

(4.11)

and

zn(t, x) =pn(t, x) + βqn−1− 1
α

∑
s∈[0,t]∩n−1Z

∑
y∈n−

1
α Z

pn(t− s, x− y)zn(s, y)ωn(s, y)

=pn(t, x) + β

∫ t

0

∫
R

pn(t− s, x− y)zn(s, y)ωn(s, y)dsdy,

(4.12)

where ωn(s, y) := n
1
2−

1
2α+ r

αωn(s, y).
Next, we show the tightness of zn(t, x). Let us first prove the following a priori

estimate.

Lemma 4.2. Let α ∈ (1, 2], (A.1) and (A.2) hold. Then there exists a positive constant
Cm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z2

n(t, x)
∥∥
m
≤ Cmpn(t, x)/t1/α, (4.13)

and ∥∥z2
n(t, x)

∥∥
m
≤ Cmpn(t, x)/t1/α. (4.14)

where ‖Z‖m = (E (|Z|m))
1/m

Proof. By the condition (2.3) and the definition of zn(t, x),

E
(
z2m
n (t, x)

)
<∞ and E

(
z2m
n (t, x)

)
<∞ for any m ≥ 1, n ≥ 1, t ∈ (0, 1], x ∈ R.

We only need to consider (t, x) ∈ Dn.
Let us first consider the r ∈ (1/2, 1) case. We write

zn(t, x) = pn(t, x) + βqn−1− 1
α

∑
s∈[0,t]∩n−1Z

Xs,

where
Xs :=

∑
y∈n−

1
α Z

pn(t− s, x− y)zn(s, y)ωn(s, y), s ∈ [0, t] ∩ n−1Z.

Note that the zn(s, ·) terms are independent of Gs := σ(ωn(s, y), y ∈ n− 1
αZ). It is known

that {Xs, s ∈ [0, t] ∩ n−1Z} is a sequence of martingale differences. Then by discrete
Burkholder’s inequality (cf. [26], Theorem 2.10), and Minkowski’s integral inequality, we
have that for any m ≥ 1,E

n−1− 1
α

∣∣∣∣∣∣
∑

s∈[0,t]∩n−1Z

Xs

∣∣∣∣∣∣
2m



1/m

≤72mn−2− 2
α

E

∣∣∣∣∣∣
∑

s∈[0,t]∩n−1Z

X2
s

∣∣∣∣∣∣
m1/m

≤72mn−2− 2
α

∑
s∈[0,t]∩n−1Z

‖X2
s‖m.
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For s ∈ [0, t] ∩ n−1Z, we have

E(|Xs|2m)

=
∑

y1∈n−
1
α Z

· · ·
∑

y2m∈n−
1
α Z

( 2m∏
j=1

pn(t− s, x− yj)
)
E

( 2m∏
j=1

zn(s, yj)

)
E

( 2m∏
j=1

ωn(s, yj)

)

≤
∑

y1∈n−
1
α Z

· · ·
∑

y2m∈n−
1
α Z

( 2m∏
j=1

pn(t− s, x− yj)
)( 2m∏

j=1

‖zn(s, yj)‖2m
)
E

( 2m∏
j=1

ωn(s, yj)

)
.

Next, we first compute E
(∏2m

j=1 ω(i, xj)
)

. For each u := (u1, u2, · · · , u2m) ∈ Z2m,

there exist integer numbers 1 ≤ k ≤ 2m and l1, · · · , lk ≥ 1, and a k-division A1, · · · , Ak
of {1, 2, · · · , 2m} such that |Ah| = lh, 1 ≤ h ≤ k and the mapping {1, 2, · · · , 2m} 3 j →
uj ∈ Z is different constant on each Ah, 1 ≤ h ≤ k. Let Uk denote the set of all such
k-divisions. For each such division (A1, · · · , Ak), we write Ah = {vh,1, · · · , vh,lh} and set

Z2m
A1,··· ,Ak = {u ∈ Z2m; j → uj is different constant on each Ah, 1 ≤ h ≤ k}.

Then we can write

E

 2m∏
j=1

ω(i, xj)

 =
∑
u∈Z2m

2m∏
j=1

auj−xjE

 2m∏
j=1

ξ(1, uj)


=

m∑
k=1

∑
(A1,··· ,Ak)∈Uk,
l1≥2,··· ,lk≥2

∑
u∈Z2m

A1,··· ,Ak

2m∏
j=1

auj−xjE

 2m∏
j=1

ξ(1, uj)

 ,

where the last equality is due to E
(∏2m

j=1 ξ(1, uj)
)

= 0 if lh = 1 for some 1 ≤ h ≤ k.

For each 1 ≤ k ≤ m, any (A1, · · · , Ak) ∈ Uk with l1 ≥ 2, · · · , lk ≥ 2, we have∣∣∣∣∣∣∣
∑

u∈Z2m
A1,··· ,Ak

2m∏
j=1

auj−xjE

 2m∏
j=1

ξ(1, uj)


∣∣∣∣∣∣∣

≤
∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

 lh∏
j=1

auh−xvh,j

∣∣∣∣∣
k∏
h=1

E
(
ξlh(1, 1)

)∣∣∣∣∣
≤Cm

∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

 lh∏
j=1

auh−xvh,j

 ,

where Cm = sup 2≤ls≤2m,1≤h≤k≤m,
l1+·+lk=2m

∣∣∣∏k
h=1 E

(
ξlh(1, 1)

)∣∣∣. Therefore

E

 2m∏
j=1

ω(i, xj)

 ≤ Cm m∑
k=1

∑
(A1,··· ,Ak)∈Uk,
l1≥2,··· ,lk≥2

∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

 lh∏
j=1

auh−xvh,j

 .

Now, let us return the estimate of E(|Xs|2m). Then by the above inequality, we have

EJP 28 (2023), paper 68.
Page 33/57

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP955
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Scaling limits of directed polymers

that

E(|Xs|2m)

≤Cm
m∑
k=1

∑
(A1,··· ,Ak)∈Uk,
l1≥2,··· ,lk≥2

∑
y1∈n−

1
α Z

· · ·
∑

y2m∈n−
1
α Z

∑
u1∈Z

· · ·
∑
uk∈Z

×
k∏
h=1

 lh∏
j=1

n
1
2−

1
2α+ r

α a
uh−n

1
α yvh,j

‖zn(s, yvh,j )‖2mpn(t− s, x− yvh,j )


≤Cm

m∑
k=1

∑
(A1,··· ,Ak)∈Uk,
l1≥2,··· ,lk≥2

∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

( ∑
yvh,1∈n

− 1
α Z

· · ·
∑

yvh,lh
∈n−

1
α Z

×
lh∏
j=1

n
1
2−

1
2α+ r

α a
uh−n

1
α yvh,j

‖zn(s, yvh,j )‖2mpn(t− s, x− yvh,j )
)

=Cm

m∑
k=1

∑
(A1,··· ,Ak)∈Uk,
l1≥2,··· ,lk≥2

∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

×
( ∑
yh∈n−

1
α Z

n
1
2−

1
2α+ r

α a
uh−n

1
α yh
‖zn(s, yh)‖2mpn(t− s, x− yh)

)lh
.

Note that we can write

 ∑
yh∈n−

1
α Z

n
1
2−

1
2α+ r

α a
uh−n

1
α yh
‖zn(s, yh)‖2mpn(t− s, x− yh)


lh

=

( ∑
yh∈n−

1
α Z

∑
y′h∈n

− 1
α Z

n1− 1
α+ 2r

α a
uh−n

1
α yh

a
uh−n

1
α y′h
‖zn(s, yh)‖2m‖zn(s, y′h)‖2m

× pn(t− s, x− yh)pn(t− s, x− y′h)

)lh/2
,

and that lh/2 ≥ 1 for all 1 ≤ h ≤ m. Using the Minkowski inequality: (
∑
u∈Z |xu|p)1/p ≤∑

u∈Z |xu| for p ≥ 1, we have that

∑
u1∈Z

· · ·
∑
uk∈Z

k∏
h=1

 ∑
yh∈n−

1
α Z

n
1
2−

1
2α+ r

α a
uh−n

1
α yh
‖zn(s, yh)‖2mpn(t− s, x− yh)


lh

≤
k∏
h=1

( ∑
yh∈n−

1
α Z

∑
y′h∈n

− 1
α Z

∑
uh∈Z

n1− 1
α+ 2r

α a
uh−n

1
α yh

a
uh−n

1
α y′h
‖zn(s, yh)‖2m‖zn(s, y′h)‖2m

× pn(t− s, x− yh)pn(t− s, x− y′h)

)lh/2
=

( ∑
y∈n−

1
α Z

∑
y′∈n−

1
α Z

nγn(y−y′)‖zn(s, y)‖2m‖zn(s, y′)‖2mpn(t− s, x− y)pn(t− s, x− y′)
)m
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We can write∑
y∈n−

1
α Z

∑
y′∈n−

1
α Z

nγn(y − y′)‖zn(s, y)‖2m‖zn(s, y′)‖2mpn(t− s, x− y)pn(t− s, x− y′)

=q−2n1+ 2
α

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′.

Thus, there exists a positive constant Âm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,

(E(|Xs|2m))1/m

≤Âmn1+ 2
α

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′,

andE

n−1− 1
α

∣∣∣∣∣∣
∑

s∈[0,t]∩n−1Z

Xs

∣∣∣∣∣∣
2m



1/m

≤72mn−2− 2
α

∑
s∈[0,t]∩n−1Z

‖X2
s‖m

≤72mÂm

∫ t

0

∫
R

∫
R

pn(t−s, x−y)pn(t− s, x− y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′ds.

Therefore, there exists a positive constant Cm such that for any n ≥ 1, t ∈ (0, 1], s ∈ [0, t],
x ∈ R,∥∥z2

n(t, x)
∥∥
m
≤Cm(pn(t, x))2 + Cm

∫ t

0

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)

‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′ds.

(4.15)

By the proof of (3.15), there exists a positive constant C2 such that

0 ≤ γ([z]) ≤ C2K(z) for z ∈ R.

Set ϕt,x(s, y) = pn(t− s, x− y)‖z2
n(s, y)‖

1
2
m, 0 ≤ s ≤ t, x ∈ R, then∫ t

0

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′ds

≤
∑

(s,y),(s,z)∈Dn
s≤t

∫
Cn(s,y)×Cn(s,z)

ϕt,x(s′, y′)n
2r−1
α γ

(
n

1
α (y′ − z′)

)
ϕt,x(s′, z′)ds′dy′dz′

≤C2

∑
(s,y),(s,z)∈Dn

s≤t

∫
Cn(s,y)×Cn(s,z)

ϕt,x(s′, y′)n
2r−1
α K

(
n

1
α (y′ − z′)

)
ϕt,x(s′, z′)ds′dy′dz′

=C2

∫ t

0

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)K(y − y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mdydy

′ds.

Therefore, by Hardy-Littewood’s inequality and Hölder’s inequality we have∫ t

0

∫
R

∫
R

pn(t− s, x− y)pn(t− s, x− y′)‖z2
n(s, y)‖

1
2
m‖z2

n(s, y′)‖
1
2
mγn(y − y′)dydy′ds

≤C3

∫ t

0

∫
R

|pn(t− s, x− y)|2r‖z2
n(s, y)‖mdyds

≤C4

∫ t

0

∫
R

∫
R

|pn(t− s, x− y)|2rpn(1/n, y − z)
∥∥z2
n((s− 1/n)+, z)

∥∥
m
dzdyds,
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where C3 and C4 are universal constants independent of n and t. Therefore, there exists
a positive constants Cm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z2

n(t, x)
∥∥
m

≤ Cm(pn(t, x))2

+ Cm

∫ t

0

∫
R

∫
R

|pn(t− s, x− y)|2rpn(1/n, y − z)
∥∥z2
n((s− 1/n)+, z)

∥∥
m
dzdyds. (4.16)

Iterating the inequality, we can obtain

∥∥z2
n(t, x)

∥∥
m
≤ Cm(pn(t, x))2 +

bntc∑
k=1

CkmIn,k(t, x),

where

In,k(t, x)

=

∫
∆k(t,1/n)

∫
R2k

|pn(t− t1, x− x1)|2rpn(1/n, x1 − x2)

×
( k∏
j=2

|pn(tj−1 − tj − 1/n, x2(j−1) − x2j−1)|2rpn(1/n, x2j−1 − x2j)

)
× p2

n(tk − 1/n, x2k)dx1 · · · dx2kdt1 · · · dtk,

and x0 = x, ∆k(t, 1/n) = {1/n ≤ tj ≤ tj−1 − 1/n, j = 2, · · · , k, t1 ≤ t0 = t}.
By (3.23) and (3.24), there exists a positive constant C such that

|pn(t− t1, x− x1)|2rpn(1/n, x1 − x2)

( k∏
j=2

|pn(tj−1 − tj − 1/n, x2(j−1) − x2j−1)|2r

× pn(1/n, x2j−1 − x2j)

)
p2
n(tk − 1/n, x2k)

≤ Ck

(tk − 1/n)1/α(t− t1)(2r−1)/α

k∏
i=2

1

(ti−1 − ti−1/n)(2r−1)/α
pn(t− t1, x− x1)pn(1/n, x1 − x2)

×
( k∏
j=2

pn(tj−1 − tj − 1/n, x2(j−1) − x2j−1)pn(1/n, x2j−1 − x2j)

)
pn(tk − 1/n, x2k).

Since∫
R2k

pn(t− t1, x− x1)pn(1/n, x1 − x2)

( k∏
j=2

pn(tj−1 − tj − 1/n, x2(j−1) − x2j−1)

× pn(1/n, x2j−1 − x2j)

)
pn(tk − 1/n, x2k)dx1 · · · dx2k = pn(t, x),

and ∫
∆k(t,1/n)

1

(tk − 1/n)1/α(t− t1)(2r−1)/α

k∏
i=2

1

(ti−1 − ti − 1/n)(2r−1)/α
dt1 · · · dtk

≤
(
t− k

n

)((k−1)(2r−1)+1)/α Γ
(
1− 1

α

)
Γk
(
1 + 1−2r

α

)
Γ
(
k
(
1 + 1−2r

α

)
+ 1− 1

α

) ,
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we have

In,k(t, x) ≤
Γ
(
1− 1

α

)
Γk
(
1 + 1−2r

α

)
Γ
(
k
(
1 + 1−2r

α

)
+ 1− 1

α

)Ck1 pn(t, x).

Therefore, there exists a positive constants Cm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z2
n(t, x)

∥∥
m
≤ Cm(pn(t, x))2 + Cmpn(t, x)

(4.13) is valid. Finally, by (4.11) and Jensen’s inequality, we obtain (4.14).
Next, we consider the r = 1 case. For each n ≥ 1, (t, x) ∈ Dn, and any positive integer

M ≥ 2, define

X(s,y) := pn(t− s, x− y)zn(s, y)ωn(s, y), s ∈ [0, t] ∩ n−1Z, y ∈ n− 1
αZ ∩ [−M,M ],

Note that the zn(s, ·) terms are independent of ωn(s, y), y ∈ n− 1
αZ, and for each s ∈ [0, t∩

n−1Z], ωn(s, y), y ∈ n− 1
αZ are also independent. Then, applying discrete Burkholder’s

inequality (cf. Theorem 2.10 in [26]) and Minkowski’s integral inequality in the order of
temporal and spatial variables, we have that for any m ≥ 1,E


∣∣∣∣∣∣∣n−1− 1

α

∑
s∈[0,t]∩n−1Z

∑
y∈n−

1
α Z∩[−M,M ]

X(s,y)

∣∣∣∣∣∣∣
2m


1/m

≤72mn−2− 2
α

∑
s∈[0,t]∩n−1Z

E


 ∑
y∈n−

1
α Z∩[−M,M ]

X(s,y)


2m


1/m

≤(72m)2n−2− 2
α

∑
s∈[0,t]∩n−1Z

∑
y∈n−

1
α Z∩[−M,M ]

‖X2
(s,y)‖m.

Letting M →∞, we obtainE


∣∣∣∣∣∣∣n−1− 1

α

∑
s∈[0,t]∩n−1Z

∑
y∈n−

1
α Z

X(s,y)

∣∣∣∣∣∣∣
2m


1/m

≤(72m)2n−2− 2
α

∑
s∈[0,t]∩n−1Z

∑
y∈n−

1
α Z

‖X2
(s,y)‖m

≤(72m)2

∫ t

0

∫
R

p2
n(t− s, x− y)‖z2

n(s, y)‖mdyds.

Therefore, there exists a positive constants Cm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z2
n(t, x)

∥∥
m
≤ Cm(pn(t, x))2 + Cm

∫ t

0

∫
R

|pn(t− s, x− y)|2
∥∥z2
n((s− 1/n)+, z)

∥∥
m
dyds.

Finally, using the above inequality, we can obtained (4.13) and (4.14) via the same as the
proof of the r ∈ (1/2, 1) case.

Next, let us estimate the modulus of continuity of zn.

Lemma 4.3. Let α ∈ (1, 2], (A.1) and (A.2) hold. Then there exist constants κ1 > 0,
κ2 > 0 and a positive function (0, 1/4] 3 ε→ Cε such that for any n ∈ Z+ with n ≥ 1 + 1/ε,
t ∈ [2ε, 1] x ∈ R, h ≥ 0, δ ≥ 0,(

E
(

(zn(t+ h, x+ δ)− zn(t, x))
2m
))1/m

≤ Cε (hκ1
n + δκ2

n ) , (4.17)

where hn = h ∨ 1
n and δn = δ ∨ 1

n1/α .
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Proof. Without of loss generality, we assume ε = iε
n for some integer iε < n/4, and

(t, x), (t+ h, x+ δ) ∈ Dn.

zn(ε, x) = pn(ε, x) + β

∫ ε

0

∫
R

pn(ε− s, y − x)zn(s, y)ωn(s, y)dsdy.

For any 0 < 2ε < t, we can rewrite

zn(t, x) =

∫
R

pn(t− ε, y − x)zn(ε, y)dy + β

∫ t

ε

∫
R

pn(t− s, y − x)zn(s, y)ωn(s, y)dsdy

=: An,ε(t, x) + βUn,ε(t, x).

Then for h > 0 and δ > 0,∥∥(zn(t+ h, x+ δ)− zn(t, x))2
∥∥
m

≤
∥∥∥(An,ε(t+ h, x+ δ)−An,ε(t, x))

2
∥∥∥
m

+ β2
∥∥∥(Un,ε(t+ h, x+ δ)− Un,ε(t, x))

2
∥∥∥
m
.

By Hölder’s inequality, we have that for 2ε ≤ t ≤ 1,∥∥∥(An,ε(t+ h, x+ δ)−An,ε(t, x))
2
∥∥∥
m

≤
(∫

R

∣∣pn(t+ h− ε, y + δ)− pn(t− ε, y)
∣∣2dy)(E((∫

R

z2
n(ε, y)dy

)m))1/m

.

By Minkowski’s integral inequality, (4.14) and (3.24),(
E

((∫
R

z2
n(ε, y)dy

)m))1/m

≤
∫
R

(
E
(
z2m
n ((ε, y)

))1/m
dy

≤ C

ε1/α

∫
R

pn(ε, y)dy =
C

ε1/α
.

By the gradient estimate (4.1) and (4.2), we have∫
R

∣∣pn(t+ h− ε, y + δ)− pn(t− ε, y)
∣∣2dy

≤2

∫
R

∣∣pn(t+ h− ε, y)− pn(t− ε, y)
∣∣2dy + 2

∫
R

|pn(t+ h− ε, y − δ)− pn(t+ h− ε, y)|2 dy

≤C
∫
R

n
1
αnhn

(nε)
1+ 1

α

(pn(t+ h− ε, y) + pn(t− ε, y)) dy

+ C

∫
R

n
1
αnδn

(nε)
2
α

(pn(t+ h− ε, y − δ) + pn(t+ h− ε, y)) dy

≤ Chn
ε1+ 1

α

+
Cδn

ε
2
α

.

Next, we estimate the term U . By Minkowski’s inequality,∥∥∥(Un,ε(t+ h, x+ δ)− Un,ε(t, x))
2
∥∥∥
m

≤

∥∥∥∥∥
(∫ t

ε

∫
R

(pn(t+ h− s, y − x− δ)− pn(t− s, y − x− δ)) zn(s, y)ωn(s, y)dsdy

)2
∥∥∥∥∥
m

+

∥∥∥∥∥∥
(∫ t+h

t

∫
R

pn(t+ h− s, y − x− δ)zn(s, y)ωn(s, y)dsdy

)2
∥∥∥∥∥∥
m

+

∥∥∥∥∥
(∫ t

ε

∫
R

(pn(t− s, y − x− δ)− pn(t− s, y − x)) zn(s, y)ωn(s, y)dsdy

)2
∥∥∥∥∥
m

=:Q1 +Q2 +Q3.
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Using the same way in the proof of (4.16), by discrete Burkholder’s inequality,
Hölder’s inequality and Minkowski’s integral inequality, we can obtain that

Q1 ≤
∫ t

ε

∫
R

|pn(t+ h− s, y − x− δ)− pn(t− s, y − x− δ)|2r
∥∥z2

n(s, y)
∥∥
m
dyds.

By (4.14) and (3.24), for any s ≥ 2ε,
∥∥z2

n(s, y)
∥∥
m
≤ C

ε2/α
. Thus,

Q1 ≤
C

ε2/α

∫ t−ε

0

∫ ∞
0

|pn(s+ h, y)− pn(s, y)|2r dyds

If r < 2α+1
2(α+1) , i.e., (1− 2r)(1 + 1/α) + 1 > 0, then by (4.2) and (3.24),∫ t−ε

0

∫ ∞
0

|pn(s+ h, y)− pn(s, y)|2r dyds

≤
∫ t−ε

0

∫ ∞
0

Ch2r−1
n

s(2r−1)(1+1/α)
(pn(s+ h, y) + pn(s, y)) dyds ≤ C1h

2r−1
n .

If r > 2α+1
2(α+1) , choose ε > 0 such that η := (2(α + 1)r − (2α + 1))(1/α + ε) < 2r − 1, then

(1 + η − 2r)(1 + 1/α)− η/α+ 1 > 0 and∫ t−ε

0

∫ ∞
0

|pn(s+ h, y)− pn(s, y)|2r dyds

≤
∫ t−ε

0

∫ ∞
0

Ch2r−1−η
n

s(2r−1−η)(1+1/α)+η/α
(pn(s+ h, y) + pn(s, y)) dyds ≤ C1h

2r−1−η
n .

If r = 2α+1
2(α+1) , then for any 0 < η < 2r − 1,∫ t−ε

0

∫ ∞
0

|pn(s+ h, y)− pn(s, y)|2r dyds

≤
∫ t−ε

0

∫ ∞
0

Ch2r−1−η
n

s(2r−1−η)(1+1/α)+η/α
(pn(s+ h, y) + pn(s, y)) dyds ≤ C1h

2r−1−η
n .

We also have in the same way

Q2 ≤
C

ε2/α

∫ t+h

t

∫
R

|pn(t+ h− s, y − x− δ)|2r dyds

≤ C1

ε2/α

∫ t+h

t

∫
R

(t+ h− s)−(2r−1)/αpn(t+ h− s, y − x− δ)dyds =
C1

ε2/α
h(1+α−2r)/α.

If r < 2+α
4 , then 2(1−2r)

α + 1 > 0, by the gradient estimate (4.1)

Q3 ≤
C

ε2/α

∫ t

ε

∫
R

|pn(t− s, y − x− δ)− pn(t− s, y − x)|2r dyds ≤ 2C1δ
2r−1
n

ε1+4r/α
.

If r = 2+α
4 , then for any 0 < η < 2r − 1,∫ t

ε

∫
R

|pn(t− s, y − x− δ)− pn(t− s, y − x)|2r dyds ≤ C1δ
2r−1−η
n .

If r > 2+α
4 , choose ε > 0 such that η := (4r− (2 +α))(1 + ε) < 2r− 1, then 2(1 + η− 2r)α−

η/α+ 1 > 0 and∫ t

ε

∫
R

|pn(t− s, y − x− δ)− pn(t− s, y − x)|2r dyds ≤ C1δ
2r−1−η
n .

Thus, (4.17) holds.
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We will use the following lemma to show the tightness.

Lemma 4.4 ([35]). Let Yn(t, x) be a sequence of stochastic processes on [0, 1] × [0, 1].
Denote by

wδ(Y
n) = sup

(t,x), (s,y)∈[0,1]2,
|t−s|+|x−y|<δ

|Y n(t, x)− Y n(s, y)| .

Suppose there exist positive constants κ > 2, λ, C and a sequence δn ↓ 0, such that for
all large enough n, for all (t, x), (s, y) ∈ [0, 1]2 and |t− s|+ |x− y| > δn,

E
(
|Y n(t, x)− Y n(s, y)|λ

)
≤ C (|t− s|κ + |x− y|κ) ,

and for all ε, ρ > 0, for all large n,

P (wδn(Y n) > ε) < ρ.

Then for all ε, ρ > 0, there is a 0 < δ < 1 such that for all large n,

P (wδ(Y
n) > ε) < ρ.

The proof of theorem 4.1. We only need to show the tightness. By Lemma 4.3, for any
ε ∈ (0, 1/4), M ∈ (0,∞), there exist strictly positive constants m ≥ 1, κ > 4, C(ε,M) such
that for any n ≥ 1 + 1/ε, for all u, v ∈ [ε, 1], |x| ∨ |y| ≤M with |u− v|+ |x− y| ≥ 1/n1/α,

E
(
|zn(u, x)− zn(v, y)|2m

)
≤ C(ε,M) (|u− v|κ + |x− y|κ) . (4.18)

Set
wδ(zn) := sup

(t,x), (s,y)∈[0,1]×[−M,M ],
|t−s|+|x−y|<δ

|zn(t, x)− zn(s, y)| .

Noting that the number of points in Dn ∩ ([0, 1]× [−M,M ]) is less than 2(M + 2)n× n1/α,
we have

P
(
w1/n1/α(zn) > ε

)
≤

∑
(t,x)∈Dn∩([0,1]×[−M,M ])

P (|zn(t, x)− zn(t−, x−)| > ε)

≤ C1n
1+ 1

α sup
(t,x)∈Dn∩([0,1]×[−M,M ])

E
(
|zn(t, x)− zn(t−, x−)|2m

)
ε2m

≤ C2n
1+ 1

α

ε2m
1

n4/α
→ 0 as n→∞,

where C1 and C2 are universal constants independent of n and ε. Therefore, by
Lemma 4.4 and Theorem 15.5 in [8], {zn, n ≥ 1} is tight in D([ε, 1] × [−M,M ]), and
so {Zn, n ≥ 1} is tight in C([ε, 1] × [−M,M ]). By arbitrariness of ε and M , we ob-
tain the tightness of {zn, n ≥ 1} in D((0, 1] × R), and the tightness of {Zn, n ≥ 1} in
C((0, 1]×R).

4.3 The proof of Theorem 2.2

Proof of Theorem 2.2. We only show the r ∈ (1/2, 1) case. By Lemma 3.7, the conver-
gence of the finite dimensional distributions can be obtained via the same as the proof of
Theorem 2.1.

Next, we give a sketch of the tightness. Define the right continuous processes in time
and space:

z̃n(t, x) := n
1
αZnt,n1/αx(βn; ω̃)
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and
z̃n(t, x) := n

1
αZnt,n1/αx(βn; ω̃) = p

(
1, n1/α(x− y)

)
z̃n((t− 1/n)+, y).

Then

z̃n(t, x) = pn(t, x) + βn

∫ t

0

∫
R

pn(t− s, x− y)z̃n(s, y)ω̃n(s, y)dsdy. (4.19)

Set γ̃n(x − y) = n
2r−1
α E(ω̃n(nt, n1/αx)ω̃n(nt, n1/αy)). By Lemma 3.7, Hardy-Littewood’s

inequality and Hölder’s inequality, we have∫ t

0

∫
R

∫
R

pn(t− s, x− y1)pn(t− s, x− y2)γ̃n(y1 − y2)z̃n(s, y1)z̃n(s, y2)dy1dy2ds

≤C1

∫ t

0

∫
R

∫
R

pn(t− s, x− y1)pn(t− s, x− y2)
(
K(y1 − y2) +O(n

2r−1
α β2

n)
)

z̃n(s, y1)z̃n(s, y2)dy1dy2ds

≤C2

∫ t

0

∫
R

|pn(t− s, x− y)|2r z̃2

n(s, y)dyds+

∫ t

0

∫
R

|pn(t− s, x− y)|2z̃2

n(s, y)dyds

≤C3

∫ t

0

∫
R

∫
R

(
|pn(t− s, x− y)|2r + |pn(t− s, x− y)|2

)
pn(1/n, y − z)z̃2

n(s, z)dzdyds,

where C1, C2 and C3 are universal constants independent of n and t. Therefore, using
the same approach as the proof of (4.16), there exists a positive constants Cm such that
for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z̃2

n(t, x)
∥∥
m

≤ Cm(pn(t, x))2 + Cm

∫ t

0

∫
R

∫
R

(
|pn(t− s, x− y)|2r + |pn(t− s, x− y)|2

)
pn(1/n, y − z)

∥∥z̃2
n(s, z)

∥∥
m
dzdyds. (4.20)

Iterating the inequality, there exists a positive constants Cm such that for any n ≥ 1,
t ∈ (0, 1], x ∈ R,

∥∥z2
n(t, x)

∥∥
m
≤ Cm(pn(t, x))2 + Cm

bntc∑
k=1

CkmIn,k(t, x),

where

In,k(t, x)

≤pn(t, x)

∫
∆k(t,1/n)

1

(tk − 1/n)1/α(t− t1)1/α

k∏
i=2

1

(ti−1 − ti − 1/n)1/α
dt1 · · · dtk

≤
Γ
(
1− 1

α

)
Γk
(
1− 1

α

)
Γ
(
k
(
1− 1

α

)
+ 1− 1

α

)Ckmpn(t, x),

and x0 = x, ∆k(t, 1/n) = {1/n ≤ tj ≤ tj−1 − 1/n, j = 2, · · · , k, t1 ≤ t0 = t}. Therefore,
there exists a positive constants Cm such that for any n ≥ 1, t ∈ (0, 1], x ∈ R,∥∥z̃2

n(t, x)
∥∥
m
≤ Cm(pn(t, x))2 + Cmpn(t, x),

∥∥∥z̃2

n(t, x)
∥∥∥
m
≤ Cm(pn(t, x))2 + Cmpn(t, x).

(4.21)
Similarly, there exist constant κ1 > 0, κ2 > 0 and a positive function (0, 1/4] 3 ε→ Cε

such that for any n ∈ Z+ with n ≥ 1 + 1/ε, t ∈ [2ε, 1], x ∈ R, h > 0, δ > 0,(
E
(

(z̃n(t+ h, x+ δ)− z̃n(t, x))
2m
))1/m

≤ Cε (hκ1
n + δκ2

n ) . (4.22)

We complete the proof of Theorem 2.2.
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5 The scaling limit of the polymer transition probability

In this section, we give the proof of Theorem 2.3. This follows the same scheme
as before. For 0 ≤ m < k ≤ n and x, y ∈ Z, we define the four-parameter field
Zω(m, y; k, x;β) by

Zω(m, y; k, x;β) = P

(
exp

{
β

k∑
i=m+1

ω(i, Si)

}
1{Sk = x}

∣∣∣Sm = y

)
. (5.1)

Then the polymer transition probabilities are

Pωn,β(Sk = x|Sm = y) =
Zω(m, y; k, x;β)Zω(k, x;n, ∗;β)

Zω(m, y;n, ∗;β)
,

where
Zω(k, x;n, ∗;β) =

∑
z∈Z

Zω(k, x;n, z;β).

We consider the modified partition function

Zω(m, y; k, x;β) = P

(
k∏

i=m+1

(
1 + βω(i, Si)

)
1{Sk = x}

∣∣∣Sm = y

)
. (5.2)

Then
e−n(t−s)λ(βn)Zω

(
ns, n1/αy;nt, n1/αx;βn

)
= Zω̃

(
ns, n1/αy;nt, n1/αx;βn

)
,

where ω̃(i, x) = ω(i, x) + ϑ(i, x) and (3.41) holds. Thus, using the same approach as the
proof of Theorem 2.2, we only need to show the following result.

Theorem 5.1. Let α ∈ (1, 2], (A.1) and (A.2) hold. Then(
1

q
n1/αZω

(
ns, n1/αy;nt, n1/αx;βn

))
(s,y;t,x)∈D

(d)−→
(Zσ(β,q)(s, y; t, x)

∫
Zσ(β,q)(t, x; 1, λ) dλ∫

Zσ(β,q)(s, y; 1, λ)dλ

)
(s,y;t,x)∈D

(5.3)

with respect to the locally uniform topology on C(D), where D = {(s, y; t, x); 0 ≤ s < t ≤
1, x, y ∈ R}.

Proof. Let pkn,t,x(t,x) be the joint probability of (Snt1 = n1/αx1, · · · , Sntk = n1/αxk) under

the condition Sns = n1/αy, Snt = n1/αx, where s ≤ t1 < · · · < tk ≤ t, i.e.,

pkn,s,y;t,x(t,x) = P(Snt1 = n1/αx1, · · · , Sntk = n1/αxk|Sns = n1/αy, Snt = n1/αx)

=
p(n(t− tk), n1/α(x− xk))

p(n(t− s), n1/α(x− y))

k∏
j=1

p(n(tj − tj−1), n1/α(xj − xj−1)),

where (t0, x0) = (s, y).
These kernels are space–time shifts of the kernels pkn,t,x. By shift invariance of the

random walk and the environment, we have

n1/α

q
Zω
(
ns, n1/αy;nt, n1/αx;βn

) (d)
=

n1/α

q
Zω
(
0, 0;n(t− s), n1/α(x− y);βn

)
.

For a finite collection of space–time points (si, yi; ti, xi), the joint convergence of

n1/α

q
Zω
(
nsi, n

1/αyi;nti, n
1/αxi;βn

)
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follows from the above subsection approach.
Note that the law of the environment field is invariant under a similar time reversal.

More precisely, define a field ωn by ωn(i, x) = ω(n− i, x). Then it is clear that(
1 + βω(n−m, y)

)
Zω(m, y; k, x;β) =

(
1 + βω(n− k, x)

)
Zωn(n− k, x;n−m, y;β).

Following the explanation in [1] and the reversibility of the random walk, the tightness
of the field (t, x)→ n1/αZnt,n1/αx(βn;ω) is sufficient to prove tightness of the field

(s, y; t, x) 7→ n1/αZω
(
ns, n1/αy;nt, n1/αx;βn

)
.

Indeed, the tightness of n1/αZnt,n1/αx(βn;ω) implies tightness of n1/αZω
(
ns, n1/αy;nt,

n1/αx;βn
)

in the forward (t, x) variables, and tightness in the (s, y) variables follows from
the reversibility of the random walk and the invariance of the law of the environment
under a similar time reversal.

A Stochastic integral with respect to a time-white spatial-colored
noise

In this section, we briefly introduce the time-white spatial-colored noise and stochastic
integral with respect to a time-white spatial-colored noise (cf. [1] [22] [29] [30] [40] [43]
[47]).

Let K(x) = H(2H − 1)|x|2H−2, 1
2 < H ≤ 1. A time-white spatial-colored noiseW with

the kernel K is a mean zero Gaussian process {W(ϕ), ϕ ∈ C∞c ([0, 1] × R)} defined on
some probability space (ΩW ,FW ,E) with covariance

Cov(W(ϕ),W(ψ)) =

∫
[0,1]

∫
R

∫
R

ϕ(s, x)K(x− y)ψ(s, y)dsdxdy, (A.1)

where C∞c ([0, 1]×R) is the space of smooth functions with compact support on [0, 1]×R.

SetWtx =W([0, t]×[0, x]), and let Ẇ denote the derivative ∂2Wtx

∂t∂x in the sense of Schwartz
distribution, that is,

Ẇ(ϕ) =

∫
[0,1]

∫
R

Wtx
∂2ϕ(t, x)

∂t∂x
dtdx, ϕ ∈ C∞c ([0, 1]×R).

Then Ẇ(ϕ) =W(ϕ). Therefore, we also use Ẇ to denote this time-white spatial-colored
noise.

A.1 Itô stochastic integral

Next, let us define the stochastic integral with respect to W. Consider the Hilbert
space:

LK =

{
f ; [0, 1]×R→ R; ‖ f ‖2LK :=

∫
[0,1]

∫
R

f(t, x)K(x− y)f(t, y)dtdxdy <∞

}
,

Remark A.1. By Hardy-Littlewood’s inequality (Theorem 1 in [46], P.119), for some
positive constant AH ,∫

[0,1]

∫
R

∫
R

f(s, u)K(u− v)f(s, v)dsdudv ≤ AH
∫

[0,1]

(∫
R

|f(s, u)| 1H du
)2H

ds. (A.2)

For any f ∈ LK , choose fn ∈ C∞c ([0, 1]×R) such that

‖ fn − f ‖2LK→ 0 as n→∞,
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and define ∫
[0,1]

∫
R

f(t, x)W(dtdx) = lim
n→∞

W(fn) in L2(ΩW ,FW ,P).

We now define the stochastic integral with respect toW. For each t ≥ 0, define Ft to
be the σ-field generated by{∫

[0,1]

∫
R

I[0,t](s)ϕ(x)W(dsdx); ϕ is smooth function on R with compact support

}
.

Define

S :=

f(t, x) =

n∑
i=1

XiI(ai,bi](t)ϕi(x);

0 < a1 < b1 < · · · < an < bn <∞,
Xi ∈ Fai , ϕi is smooth function on R with

compact support, i = 1, · · · , n, n ≥ 1

 .

For f ∈ S, we define the stochastic integral as

W(f) :=

∫
[0,1]

∫
R

f(t, x)W(dtdx) =

n∑
i=1

Xi

∫
[0,1]

∫
R

I(ai,bi](t)ϕ(x)W(dtdx). (A.3)

Let Ps denote the σ-fields generated by S and set

LK(Ω,Ps) =
{
f ; [0, 1]×R× Ω→ R; Ps −measurable and E(‖ f ‖2LK ) <∞

}
.

Then S is dense in LK(Ω,Ps). Consequently, if f ∈ LK(Ω,Ps), then there exist fn ∈ S,
n ≥ 1 such that

lim
n→∞

E
(
‖fn − f‖2LK

)
= 0.

Thus, there is a limit I := limn→∞
∫
R+

∫
R
fn(t, x)W(dtdx) in LK(Ω,Ps) which we call the

stochastic integral

W(f) :=

∫
R+

∫
R

f(t, x)W(dtdx). (A.4)

Then from (A.1),

Cov(W(f1),W(f2)) = E
(
〈f1, f2〉LK

)
for any f1, f2 ∈ LK(Ω,Ps), (A.5)

where

〈f1, f2〉LK =

∫
[0,1]

∫
R

f1(t, x)K(x− y)f2(t, y)dtdxdy.

Lemma A.1 (Burkholder’s inequality). For any p ≥ 2, there exists a positive constant Cp
such that

E

(∣∣∣∣∣
∫
R+

∫
R

f(t, x)W(dtdx)

∣∣∣∣∣
p)
≤ CpE

(∣∣‖ f ‖2LK ∣∣p/2) . (A.6)

Proof. Since

Mt :=

∫ t

0

∫
R

f(s, x)W(dsdx) =

∫
R+

∫
R

I[0,t](s)f(s, x)W(dsdx), t ≥ 0

is a martingle and [M ]t =
∫ t

0

∫
R
f(s, x)K(x− y)f(s, y)dsdxdy, by Burkholder’s inequality

for martingale, there exists a positive constant Cp such that

E

(
sup
t≥0
|Mt|p

)
≤ CpE

(
|[M ]∞|p/2

)
.

Thus, (A.6) holds.
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A.2 Multiple stochastic integral

For k ∈ Z+, define the following Hilbert space:

LkK =
{
f ; [0, 1]k ×Rk → R; symmetric function, and

‖ f ‖2LkK :=

∫
[0,1]k

∫
R2k

f(t,x)

k∏
i=1

K(xi − yi)f(t,y)dtdxdy <∞

}
,

where t = (t1, t2, · · · , tk), x = (x1, x2, · · · , xk), y = (y1, y2, · · · , yk). Let f be a function on
[0, 1]k ×Rk. The symmetrization of f is defined by

Sym(f)(t,x) =
1

k!

∑
π∈Sk

f(πt, πx)

where Sk is the group of permutations on {1, 2, · · · , k}.
For f1, f2, · · · , fk ∈ LK , f1⊗f2⊗· · ·⊗fk = f1(t1, x1)f2(t2, x2) · · · fk(tk, xx) denotes the

tensor product of f1, f2, · · · , fk. When fj = f for all j = 1, · · · , k, abbreviate f1 ⊗ f2 ⊗
· · · ⊗ fk to f⊗k. We also denote by

W⊗k(dtdx) =W(dt1dx1) · · ·W(dtkdxk).

For f ∈ LK with ‖f‖LK = 1, define the multiple stochastic integral of f⊗k with
respect toW by

IWk (f) :=

∫
[0,1]k

∫
Rk
f⊗k(t,x)W⊗k(dtdx) := Hk(W(f)),

where Hk is the Hermite polynomial of degree k, i.e., Hk(x) = (−1)kex
2/2 dk

dxk
e−x

2/2. For
f1, f2, · · · , fk ∈ LK , using the polarization identity (cf. (2.12) in [30]):

Sym(f1 ⊗ f2 ⊗ · · · ⊗ fk) =
1

2nn!

∑
ε∈{−1,1}k

ε1 · · · εk(ε1f1 + · · ·+ εkfk)⊗k,

the multiple stochastic integral of Sym(f1 ⊗ f2 ⊗ · · · ⊗ fk) is defined by

IWn (Sym(f1 ⊗ f2 ⊗ · · · ⊗ fk)) =
1

2kk!

∑
ε∈{−1,1}k

ε1 · · · εkIWk
(
(ε1f1 + · · ·+ εkfk)⊗k

)
.

Then we can extend to symmetric functions f in LkK by the density argument:

IWk (f) :=

∫
[0,1]k

∫
Rk
f(t,x)W⊗k(dtdx).

The multiple stochastic integral has the following property:

Cov(IWj (f), IWk (g)) =

{
k! 〈f, g〉LkK if j = k, f, g ∈ LkK
0 if j 6= k.

(A.7)

For general functions f with ‖f‖2LkK <∞, define

IWk (f) := IWk (Symf).

Remark A.2. Let f : ∆k×Rk → R, where ∆k = {0 = t0 < t1 < t2 < · · · < tk ≤ 1}, satisfy

‖ f ‖2LkK :=

∫
∆k

∫
R2k

f(t,x)

k∏
i=1

K(xi − yi)f(t,y)dtdxdy <∞.
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We extend f to a function on [0, 1]k ×Rk by defining f(t, x) = 0 for (t,x) /∈ ∆k. Then

IWk (f) = IWk (Symf) =

∫
∆k

∫
Rk
f(t,x)W⊗k(dtdx).

and

E

(∫
∆k

∫
Rk
f(t,x)W(dtdx)

)2

= ‖f‖2LkK = k!‖Symf‖2LkK . (A.8)

Lemma A.2. Let fk(t, x) ∈ LK , k = 1, · · · , n be a collection of orthonormal functions in
LK , n ≥ 2, i.e., for any k 6= j, 〈fk, fj〉LK = 0. Then

IWn (f1 ⊗ f2 ⊗ · · · ⊗ fn) =

n∏
k=1

IW1 (fk). (A.9)

Proof. Firstly, by the orthonormality condition, we have that IW1 (f1), · · · , IW1 (fn) are
independent normal random variables, E(IW1 (fk)) = 0, E((IW1 (fk))2) = ‖fk‖2LK , 1 ≤ k ≤
n, and

‖ε1f1 + · · ·+ εnfn‖LK =

(
n∑
k=1

‖fk‖2LK

)1/2

:= Af , for all ε ∈ {−1, 1}n

Then, by the definition of multiple stochastic integral, we have

IWn (f1 ⊗ f2 ⊗ · · · ⊗ fk)

=
(Af )n

2nn!

∑
ε∈{−1,1}n

ε1 · · · εnIWn
(
(ε1f1 + · · ·+ εnfn)⊗n

)
=

(Af )n

2nn!

∑
ε∈{−1,1}n

ε1 · · · εnHn

(
IW1

(
ε1f1 + · · ·+ εnfn

Af

))

=
(Af )n

2nn!

∑
ε∈{−1,1}n

ε1 · · · εnHn

(
1

Af

n∑
k=1

εkI
W
1 (fk)

)
.

It is known that (cf. Theorem A.1 in [30])

Hn(x) =

[n/2]∑
j=0

n!(−1)jxn−2j

2jj!(n− 2j)!
, x ∈ R, n ≥ 0.

Then

(Af )n
∑

ε∈{−1,1}n
ε1 · · · εnHn

(
1

Af

n∑
k=1

εkI
W
1 (fk)

)

=
∑

ε∈{−1,1}n
ε1 · · · εn

(
n∑
k=1

εkI
W
1 (fk)

)n

+

[n/2]∑
j=1

n!(−1)j(Af )2j

2jj!(n− 2j)!

∑
ε∈{−1,1}n

ε1 · · · εn

(
n∑
k=1

εkI
W
1 (fk)

)n−2j

.

For any j ≥ 1, we consider the following n(n− 2j)-order multilinear polynomial

f(x1, · · · , xn) =
∑

ε∈{−1,1}n
ε1 · · · εn

(
n∑
k=1

εkxk

)n−2j

.
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If f(x1, · · · , xn) 6≡ 0, then the zeros of multilinear polynomial f have at most n(n− 2j). It
is clear that f(0, · · · , 0) = 0. For any 1 ≤ k ≤ n, set

Bn,k = {(x1, · · · , xn) ∈ {0, 1}n; x1 + · · ·+ xn = k}.

Then when n is a even, for any odd 1 ≤ k ≤ n, and (x1, · · · , xn) ∈ Bn,k, f(x1, · · · , xn) = 0,
and so, the zeros of polynomial f have

1 +

n/2−1∑
k=0

n!

(2k + 1)!(n− (2k + 1))!
> n(n− 2).

In fact, n = 2, 4 or 6, the above inequality is obvious. When n ≥ 8,

1 +

n/2−1∑
k=0

n!

(2k + 1)!(n− (2k + 1))!
≥ 1 + 2n+

n(n− 1)(n− 2)

6
× 2 > n(n− 2).

Similarly, when n is a odd, for any even 1 ≤ k ≤ n, and (x1, · · · , xn)∈Bn,k, f(x1, · · · , xn) =

0. In this case, the zeros of polynomial f have

1 +

[n/2]∑
k=1

n!

(2k)!(n− 2k)!
> n(n− 2).

Therefore, f(x1, · · · , xn) ≡ 0. In particular,

[n/2]∑
j=1

n!(−1)j(Af )2j

2jj!(n− 2j)!

∑
ε∈{−1,1}n

ε1 · · · εn

(
n∑
k=1

εkI
W
1 (fk)

)n−2j

= 0.

Thus

IWn (f1 ⊗ · · · ⊗ fn) =
(Af )n

2nn!

∑
ε∈{−1,1}n

ε1 · · · εnHn

(
1

Af

n∑
k=1

εkI
W
1 (fk)

)

=
1

2nn!

∑
ε∈{−1,1}n

ε1 · · · εn

(
n∑
k=1

εkI
W
1 (fk)

)n
=

n∏
k=1

IW1 (fk).

B Proof of Lemma 4.1 and the local central limit

Proof of Lemma 4.1. Without loss of generality, we assume q = 1 by the transformation
S′1 = S1−`

q . Choose δ ∈ (0, 1/4) such that for |u| ≤ δ,

|φ(u)− 1| ≤ 1

2

and

log φ(u) = −ν|u|α + |u|αh(u) ≤ −1

2
ν|u|α.

Therefore, for all |u| ≤ δn1/α,(
φ
(
un−1/α

))n
= e−ν|u|

α+|u|αh(un−1/α) ≤ e− 1
2ν|u|

α

. (B.1)

Noting q = 1, by Theorem 1.4.2 in [32], there exists β > 0 such that

|φ(u)| ≤ e−β for δ ≤ |u| ≤ π.
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Thus, by the inversion formula, we can write

p(n, x) =
1

2πn1/α

∫
[−n1/απ,n1/απ]

(
φ
(
sn−1/α

))n
e−ιxsn

−1/α

ds

= `(n, x) +
1

2πn1/α

∫
|s|≤δn1/α

e−ν|s|
α+|s|αh(sn−1/α)e−ιxsn

−1/α

ds,

where

`(n.x) =
1

2πn1/α

∫
δn1/α<|s|≤πn1/α

(
φ
(
sn−1/α

))n
e−ιxsn

−1/α

ds.

Note that |eιy − 1| ≤ |y| for y ∈ R. For any x, y ∈ R,

1

2πn1/α

∫
|s|≤δn1/α

e−ν|s|
α+|s|αh(sn−1/α)

∣∣∣e−ι(x+y)s/n1/α

− e−ιxs/n
1/α
∣∣∣ ds

≤ 1

2πn1/α

∫
|s|≤δn1/α

|s||y|
n1/α

e−
ν
2 |s|

α

ds

≤ |y|
2πn2/α

∫
R

e−
ν
2 |s|

α

|s|ds

and
1

2πn1/α

∫
δn1/α<|s|≤πn1/α

(
φ
(
sn−1/α

))n ∣∣∣e−ι(x+y)sn−1/α

− e−ιxsn
−1/α

∣∣∣ ds
≤ |y|

2πn2/α
e−βn

∫
δn1/α<|s|≤πn1/α

|s|ds

=
|y|

2πn1/α
e−βnπn2/α.

Therefore, (4.1) holds.
Next, let us show (4.2). we write

p(n+ 1, x) =
1

2πn1/α

∫
[−n1/απ,n1/απ]

(
φ
(
sn−1/α

))n+1

e−ιxsn
−1/α

ds

= ̂̀(n, x) +
1

2πn1/α

∫
|s|≤δn1/α

e
n+1
n (−ν|s|α+|s|αh(sn−1/α))e−ιxs/n

1/α

ds,

where ̂̀(n, x) =
1

2πn1/α

∫
δn1/α<|s|≤πn1/α

(
φ
(
sn−1/α

))n+1

e−ιxsn
−1/α

ds.

Noting that for any α > 0,
∫∞

0
e−s

α

ds <∞, we have that

sup
x∈Z

max{̂̀(n, x), `(n, x)} = O(e−βn),

and
|p(n, x)− p(n+ 1, x)|

≤ O(e−βn) +
1

2πn1/α

∫
|s|≤δn1/α

e−
1
2ν|s|

α
∣∣∣e 1
n (−ν|s|α+|s|αh(sn−1/α)) − 1

∣∣∣ ds
≤ O(e−βn) +

1

2πn1+1/α
O(1)

∫
R

e−
1
2ν|s|

α

|s|αds

= O

(
1

n1+1/α

)
.

Therefore, (4.2) is valid.
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The same as the proof of Lemma 4.1 is also to give the following the Gnedenko local
limit theorem (cf. Theorem 4.2.1 in [32]).

Lemma B.1 (Local limit theorem). Let {Sn, n ≥ 0} be a symmetric random walk starting
from the origin on Z and in the domain of normal attraction of a stable law of index
α ∈ (0, 2]. Assume that the characteristic function φ(u) of S1 satisfies (2.1). Then

lim
n→∞

sup
k∈T

n1/α

∣∣∣∣1q p(n, k)− g(n, k)

∣∣∣∣ = 0. (B.2)

Proof. Without loss of generality, we assume q = 1. Then choose δ ∈ (0, 1/4) such that
for |u| ≤ δ,

|φ(u)− 1| ≤ 1

2
, |ψ(u)− 1| ≤ 1

2

where ψ(u) = e−ν|u|
α

, and

log φ(u) = −ν|u|α + |u|αh(u) ≤ −1

2
ν|u|α.

Choose β > 0 such that

|φ(u)| ≤ e−β and |ψ(u)| ≤ e−β for δ ≤ |u| ≤ π.

Thus, by the inversion formula, we can write

p(n, k) = O(e−nβ) +
1

2πn1/α

∫
|s|≤δn1/α

e−ν|s|
α+|s|αh(sn−1/α)e−ιn

−1/αksds,

and

g(n, k) =
1

2πn1/α

∫
R

(
ψ
(
sn−1/α

))n
e−ιn

−1/αksds

= O(e−ntβ) +
1

2πn1/α

∫
|s|≤δn1/α

e−ν|s|
α

e−ιn
−1/αksds.

Therefore
sup
k∈Z

n1/α |p(n, k)− g(n, k)|

≤ O(e−ntβ) +
1

2π

∫
|s|≤δn1/α

e−ν|s|
α
∣∣∣e|s|αh(sn−1/α) − 1

∣∣∣ ds,
which yields (B.2) by the dominated convergence.

C Proof of Proposition 2.1

Proof of Proposition 2.1. We only give the proof for the case 1
2 < r < 1. Without loss of

generality we can assume the initial data is non-random because we could always take
the conditional expectation given F0.

Let us first give a priori estimate. By (2.9), we have

E(|Z(t, x)|2)

=

(∫
R

g(t, x− y)Z0(y)dy

)2

+ σ2

∫ t

0

∫
R2

g(t− s, x− y)K(y − z)g(t− s, x− z)E(Z(s, y)Z(s, z))dydzds.

By Hölder inequality,

E(Z(s, y)Z(s, z)) ≤ E(|Z(s, y)|2)
1
2E(|Z(s, z)|2)

1
2 .
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Thus, by Hardy-Littewood’s inequality and Hölder’s inequality, there exists a positive
constant C such that∫ t

0

∫
R2

g(t− s, x− y)K(y − z)g(t− s, x− z)E(Z(s, y)Z(s, z))dydzds

≤C
∫ t

0

∫
R

g2r(t− s, x− y)E(|Z(s, y)|2)dyds.

Then, there exists a positive constant C such that

E(|Z(t, x)|2) ≤
(∫

R

g(t, x− y)Z0(y)dy

)2

+ C

∫ t

0

∫
R

g2r(t− s, x− y)E(|Z(s, y)|2)dyds.

(C.1)

Iterating the inequality, we obtain that

E(|Z(t, x)|2) ≤
∞∑
n=0

CnE(In(t, x)), (C.2)

where

In(t, x) =

∫
∆n(t)

∫
Rn

n−1∏
i=0

g2r(ti − ti+1, xi − xi+1)

×
(∫

R

g(tn, xn − y)Z0(y)dy

)2 n∏
i=1

dxidti.

(C.3)

Noting that there exists a positive C1 such that for any n ≥ 1,

n−1∏
i=0

g2r(ti − ti+1, xi − xi+1) ≤ Cn1
n−1∏
i=0

(
1

(ti − ti+1)
2r−1
α

g(ti − ti+1, xi − xi+1)

)
,

we have

E(In(t, x))

≤
Cn1 Γn

(
1− 2r−1

α

)
Γ
(
n
(
1− 2r−1

α

)) t (n−1)(α+1−2r)
α

∫ t

0

(t− s)
1−2r
α

∫
R

g(t− s, x− z)E

((∫
R

g(s, z − y)Z0(y)dy

)2
)
dzds.

Therefore, there exists positive constant C ′ such that for any t ∈ [0, T ], x ∈ R,

E(|Z(t, x)|2)

≤
∞∑
n=0

CnE(In(t, x))

≤ C ′E

((∫
R

g(t, x− y)Z0(y)dy

)2
)

+ C ′
∫ t

0

(t− s)
1−2r
α

∫
R

g(t− s, x− z)E

((∫
R

g(s, z − y)Z0(y)dy

)2
)
dzds.

(C.4)

In particular, if Z0 = δ0, then for some constant C ∈ (0,∞),

E

(∫
R

g(s, z − y)Z0(y)dy

)2

= g2(s, z)), (C.5)
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and ∫ t

0

(t− s)
1−2r
α

∫
R

g(t− s, x− z)
(∫

R

g(s, z − y)Z0(y)dy

)2

dzds ≤ Cg(t, x). (C.6)

Therefore, for some constant C ∈ (0,∞),

E(|Z(t, x)|2) ≤ Cg2(t, x). (C.7)

If Z0 is bounded, then
sup

t∈[0,1],x∈R
E(|Z(t, x)|2) <∞. (C.8)

Next, we prove the existence and the uniqueness. Let first show the uniqueness.
Let Zi(t, x), i = 1, 2, be the two mild solutions of (2.7) with initial data Z(0, ·) = Z0. Set
Z̄(t, x) = Z1(t, x)−Z2(t, x). Then

E(|Z̄(t, x)|2) ≤ C
∫ t

0

∫
R

g2r(t− s, x− y)E(|Z̄(s, y)|2)dyds.

Iterating the inequality, we obtain that for any N ≥ 1,

E(|Z̄(t, x)|2) ≤
CN+1

1 ΓN+1
(
1− 2r−1

α

)
Γ
(
(N + 1)

(
1− 2r−1

α

)) tN(α+1−2r)
α

×
∫ t

0

(t− s)
1−2r
α

∫
R

g(t− s, x− z)E(Z̄2(s, z))dzds.

(C.9)

Therefore, let N → ∞, we obtain E(|Z̄(t, x)|2) = 0 for any t ∈ [0, T ] and x ∈ R. The
uniqueness is proved.

We use the Picard iteration to prove the existence. Let Z0(t, x) = 0, for n ≥ 0 define

Zn+1(t, x) =

∫
R

g(t, x− y)Z0(y)dy + σ

∫ t

0

∫
R

g(t− s, x− y)Zn(s, y)W(dsdy). (C.10)

and
Z̄n(t, x) = Zn+1(t, x)−Zn(t, x).

Then these processes are progressively measurable by construction, and

Z̄n+1(t, x) = σ

∫ t

0

∫
R

g(t− s, x− y)Z̄n(s, y)W(dsdy).

Therefore, there exists positive constant C such that for any t ∈ [0, T ],

E(|Z̄n+1(t, x)|2) ≤ C
∫ t

0

∫
R

g2r(t− s, x− y)E(|Z̄n(s, y)|2)dyds.

For Z0 = δ0 case, set

fn(t) = sup
x∈R,s∈[0,t]

s(2r−1)/αE(|Z̄n(s, x)|2).

Then

f1(t) = sup
x∈R,s∈[0,t]

s(2r−1)/αE

((∫
R

g(s, x− y)Z1(y)dy

)2
)

≤C sup
x∈R,s∈[0,t]

s(2r−1)/α

∫ s

0

(s− u)(1−2r)/αu−1/αds <∞
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and

fn+1(t) ≤ C1

∫ t

0

fn(s)

(t− s)(2r−1)/α
ds,

where C,C1 are positive constants. Iterating the inequality, we have

fn+1(t) ≤ C
∫ t

0

∫ s

0

fn−1(u)

((t− s)(s− u))(2r−1)/α
duds ≤ C ′

∫ t

0

fn−1(u)du,

where C,C ′ are positive constants. Therefore, fn(t) ≤ (C′t)n/2

(n/2)! , and

Z(t, x) =

∞∑
k=0

Z̄n(t, x)

is progressively measurable. By

sup
x∈R,s∈[0,t]

s(2r−1)/αE(|Z̄(s, x)|2) <∞,

we have ∫ t

0

∫
R

g(t− s, x− y)E(|Zn(s, y)|2)dyds <∞.

Thus, Z(t, x) solves the equation (2.7) with initial data Z(0, ·) = Z0.

For Z0 is bounded case, set

fn(t) = sup
x∈R,s∈[0,t]

E(|Z̄n(s, x)|2).

Then f1(t) <∞, and fn+1(t) ≤ C
∫ t

0
fn(s)ds. Therefore, fn(t) ≤ (C′t)n

n! , and so, Z(t, x) =∑∞
k=0 Z̄n(t, x) is progressively measurable and solves the equation (2.7) with initial data

Z0.

D Some moment estimates for an autoregressive integrated mov-
ing average model

In this section, we give some moment estimates for an autoregressive integrated
moving average model. These moment estimates play an important role in Lemma 3.7.

Lemma D.1. Let 1
2 < r < 1 and the environment ω = {ω(i, x), (i, x) ∈ Z+ × Z} satisfy

(A.2). Then for any k, j ≥ 1, there is positive constant Ck,j such that∣∣E(ωk(i, x)ωj(i, y))−E(ωk(i, x))E(ωj(i, y))
∣∣ ≤ Ck,jγ(x− y). (D.1)

Proof. Let us recall the definition of ω as follows

ω(i, x) =
∑
y∈Z

ayξ(i, x+ y),

where ay ≥ 0, ay ∼ cr|y|−r, cr > 0, and {ξ(i, x); i ∈ Z+, x ∈ Z} is a family of independent
and identically distributed random variables with E(ξ(i, x)) = 0, E(|ξ(i, x)|2) = 1, and
Eeβ|ξ(i,x)| <∞ for β sufficiently small. For N,M ≥ 1, set

Z
M,N
0 := {(u1, · · · , uM+N ) ∈ ZM+N ; {um, 1 ≤ m ≤M} ∩ {uM+n, 1 ≤ n ≤ N} = ∅},

EJP 28 (2023), paper 68.
Page 52/57

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP955
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Scaling limits of directed polymers

and ZM,N
1 := ZM+N \ ZM,N

0 . Note that for u := (u1, u2, · · · , uk, uk+1, · · · , uk+j) ∈ Zk,j0 ,∏k
m=1 ξ(i, x+ um) is independent of

∏j
n=1 ξ(i, x+ uk+n). We can write that

E
(
ωk(i, x)ωj(i, y)

)
=E

(∑
u∈Z

auξ(1, x+ u)

)k(∑
v∈Z

avξ(1, y + v)

)j
=E

(∑
u∈Z

auξ(1, x+ u)

)k(∑
v∈Z

ax−y+vξ(1, x+ v)

)j
=
∑
u∈Zk,j0

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

+
∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

j∏
n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))
.

Then

∑
u∈Zk,j0

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

=
∑

u∈Zk+j
E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

−
∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

=E(ωk(i, x))E(ωj(i, y))

−
∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))
.

Next, let us estimate

∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

and ∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

j∏
n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))
.

For u ∈ Zk,j1 , there exist 1 ≤ m0 ≤ k, 1 ≤ n0 ≤ j such that um0 = uk+n0 . For each
such couple (um0

, uk+n0
) fixed, let N(u) denote the number of components in u that are

not equal to um0
, and define

Z
k,j
1,l = Z

k,j
1 ∩ {u; N(u) = l}, l = 0, 1, · · · , k + j − 2.
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Then ∑
u∈Zk,j1 ,um0

=uk+n0

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

=

k+j−2∑
l=0

∑
u∈Zk,j1,l

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))
.

Next, we show the following claim:
Claim A. For any k ≥ 1, j ≥ 1, there exists a positive constant Ck,j such that for

any 0 ≤ l ≤ k+ j − 2, any couple (um0 , uk+n0) with um0 = uk+n0 for some 1 ≤ m0 ≤ k and
1 ≤ n0 ≤ j,∣∣∣∣∣∣∣

∑
u∈Zk,j1,l

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣ ≤ Ck,jγ(x− y).

(D.2)
When l = 0,∣∣∣∣∣∣∣

∑
u∈Zk,j1,0

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

um0∈Z
akum0

ajx−y+um0
E(ξk(1, x+ um0

))E(ξj(1, x+ um0
))

∣∣∣∣∣∣ ≤ Cγ(x− y),

where C = Lk+j−2E(ξk(1, 1))E(ξj(1, 1)), and L = supx∈Z ax. That is, the Claim A holds
for l = 0.

If the Claim A holds for any 0 ≤ l ≤ l0 ≤ k + j − 2, i,e, for any k ≥ 1 and j ≥ 1, there
exists a positive constant Ck,j such that for all 0 ≤ l ≤ l0, all couple (um0

, uk+n0
) with

um0
= uk+n0

for some 1 ≤ m0 ≤ k and 1 ≤ n0 ≤ j,∣∣∣∣∣∣∣
∑
u∈Zk,j1,l

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣ ≤ Ck,jγ(x− y),

then for l = l0 + 1, for any u ∈ Zk,j1,l , there exist l1 ≥ 1, 1 ≤ ms ≤ k, s = 1, · · · , l1, or
1 ≤ ms ≤ j, s = 1, · · · , l1 such that

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

=al1um1
E
(
ξl1(1, 1)

)
E

 ∏
m 6=ms

s=1,··· ,l1

(aumξ(1, x+ um))

E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))
,

or

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))

=al1um1
E
(
ξl1(1, 1)

)
E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

 ∏
n 6=ms

s=1,··· ,l1

(
ax−y+uk+nξ(1, x+ uk+n)

) .
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Therefore, noting E (ξ(1, 1)) = 0, we have that∣∣∣∣∣∣∣
∑
u∈Zk,j1,l

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣
≤C

min{k−1,l}∑
l1=2

∣∣∣∣∣∣∣
∑

u∈Zk−l1,j1,l−l1

E

(
k−l1∏
m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣
+ C

min{j−1,l}∑
l1=2

∣∣∣∣∣∣∣
∑

u∈Zk−l1,j1,l−l1

E

(
k∏

m=1

(aumξ(1, x+um))

)
E

(
j−l1∏
n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣∣
≤2CCk,jγ(x− y),

where C := sup2≤l1≤k+j

∑
u∈Z a

l1
u |E

(
ξl1(1, 1)

)
|, and the last inequality is due l − l1 ≤ l0.

That is, when l = l0 + 1, the Claim A also holds. Thus, the Claim A is true, and so,∣∣∣∣∣∣
∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣
≤kj max

1≤m0≤k
1≤n0≤j

∣∣∣∣∣∣∣
∑

u∈Zk,j1 ,um0
=uk+n0

E

(
k∏

m=1

(aumξ(1, x+um))

)
E

(
j∏

n=1

(
ax−y+uk+nξ(1, x+uk+n)

))∣∣∣∣∣∣∣
=kj(k + j − 2)Ck,jγ(x− y).

Similarly, we can also obtain that for some constant Ck,j ,∣∣∣∣∣∣
∑
u∈Zk,j1

E

(
k∏

m=1

(aumξ(1, x+ um))

j∏
n=1

(
ax−y+uk+nξ(1, x+ uk+n)

))∣∣∣∣∣∣ ≤ Ck,jγ(x− y).

Now, we complete the proof of (D.1).
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