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Abstract

The random interlacement point process (introduced in [47], generalized in [50]) is
a Poisson point process on the space of labeled doubly infinite nearest neighbour
trajectories modulo time-shift on a transient graph G. We show that the random
interlacement point process on any transient transitive graph G is a factor of i.i.d., i.e.,
it can be constructed from a family of i.i.d. random variables indexed by vertices of the
graph via an equivariant measurable map. Our proof uses a variant of the soft local
time method (introduced in [37]) to construct the interlacement point process as the
almost sure limit of a sequence of finite-length variants of the model with increasing
length. We also discuss a more direct method of proving that the interlacement point
process is a factor of i.i.d. which works if and only if G is non-unimodular.
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Műegyetem rkp. 3., H-1111 Budapest, Hungary; MTA-BME Stochastics Research Group, Műegyetem rkp. 3.,
H-1111 Budapest, Hungary; Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, 1053 Budapest,
Hungary. E-mail: rathb@math.bme.hu

§Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics,
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1 Introduction

1.1 Random interlacements

Random interlacements, introduced in [47], describe the local distributional limit of
the trace of a random walk on a d-dimensional discrete torus (Z/NZ)

d
, d ≥ 3 if we run

the random walk up to times comparable to the volume of the torus and let N →∞, cf.
[55]. The notion of random interlacements was generalized to transient weighted graphs
in [50].

Let us give a brief description of the random interlacement point process, deferring
the technical details to Section 2.5. Let us denote by W the space of doubly infinite
transient nearest neighbour trajectories in G. We say that w,w′ ∈ W are equivalent
modulo time-shift if there exists k ∈ Z such that for all n ∈ Z we have w(n) = w′(n+ k).
Let us denote by W ∗ the set of equivalence classes of W with respect to time-shift
equivalence. The random interlacement point process Z =

∑
i∈I δ(w∗i ,ti) is a Poisson

point process (PPP) on the space W ∗ × R+ of labeled trajectories modulo time-shift
with intensity measure ν × λ, where λ denotes the Lebesgue measure on R+ and ν is a
σ-finite measure on W ∗ that we will precisely define in Section 2.5. However, note that
the following property characterizes ν: for each finite subset K of the vertex set of G,
an alternative way of generating a PPP on W ∗ with the same distribution as the point
process of trajectories of Z that hit K and have a label in the interval [0, u] is as follows
(cf. Theorem 2.15): independently for each vertex v of K, let us start a POI(u) number
of i.i.d. doubly infinite random walks from v indexed by Z, throw away those trajectories
that already visit K at a time indexed by a negative number and take the point process
that consists of the equivalence classes of the remaining trajectories modulo time-shift.

The goal of our paper is to construct the interlacement Poisson point process Z from
a family of i.i.d. random variables indexed by the vertex set of G via a measurable map
which intertwines the action of the automorphism group Γ of G. Let us now provide the
precise formulation of this property.

1.2 Factor of i.i.d. property

If we are given a group Γ acting on two sets Ω1 and Ω2 then a map T : Ω1 → Ω2 is
called Γ-equivariant if it intertwines the actions of Γ, i.e., if T (ϕ(ω1)) = ϕ(T (ω1)) holds
for any ω1 ∈ Ω1 and ϕ ∈ Γ. In the case when (Ωi,Ai), i = 1, 2 are measurable spaces,
then a Γ-equivariant measurable map is called a Γ-factor. If there is also a measure µ
given on the domain space (Ω1,A1), then the push-forward measure is called Γ-factor of
µ.

We focus on the case when the domain space Ω1 is a product space of the form
(ΩV ,AV ), where (Ω,A) is a measurable space and V is the (countable) vertex set of a
graph G. In our case the group Γ is the automorphism group Aut(G) of the simple graph
G with vertex set V and edge set E, i.e., ϕ ∈ Γ if and only if ϕ : V → V is a permutation
with the property that {x, y} ∈ E if and only if {ϕ(x), ϕ(y)} ∈ E for any x 6= y ∈ V .
Note that in this case Γ acts on the product space ΩV as ϕ(η) = (ηϕ−1(x))x∈X , where
η = (ηx)x∈V ∈ ΩV and ϕ ∈ Γ. We assume that G is transitive, i.e., for any x, y ∈ V there
exists ϕ ∈ Γ such that ϕ(x) = y.

If the probability measure µ on the domain space (ΩV ,AV ) is a product measure, i.e.,
if (ηx)x∈V are i.i.d. random elements of Ω then the corresponding factor is called a factor
of i.i.d. (or f.i.i.d. for short).

In our case the target space Ω2 is the space M(W ∗ × R+) of locally finite point
measures on W ∗ × R+ (see Definition 2.7 for details) and the action of Γ extends
naturally to M(W ∗ ×R+) (see Definition 2.8 for details).

In our case, the equivariance of a map from ΩV to M(W ∗ ×R+) simply means that if

EJP 28 (2023), paper 58.
Page 2/45

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP950
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random interlacement is a factor of i.i.d.

we transform the input configuration with a graph automorphism ϕ then the output of
the transformed input is the transform of the original output with the same ϕ.

1.3 Statements of results

Recall that we denote Γ = Aut(G).

Theorem 1.1 (Main result). Let G denote a locally finite, connected, transitive, tran-
sient infinite simple graph. There exists a standard probability space (Ω,A, ϑ) and a
measurable map T : ΩV →M(W ∗ ×R+) with the following properties.

(i) If η = (ηx)x∈V are i.i.d. with distribution ϑ then T (η) is a PPP on W ∗ × R+ with
intensity measure ν × λ.

(ii) For any ϕ ∈ Γ we have T (ϕ(η)) = ϕ
(
T (η)

)
.

In words: the law of the random interlacement point process Z on any locally finite,
connected, transitive, transient infinite simple graph G is a factor of i.i.d. Note that the
standard probability space (Ω,A, ϑ) in the statement of Theorem 1.1 can be replaced by
the [0, 1] interval with Lebesgue measure without loss of generality, see [42, Chapter 2].

Our proof of Theorem 1.1 uses an approximation of Z with a homogeneous PPP
of random walk trajectories of length T that we call finite-length interlacements (cf.
Definition 2.13). This notion is inspired by that of [10], where a homogeneous PPP
of random walk trajectories with geometric length distribution called finitary random
interlacements is introduced. As it turns out, we found the variant of the model with tra-
jectories of fixed length to be more suitable for our purposes. One ingredient of our proof
is that finite-length interlacements converge in distribution to random interlacements as
T →∞ (cf. Lemma 4.11). Let us note that similar approximation results have already
appeared in the literature, cf. [48, Chapter 4.5], [15, Theorem 3.1], [25, Proposition 3.3],
[10, Theorem A.2]. Let us also note that the factor of i.i.d property is not necessarily
inherited by a distributional limit (see e.g. Corollary 3.3 of [28]), hence Theorem 5.1 does
not follow automatically from Lemma 4.11 and the fact that finite-length interlacements
is factor of i.i.d. for each T ∈ N+.

The novelty of our paper is that we boost the above-mentioned result about conver-
gence in distribution and show that there exists a jointly equivariant realization (i.e.,
coupling) of finite-length interlacements Zn, n ∈ N with lengths Tn = 2n, n ∈ N on the
same probability space which converges almost surely with respect to an appropriate
topology (cf. Section 4.2) on the space of labeled nearest neighbour trajectories. As soon
as we have this coupling, the proof of Theorem 1.1 follows. In order to construct this
coupling, we employ a variant of the soft local time method, which has found many appli-
cations in the development of the theory of random interlacements (see e.g. [13, 12, 49])
since its introduction in [37].

Informally, we construct a (partial) matching of the trajectories of finite-length
interlacements Zn of length Tn and “stitch together’ the matched pairs to obtain a point
process which is “close” to being finite-length interlacements Zn+1 of length 2Tn (see
the introduction of Section 6 for a more detailed description). The probability of seeing
a “local discrepancy” between Zn and Zn+1 is so small that Borel-Cantelli implies that
Zn almost surely “locally” converges as n → ∞. This almost sure convergence result
is the key to our proof of Theorem 1.1. Let us also note that such a coupling between
finite-length interlacements (a random spatial process with a finite range of spatial
dependence) and random interlacements (a random spatial process which can have
polynomially decaying spatial correlations) can have potential applications beyond the
scope of this paper (e.g. the proof of the equality of critical parameters for percolation
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of Gaussian free field (GFF) level-sets given in [16] also relies on an approximation of
the GFF with stationary Gaussian fields with a finite range of dependence).

Our proof of Theorem 1.1 is somewhat involved and one may wish for a more direct
proof. As it turns out, a certain type of direct proof works if and only if the transitive
graph G is not unimodular. In order to make this statement precise, we need to introduce
some definitions.

A function f : V × V → [0,∞) is called a mass transport function if it is invariant
under the diagonal action of Γ, i.e., if we have f(x, y) = f(ϕ(x), ϕ(y)) for any pair of
vertices x, y ∈ V and for any ϕ ∈ Γ. A transitive graph G is called unimodular if it
satisfies the mass-transport principle, i.e., for any vertex o ∈ V and any mass transport
function f : V × V → [0,∞) we have∑

x∈V
f(o, x) =

∑
x∈V

f(x, o). (1.1)

One can think of f(x, y) as an amount of mass that is sent from x to y, in which case (1.1)
is just a formal way to state that mass is conserved.

It is known that all amenable transitive graphs are unimodular (cf. [29, Proposition
8.14]), hence the nearest neighbour lattice Zd is unimodular for any d ≥ 1. For any d ≥ 3

the d-regular infinite tree Td is unimodular (cf. [29, Exercise 8.7]), but not amenable.
Trofimov’s grandparent graph is perhaps the most famous example of a transitive
non-unimodular graph (cf. [29, Example 7.1 and Section 8.2]).

Let us denote by W the σ-algebra on W generated by the coordinate maps. Note
that the action of Γ on W extends to the σ-algebra W in a natural way. Let us denote
by π∗ : W → W ∗ the function which maps to each element of W its equivalence
class with respect to time shift equivalence. Let us introduce the natural σ-algebra
W∗ =

{
A ⊆W ∗ : (π∗)−1(A) ∈ W

}
on W ∗.

Claim 1.2 (A sufficient condition for the interlacement to be a factor of i.i.d. in a cheap
way). If there exists a measure Q on (W,W) such that

(i) ν(A) = Q((π∗)−1(A)) for all A ∈ W∗ and

(ii) Q(B) = Q(ϕ(B)) for all B ∈ W and all ϕ ∈ Γ

then

(a) the PPP ZW =
∑
i∈I δ(wi,ti) on W ×R+ with intensity measure Q× λ is a f.i.i.d.,

(b) Z :=
∑
i∈I δ(π∗(wi),ti) is a PPP with intensity measure ν × λ and Z is also a f.i.i.d.

Claim 1.2 states that the conclusion of our main result “trivially” holds if there exists
a PPP X =

∑
i∈I δwi on W such that the law of X is invariant under the action of Γ

and π∗(X ) :=
∑
i∈I δπ∗(wi) is a PPP with intensity measure ν. The reason why ZW is

“trivially” a f.i.i.d. is that the PPP ZW of trajectories can be decomposed into the sum of
independent PPPs (ZWx )x∈V according to the values of trajectories at time zero, and the
PPPs (ZWx )x∈V are (up to an automorphism) identically distributed by assumption (ii).
For the technical details, see Section 3 where we present the proof of Claim 1.2.

Proposition 1.3 (On the role of unimodularity). Assume thatG is locally finite, connected,
transitive and transient. Then the following conditions are equivalent:

(A) G is unimodular.

(B) There is no measure Q on (W,W) that satisfies properties (i) and (ii) of Claim 1.2.
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We will prove Proposition 1.3 in Section 3. The idea of the proof that (B) implies (A)
was suggested to us by Ádám Tímár.

In [47, Remark 1.2] it is proved that (B) holds in the special case when G = Zd, d ≥ 3,
however, that argument used that if G = Zd then cap(K)/|K| can be made arbitrarily
small (e.g. by choosing K to be a ball with big radius). This argument does not generalize
to the setting of Proposition 1.3, since e.g. if G is a d-regular infinite tree Td then one can
show that infK⊂⊂V cap(K)/|K| > 0. However, as we mentioned above, Td is unimodular,
thus Proposition 1.3 can be applied to conclude that (B) holds for Td.

1.4 Related literature

1.4.1 Bird’s eye view

The question whether a stationary stochastic process on Z is a factor of another one
traces back to the seminal work of Ornstein [34] (see [35] for a more detailed explana-
tion and some related results), who answered the question: when is an i.i.d. process
isomorphic to (i.e., an invertible factor of) an other i.i.d. process? Although there are
some natural extensions of this result even on Z, such as a description of the existence
of similar isomorphisms under more constraints on the factor maps like in [26, 27], or a
construction of a Markov chain as a factor of i.i.d. as in [2, 41, 4], the research focusing
on proving which of the well-known random fields (indexed by more general graphs)
arise as a factor of i.i.d. took place immediately.

Obviously, the presence (or in some cases the absence) of the factor of i.i.d. property
depends on the underlying graph as well as the distribution of the random field. As a
consequence, we only discuss those results in detail that are most relevant from the
point of view of our results. However, without providing a fully exhaustive list, some of
the examined models of statistical physics are: the Ising model on Zd [8, 31, 39] and on
more general graphs [1, 28, 33, 24]; the Potts model on Zd [23, 24, 46, 45, 39] and on
general graphs [22, 24]; the proper q-coloring of Zd [44, 38, 45]; the hard-core model on
Zd [45]; the six-vertex model [39]; the Widom-Rowlinson lattice gas on Zd [23, 45]; the
voter model on Zd [46, 43]; and the uniform spanning forests on random rooted almost
surely transient graphs [5].

Let us also note that many of the papers cited above ask about the presence of a
stronger property, i.e., when can the examined model be constructed as a finitary factor
of i.i.d. In this strengthening, one also requires that the output variable at a vertex is
calculated by looking at almost surely finitely many input variables (where the random
number of input variables that need to be inspected can depend on the location of the
output variable). Due to the algorithmic nature of these constructions, the theory of
finitary factor of i.i.d. processes is a very active area of research in theoretical computer
science. A comprehensive list of references of such results can be found in [28].

1.4.2 Generalized divide and color model, voter model

One model of particular interest for us is a random field called the generalized divide and
color model, introduced in [46]. In this model, the vertex set of a graph is partitioned into
subsets by a random equivalence relation and then each equivalence class of vertices is
given a random color independently of the others. This general model includes e.g. the
Ising and Potts models as a special case via the random cluster representation and the
extremal shift-invariant stationary distributions of the voter model via the coalescing
random walk representation.

The authors of [46] argue that on Zd, if the law of the partition is invariant under the
translations of Zd and almost surely produces partition sets of finite cardinality, then
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certain ergodic theoretic properties such as the factor of i.i.d. property is inherited from
the random equivalence relation to the generalized divide and color model.

Question 7.21 of [46] asks whether the extremal stationary distributions of the voter
model on Zd (d ≥ 3) are factors of i.i.d. This question is affirmatively answered in
[43]. Let us mention that the spine of their argument, that is, producing the stationary
distribution in question as an almost sure limit of i.i.d. factors using a well-behaved
coupling was highly influential for us.

1.4.3 Ising model on regular trees

Let us point out that there are some negative results among those proved in the papers
on the list given in Section 1.4.1. One example of this is the free Ising model on the
d-regular tree, which cannot be represented as a factor of i.i.d. if the inverse temperature
β satisfies tanhβ > (d − 1)−1/2, cf. [28, Corollary 3.2]. It is believed that this result is
sharp, i.e., if tanhβ ≤ (d− 1)−1/2 then the model is a factor of i.i.d. Currently this is only
proved if tanhβ ≤ c(d − 1)−1/2, where c > 0 is an absolute constant and d is large, cf.
[33].

1.4.4 An application: interlacement Aldous-Border algorithm and WUSF

There are multiple ways of proving that the law of the wired uniform spanning forest
(WUSF) on a transitive transient graph G is a factor of i.i.d.: the case of amenable Cayley
graphs follows from [30, Corollary 7.4], the nonamenable case is part of the proof of [18,
Proposition 9], the general case of transient transitive graphs is implicit in the proof of
[7, Proposition 5.3], and [5, Theorem 1.4] proves the result in a more general setting.

Our main result can be used to provide yet another proof of this result. The proof that
we propose builds on the generalization of the so-called Aldous-Broder algorithm [3, 11]
to transient graphs, introduced in [25] under the name of interlacement Aldous-Broder
algorithm.

The input of this algorithm is a random interlacement point process Z (i.e., a PPP
on W ∗ ×R+ with intensity measure ν × λ) on G. The WUSF is generated by keeping at
every vertex only the first entry edge of the random interlacement trajectory with the
smallest label. In our Theorem 1.1 we construct Z as a factor of i.i.d. and the way the
interlacement Aldous-Border algorithm produces a WUSF from Z is clearly equivariant,
thus the composition of these two constructions provide an alternative way to show that
the WUSF is a factor of i.i.d.

1.4.5 Random interlacements and amenability

If G is a locally finite, connected, transitive, transient graph and Z =
∑
i∈I δ(w∗i ,ti) is a

PPP on W ∗ ×R+ with intensity measure ν × λ, let us denote by Iu the set of vertices
visited by the trajectories w∗i satisfying ti ≤ u. The random set Iu of vertices is called
the interlacement set at level u. The main result of [51] states that Iu is almost surely
connected for all u > 0 if and only if G is amenable. This result provides a characteri-
zation of amenability using interlacements, somewhat similarly to our Proposition 1.3,
which provides a characterization of unimodularity using interlacements. Note that
every locally finite, connected, transitive, amenable graph is also unimodular by [29,
Proposition 8.14].

2 Setup and notation

Note that that there is a list of frequently used notation at the end of this paper.
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In Section 2.1 we introduce some basic notation. In Section 2.2 we fix our notation
regarding graphs and graph automorphisms. In Section 2.3 we introduce various
spaces of nearest neighbour trajectories on G. In Section 2.4 we introduce our notation
pertaining to random walks and state an important heat kernel estimate (the proof of
which is deferred to the Appendix). In Section 2.5 we introduce our notation pertaining
to PPPs on various spaces of (labeled) nearest neighbour trajectories and define finite-
length random interlacements with length T as well as classical (infinite-length) random
interlacements.

2.1 Basic notation

Let λ denote the Lebesgue measure on R+ equipped with the σ-algebra B(R+) of
Borel sets.

Let N := {0, 1, 2, . . . } and N+ := {1, 2, . . . }. Let Z denote the set of integers.
If n ∈ N+, let [n] := {1, . . . , n}.
If a ∈ R, let us denote by a+ := max{a, 0} the positive part of a.
If a, b ∈ R, let a ∧ b := min{a, b} and a ∨ b := max{a, b}. Note that a− a ∧ b = (a− b)+.
If (S,F) is a measurable space and A ∈ F , let us denote by 1[A] the indicator of A,

i.e., the function from S to {0, 1} which assigns 1 to elements of A and 0 to elements of
S \A. If µ is a measure on (S,F), let us define the measure µ1[A] on (S,F) by

(µ1[A])(B) := µ(A ∩B), B ∈ F . (2.1)

2.2 Graphs, transitivity

Let G = (V,E) denote an undirected locally finite infinite graph. Let o denote a fixed
vertex of the graph, “the origin”. Since we focus on graphs that are also transitive and
transient, let us recall these notions.

For x, y ∈ V , we denote by {x, y} ∈ E if there is an edge between x and y. We say
that a bijection ϕ : V → V is a graph automorphism if

{x, y} ∈ E ⇐⇒ {ϕ(x), ϕ(y)} ∈ E.

The graph G is called (vertex-)transitive, if the group Γ of graph automorphisms of G
acts transitively on the vertex set of G. Intuitively this means that the graph G looks the
same from all of its vertices. As a consequence, such G must be regular, so let us denote
its degree by d.

We call a graph G transient if the simple random walk on G is transient.
We denote the fact K is a finite subset of V by K ⊂⊂ V . Distances with respect to

the usual graph metric will be denoted by d(., .).

2.3 Spaces of trajectories

Let H denote the set of finite or infinite sub-intervals H of Z. For any H ∈ H, let

WH :=

{
w : H → V :

∀ n, n+1 ∈ H {w(n), w(n+1)} ∈ E;

∀x ∈ V
∑
n∈H 1[w(n) = x] < +∞

}
(2.2)

denote the space of nearest neighbour trajectories indexed by H which visit every vertex
x of G only finitely many times. Let us introduce the shorthand notation

W := W(−∞,∞); W+ := W[0,+∞); W− := W(−∞,0]; (2.3)

WT := W[0,T−1], T ∈ N+; W • :=

∞⋃
T=1

WT . (2.4)
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Definition 2.1 (Time shift equivalence). Let ∼ denote the following equivalence relation
on W . The trajectories w,w′ ∈ W are equivalent if there exists k ∈ Z such that for all
n ∈ Z we have w(n) = w′(n + k), i.e., w′ can be obtained from w by a time shift. The
quotient space W/ ∼ is denoted by W ∗.

We write
π∗ : W →W ∗ (2.5)

for the projection which assigns to a trajectory w ∈W its ∼-equivalence class π∗(w) ∈
W ∗.

All of the spaces above can be endowed with a natural σ-algebra. Indeed, for example
in the case of W or W+ we can simply define the σ-algebras W or W+, respectively
to be the one generated by the canonical coordinate maps. Furthermore, using the
former we can define a σ-algebraW∗ in W ∗ given by the preimages of the map π∗, i.e.,
W∗ =

{
A ⊆W ∗ : (π∗)−1(A) ∈ W

}
.

Let us define W♦ to be the (disjoint) union of the spaces W ∗, W •, W+, and W−:

W♦ := W ∗ ∪W • ∪W+ ∪W− (2.6)

Let us define the natural sigma-algebraW♦ on W♦ as follows:

W♦ =
{
A ⊆W♦ : A ∩W ∗ ∈ W∗, A ∩W • ∈ W•, A ∩W+ ∈ W+, A ∩W− ∈ W−

}
.

Remark 2.2. We will focus on local convergence (cf. Definition 4.8) of point measures
supported on W •× [0, 1] to a point measure supported on W ∗× [0, 1], but we also included
W+ and W− along with W • and W ∗ in the definition of W♦ in (2.6) in order to make the
space of point measures on W♦ × [0, 1] complete w.r.t. our notion of local convergence
(cf. Claim 4.9).

Definition 2.3 (Trajectories that visit a set K). For any K ⊂⊂ V , let us denote by W♦(K)

the subset of W♦ which consists of those trajectories that visit the set K. Let us define
WH(K) for any H ∈ H, W •(K) and W ∗(K) analogously.

If K ⊂⊂ V , H ∈ H and w ∈WH(K), let us define

HK(w) := min{n ∈ H : w(n) ∈ K }, ‘first entrance time’ (2.7)

LK(w) := max{n ∈ H : w(n) ∈ K }, ‘time of last visit’ (2.8)

Note that the reason why we can write min and max (rather than inf and sup) in the
above definitions is that by (2.2) the trajectory w only spends a finite amount of time in
K, therefore HK(w) > −∞ and LK(w) < +∞.

If H ∈ H, let |H| denote the cardinality of H. If w ∈ WH , let |w| := |H| denote the
length of w, that is, w performs |w| − 1 steps. In particular, if w ∈WT then |w| = T .

2.4 Random walks

Definition 2.4 (Random walk). (i) For x ∈ V , let Px denote the law of the simple
random walk (X(n))n∈N on G which starts from X(0) = x, and let Ex denote the
corresponding expectation. The law Px can be viewed as a probability measure on
the measurable space (W+,W+) if the random walk is transient.

(ii) Denote by P±x the law of a doubly infinite simple random walk (X(n))n∈Z on G

which satisfies X(0) = x. The law P±x is a probability measure on the measurable
space (W,W).

Let us denote the transition probabilities of a simple random walk on G by

pn(x, y) := Px(X(n) = y), x, y ∈ V, n ∈ N. (2.9)
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By the time-reversibility of simple random walk on G, we have

pn(x, y) = pn(y, x), x, y ∈ V, n ∈ N. (2.10)

Lemma 2.5 (Heat kernel bound). Let G = (V,E) denote a locally finite, connected,
transitive, transient simple graph. There exists a constant C = C(G) such that

pn(x, y) ≤ Cn−3/2, x, y ∈ V. (2.11)

The result stated in Lemma 2.5 is part of the mathematical folklore. However, since
we did not find it stated in the published literature, we provide a detailed derivation of
the statement of Lemma 2.5 from known results [14, 20, 32, 52] in the Appendix.

Given K ⊂⊂ V and x ∈ K, let us define the equilibrium measure eK(x) of x with
respect to K as well as the capacity cap(K) of K by

eK(x) := Px(X(n) /∈ K, n = 1, 2, 3, . . . ) and cap(K) :=
∑
x∈K

eK(x). (2.12)

For any K ⊂⊂ V , x ∈ K and s = 0, 1, 2, . . . , let us also define

esK(x) := Px(X(n) /∈ K if 0 < n ≤ s ). (2.13)

Let us note that for any K ⊂⊂ V and x ∈ K we have

esK(x)↘ eK(x), s→∞. (2.14)

2.5 Point measures

Definition 2.6 (Point measures). (i) If (S,F) is a measurable space then a σ-finite
point measure ω on (S,F) is measure of form ω =

∑
i∈I δsi , where I is a finite or

countably infinite index set, si ∈ S for each i ∈ I and δsi denotes the Dirac measure
concentrated on si. In other words, for each A ∈ F , the measure ω(A) of the set A
with respect to the measure ω is equal to ω(A) =

∑
i∈I 1[si ∈ A].

(ii) Let us denote by M(S) the set of σ-finite point measures on S.

(iii) Let |ω| denote the total mass of ω ∈M(S), i.e., |ω| = ω(S).

(iv) If ω, ω′ ∈M(S) then we say that ω ≥ ω′ if ω − ω′ ∈M(S).

Definition 2.7 (Locally finite point measures). (i) We say that ω ∈ M(W♦) if ω =∑
i∈I δw♦

i
∈ M(W♦) and for any x ∈ V the number of indices i ∈ I for which

the trajectory w♦
i hits x is finite, i.e., ω

(
W♦({x})

)
< +∞.

(ii) We say that ω ∈ M(W♦ × R+) if ω =
∑
i∈I δ(w♦

i ,ti)
∈ M(W♦ × R+) and for any

x ∈ V and any t ∈ R+ the number of indices i ∈ I for which w♦
i hits x and ti ≤ t

holds is finite, i.e., ω
(
W♦({x})× [0, t]

)
< +∞.

(iii) One defines the spaces of point measures M(WT ), M(W •), M(V ) as follows. If
S is a countable set, then ω =

∑
i∈I δsi ∈M(S) if ω ∈M(S) and ω({s}) < +∞ for

any s ∈ S.

One can think about the point measure ω ∈M(W♦) as a multiset of finite or infinite
trajectories, where ω({w♦}) denotes the number of copies of the trajectory w♦ ∈ W♦

contained in ω. In the case of ω ∈ M(W♦ × R+), the trajectories also have a label
attached to them.

Definition 2.8 (Automorphisms). (i) Let H ∈ H. Given a graph automorphism ϕ ∈ Γ,
we define its action on a trajectory w = (w(n))n∈H ∈WH as ϕ(w) := (ϕ(w(n)))n∈H .
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(ii) If w∗ ∈ W ∗, we define ϕ(w∗) := π∗(ϕ(w)) ∈ W ∗ for any w ∈ (π∗)−1(w∗), which is
unambiguous, since it does not matter which w ∈ (π∗)−1(w∗) we pick.

(iii) We define the action of Γ on any point measure of trajectories naturally, e.g. if
ω =

∑
i∈I δ(w♦

i ,ti)
∈ M(W♦ × R+) and ϕ ∈ Γ, then ϕ(ω) :=

∑
i∈I δ(ϕ(w♦

i ),ti)
∈

M(W♦ ×R+).

Definition 2.9 (Counting measure). If S is a countable set, let us denote by µS the
counting measure on S.

Definition 2.10 (Homogeneous PPP on V ). Given some v ∈ R+, a random element R of
M(V ) has law Pv,1 if R is a Poisson point process on V with intensity measure v · µV .

In words, R ∼ Pv,1 if and only if the integer-valued random variables R({x}), x ∈ V
are i.i.d. with POI(v) distribution. Our next definition generalizes the previous one, since
WT with T = 1 can be identified with V .

Definition 2.11 (Finite-length random interlacement with length T ). Given some v ∈ R+

and T ∈ N+, a random element X of M(W♦) has law Pv,T if X is a Poisson point process
(PPP) on W♦ with intensity measure νv,T , where νv,T is defined as

νv,T := v · d1−T · µWT . (2.15)

Claim 2.12 (Construction of Pv,T using random walks). A cloud X of trajectories with
distribution Pv,T can be generated as follows. Let Nx denote the number of trajectories
starting from x. Then (Nx)x∈V are i.i.d. with POI(v) distribution and given their starting
points, the trajectories are conditionally independent, and they are distributed as the
first T − 1 steps of a simple random walk on G.

Definition 2.13 (Finite-length random interlacements with labels). Given some T ∈ N+,
a random element Z of M(W♦ × [0, 1]) has law QT if Z is a Poisson point process on
W♦ × [0, 1] with intensity measure

1

T
· d1−T · µWT × λ1 [ [0, 1] ] . (2.16)

Claim 2.14 (Construction of QT from P1/T,T ). A cloud Z of trajectories with distribution
QT can be generated as follows. Let X =

∑
i∈I δwi ∼ P1/T,T . Given X , let Ui, i ∈ I denote

conditionally i.i.d. random variables with UNI[0, 1] distribution. Then Z =
∑
i∈I δ(wi,Ui) ∼

QT .

In order to define the interlacement point process on a general (transient, weighted)
graph, we need to recall the σ-finite measure ν on W ∗ which was introduced in [50].
Recall the notion of the law P±x from Definition 2.4(ii). Our next theorem follows from
[50, Theorem 2.1].

Theorem 2.15 (Interlacement intensity measure). There exists a unique σ-finite measure
ν on (W ∗,W∗) such that for every A ∈ W∗ and every finite K ⊂⊂ V we have

ν (A ∩W ∗(K)) = QK((π∗)−1(A)), (2.17)

where the finite measure QK on W is defined by

QK(B) =
∑
x∈K

P±x (B, HK = 0 ), B ∈ W. (2.18)

We extend ν to W♦ by defining ν(W♦ \W ∗) := 0.

Definition 2.16 (Random interlacement point process). (i) The random interlacement
point process Z is a random element of M(W♦ × R+) which is a Poisson point
process on W♦ ×R+ with intensity measure ν × λ.
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(ii) Let us denote by Q∞ the law of Z1[W♦ × [0, 1] ]. Thus Q∞ is the law of a PPP on
M(W♦ × [0, 1]) with intensity measure ν × λ1[ [0, 1] ].

Claim 2.17. The laws of the above defined point processes are invariant under the
action of Γ.

Proof. It is enough to check that the measures νv,T and ν are invariant under Γ, and this
directly follows from the definitions of νv,T (cf. (2.15)) and ν (cf. (2.17), (2.18)).

3 One the role of (non)unimodularity

The goal of Section 3 is to prove Claim 1.2 and Proposition 1.3.
First we deal with a technical issue: our graph G is transitive, but there might be

many automorphisms that map the origin o to vertex x. We will use i.i.d. UNI[0, 1] random
variables (Ux)x∈V = U to simultaneously pick for each x ∈ V our favourite automorphism
ϕU
x

that maps o to x, moreover our construction of such a family of automorphisms will be

equivariant in the sense that ϕγ(U)
γ(x) (y) = γ(ϕU

x
(y)) holds for any γ ∈ Γ and any x, y ∈ V .

Definition 3.1 (Chart at a vertex, atlas). (i) Let G = (V ,E) denote a fixed copy of the
graph G with root o. Given some x ∈ V , we say that ϕ : V → V is a chart at x if ϕ is
a graph automorphism and ϕ(o) = x.

(ii) We call ϕ = (ϕ
x
)x∈V an atlas if ϕ

x
is a chart at x for all x ∈ V . Denote by Φ the set

of atlases.

(iii) The group Γ of graph automorphisms acts on Φ as follows: if γ ∈ Γ and ϕ ∈ Φ then
the atlas γ(ϕ) is defined by

(γ(ϕ))x = γ ◦ ϕ
γ−1(x)

. (3.1)

One easily checks that if ϕ is an atlas then indeed γ(ϕ) is also an atlas. Let

[0, 1]V6= := { u = (ux)x∈V ∈ [0, 1]V : ∀ x 6= y ∈ V we have ux 6= uy }. (3.2)

Our next result will imply that we can almost surely construct an atlas as a factor of i.i.d.
UNI[0, 1] random variables (Ux)x∈V = U .

Lemma 3.2 (Atlas as a factor of inhomogeneous input). There is a measurable function
F : [0, 1]V6= → Φ such that we have

∀ γ ∈ Γ, u ∈ [0, 1]V6= : F (γ(u)) = γ(F (u)) (3.3)

Proof. Let (xn)n∈N denote a well-ordering of V satisfying x0 = o. We will construct
the atlas ϕu := F (u) as follows. Let us fix x ∈ V . We will recursively construct ϕu

x
by

determining the values x′n := ϕu
x
(xn), n ∈ N one by one using induction on n. We define

x′0 := x. Assuming that we have already defined x′0, . . . , x
′
n for some n ∈ N, let us denote

Γn := {ϕ ∈ Γ : ϕ(xi) = x′i, i = 0, . . . , n }. (3.4)

Our induction hypothesis is that Γn 6= ∅. Note that this indeed holds for n = 0 since G is
transitive. Given x′0, . . . , x

′
n, note that the orbit On := Γnxn+1 of xn+1 under Γn is finite

since G is connected and locally finite. Let x′n+1 := argminy∈Onuy denote the vertex with
the smallest label among the possible options. Now we see that Γn+1 6= ∅ and we can
continue. If we let n → ∞, we obtain a well-defined graph automorphism ϕu

x
if we let

ϕu
x
(xn) := x′n, n ∈ N, noting that ϕu

x
is a chart at x. We do this for all x ∈ V to obtain the

atlas F (u) := ϕu = (ϕu
x
)x∈V .
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This construction works if (ux)x∈V are all distinct, i.e., if u ∈ [0, 1]V6=. Then it is
straightforward to check by induction on n that for any γ ∈ Γ, x ∈ V and n ∈ N we have
ϕ
γ(u)
γ(x)(xn) = γ(ϕu

x
(xn)). Hence we have ϕγ(u)

x
(y) = γ(ϕ

u
γ−1(x)(y)) for any γ ∈ Γ and any

x, y ∈ V , i.e., we have ϕγ(u) = γ(ϕu) (cf. (3.1)), i.e., (3.3) holds.

Proof of Claim 1.2. Let us assume that there is a measure Q on (W,W) such that prop-
erties (i) and (ii) of Claim 1.2 both hold.

We begin with the proof of statement (a) of Claim 1.2. For any x ∈ V let

W x := {w ∈W : w(0) = x }.

Let Zx, x ∈ V denote independent and identically distributed Poisson point processes
on W × R+ with intensity measure Q1[W o] × λ. Let us denote Z := (Zx)x∈V . Let
U = (Ux)x∈V denote a family of i.i.d. random variables with UNI[0, 1] distribution. Let
us define the atlas ϕU := F (U), where F is defined in Lemma 3.2. Note that we have
P[U ∈ [0, 1]V6= ] = 1. If U /∈ [0, 1]V6=, we define ZW = 0 (the empty point process on W×R+).
Otherwise, let us define the point process

ZW = ZW (U,Z) :=
∑
x∈V

ϕU
x

(Zx). (3.5)

It follows from (ii) that the intensity measure of ϕU
x

(Zx) is Q1[W x]× λ, thus ZW is a PPP
with intensity measure

∑
x∈V Q1[W x]× λ = Q× λ. It remains to check that the output

ZW depends on the i.i.d. input (U,Z) in an equivariant way. Indeed, for any γ ∈ Γ, we
have

ZW
(
γ(U), γ(Z)

)
= ZW

(
γ(U), (Zγ

−1(x))x∈V
) (3.5)

=
∑
x∈V

ϕγ(U)
x

(
Zγ
−1(x)

) (∗)
=

∑
x∈V

γ
(
ϕ
U
γ−1(x)

(
Zγ
−1(x)

)) (∗∗)
=
∑
y∈V

γ
(
ϕU
y

(
Zy
))

= γ
(∑
y∈V

ϕU
y

(
Zy
)) (3.5)

= γ
(
ZW (U,Z)

)
,

where in (∗) we used Lemma 3.2 and (3.1), and in (∗∗) we changed the variable of
summation from x to y = γ−1(x). The proof of (a) is complete.

If we define Z as in statement (b) of Claim 1.2 then the proof of (b) follows from
statement (a), property (i) of Claim 1.2, the mapping property of Poisson point processes
(cf. [15, Section 5.2]) and the fact that π∗(ϕ(w)) = ϕ(π∗(w)) holds for any w ∈W .

Proof of Proposition 1.3, (A) =⇒ (B). We will prove this implication by contradiction.
Let us suppose that (A) holds (i.e., G is unimodular) and the conclusion (B) is false, i.e.,
let us assume that there exists a measure Q on (W,W) that satisfies properties (i) and (ii)
of Claim 1.2. Let X :=

∑
i∈I δwi denote a PPP on (W,W) with intensity measure Q. Let

us define w∗i := π∗(wi) for any i ∈ I and let X ∗ := π∗(X ) =
∑
i∈I δw∗i . Note that it follows

from Claim 1.2(i) and the mapping property of Poisson point processes (cf. [15, Section
5.2]) that X ∗ is a PPP on (W ∗,W∗) with intensity measure ν.

For any n ∈ Z let us define the point processes LXn ∈M(V ) as LXn :=
∑
i∈I δwi(n) and

the total local time point process LX ∈M(V ) as

LX :=
∑
n∈Z

LXn . (3.6)

Let us also define the map: L : W ∗ → M(V ) by L(w∗) :=
∑
n∈Z δw(n) for any w ∈

(π∗)−1(w∗), noting that this definition is unambiguous, since it does not matter which
w ∈ (π∗)−1(w∗) we pick. Let us also define LX

∗
:=
∑
i∈I L(w∗i ), and note that we have

LX = LX
∗
. (3.7)
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We will show that the following equalities hold:

E
[
LX
∗
({o})

]
= 1, (3.8)

E
[
LXn ({o})

]
= E

[
LX0 ({o})

]
, n ∈ Z. (3.9)

Note that (3.8) together with (3.7) impliesE
[
LX ({o})

]
= 1, while (3.9) together with (3.6)

implies that E
[
LX ({o})

]
is equal to 0 or +∞, and we arrived at a contradiction. Conse-

quently, it remains to prove (3.8) and (3.9).

We start with the proof of (3.8). Given a random walk started form o, let τo denote the
number of its visits to o. Recalling the definition of the equilibrium measure from (2.12),
it follows from the strong Markov property of the random walk that τo has geometric
distribution with parameter e{o}(o). Now we can write

E
[
LX
∗
({o})

]
(∗)
= E

[
|X ∗ (W ∗({o})) |

]
· E [τo]

(2.17), (2.18)
= cap({o}) · 1

e{o}(o)

(2.12)
= 1, (3.10)

where in (∗) we used the properties of PPPs, (2.18) and the law of total expectation.

Let us now prove (3.9). For n ∈ Z and x, y ∈ V let us introduce the mass transport
function

fn(x, y) := E

[∑
i∈I
1 [wi(0) = x, wi(n) = y]

]
. (3.11)

Note that for each n ∈ Z, the function fn(·, ·) is invariant under the diagonal action of
the group Γ of automorphisms of G, since the intensity measure Q is invariant under Γ

by Claim 1.2(ii), which implies that the law of X is also invariant under Γ. Consequently,
we obtain

E
[
LX0 ({o})

]
=
∑
x∈V

fn(o, x)
(1.1)
=
∑
x∈V

fn(x, o) = E
[
LXn ({o})

]
, n ∈ Z. (3.12)

We are done with the proof of the fact that (A) =⇒ (B).

Proof of Proposition 1.3, (B) =⇒ (A). Our goal is to show that if G is locally finite, tran-
sitive, transient and not unimodular then there is a measure Q on (W,W) that satisfies
properties (i) and (ii) of Claim 1.2.

Let us denote the stabilizer of x ∈ V by S(x) := {ϕ ∈ Γ : ϕ(x) = x }. Let us denote
by S(x)y := {ϕ(y) : ϕ ∈ S(x) } the orbit of y ∈ V under the action of S(x).

By [29, Theorem 8.10] there exists a function µ : V → (0,+∞) such that

µ(x)

µ(y)
=
|S(x)y|
|S(y)x|

, x, y ∈ V. (3.13)

Let us note that we have

µ(x)

µ(y)
=
µ(ϕ(x))

µ(ϕ(y))
x, y ∈ V, ϕ ∈ Γ, (3.14)

since S(ϕ(x′))ϕ(y′) = ϕ(S(x′)y′) and thus |S(ϕ(x′))ϕ(y′)| = |S(x′)y′| holds if x′, y′ ∈ V ,
ϕ ∈ Γ.

For any x ∈ V , let us denote by N(x) the set of neighbours of x. Exercise 8.6 of [29]
and our assumptions on G (locally finite, transitive, non-unimodular) together imply that

for any o ∈ V there exists x ∈ N(o) such that |S(o)x| 6= |S(x)o|. (3.15)
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Let H ∈ H. For any w ∈ WH , let us denote supµ(w) := supn∈H µ(w(n)). Let us denote
W b
H := {w ∈WH : supµ(w) = µ(w(n)) for some n ∈ H }. For any w ∈W b

H , let us denote
argmaxµ(w) := {n ∈ H : µ(w(n)) = supµ(w) }. Let

WH := {w ∈W b
H : |argmaxµ(w)| < +∞}, W := W (−∞,∞), W+ := W [0,+∞). (3.16)

For any w ∈W , let n0(w) := min argmaxµ(w) denote the smallest index n ∈ Z for which
µ(w(n)) = supµ(w). Let us define T0 : W → W by (T0(w))(n) := w(n − n0(w)) for any
n ∈ Z. Let W

∗
:= π∗(W ). Let us define T ∗0 : W

∗ → W by T ∗0 (w∗) := T0(w) for any
w ∈ (π∗)−1(w∗), noting that this definition is unambiguous since the output T0(w) is
the same for all w ∈ (π∗)−1(w∗). Let us also note that n0(w) = n0(ϕ(w)) for any w ∈ W
by (3.14). This implies that T ∗0 (ϕ(w∗)) = ϕ(T ∗0 (w∗)) holds for any w∗ ∈ W ∗ and ϕ ∈ Γ,
i.e., T ∗0 is Γ-equivariant.

Let X ∗ =
∑
i∈I δw∗i denote a PPP on (W ∗,W∗) with intensity measure ν. We will show

that

P
(
w∗i ∈W

∗
, i ∈ I

)
= 1, (3.17)

thus X := T ∗0 (X ∗) =
∑
i∈I δT∗0 (w∗i ) ∈ M(W ) is almost surely well-defined. Note that

the mapping property of Poisson point processes implies that X is a PPP on W . Let us
denote by Q the intensity measure of X . Property (i) of Claim 1.2 holds by the mapping
property and the identity π∗(X ) = X ∗, which follows from the simple observation that
π∗(T ∗0 (w∗)) = w∗ holds for all w∗ ∈W ∗. In order to prove Property (ii) of Claim 1.2, we
only need to check that the law of X is invariant under the action of any Γ, but this
directly follows from the fact that the same holds for the law of X ∗ (cf. Claim 2.17) and
the observation that T ∗0 is Γ-equivariant.

It remains to prove (3.17). It is enough to prove ν(W ∗ \W ∗) = 0. By the definition of
ν (cf. Theorem 2.15), it is enough to show that P±x

(
W
)

= 1 for any x ∈ V . In fact, it is
enough to show that Px

(
W+

)
= 1 for any x ∈ V , since the backward path of a doubly

infinite random walk starting from x is a time-reversed random walk, and if the forward
path as well as the time-reversed backward path is in W+ then the whole doubly infinite
path is in W .

In order to prove Px
(
W+

)
= 1, it is enough to show that if (X(n))n∈N is a simple

random walk on G and if we define Y (n) := ln(µ(X(n))), n ∈ N, then (Y (n))n∈N is a
random walk on R with a negative drift, i.e., a process with i.i.d. increments such that
the expectation of one increment is strictly negative. The increments of the process
(Y (n))n∈N are indeed i.i.d. by the definition of simple random walk on the transitive
graph G and (3.14).

It remains to show that the expectation of one increment of (Y (n))n∈N is negative,
i.e.,

E
[
Y (1)− Y (0)

]
= Eo

[
ln(µ(X(1)))− ln(µ(o))

]
=

1

d

∑
x∈N(o)

ln

(
µ(x)

µ(o)

)
< 0. (3.18)

In order to prove this, we recall from [29, Corollary 8.8] a generalization of the mass
transport principle (1.1) which can be applied to any locally finite connected transitive
graph G (but unimodularity of G is not required): if f : V × V → [0,+∞) is invariant
under the diagonal action of Γ (i.e., if f is a mass transport function) then we have

∑
x∈V

f(o, x) =
∑
x∈V

f(x, o)
|S(x)o|
|S(o)x|

. (3.19)

Applying this identity to the function f(x, y) := 1[ {x, y} ∈ E ], where E is the edge set of
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G, we obtain d =
∑
x∈N(o)

|S(x)o|
|S(o)x| , thus the desired inequality (3.18) follows:

1

d

∑
x∈N(o)

ln

(
µ(x)

µ(o)

)
(3.13)
=

1

d

∑
x∈N(o)

ln

(
|S(x)o|
|S(o)x|

)
(∗)
< ln

1

d

∑
x∈N(o)

|S(x)o|
|S(o)x|

 = ln(1) = 0,

where (∗) holds by Jensen’s inequality, noting that the inequality is indeed strict by (3.15).

4 Further notation and auxiliary results

In Section 4.1 we introduce some notation related to the “shearing” of finite-length
trajectories and prove an upper bound on the probability that a point process on WT

with certain good properties hits a finite set K of vertices. In Section 4.2 we introduce
the topology of local convergence on the space M(W♦ × [0, 1]) of labeled trajectories
and show that the resulting space is Polish (i.e., separable and completely metrizable).
Finally, we prove that the law of the finite-length random interlacements process QT (cf.
Definition 2.13) weakly converges to the law of the random interlacements process Q∞
(cf. Definition 2.16) as T →∞ with respect to topology of local convergence.

4.1 Functions of point measures

Now we introduce some functions on the space of trajectories which can be naturally
extended to the case of point measures on the space of trajectories.

Given T ∈ N+ let us denote the vertex visited by a trajectory w ∈WT in the n’th step
by

sn(w) := w(n), 0 ≤ n ≤ T − 1. (4.1)

Let us introduce a separate notion for the initial point and the endpoint of w ∈WT :

i(w) := s0(w) = w(0) and e(w) := sT−1(w) = w(T − 1). (4.2)

If ω =
∑
i∈I δwj ∈M(WT ), let i(ω) =

∑
i∈I δi(wi) and e(ω) =

∑
i∈I δe(wi) denote the point

measure of initial points and endpoints of ω, respectively and sn(ω) :=
∑
i∈I δsn(wi) for

general step 0 ≤ n ≤ T −1. Note that i(ω), e(ω) and sn(ω), n = 0, 1, . . . T −1 are elements
of M(V ).

Given some T ≤ T ′ ∈ N, let us define the maps iT : WT ′ → WT and eT : WT ′ → WT

by
iT (w) = (w(0), . . . , w(T − 1)), eT (w) = (w(T ′ − T ), . . . , w(T ′ − 1)). (4.3)

In words: iT (w) is the initial sub-trajectory of w of length T and eT (w) is the terminal
sub-trajectory of w of length T . We can extend these notions for any point measure
ω =

∑
i∈I δwi ∈M(WT ′) as follows:

iT (ω) :=
∑
i∈I

δiT (wi), eT (ω) :=
∑
i∈I

δeT (wi). (4.4)

Claim 4.1 (Shearing the trajectories of Pv,T ′). If v ∈ R+, T ≤ T ′ ∈ N+ and X v,T ′ ∼ Pv,T ′
then the following statements hold.

(i) We have iT (X v,T ′) ∼ Pv,T and eT (X v,T ′) ∼ Pv,T .

(ii) For any n = 0, . . . , T ′ − 1 we have sn(X v,T ′) ∼ Pv,1.

Proof. Recall from Definition 2.11 that νv,T ′ denotes the intensity measure of the PPP
X v,T ′ .
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First we prove (i). For any w ∈ WT , the number of elements w′ of WT ′ satisfying
iT (w′) = w is dT

′−T , thus νv,T ′( (iT )−1(w) ) = v · d1−T by (2.15). Similarly, we have
νv,T ′( (eT )−1(w) ) = v · d1−T . The proof of (i) is complete by the mapping property of
Poisson point processes (cf. [15, Section 5.2]). The proof of (ii) can be deduced if we
apply (i) twice.

Lemma 4.2 (Bound on the probability of hitting a set K of vertices). Let β ∈ R+, T ∈ N+

and K ⊂⊂ V . Let X denote a random element of M(WT ). Let us assume that for any
x ∈ V the inequality E[i(X )({x})] ≤ β holds. Let us also assume that if we condition on
i(X ) then the trajectories of X are distributed as the first T − 1 steps of a simple random
walk on G with the points of the point process i(X ) as starting points. The probability of
the event that a trajectory from X hits the set K can be bounded as follows:

P [X (WT (K)) 6= 0 ] ≤ β · |K| · T. (4.5)

Before we prove Lemma 4.2, let us state a corollary which follows from it using
Claim 2.12.

Corollary 4.3. In particular, if X ∼ Pβ,T (cf. Definition 2.11) then (4.5) holds.

Proof of Lemma 4.2. For any n = 0, . . . , T − 1 let us denote Xn := sn(X ). We have

P [X (WT (K)) 6= 0 ]
(∗)
≤ E [X (WT (K))] ≤

T−1∑
n=0

E [Xn(K)]
(∗∗)
≤

T−1∑
n=0

∑
x∈V

∑
y∈K

β · pn(x, y)
(2.10)

=

T−1∑
n=0

∑
y∈K

∑
x∈V

β · pn(y, x) =

T−1∑
n=0

∑
y∈K

β =

T−1∑
n=0

β · |K| = β · |K| · T,

where (∗) is Markov’s inequality and (∗∗) follows from the assumptions of Lemma 4.2.

4.2 Topology, convergence, completeness

Recall the notion of H, WH(K), W •(K) and W♦(K) from Section 2.3.

Definition 4.4 (Localization map). (i) For any K ⊂⊂ V and H ∈ H, we define the map
ΛK : WH(K)→W •(K) as follows.

ΛK(w) :=
(
w
(
HK(w)+n

))
0≤n≤LK(w)−HK(w)

=
(
w
(
HK(w)

)
, . . . , w

(
LK(w)

))
. (4.6)

We define ΛK : W ∗(K) → W •(K) by letting ΛK(w∗) := ΛK(w) for any w ∈
(π∗)−1(w∗) (noting that this definition is unambiguous). By the above defini-
tions, ΛK(w♦) is defined for any w♦ ∈ W♦(K) (cf. (2.3), (2.4) and (2.6)), i.e.,
ΛK : W♦(K)→W •(K) is now well-defined. We call ΛK(w♦) the local image of w♦

on K.

(ii) We define the local image of a point measure ω =
∑
i∈I δ(w♦

i ,ti)
∈M(W♦× [0, 1]) on

a finite set K ⊂⊂ V by letting

ΛK(ω) :=
∑
i∈I

δ(ΛK(w♦
i ),ti)

1[w♦
i ∈W

♦(K)]. (4.7)

The notion of ΛK(ω) can be defined analogously for any ω ∈M(W♦) as well.

In words: ΛK(w♦) is the finite sub-trajectory of w♦ which starts at the first visit of
w♦ to K, ends at the last visit of w♦ to K, and the indexing of ΛK(w♦) starts from zero.

If K ⊆ K ′ ⊂⊂ V then the following compatibility relation holds for any ω ∈M(W♦ ×
[0, 1]):

ΛK(ω) = ΛK(ΛK′(ω)). (4.8)
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Claim 4.5 (Reconstruction from local images). Any ω ∈M(W♦ × [0, 1]) can be uniquely
reconstructed if we know ΛK(ω) for all K ⊂⊂ V .

Proof. It is enough to show that if w♦ ∈W♦ then w♦ can be uniquely reconstructed by
looking at ΛK(w♦) for all K ⊂⊂ V for which w♦ ∈ W♦(K). More specifically, we will
consider an exhaustion of V , i.e., an increasing sequence K1 ⊆ K2 ⊆ . . . of finite subsets
of V such that ∪∞k=1Kk = V , and reconstruct w♦ from ΛK1

(w♦),ΛK2
(w♦), . . . .

Recalling the definition of W♦ from (2.6), it suffices to verify our reconstruction
claim for elements of W •, W+, W− and W ∗ separately. In all of these cases, it is
straightforward to reconstruct w♦ up to time-shift equivalence (cf. Definition 2.1). If
w♦ ∈W •∪W+∪W− then the time-parametrization is determined since either the starting
point (if w♦ ∈ W • ∪W+) or the endpoint (if w♦ ∈ W−) of the trajectory is indexed by
zero. On the other hand, if w♦ ∈W ∗ then it is enough to reconstruct w♦ up to time-shift
equivalence.

Definition 4.6 (Point measure of labels of copies of a trajectory in the local image). For
any K ⊂⊂ V , w ∈ W •(K) and ω ∈ M(W♦ × [0, 1]) let us denote by ΛwK(ω) the point
measure on [0, 1] defined by

ΛwK(ω)(A) := ΛK(ω)({w} ×A), A ⊆ [0, 1]. (4.9)

The total mass |ΛwK(ω)| of the measure ΛwK(ω) is equal to the number of labeled
copies of w in ΛK(ω) with any label. Note that this number is finite by Definition 2.7. If
|ΛwK(ω)| = k then ΛwK(ω) can be viewed as the multiset of labels of the k copies of w in
ΛK(ω).

Definition 4.7 (Local pseudometric on the space of point measures). Let K ⊂⊂ V . Let us
define the pseudometric dK(·, ·) on M(W♦× [0, 1]) as follows. Let ω, ω′ ∈M(W♦× [0, 1]).
If there exists a w ∈W •(K) for which |ΛwK(ω)| 6= |ΛwK(ω′)| then we define dK(ω, ω′) := 1.
On the other hand, if |ΛwK(ω)| = |ΛwK(ω′)| for every w ∈W •(K), let us define

dK(ω, ω′) := max
w∈W•(K)
|ΛwK(ω)|6=0

dWass

(
ΛwK(ω)

|ΛwK(ω)|
,

ΛwK(ω′)

|ΛwK(ω′)|

)
, (4.10)

where dWass(·, ·) denotes the 1st Wasserstein distance (also known as earth mover’s
distance) of probability measures on the real line.

The reason we can write max instead of sup in (4.10) is that by Definition 2.7, for any
ω, ω′ ∈M(W♦ × [0, 1]) there are only finitely many trajectories w ∈ W •(K) for which
either |ΛwK(ω)| 6= 0 or |ΛwK(ω′)| 6= 0. Note that the expression on the r.h.s. of (4.10) is at
most 1, since both probability measures are supported on [0, 1]. One can easily check
that dK(·, ·) is indeed a pseudometric on M(W♦ × [0, 1]).

Definition 4.8 (Locally Cauchy sequences of point measures). Let ωn ∈ M(W♦ ×
[0, 1]), n ∈ N. We say that the sequence (ωn)n∈N is locally Cauchy if for every K ⊂⊂ V

the sequence (ωn)n∈N is Cauchy with respect to the pseudometric dK(·, ·).
Note that by Definition 4.7 the sequence (ωn)n∈N is locally Cauchy if and only if for

every K ⊂⊂ V there exists an n0 ∈ N+ such that for every w ∈ W •(K) the number
|ΛwK(ωn)| stays constant if n ≥ n0, moreover for any w ∈ W •(K) the sequence of
measures ΛwK(ωn), n ∈ N weakly converges (since the topology of weak convergence and
the topology induced by the 1st Wasserstein metric are equivalent if we only consider
probability measures supported on [0, 1]).

Claim 4.9 (Completeness). If the sequence of point measures ωn ∈ M(W♦ × [0, 1]),
n ∈ N is locally Cauchy then there exists ω ∈M(W♦× [0, 1]) such that for every K ⊂⊂ V
we have limn→∞ dK(ωn, ω) = 0.
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Proof. Let us assume that (ωn)n∈N is locally Cauchy. For any K ⊂⊂ V and w ∈ W •(K)

let us denote by Λ̃wK the weak limit of ΛwK(ωn). Let us define Λ̃K ∈M(W •(K)× [0, 1]) by
letting

Λ̃K({w} ×A) := Λ̃wK(A), w ∈W •(K), A ⊆ [0, 1].

Observe that (4.8) holds for ωn for each n, thus for any K ⊆ K ′ ⊂⊂ V the compatibility
relation Λ̃K = ΛK(Λ̃K′) also holds. Similarly to Claim 4.5, it is easy to check that this
implies that there exists a unique ω ∈ M(W♦ × [0, 1]) such that Λ̃K = ΛK(ω) for all
K.

Claim 4.10 (Polish space). There is a way to equip M(W♦ × [0, 1]) with a metric d̃(·, ·)
so that the resulting metric space is (i) complete and separable, moreover (ii) it is a
metrization of the convergence introduced in Definition 4.8.

Proof. Let us choose bK ∈ (0,+∞) for each K ⊂⊂ V so that
∑
K⊂⊂V bK < +∞. It is a

standard exercise to see that if we define d̃(ω, ω′) :=
∑
K⊂⊂V bK · dK(ω, ω′) then d̃(·, ·) is

indeed a metric on M(W♦ × [0, 1]) that satisfies properties (i) and (ii).

Now that we established a notion of convergence on the space M(W♦ × [0, 1]), we
can talk about weak convergence of probability measures on M(W♦ × [0, 1]), or more
precisely the weak convergence of the law of the finite-length random interlacements
process QT (cf. Definition 2.13) to the law of the random interlacements process Q∞ (cf.
Definition 2.16) as T →∞.

The idea of the proof the next lemma is similar to the proof of [10, Theorem A.2], [25,
Proposition 3.3], or the proof in [15, Theorem 3.1]. However, none of these results imply
the result of our next lemma, so we include its proof for completeness.

Lemma 4.11 (Convergence in law). The sequence of probability measures QT , T ∈ N
weakly converges toQ∞ w.r.t. the notion of local convergence introduced in Definition 4.8
as T →∞.

Proof. Let ZT ∼ QT and Z∞ ∼ Q∞. By Definition 4.8 it is enough to show that for any
K ⊂⊂ V one can couple ΛK(ZT ) and ΛK(Z∞) in a way that

P (ΛK(ZT ) 6= ΛK(Z∞))→ 0, T →∞. (4.11)

Let W ◦(K) denote the set of elements w of W •(K) that also satisfy i(w),e(w) ∈ K. Note
that for any w♦ ∈W♦ we have ΛK(w♦) ∈W ◦(K).

Note that both ΛK(ZT ) and ΛK(Z∞) are Poisson point measures onW ◦(K)×[0, 1]. Let
us denote by µT and µ∞ their respective intensity measures. We have µT = aT×λ1[ [0, 1] ]

and µ∞ = a∞ × λ1[ [0, 1] ], where aT and a∞ are both measures on W ◦(K). In order to
describe these measures, let us pick any w ∈W ◦(K) and let us assume that i(w) = x ∈ K,
e(w) = y ∈ K and |w| = ` ∈ N+. It follows from Definitions 2.13, 2.16, 4.4 as well as the
Markov property and time-reversibility of simple random walk on G that we have

aT (w) :=
1

T

T−∑̀
s=0

esK(x) · d1−` · eT−`−sK (y), (4.12)

a∞(w) := eK(x) · d1−` · eK(y), (4.13)

where eK(·) and esK(·) are defined in (2.12) and (2.13), respectively.
Next we note that it follows from (2.14) that we have limT→∞ aT (w) = a∞(w) for any

w ∈W ◦(K), moreover we also have

∑
w∈W◦(K)

aT (w) =
1

T

∑
x∈K

T−1∑
s=0

esK(x)→ cap(K) =
∑

w∈W◦(K)

a∞(w), T →∞, (4.14)
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where cap(K) is defined in (2.12). From these observations and Scheffé’s lemma we
obtain

lim
T→∞

∑
w∈W◦(K)

|aT (w)− a∞(w)| = 0. (4.15)

In order to prove (4.11), we will construct a coupling of ΛK(ZT ) and ΛK(Z∞) that
satisfies

P (ΛK(ZT ) 6= ΛK(Z∞)) ≤
∑

w∈W◦(K)

|aT (w)− a∞(w)|. (4.16)

Let us define

W ◦1 (K) := {w ∈W ◦(K) : aT (w) < a∞(w)}, W ◦2 (K) := W ◦(K) \W ◦1 (K). (4.17)

Let us now define some Poisson point processes on W ◦(K)× [0, 1].
Let Zwmin denote a PPP with intensity measure (aT (w) ∧ a∞(w))1[{w}] × λ1[ [0, 1] ], w ∈
W ◦(K).
Let Zwdiff denote a PPP with intensity measure |a∞(w) − aT (w)|1[{w}] × λ1[ [0, 1] ], w ∈
W ◦(K).
Let us assume that all of these Poisson point processes are independent.
Now let us define the Poisson point processes

Z̃T :=
∑

w∈W◦(K)

Zwmin +
∑

w∈W◦2 (K)

Zwdiff , Z̃∞ :=
∑

w∈W◦(K)

Zwmin +
∑

w∈W◦1 (K)

Zwdiff . (4.18)

By the above construction, the PPP Z̃T has the same law as ΛK(ZT ), while the PPP
Z̃∞ has the same law as ΛK(Z∞). Moreover, we have

P (ΛK(ZT ) 6= ΛK(Z∞)) = P
(
Z̃T 6= Z̃∞

)
= P

 ∑
w∈W◦(K)

|Zwdiff | 6= 0


≤

∑
w∈W◦(K)

P(|Zwdiff | ≥ 1) ≤
∑

w∈W◦(K)

|aT (w)− a∞(w)|.

This implies (4.16), which, together with (4.15), gives (4.11). The proof of Lemma 4.11
is complete.

5 Main result follows from coupling results

In Section 5 we show that Theorem 1.1 follows from a variant (Theorem 5.1) where
the labels on the trajectories are restricted to [0, 1]. We then deduce Theorem 5.1 from
Lemma 5.3, which states that we can couple a PPP with distribution QT and a PPP with
distribution Q2T with small local error. We then deduce Lemma 5.3 from Lemma 5.4,
which states that we can couple a PPP with distribution Pv,T and a PPP with distribution
Pv/2,2T with small local error. The result stated in Lemma 5.4 will be proved in Sections 6
and 7.

Recall from Definition 2.16 the notion of Q∞. Recall how Γ acts on M(W♦ × R+)

from Definition 2.8. Recall that if η = (ηx)x∈V ∈ ΩV and ϕ ∈ Γ then we denote
ϕ(η) = (ηϕ−1(x))x∈V .

Theorem 5.1 (Interlacement with restricted labels is a factor of i.i.d.). There exists a
probability space (Ω,A, ϑ) and a measurable map Υ : Ω

V →M(W ∗ × [0, 1]) with the
following properties.

(i) If η = (ηx)x∈V are i.i.d. with distribution ϑ then Υ(η) has law Q∞.
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(ii) For any graph automorphism ϕ ∈ Γ we have Υ(ϕ(η)) = ϕ
(
Υ(η)

)
.

In words: the PPP on W ∗ × [0, 1] with intensity measure ν × λ1[ [0, 1] ] is a factor of
i.i.d.

Before we prove Theorem 5.1, let us deduce Theorem 1.1 from it.

Proof of Theorem 1.1. We want to show that the PPP on W ∗×R+ with intensity measure
ν × λ (i.e., the random interlacement point process, cf. Definition 2.16) is a factor of
i.i.d. For any k ∈ N0, let us define the map ψk : M(W ∗ × [0, 1])→M(W ∗ × [k, k + 1]) by
letting ψk

(∑
i∈I δ(wi,ti))

)
:=
∑
i∈I δ(wi,ti+k)). Let Zk, k ∈ N denote i.i.d. point processes

with distribution Q∞, noting that (Zk)k∈N can be jointly realized as a factor of i.i.d. by
Theorem 5.1. Let Z :=

∑∞
k=0 ψk(Zk). We constructed Z as a factor of i.i.d. and Z is a

PPP on W ∗ ×R+ with intensity measure ν × λ.

Remark 5.2. (i) It is well-known (see for instance Corollary 3.3 of [28]) that the
factor of i.i.d property is not necessarily inherited by a distributional limit, hence
Theorem 5.1 does not follow automatically from Lemma 4.11 and the fact that QT
is a factor of i.i.d. for each T ∈ N+.

(ii) In our proof of Theorem 5.1 we only construct the output of the function Υ for
⊗x∈V ϑ-almost surely all elements of the input space ΩV . However, it is easy to
see that if we define the Υ-value for the remaining elements of ΩV to be the point
measure on W ∗ × [0, 1] with zero total mass then both statements (i) and (ii) of
Theorem 5.1 remain valid.

(iii) Note that one possible way of creating a PPP ω on W ∗ × [0, 1] with law Q∞ is (a)
to create a PPP ω′ =

∑
i∈I δw∗i on W ∗ with intensity measure ν and (b) conditional

on ω′, create i.i.d. random variables Ui, i ∈ I with UNI[0, 1] distribution and then
one obtains that the PPP

∑
i∈I δ(w∗i ,Ui) has distribution Q∞. Note that even if we

could create ω′ as a factor of i.i.d. in a cheaper way than our construction used
in the proof of Theorem 5.1, we do not know how to perform step (b) alone in a
factor of i.i.d. fashion if G is unimodular, since for each i ∈ I, the doubly infinite
trajectory w∗i is only identified up to time shift equivalence, thus we do not know
how to assign a single vertex of G to w∗i (where it can pick its UNI[0, 1] label up) in
an equivariant way. However, if G is non-unimodular then this can be done using
the tricks that we also used the proof of direction (B) =⇒ (A) of Proposition 1.3.

Our proof of Theorem 5.1 involves a construction of a PPP Z with law Q∞ by coupling
a sequence of finite-length interlacement point processes with increasing length in a way
that they almost surely converge to Z. Our next lemma provides the coupling between
consecutive elements of the sequence. Recall the notion of QT from Definition 2.13 and
the notion of dK(·, ·) from Definition 4.7.

Lemma 5.3 (Doubling the length of labeled finite-length interlacements). For any T,m ∈
N+ satisfying m ≤

√
T there exists a probability space (Ω̂, Â, ϑ̂) and a measurable map

Ψ̂T,m : M(WT × [0, 1])× Ω̂V −→M(W2T × [0, 1]) (5.1)

satisfying the following properties.

(i) If ZT ∼ QT and η̂ = (η̂x)x∈V are i.i.d with distribution ϑ̂ (moreover ZT and η̂ are
independent) then

Z2T := Ψ̂T,m

(
ZT , η̂

)
(5.2)

has law Z2T ∼ Q2T .
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(ii) For any realization of (ZT , η̂) and any ϕ ∈ Γ we have

Ψ̂T,m

(
ϕ(ZT ), ϕ

(
η̂
))

= ϕ
(

Ψ̂T,m

(
ZT , η̂

))
. (5.3)

(iii) Using the notation introduced in (5.2), there exists a constant C ∈ R+ that only
depends on G such that for any K ⊂⊂ V we have

P

(
dK (ZT ,Z2T ) >

1

m

)
≤ C · |K| · T−1/7 ·m2/7 + C · |K|2 · 1√

T
. (5.4)

Before we prove Lemma 5.3, let us deduce Theorem 5.1 from it.

Proof of Theorem 5.1. Let us start with Z0 ∼ Q1 (which can be realized as a factor of
i.i.d.) and let us iteratively define the point processes Zn, n ∈ N by letting

Zn+1 := Ψ̂Tn,mn

(
Zn, η̂n

)
, where Tn := 2n, mn :=

⌊
4
√
Tn

⌋
, n ∈ N, (5.5)

Ψ̂Tn,mn is the map defined in (5.1) and η̂n, n ∈ N are independent with distribution as in
Lemma 5.3. Note that Zn ∼ QTn , n ∈ N follows from Lemma 5.3(i) by induction on n.

We will now show that (Zn)n∈N almost surely locally converges (cf. Definition 4.8
and Claim 4.9). It is enough to show that for every K ⊂⊂ V , (Zn)n∈N is a Cauchy
sequence w.r.t. dK(·, ·) with probability 1. In order to show this, it is enough to show that
for every K ⊂⊂ V there exists an almost surely finite random variable N such that if
n ≥ N then we have dK

(
Zn,Zn+1

)
≤ 1/mn. However, this follows from Lemma 5.3(iii)

by Borel-Cantelli:

∞∑
n=0

P

(
dK
(
Zn,Zn+1

)
>

1

mn

)
(5.4)
≤

∞∑
n=0

(
C · |K| · T−1/7

n ·m2/7
n +C · |K|2 · 1√

Tn

)
(5.5)
< +∞.

Let Z denote the M(W♦ × [0, 1])-valued random variable that arises as the almost sure
local limit of the sequence (Zn)n∈N. Observe that it follows by a repeated application
of Lemma 5.3(ii) that (Zn)n∈N can be jointly realized as a factor of i.i.d., thus Z is
a factor of i.i.d. The only thing left to prove is that Z ∼ Q∞, but this follows from
Zn ∼ QTn , n ∈ N, Lemma 4.11 and the fact that almost sure convergence implies
convergence in distribution.

Lemma 5.3 involves the coupling of labeled finite-length interlacement point pro-
cesses. We will prove it using the next lemma, which involves the coupling of un-
labeled finite-length interlacement point processes. Recall the notion of Pv,T from
Definition 2.11.

Lemma 5.4 (Doubling the length of unlabeled finite-length interlacements). Let us fix
T ∈ N+ and v ∈ [T−3/2, T 2]. There exists a probability space (Ω̃, Ã, ϑ̃) and a measurable
map

Ψv,T : M(WT )× Ω̃V −→M(W2T ) (5.6)

satisfying the following properties.

(i) If X v,T ∼ Pv,T and η̃ = (η̃x)x∈V are i.i.d with distribution ϑ̃ (moreover X v,T and η̃

are independent) then

X v/2,2T := Ψv,T

(
X v,T , η̃

)
(5.7)

has law X v/2,2T ∼ Pv/2,2T .
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(ii) For any ϕ ∈ Γ we have

Ψv,T

(
ϕ(X v,T ), ϕ

(
η̃
))

= ϕ
(
Ψv,T

(
X v,T , η̃

))
. (5.8)

(iii) Using the notation introduced in (5.7), there exists a constant C ∈ R+ that only
depends on G such that for any K ⊂⊂ V we have

P
(

ΛK(X v,T ) 6= ΛK(X v/2,2T )
)
≤ C · |K| · T 4/7 · v5/7 + C · |K|2 ·

√
T · v. (5.9)

Before we prove Lemma 5.4, let us deduce Lemma 5.3 from it.

Proof of Lemma 5.3. Let us fix T,m ∈ N+ satisfying m ≤
√
T . Let ZT =

∑
i∈I δ(wi,ti) ∼

QT . For any n ∈ [m] let

ZnT :=
∑
i∈I

δ(wi,ti)1

[
ti ∈

[
n− 1

m
,
n

m

] ]
, XnT :=

∑
i∈I

δwi1

[
ti ∈

[
n− 1

m
,
n

m

] ]
. (5.10)

From this definition we obtain that almost surely we have

ZT =

m∑
n=1

ZnT . (5.11)

Note that it follows from Definitions 2.11 and 2.13 that XnT , n = 1, . . . ,m are i.i.d. with
distribution P1/(Tm),T . Let us now define

Xn2T := Ψ1/(Tm),T

(
XnT , η̃n

)
, (5.12)

where Ψ1/(Tm),T is the map defined in (5.6) and η̃n, n = 1, . . . ,m are independent with dis-
tribution as in Lemma 5.4. Now Xn2T , n = 1, . . . ,m are i.i.d. with distribution P1/(2Tm),2T

by Lemma 5.4(i). Let us denote Xn2T =
∑
i∈In δwi . Given Xn2T , let Uni , i ∈ In denote

conditionally i.i.d. random variables with UNI
[
n−1
m , nm

]
distribution.

Note that we can use auxiliary i.i.d. randomness on V to assign the labels Uni , i ∈ In
to the worms wi, i ∈ In of Xn2T in an equivariant way, since by Claim 2.12 every such
worm has not only an initial point, but an identification number describing an order of
the worms starting from the given vertex. For example, if we define the randomness on
one vertex to be a sequence of i.i.d. random variables with UNI

[
n−1
m , nm

]
distribution,

then the label of the k’th worm starting from the given vertex should be the k’th element
of this sequence.

For any n ∈ [m], let

Zn2T :=
∑
i∈In

δ(wi,Uni ), Z2T :=

m∑
n=1

Zn2T . (5.13)

It follows from our construction and the coloring property of Poisson point processes (cf.
[15, Section 5.2]) that Z2T ∼ Q2T (cf. Definition 2.13), thus Lemma 5.3(i) holds.

Note that Lemma 5.3(ii) also holds since in the construction of Z2T , all the extra
auxiliary i.i.d. randomness on the vertices were used in an equivariant way and all the
modifications implemented on the given ZT were also equivariant (cf. Lemma 5.4(ii)).

In order to show that the error bound of Lemma 5.3(iii) holds, let us first note that by
Lemma 5.4(iii) there exists a constant C ∈ R+ that only depends on G such that for any
K ⊂⊂ V we have

P (∃n ∈ [m] : ΛK(XnT ) 6= ΛK(Xn2T ) ) ≤
m∑
n=1

P ( ΛK(XnT ) 6= ΛK(Xn2T ) )
(∗)
≤

m ·

(
C · |K| · T 4/7

(Tm)5/7
+
C · |K|2 ·

√
T

Tm

)
= C · |K| · T−1/7 ·m2/7 + C · |K|2 · 1√

T
, (5.14)
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where (∗) follows from (5.9) with v := 1/(Tm), noting that the condition v ∈ [T−3/2, T 2]

of Lemma 5.4 follows from the condition m ≤
√
T of Lemma 5.3. The desired bound (5.4)

will follow from (5.14) as soon as we show that if the complement of the event on the
l.h.s. of (5.14) occurs, i.e., if we have

ΛK(XnT ) = ΛK(Xn2T ), n ∈ [m], (5.15)

then we have dK (ZT ,Z2T ) ≤ 1
m . The rest of the proof of Lemma 5.3 is devoted to the

proof of this implication.
Let us first note that by Definition 4.6, for each w ∈W •(K) and n ∈ [m] we have

|ΛwK(ZnT )| (5.10)
= ΛK(XnT )({w}), |ΛwK(Zn2T )| (5.13)

= ΛK(Xn2T )({w}), (5.16)
m∑
n=1

ΛwK(ZnT )
(5.11)

= ΛwK(ZT ),

m∑
n=1

ΛwK(Zn2T )
(5.13)
= ΛwK(Z2T ). (5.17)

Thus, if (5.15) holds then we have

|ΛwK(ZnT )| = |ΛwK(Zn2T )|, w ∈W •(K), n ∈ [m], (5.18)

|ΛwK(ZT )| = |ΛwK(Z2T )|, w ∈W •(K). (5.19)

For any w ∈ W •(K), let S(w) := {n ∈ [m] : |ΛwK(ZnT )| 6= 0 }. Note that if (5.15) holds
then we have S(w) = {n ∈ [m] : |ΛwK(Zn2T )| 6= 0 } and

dWass

(
ΛwK(ZnT )

|ΛwK(ZnT )|
,

ΛwK(Zn2T )

|ΛwK(Zn2T )|

)
≤ 1

m
, w ∈W •(K), n ∈ S(w), (5.20)

because both of the point measures ΛwK(ZnT ) and ΛwK(Zn2T ) are supported on
[
n−1
m , nm

]
.

Assuming that w ∈ W •(K) satisfies |ΛwK(ZT )| 6= 0 (or, equivalently, S(w) 6= ∅), we
define

αn :=
|ΛwK(ZnT )|
|ΛwK(ZT )|

(5.15), (5.18), (5.19)
=

|ΛwK(Zn2T )|
|ΛwK(Z2T )|

, n ∈ S(w). (5.21)

Assuming that (5.15) holds, for any w ∈W •(K) satisfying |ΛwK(ZT )| 6= 0 we have

dWass

(
ΛwK(ZT )

|ΛwK(ZT )|
,

ΛwK(Z2T )

|ΛwK(Z2T )|

)
(5.17)
= dWass

 ∑
n∈S(w)

αn
ΛwK(ZnT )

|ΛwK(ZnT )|
,
∑

n∈S(w)

αn
ΛwK(Zn2T )

|ΛwK(Zn2T )|

≤
∑

n∈S(w)

αn · dWass

(
ΛwK(ZnT )

|ΛwK(ZnT )|
,

ΛwK(Zn2T )

|ΛwK(Zn2T )|

)
(5.20)
≤

∑
n∈S(w)

αn ·
1

m

(5.17)
=

1

m
. (5.22)

If (5.15) holds then (5.19) also holds, thus by Definition 4.7 we can use (4.10) to cal-
culate dK (ZT ,Z2T ), consequently (5.22) gives that if (5.15) holds then we also have
dK (ZT ,Z2T ) ≤ 1

m . Using this, the proof of (5.4) follows from (5.14). The proof of
Lemma 5.3 is complete.

It remains to prove Lemma 5.4. Sections 6 and 7 are devoted to this proof.

6 Matching i.i.d. Poisson point processes on the vertex set

The goal of Section 6 is to state and prove Lemma 6.1. In Section 7 we will use
Lemma 6.1 to prove Lemma 5.4. Let us informally explain the idea of the proof of
Lemma 5.4: we will take a point process X v,T with distribution Pv,T , split it into two
i.i.d. point processes X1 and X2 with distribution Pv/2,T and we will try to match the
terminal points of (most of) the trajectories of X1 with the starting points of nearby
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trajectories of X2 using an auxiliary random walk trajectory of length L, gluing these
pairs of trajectories of length T as well as the auxiliary middle part of length L to create
a point process of trajectories of length 2T + L with distribution Pv/2,2T+L, and finally
we cut off a portion of length L from these trajectories to obtain the desired PPP X v/2,2T
with distribution Pv/2,2T . Intuitively, making the parameter L bigger helps us to reach
further when we find a pair for a trajectory (which results in a higher fraction of matched
trajectories), but making L bigger also makes the local images of X v,T and X v/2,2T more
different. We will see later in Section 7 that in some sense the optimal choice of L is
L =

⌈
T 4/7 · v−2/7

⌉
.

Lemma 6.1 provides us with a (partial) matching of the endpoints of the trajectories
of X1 and the starting points of the trajectories of X2, i.e., two i.i.d. point processes on V
with distribution Pv/2,1. In order to state Lemma 6.1, we need some definitions.

Let us define the projections p1 : V × V → V and p2 : V × V → V by letting
p1((x, y)) = x and p2((x, y)) = y. In words, p1 and p2 are the projections on the first and
second coordinates.

If ω =
∑
i∈I δ(xi,yi) ∈M(V × V ), let us denote by p1(ω) =

∑
i∈I δxi and p2(ω) =

∑
i∈I δyi .

If ϕ ∈ Γ and ω =
∑
i∈I δ(xi,yi) ∈M(V × V ), let us denote ϕ(ω) =

∑
i∈I δ(ϕ(xi),ϕ(yi)).

Recall the notion of Pv,1 from Definition 2.10. Recall how Γ acts on M(V ) from
Definition 2.8. Also recall that if η̂ = (η̂x)x∈V ∈ Ω̂V and ϕ ∈ Γ then we denote ϕ(η̂) =

(η̂ϕ−1(x))x∈V .

Lemma 6.1 (Partial matching of i.i.d. PPPs on V ). Let us fix α ∈ R+ and L ∈ N. There
exists a probability space (Ω̂, Â, π̂) and a measurable map

Ψ∗α,L : M(V )×M(V )× Ω̂V −→M(V × V ) (6.1)

satisfying the following properties.

(i) If R1 and R2 are i.i.d. Poisson point processes on V with law Pα,1 and η̂ = (η̂x)x∈V
are i.i.d with distribution π̂ (moreover (R1,R2) and η̂ are independent) then

R := Ψ∗α,L
(
R1,R2, η̂

)
(6.2)

is a PPP on V × V with intensity measure ν(2)({(x, y)}) := α · pL(x, y) (cf. (2.9)).

(ii) For any ϕ ∈ Γ we have

Ψ∗α,L
(
ϕ(R1), ϕ(R2), ϕ

(
η̂
))

= ϕ
(
Ψ∗α,L

(
R1,R2, η̂

))
. (6.3)

(iii) We have p1(R) = R1.

(iv) We have E

[(
R2({o})− p2(R)({o})

)
+

]
≤
√

2α · p2L(o, o).

(v) We have E

[(
p2(R)({o})−R2({o})

)
+

]
≤
√

2α · p2L(o, o).

In words, (R2({o})− p2(R)({o}))+ is the number of unmatched points of R2 located
at vertex o and (p2(R)({o})−R2({o}))+ is the number of unmatched points of R1 which
have a “phantom pair” (cf. Remark 6.2 below) located at vertex o. Section 6 is de-
voted to the proof of Lemma 6.1. In Section 6.1 we construct the partial matching R
satisfying (i), (ii) and (iii). In Section 6.2 we prove that the error bounds (iv) and (v) hold.
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6.1 Matching PPPs using the soft local time method

The goal of Section 6.1 is to provide the construction required for the proof of
Lemma 6.1. Let us fix α ∈ R+ and L ∈ N. As in Lemma 6.1, let R1 and R2 denote i.i.d.
Poisson point processes on V with law Pα,1. Let us denote the index sets with which the
points of R1 and R2 are indexed by I1 and I2:

R1 =
∑
i∈I1

δxi , R2 =
∑
i∈I2

δyi . (6.4)

Let us assign i.i.d. uniformly distributed labels on [0, α] to the points of R2, noting that
by Claim 2.12 applied with T = 1, this assignment can be done in an equivariant way
(similarly as we did in the proof of Lemma 5.3). If i ∈ I2, let ti denote the label assigned
to yi, thus Yα :=

∑
i∈I2 δ(yi,ti) is a PPP on V × [0, α] with intensity measure µV ×λ1[ [0, α] ].

Then, by Claim 2.12 we use further i.i.d. randomness on V to extend the PPP Yα in
an equivariant way to a PPP Y on V ×R+ with intensity measure µV × λ. Let us denote

Y =
∑
j∈J

δ(yj ,tj). (6.5)

Note that Y is still independent of R1, moreover we have

Yα = Y1[V × [0, α] ] and R2 =
∑
j∈J

δyj1[tj ≤ α]. (6.6)

Alternatively, one may view Y as follows: Y is made up of i.i.d. homogeneous Poisson
point processes on R+ with unit intensity, one such point process for each x ∈ V .

Also note that tj uniquely identifies the corresponding j ∈ J , since the values tj , j ∈ J
are almost surely distinct.

Remark 6.2. In order to create the PPPR on V ×V as in Lemma 6.1, we will find exactly
one pair in Y for each point in R1.

(a) Since Y ≥ Yα, it might happen that a point from R1 only has a phantom pair, that is,
a point of Y that does not correspond to a point in R2.

(b) Moreover, it might also happen that a point of Y that corresponds to a point in R2 is
not matched to any point in R1.

Nevertheless, we will show that these mismatches are infrequent if the parameter L is
big enough. More specifically, the error described in (a) will be bounded in Lemma 6.1(v)
and the error described in (b) will be bounded in Lemma 6.1(iv).

We are ready to define the factor of i.i.d. algorithm which assigns a pair in Y to every
point in R1. More precisely, we will construct a matching resulting in a point process R
of pairs which is a PPP with intensity measure ν(2)({(x, y)}) = α · pL(x, y), as required by
Lemma 6.1(i).

The algorithm will perform the matching in rounds. For ` ∈ N, let us denote by S` the
set of indices of the points of R1 which are not yet matched by the end of round `. Let
S0 := I1. We will have S`+1 ⊆ S` for any ` ∈ N. We will see that S` converges point-wise
to ∅ almost surely as `→∞, i.e., we have

P(∃ i ∈ I1 ∀ ` ∈ N : i ∈ S` ) = 0. (6.7)

Let us also define a randomly growing surface, encoded by a function g : V ×N→ R+.
We say that g(y, `) is the height of the surface at vertex y ∈ V after the end of round `.
We have g(y, 0) = 0 for each y ∈ V , and we will have g(y, `) ≤ g(y, `+ 1) for all y ∈ V and
all ` ∈ N.
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As we will see, this height function will govern the matching in the sense that a point
(yj , tj) of the point process Y will be already matched to some point in R1 by the end of
round ` if and only if tj ≤ g(yj , `). Moreover, it will also follow from the algorithm that
almost surely

g(y,∞) := lim
`→∞

g(y, `) < +∞, y ∈ V (6.8)

and we will see in Lemma 6.7 that g(y,∞) is close to α if L is big enough.
Now let us describe how to obtain S`+1 from S` and g(·, `+ 1) from g(·, `), and how to

find a pair for xi, i ∈ S` \ S`+1. This is a variant of the soft local time method, introduced
in [37]. Given R1, let U`,i, i ∈ I1 denote i.i.d. UNI[0, 1] random variables, realized in a
factor of i.i.d. fashion. Clearly, this equivariant assignment of labels to these points
(using some auxiliary randomness on the vertices) can be done in the same way as we
did in the case of R2 when we constructed Yα, just after (6.4). Let us define

S̃` :=

{
i ∈ S` :

U`,i < U`,i′ for all i′ ∈ S`\{i}
for which d(xi, xi′) ≤ 2L

}
, S`+1 := S` \ S̃`, (6.9)

where we recall that d(·, ·) denotes the graph distance on G. Clearly, the index set S̃` is
obtained from S` and the labels U`,i, i ∈ I in an equivariant way. Also note that we have

∀ i 6= i′ ∈ S̃` : d(xi, xi′) > 2L. (6.10)

In round `+ 1 we will find a pair for each point xi, i ∈ S̃` from the set of vertices of Y
not yet matched using the following method. Having already constructed g(., `) and S̃`
we define

ηi := min
{
t ≥ 0 : ∃ j ∈ J such that tj ∈

(
g(yj , `), g(yj , `) + t · pL(xi, yj)

] }
, (6.11)

for i ∈ S̃`. Note that in (6.11) we could write min instead of inf because for each i ∈ S̃`
the function y 7→ pL(xi, y) is finitely supported (it is supported on the ball of radius L
around xi). For every i ∈ S̃` there exist an almost surely unique index π(i) ∈ J for which

g(yπ(i), `) + ηi · pL(xi, yπ(i)) = tπ(i) (6.12)

holds. For each i ∈ S̃`

we match the point xi of R1 to the (labeled) point (yπ(i), tπ(i)) of Y. (6.13)

In words: we start from the function g(·, `) and for each i ∈ S̃` we grow g inside the ball
of radius L centered at the point xi by increasing t in the expression g(·, `) + t · pL(xi, ·).
We grow the function around xi until the graph of the function consumes a new point
(yπ(i), tπ(i)) from the support of Y, and this new point becomes the pair of xi. Also

note that we can do this simultaneously for all xi, i ∈ S̃` without ambiguities, since the
supports of the functions pL(xi, ·), i ∈ S̃` are disjoint by (6.10).

In order to finish round `+ 1, we use the variables ηi, i ∈ S̃` to define

g(y, `+ 1) := g(y, `) +
∑
i∈S̃`

ηi · pL(xi, y), y ∈ V. (6.14)

Intuitively, we explore the sub-region of V ×R+ that lies below the graph of the function
g(·, ` + 1) by the end of round ` + 1. As we mentioned before, a point (yj , tj) from Y is
matched to some point in R1 by the end of round `+ 1 if and only if tj ≤ g(yj , `+ 1), or,
more formally, ∑

i∈I1\S`+1

δ(yπ(i),tπ(i)) =
∑
j∈J

δ(yj ,tj)1[tj ≤ g(yj , `+ 1)]. (6.15)
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Definition 6.3 (Sigma-algebra F`). Given ` ∈ N let F` denote the σ-field generated by
R1, the variables Uk,i, k = 0, 1, . . . , `, i ∈ I1, the random variables ηi, i ∈ I1 \ S`, the
indices π(i) ∈ J, i ∈ I1 \ S` and the points (yπ(i), tπ(i)), i ∈ I1 \ S` of Y already matched to
some points of R1 up to the end of the `’th round.

In words, F` contains all the information about everything that has been constructed
up to the end of round ` and the variables U`,i, i ∈ I1. For example, the index sets S̃k and
the functions y 7→ g(y, k) for k = 0, . . . , ` are all measurable with respect to F`.
Definition 6.4 (Point process Ẏ`). For any ` ∈ N let us denote by J` the set of indices of
the points of Y not matched until the end of the `’th round. Let us denote by

Ẏ` :=
∑
j∈J`

δ(yj ,tj) (6.16)

the point process of labeled points of Y not matched until the end of the `’th round.

Note that with the above notation we have Y =
∑
i∈I1\S` δ(yπ(i),tπ(i)) + Ẏ`.

Lemma 6.5 (Consequences of the soft local time method). For any ` ∈ N, given F`,

(i) the random variables ηi, i ∈ S̃` are conditionally i.i.d. with EXP(1) distribution;

(ii) the random variables yπ(i), i ∈ S̃` are conditionally independent with distribution

P
(
yπ(i) = y | F`

)
= pL(xi, y), y ∈ V, (6.17)

(iii) the random variables ηi, i ∈ S̃` and yπ(i), i ∈ S̃` are conditionally independent,

(iv) the point process Ẏ` is a PPP on V ×R+ with intensity measure υ̇`, where

υ̇`({y} × [t, t+ dt]) = 1 [t > g(y, `)] dt. (6.18)

Proof. One proves the statements of the lemma by induction on `. Considering any ` ∈ N,
observe that by (6.10), the supports of the functions y 7→ pL(xi, y), i ∈ S̃` are disjoint. As
a consequence, in the `’th round we can use Proposition 4.1. of [37] simultaneously for
all indices from S̃` to conclude the proof of Lemma 6.5.

Now the proof of (6.7) is straightforward. Let us condition on R1 and let us also fix
i ∈ I1. Denote by N the number of points in R1 that are closer than 2L to xi:

N :=
∑
i′∈I1

1[ d(xi, xi′) ≤ 2L ]. (6.19)

Observe that N < +∞ holds almost surely. Moreover, we have

P
(
i ∈ S̃`

∣∣∣ F`−1

) (6.9)
≥ 1

N
1[i ∈ S`], (6.20)

since the random variables U`,i, i ∈ I1, ` ∈ N are i.i.d. Thus the number of rounds it takes
for us to find a pair for i is stochastically dominated by a GEO(1/N) random variable,
therefore it is almost surely finite and thus (6.7) holds.

Recalling the definition of g(y,∞) from (6.8) we note that if we let ` → ∞ in (6.15)
then we obtain that the point process of points of Y that are matched to a point in R1

consists of those points of Y that are below the graph of g(·,∞):∑
i∈I1

δ(yπ(i),tπ(i)) =
∑
j∈J

δ(yj ,tj)1[tj ≤ g(yj ,∞)]. (6.21)
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Let us introduce the σ-field

F := σ

⋃
`≥0

F`

 . (6.22)

Let us denote by π(I1) := {π(i), i ∈ I1} the subset of the index set J which consists of
the pairs matched to some index in I1. Let us introduce the point process of unmatched
points Ẏ:

Ẏ :=
∑

j∈J\π(I1)

δ(yj ,tj)
(6.21)

=
∑
j∈J

δ(yj ,tj)1[tj > g(yj ,∞)]. (6.23)

Our next result follows from Lemma 6.5.

Corollary 6.6. (i) Given F , the point process Ẏ is a PPP on V × R+ with intensity
measure υ̇, where

υ̇({y} × [t, t+ dt]) = 1[t > g(y,∞)] dt. (6.24)

(ii) The point process
R :=

∑
i∈I1

δ(xi,yπ(i)) (6.25)

is a Poisson point process on V ×V with intensity measure ν(2)({(x, y)}) = α·pL(x, y).

Proof. Using (6.8), the property stated in (i) follows if we let `→∞ in Lemma 6.5(iv). In
order to see that (ii) holds, we use our assumption that R1 ∼ Pα,1, Lemma 6.5(ii) and
the coloring property of Poisson point processes (cf. [15, Section 5.2]).

This already shows that the statements (i), (ii) and (iii) of Lemma 6.1 hold with our
construction of R. It remains to show that the error bounds (iv) and (v) hold. In order to
do so, we need some further preparations.

6.2 Bounds on the number of unmatched points

In the previous section (see (6.14) and Lemma 6.5) we have shown that

g(y,∞) =
∑
i∈I1 ηi · pL(xi, y), where

ηi, i ∈ I1 are conditionally i.i.d. with EXP(1) distribution given R1,
(6.26)

where R1 =
∑
i∈I1 δxi ∼ Pα,1.

Lemma 6.7 (Expectation and variance of the height function g(·,∞)). We have

E[g(y,∞)] = α, Var (g(y,∞)) = 2α · p2L(y, y) = 2α · p2L(o, o). (6.27)

Proof. In the case of the expectation we have

E[g(y,∞)] = E

[∑
i∈I1

ηi · pL(xi, y)

]
(∗)
= E

[∑
i∈I1

pL(xi, y)

]
(◦)
= α ·

∑
x∈V

pL (x, y)
(2.10)

= α, (6.28)

where in (∗) we used the law of total expectation together with (6.26), and in (◦) we used
that R1 ∼ Pα,1. In the case of the variance we have

Var (g(y,∞))
(∗∗)
= E [Var (g(y,∞) |R1)] + Var (E [g(y,∞) |R1])

(6.26)
= E

[∑
i∈I1

p2
L (xi, y)

]
+

Var

[∑
i∈I1

pL (xi, y)

]
(◦◦)
= 2α

∑
x∈V

p2
L (x, y)

(2.10)
= 2α

∑
x∈V

pL (y, x) pL (x, y)
(••)
= 2α · p2L(y, y),

where in (∗∗) we used the law of total variance, (◦◦) follows from the fact that R1 ∼ Pα,1
and (••) holds by the Chapman-Kolmogorov equations.
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Proof of Lemma 6.1(iv). Note that we have

R2({o}) (6.6)
= Y({o} × [0, α]), p2(R)({o}) (6.21), (6.25)

= Y({o} × [0, g(o,∞)]), (6.29)

which implies that the number of unmatched points of R2 at vertex o is equal to(
R2({o})− p2(R)({o})

)
+

= Y({o} × (g(o,∞) ∧ α, α])
(6.23)
= Ẏ({o} × [0, α]). (6.30)

We can thus write

E

[(
R2({o})− p2(R)({o})

)
+

]
= E

[
Ẏ({o} × [0, α])

]
= E

[
E
(
Ẏ({o} × [0, α])

∣∣∣ F)] (∗)
=

E
[
(α− g(o,∞))+

]
≤ E [|α− g(o,∞)|]

(∗∗)
≤
√
E [(α− g(o,∞))2]

(•)
≤
√

2α · p2L(o, o), (6.31)

where in (∗) we used Corollary 6.6(i), in (∗∗) we used Jensen’s inequality and in (•) we
used Lemma 6.7. The proof of Lemma 6.1(iv) is complete.

Proof of Lemma 6.1(v). Let M := R2({o}) ∧ p2(R)({o}) denote the number of matched
points of R2 at vertex o. We have

E[M ] = E

[
R2({o})−

(
R2({o})− p2(R)({o})

)
+

]
(◦)
≥ α−

√
2α · p2L(o, o), (6.32)

where in (◦) we used that R2 ∼ Pα,1 and Lemma 6.1(iv).

From this we obtain the desired upper bound on the number of unmatched points of
R1 that have a phantom pair located at vertex o:

E

[(
p2(R)({o})−R2({o})

)
+

]
= E [p2(R)({o})−M ]

(6.32)
≤

E [p2(R)({o})]−
(
α−

√
2α · p2L(o, o)

)
(◦◦)
= α−

(
α−

√
2α · p2L(o, o)

)
=
√

2α · p2L(o, o),

where (◦◦) holds because p2(R) ∼ Pα,1, as we now explain. We know from Lemma 6.1(i)
that R is a PPP on V × V with intensity measure ν(2)({(x, y)}) := α · pL(x, y), thus by the
mapping property of Poisson point processes (cf. [15, Section 5.2]) we obtain that p2(R)

is a PPP on V with intensity measure ν(1), where

ν(1)({y}) := ν(2)
(
(p2)−1({y})

)
= α

∑
x∈V

pL(x, y)
(2.10)

= α
∑
x∈V

pL(y, x) = α, y ∈ V.

Thus p2(R) ∼ Pα,1 follows from Definition 2.10. The proof of Lemma 6.1(v) is complete.

The proof of Lemma 6.1 is complete.

7 Doubling the length of unlabeled finite-length interlacements

The goal of this section is to prove Lemma 5.4. Recall our plan outlined at the
beginning of Section 6. In Section 7.1 we construct a coupling of a PPP with distribution
Pv,T and a PPP with distribution Pv/2,2T that satisfies properties (i) and (ii) of Lemma 5.4.
In Section 7.2 we show that the coupling that we constructed also satisfies the error
bound stated in Lemma 5.4(iii).
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7.1 Construction of the coupling

We are given X v,T ∼ Pv,T (cf. Definition 2.11). Using X v,T and some additional i.i.d.
randomness on the vertex set V of G as ingredients, we will create a point process
X v/2,2T with distribution Pv/2,2T which is coupled to X v,T in a way that the two point
processes are close to each other (locally) with high enough probability.

Given the PPP X v,T =
∑
i∈I δwi ∼ Pv,T , let us toss a fair coin for each finite trajectory

wi, i ∈ I and note that, by the same argument as in the proof of Lemma 5.3, but now with
only two possible labels, this can be done using auxiliary randomness on the vertices in
an equivariant fashion. Using this “coloring” we can write

X v,T = X1 + X2, (7.1)

where X1 and X2 are i.i.d. with distribution Pv/2,T . Let us introduce the notation

X1 :=
∑
i∈I1

δw1
i
, X2 :=

∑
i∈I2

δw2
i
. (7.2)

We will pair (most of) the trajectories of X1 to (most of) the trajectories of X2 in a way
that the matched pairs (mostly) look like the first and the second halves of a trajectory
of a copy of X v/2,2T . Recalling the notation introduced in (4.2), we define

R1 := e (X1) , R2 := i (X2) . (7.3)

In words: R1 is the point process of the terminal points of the trajectories of X1 and R2

is the point process of the initial points of the trajectories of X2. Let us also make the
following observation, which follows from Claim 2.12.

Claim 7.1 (Pinning down one endpoint of trajectories). Conditional onR1 andR2 (cf. (7.3)),

(i) the trajectories of X2 are distributed as the first T − 1 steps of a simple random
walk on G with the points of the point process R2 as starting points,

(ii) the time-reversals of the trajectories of X1 are distributed as the first T − 1 steps
of a simple random walk on G with the points of the point process R1 as starting
points,

(iii) all of these random walk trajectories are independent of each other.

Both R1 and R2 (cf. (7.3)) have law Pv/2,1 by Claim 4.1(ii), moreover R1 and R2 are
independent (since the same holds for X1 and X2). Thus, if we choose α := v/2 and

L :=
⌈
T 4/7 · v−2/7

⌉
, (7.4)

then we can apply Lemma 6.1 using R1 and R2 (as well as some auxiliary i.i.d. random-
ness on V ) as inputs. The output is a Poisson point process R on V × V with intensity
measure ν(2)({(x, y)}) = v

2 · pL(x, y). As we will see, the seemingly arbitrary choice of L
in (7.4) will turn out to minimize the value of an error term.

Given such a Poisson point process R, by the definition (2.9) of pL(x, y), one can use
auxiliary i.i.d. randomness on V , the coloring property of Poisson point processes (cf. [15,
Section 5.2]) and Lemma 3.2 just like in the case of the proof of Claim 1.2 to construct a
Poisson point process

X ′ ∼ Pv/2,L+1 satisfying i (X ′) = p1(R), e (X ′) = p2(R), (7.5)

in a way that the construction is equivariant under the action of Γ, the automorphism
group of the graph G. In words: we connect the vertices xi and yi of each pair (xi, yi) of
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R with a random walk trajectory that performs L steps (i.e., has length L+ 1), starts at
xi, and is conditioned to be at yi at time L. Although we omit the technical details of this
construction, let us mention that for a given vertex of G, the auxiliary randomness must
contain countably many i.i.d. random walks starting from that vertex, taking exactly L
steps and conditioned on being at a prescribed endpoint after L steps, for each possible
choice of an endpoint within a ball of radius L of the starting point.
Note that one can write X ′ =

∑
i∈I1 δw′i , where I1 is the same index set as the one that

appears in X1 =
∑
i∈I1 δw1

i
(cf. 7.2), since

i (X ′) (7.5)
= p1(R)

Lemma 6.1(iii)
= R1

(7.3)
= e (X1) . (7.6)

We have created R and then X ′ from R1 and R2 using auxiliary i.i.d. randomness, thus
we can use Claim 7.1 to make the following observation.

Claim 7.2. X1, X2 and X ′ are conditionally independent of each other given R1 and R2.

One goal of Lemma 6.1 was to create R in a way that the difference between R2 and
p2(R) is small. Let us define the point measure Rm2 ∈M(V ) by

Rm2 ({x}) := R2({x}) ∧ p2(R)({x}), x ∈ V. (7.7)

We will see that Rm2 ({x}) is the number of trajectories of X2 with starting point x that
are matched to a trajectory from X1. In the next lemma, the superscripts m and u stand
for “matched” and “unmatched”, respectively. More specifically, Xm2 and X u2 respectively
denote the point process of matched and unmatched trajectories of X2, while the point
process X̂ u2 consists of new trajectories that serve as continuations of the unmatched
trajectories of X1.

Lemma 7.3 (Rewiring). With the use of auxiliary i.i.d. randomness on V one can cre-
ate point processes X u2 ,Xm2 , X̂ u2 ∈M(WT ) in a factor of i.i.d. fashion that satisfy the
following properties.

(i) i (X u2 ) = R2−Rm2 , and conditional onR2−Rm2 , the trajectories of X u2 are distributed
as the first T − 1 steps of a simple random walk on G with the points of the point
process R2 −Rm2 as starting points.

(ii) X2 = X u2 + Xm2 .

(iii) i(X̂ u2 ) = p2(R) − Rm2 , and conditional on p2(R) − Rm2 , the trajectories of X̂ u2 are
distributed as the first T − 1 steps of a simple random walk on G with the points of
the point process p2(R)−Rm2 as starting points.

(iv) If we define
X̂2 := X̂ u2 + Xm2 , (7.8)

then, conditional on X ′ and X1, the trajectories of X̂2 are distributed as the first
T − 1 steps of a random walk on G with the points of the point process p2(R) as
starting points.

Proof. By repeating the proof of Lemma 6.1 for the PPP R1 defined in (7.3), with some
auxiliary i.i.d. randomness on V we can split the index set I2 (cf. (7.2)) in an equivariant
way into the disjoint union of Im2 and Iu2 such that if we define the point processes

Xm2 :=
∑
i∈Im2

δw2
i
, X u2 :=

∑
i∈Iu2

δw2
i
, (7.9)

then we have i (Xm2 ) = Rm2 and i (X u2 ) = R2 −Rm2 (cf. (7.3)).
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The statement (i) follows from Claims 7.1 and 7.2. The identity (ii) follows from (7.9).
Note that one can write R =

∑
i∈I1 δ(xi,yi), where I1 is the same index set as the one

that appears in X1 =
∑
i∈I1 δw1

i
(cf. 7.2), since

p1(R)
Lemma 6.1(iii)

= R1
(7.3)
= e(X1).

We can use auxiliary i.i.d. randomness on V to split the index set I1 in an equivariant way
into the disjoint union of Im1 and Iu1 in such a way that if we define the point processes

Rm :=
∑
i∈Im1

δ(xi,yi), Ru :=
∑
i∈Iu1

δ(xi,yi), (7.10)

then we have p2(Rm) = Rm2 and p2(Ru) = p2(R)−Rm2 . Just as above, such a splitting
of the index set I1 has in fact already been performed in the proof of Lemma 6.1.

Let us define the point process X̂ u2 =
∑
i∈Iu1

δw2
i

using auxiliary i.i.d. randomness on

the vertices of V so that w2
i is distributed as the first T − 1 steps of a simple random

walk on G satisfying i(w2
i ) = yi for any i ∈ Iu1 , moreover the trajectories w2

i , i ∈ Iu1 are
conditionally independent given their starting points. We omit the technical details of
this construction, which is carried out using Lemma 3.2 just like in the case of the proof
of Claim 1.2.

Statement (iii) holds with this construction, since p2(R)−Rm2 = p2(Ru) =
∑
i∈Iu1

δyi =

i(X̂ u2 ). If we put statement (iii) together with Claims 7.1 and 7.2, we obtain that state-
ment (iv) also holds, since

i
(
X̂2

)
(7.8)
= i

(
X̂ u2
)

+ i (Xm2 )
(i)
= (p2(R)−Rm2 ) +Rm2 = p2(R). (7.11)

We have already seen that the index set I1 (that was introduced to index the points of
X1 in (7.2)) can also be used to index the point processes X ′ (cf. (7.5) and (7.6)) and X̂2

(cf. (7.11)). Also note that e(X1) = i(X ′) by (7.6), moreover e(X ′) = i(X̂2) by (7.5) and
Lemma 7.3(iv). As a consequence, we can stitch together the three trajectories of X1,
X ′ and X̂2 indexed by the same i ∈ I1 to form a trajectory w′′i in W2T+L−1. The stitching
results in a point process that we denote by

X ′′ :=
∑
i∈I1

δw′′i ∈M(W2T+L−1). (7.12)

Recalling the notation introduced in (4.3) and (4.4), we have

iT (X ′′) = X1, eT (X ′′) = X̂2, eL+1 ( iT+L (X ′′) ) = X ′. (7.13)

Also note that we have
X ′′ ∼ Pv/2,2T+L−1, (7.14)

since the “middle part” X ′ has distribution Pv/2,L+1 by (7.5), and if we condition on X ′
then the “backward parts” (i.e., the trajectories of X1) are conditionally independent
(time-reversed) random walk trajectories of length T by Claim 7.1(ii) and (iii), moreover
the “forward parts” (i.e., the trajectories of X̂2) are conditionally independent random
walk trajectories of length T given X1 and X ′ by Lemma 7.3(iv).

Finally, let us define
X v/2,2T := i2T (X ′′) . (7.15)

Our goal is to show that the statements of Lemma 5.4 hold for this point process X v/2,2T .
Lemma 5.4(i) holds, as we now explain. On the one hand, we started with X v,T ∼ Pv,T

and the auxiliary randomness that we used was i.i.d. on V and it was also independent
of X v,T . On the other hand, X v/2,2T ∼ Pv/2,2T follows from (7.14) and Claim 4.1(i).
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Lemma 5.4(ii) holds since we used our input (i.e., X v,T and the auxiliary i.i.d. ran-
domness) in an equivariant fashion: if the input is transformed by some ϕ ∈ Γ then the
output X v/2,2T will also be transformed by ϕ.

It remains to prove Lemma 5.4(iii), i.e., the upper bound on the probability of the
event {ΛK(X v,T ) 6= ΛK(X v/2,2T )} that the local image of input X v,T on K and the local
image of the output X v/2,2T on K are different. This is what we will do in Section 7.2.

7.2 Bounding the probability of local discrepancies

Recall the notion of the localization map ΛK from Definition 4.4.

Lemma 7.4 (Bounds on the probabilities of bad events). There exists a constant C = C(G)

such that for any T ∈ N+, K ⊂⊂ V and any v ∈ [T−3/2, T 2], we have

(i) P
(
ΛK(X v,T ) 6= ΛK(X1) + ΛK(X2)

)
= 0,

(ii) P
(

ΛK(X2) 6= ΛK(X̂2)
)
≤ 2 · |K| · T ·

√
v · p2L(o, o),

(iii) P (|ΛK(X ′)| 6= 0) ≤ v
2 · |K| · (L+ 1),

(iv) P
(
|ΛK(X ′)| = 0, ΛK(X1) + ΛK(X̂2) 6= ΛK(X ′′)

)
≤ C · v ·

√
T · |K|2,

(v) P
(
ΛK(X ′′) 6= ΛK(X v/2,2T )

)
≤ v

2 · |K| · (L− 1).

Before we prove Lemma 7.4, let us deduce the proof of Lemma 5.4(iii) from it.

Proof of Lemma 5.4(iii). Let us introduce the events A1 := {ΛK(X v,T ) 6= ΛK(X1) +

ΛK(X2)}, A2 := {ΛK(X2) 6= ΛK(X̂2)}, A3 := {|ΛK(X ′)| 6= 0}, A4 := {ΛK(X1) + ΛK(X̂2) 6=
ΛK(X ′′)}, A5 := {ΛK(X ′′) 6= ΛK(X v/2,2T )}. We first argue that if the events Ac1, A

c
2, A

c
4, A

c
5

all occur then {ΛK(X v,T ) = ΛK(X v/2,2T )} also occurs. Indeed:

ΛK(X v,T )
Ac1= ΛK(X1) + ΛK(X2)

Ac2= ΛK(X1) + ΛK(X̂2)
Ac4= ΛK(X ′′) A

c
5= ΛK(X v/2,2T ). (7.16)

Thus by De Morgan’s laws and the union bound we obtain

P
(

ΛK(X v,T ) 6= ΛK(X v/2,2T )
)
≤ P(A1) + P(A2) + P(A4) + P(A5). (7.17)

Noting that P(A4) ≤ P(A3) + P(Ac3 ∩ A4), we obtain that P
(
ΛK(X v,T ) 6= ΛK(X v/2,2T )

)
can be upper bounded by the sum of the terms on the r.h.s. of (i)–(v). Using that our
assumption v ≤ T 2 and the definition (7.4) of L together imply L + 1 ≤ 2L, we obtain
that the sum of the terms on the r.h.s. of (i)–(v) is less than or equal to

2 · |K| · T ·
√
v · p2L(o, o) + 2 · |K| · v · L+ C · |K|2 · v ·

√
T . (7.18)

Noting that p2L(o, o) ≤ C · L−3/2 by Lemma 2.5, we can use the definition (7.4) of L to
see that the first two terms of (7.18) are both upper bounded by a constant multiple
of |K| · T 4/7 · v5/7, thus the upper bound stated in (5.9) indeed holds. The proof of
Lemma 5.4(iii) is complete (given Lemma 7.4).

The proof of Lemma 5.4 is complete (given Lemma 7.4).

Proof of Lemma 7.4(i). We have X v,T = X1 + X2 by (7.1), thus ΛK(X v,T ) = ΛK(X1) +

ΛK(X2) follows from the definition of ΛK : M(W♦)→M(W •(K)), cf. Definition 4.4.
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Proof of Lemma 7.4(ii). Recall from the statement of Lemma 7.3 that we have X2 =

X u2 + Xm2 and X̂2 = X̂ u2 + Xm2 , thus by Definition 4.4 and the union bound we obtain

P
(

ΛK(X2) 6= ΛK(X̂2)
)
≤ P (X u2 (WT (K)) 6= 0) + P

(
X̂ u2 (WT (K)) 6= 0

)
. (7.19)

In order to bound the first term on the r.h.s. of (7.19), first observe that for any x ∈ V
we have

i(X u2 )({x}) Lemma 7.3(i)
= R2({x})−Rm2 ({x}) (7.7)

=
(
R2({x})− p2(R)({x})

)
+
, (7.20)

thus we obtain that for any x ∈ V we have E [i(X u2 )({x})] ≤
√
v · p2L(o, o) using

Lemma 6.1(iv) and the fact that the law of i(X u2 ) is invariant under the action of Γ.
Putting this together with Lemma 4.2 and Lemma 7.3(i), we obtain P (X u2 (WT (K)) 6= 0) ≤
|K| · T ·

√
v · p2L(o, o). The second term of on the r.h.s. of (7.19) can be bounded anal-

ogously using Lemma 7.3(iii), Lemma 6.1(v) and Lemma 4.2. Plugging these bounds
into (7.19) we obtain Lemma 7.4(ii).

Proof of Lemma 7.4(iii). First observe that it follows from the definition of ΛK (cf. Defi-
nition 4.4) that the event {|ΛK(X ′)| 6= 0} occurs if and only if a trajectory from X ′ hits
K. Recalling from (7.5) that X ′ ∼ Pv/2,L+1, the desired bound is just an application of
Corollary 4.3.

Proof of Lemma 7.4(iv). Recall X ′′ =
∑
i∈I1 δw′′i ∈ M(W2T+L−1) from (7.12). Recall

from (7.13) that we have iT (X ′′) = X1, eT (X ′′) = X̂2 and eL+1 ( iT+L (X ′′) ) = X ′. It
follows from Definition 4.4 that we have

ΛK(X ′′) :=
∑
i∈I1

δΛK(w′′i ) 1[w′′i ∈W •(K) ], (7.21)

ΛK(X1) :=
∑
i∈I1

δΛK(iT (w′′i )) 1[ iT (w′′i ) ∈W •(K) ], (7.22)

ΛK(X̂2) :=
∑
i∈I1

δΛK(eT (w′′i )) 1[ eT (w′′i ) ∈W •(K) ]. (7.23)

In words, the event {|ΛK(X ′)| = 0} that appears in (iv) means that the trajectories of X ′
are not in W •(K). Now let us note that if i ∈ I1 and the event{

eL+1 ( iT+L (w′′i ) ) /∈W •(K)
}
∩
({

iT (w′′i ) ∈W •(K)
}
∩
{

eT (w′′i ) ∈W •(K)
})c

(7.24)

occurs then we have

δΛK(w′′i ) 1[w′′i ∈W •(K) ] =

δΛK(iT (w′′i )) 1[ iT (w′′i ) ∈W •(K) ] + δΛK(eT (w′′i )) 1[ eT (w′′i ) ∈W •(K) ], (7.25)

because if both terms on the r.h.s. vanish then the l.h.s. also vanishes, but if exactly
one term on the r.h.s. is nonzero then it is equal to the l.h.s. If (7.25) holds for all i ∈ I1
then by (7.21)–(7.23) we obtain ΛK(X1) + ΛK(X̂2) = ΛK(X ′′). As a consequence, the bad
event of (iv) can only occur if there is an i ∈ I1 such that both iT (w′′i ) and eT (w′′i ) hit K.
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We can thus bound

P
(

ΛK(X ′) = 0, ΛK(X1) + ΛK(X̂2) 6= ΛK(X ′′)
)
≤

P (∃ i ∈ I1 : iT (w′′i ),eT (w′′i ) ∈W •(K) ) ≤∑
x,y∈K

T−1∑
k=0

2T+L−1∑
`=T+L

P [∃ i ∈ I1 : w′′i (k) = x, w′′i (`) = y ]
(∗)
≤

∑
x,y∈K

T−1∑
k=0

2T+L−1∑
`=T+L

v

2
· p`−k(x, y) ≤ v

2
·
∑
x,y∈K

2T+L∑
n=1

n · pn(x, y)
(2.11)
≤

v

2
·
∑
x,y∈K

2T+L∑
n=1

C · n−1/2
(∗∗)
≤ v · |K|2 · C ·

√
T , (7.26)

where in (∗) we used Markov’s inequality, X ′′ ∼ Pv/2,2T+L−1 (cf. (7.14)) and Claim 4.1,
and in (∗∗) we used that our assumption v ≥ T−3/2 and the definition (7.4) of L imply
L ≤ T .

Proof of Lemma 7.4(v). Recall from (7.12) the notation X ′′ =
∑
i∈I1 δw′′i ∈M(W2T+L−1)

and also recall from (7.15) that X v/2,2T = i2T (X ′′). Let i ∈ I1 and note that if eL−1(w′′i )

does not hit K then ΛK(w′′i ) = ΛK(i2T (w′′i )), thus P
(
ΛK(X ′′) 6= ΛK(X v/2,2T )

)
is less

than or equal to the probability that a trajectory from eL−1(X ′′) hits K. Observing
that eL−1(X ′′) ∼ Pv/2,L−1 by (7.14) and Claim 4.1(i), the desired bound follows from
Corollary 4.3.

A Heat kernel estimate

Although the result of Lemma 2.5 is well-known (as a mathematical folklore), since
we were unable to find a written reference satisfying all of our needs, in this appendix
we shall present a quick access to its proof, collecting all the necessary results together
(in their appropriate forms) and filling in the missing gaps.

We will proceed as follows. In Subsection A.1 we will recall some notions and defini-
tions from (geometric) group theory that we will use extensively during the argument.
After that, in Subsection A.2 we will take a short excursion in the structure theory
of groups and will argue that any graph which we will encounter (i.e., satisfying the
conditions of Lemma 2.5) has at least cubic growth rate. We have put this argument in a
separate subsection since it uses deep theorems from the structure theory of groups,
which have little to do with probability theory. The final steps of the proof are collected
in Subsection A.3: First, using a general result of [14] we will show that such a cubic
growth rate implies at least 3-dimensional isoperimetry, then we will substitute this
isoperimetric inequality into the machinery provided by [32] to produce the desired
upper bound on the transition probabilities.

From now on, if we don’t say otherwise, G will always denote a connected, locally
finite infinite graph. Recall that such a graph is called (vertex-)transitive, if the group
of its graph automorphisms acts transitively on its vertex set. Recall also that a graph
is called transient if a simple random walk on it is transient (and is called recurrent
otherwise).

A.1 Preliminaries

Consider two functions f, g : N→ R+. Let us introduce the notation f � g meaning
that there exist some constants C,α > 0 such that f(n) ≤ Cg(αn) holds for all n > 0. We
say that f and g are equivalent, denoted by f ∼ g, if f � g and f � g.
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Definition A.1. Let f : N → R+. The function f is called polynomial if there exists
some β > 0 such that f(n) ∼ nβ. Furthermore, it is called superpolynomial if nβ � f(n)

for all β > 0.

For example, according to this definition, the function nπ is considered to be polyno-
mial and the function nlog(log(n)) is superpolynomial.

Most of the time graphs and groups are only considered up to quasi-isometries when
their large scale geometric properties, such as the growth rate, are being examined. We
recall this notion in the next definition, albeit its definition can be found in any textbook
considering any aspect of asymptotic geometry (for example [36], [29], [56] or [19]).

Definition A.2. Suppose that (X1,d1) and (X2,d2) are metric spaces. A map Φ : X1 →
X2 is called a quasi-isometry (or a rough isometry) if there exist positive constants α and
β such that the following two conditions are met:

(i) for all x, y ∈ X1, we have α−1 · d1(x, y)− β ≤ d2(Φ(x),Φ(y)) ≤ α · d1(x, y) + β;

(ii) for each y ∈ X2, there is some x ∈ X1 such that d2(y,Φ(x)) < β.

If there is such a quasi-isometry between the two metric spaces then we say that they
are quasi-isometric (or roughy isometric).

It is easy to check that being quasi-isometric is an equivalence relation.
As it was mentioned before, in the first step of the proof of Lemma 2.5 we will use

some interplay between groups and graphs. Therefore, it is worth it to recall the notion
of Cayley graphs.

Given a finitely generated group Γ with a symmetric generating set S, we define its
(right) Cayley graph (with respect to the given generating set) Cay(Γ, S) to be the graph
whose vertices are the elements of Γ and whose edge set is

E(Cay(Γ, S)) := {(x, y) ∈ Γ× Γ : y = xs for some s ∈ S} . (A.1)

Let us note that there is a natural (vertex-)transitive action of Γ on Cay(Γ, S) given by
the multiplication from the left, whence Cayley graphs are always transitive. However,
transitivity does not necessarily imply that the graph is a Cayley graph of some group
(the standard example of this is the so-called Petersen graph).

Finally, let us recall some definitions from elementary group theory. Given a group Γ,
by the index of a subgroup H ≤ Γ we mean the number its (left or right) cosets

[Γ : H] := |{xH : x ∈ Γ}| = |{Hx : x ∈ Γ}| . (A.2)

If the two sets on the right-hand side are also equal (not just in size), then the subgroup
H is called normal, which is denoted by H / Γ.

If we are given two subgroups H,K ≤ Γ, then their commutator is the generated
subgroup

[H,K] := 〈hkh−1k−1 : h ∈ H, k ∈ K〉. (A.3)

Definition A.3. A group Γ is called nilpotent (or s-step nilpotent) if the lower central
series γ0(Γ) := Γ, γi+1(Γ) := [γi(Γ),Γ] terminates in γs(Γ) = {1} in s ∈ N steps.

Since an Abelian group is 1-step nilpotent, one can think about the class of nilpotent
groups as the groups that are almost Abelian.

For further reference, let us note here that for the elements of the lower central
series we have γi+1(Γ)/γi(Γ) and that the quotient group γi(Γ)/γi+1(Γ) is always Abelian
(for example see page 113 of [40]).
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A.2 Growth of graphs and structure of groups

If we endow the transitive graph G with the usual graph metric, denoted by d(., .),
then the ball of radius n ∈ N centered at x ∈ V (G) is B(x, n) := {y ∈ V (G) : d(x, y) ≤ n}.
The function VG(n) := |B(o, n)| is called the (volume) growth function, where o ∈ V (G) is
chosen arbitrarily (due to the transitivity). A graph has (super)polynomial growth if its
growth function is (super)polynomial.

Using the so-called Nash-Williams criterion (see page 37, equation (2.14) of [29])
from electric network theory, one can immediately give a necessary condition on the
growth function of a transient graph.

Lemma A.4 ([56], Lemma 3.12). If G is a transitive and transient graph, then

lim inf
n→∞

VG(n)/n2 =∞.

In words, Lemma A.4 says that a transient, transitive graph must have a growth rate
faster than quadratic. Not surprisingly, to arrive at the aformentioned at least cubic
growth rate, we need much stronger results.

Another crucial observation is the following. By definition we have that if our
transitive graph G has superpolynomial growth then for all α > 0 there exists a constant
c > 0 (maybe depending on α) such that the growth function satisfies cnα ≤ VG(n) for all
n ∈ N. In particular, this means we already have the desired at least cubic growth rate
in this case. Consequently, we only need to focus on graphs with polynomial growth, or
more precisely, we only need to show that a transient, transitive graph with polynomial
growth has at least cubic growth rate. Fortunately, as the next result shows, we have a
good understanding of the structure of these graphs.

Theorem A.5 ([52], Theorem 1.). If a transitive graph has polynomial growth then it is
roughly isometric to a Cayley graph of a finitely generated group that has a nilpotent
subgroup of finite index.

Maybe it is worth mentioning that Theorem A.5 is an extension of the famous theorem
of Gromov from [20] (see page 54, Main theorem therein) about the structure of groups
with polynomial growth. Let us also note here that the way we stated Theorem A.5 is
just the corollary of the original statement.

To convince the reader that Theorem A.5 is indeed all we can wish for, it is reasonable
to state the following lemma about the growth of a graph being invariant under quasi-
isometries. Moreover, this next lemma can also be used to define the notion of volume
growth for groups, or more precisely, for finitely generated groups, supplemented with
the definition of Cayley graphs from the previous subsection.

Lemma A.6 ([56], Lemma 3.13). If the graphs G and G′ are roughly isometric (as metric
spaces) then their growth functions are equivalent.

Indeed, it is an easy exercise to show that the Cayley graphs of a finitely generated
group with respect to different generating sets are roughly isometric. Hence, it is
meaningful to define the (volume) growth function of a finitely generated group as the
growth function of one of its Cayley graphs.

With the growth function being defined for finitely generated groups, the other step
to convince the reader about the usefulness of Theorem A.5 is a consequence of the
following property.

Lemma A.7 ([56], Lemma 3.14). Let Γ be a finitely generated group with a finite index
subgroup Γ1. Then Γ and Γ1 have equivalent growth functions.

Indeed, Theorem A.5 combined with Lemmas A.6 and A.7 tells us that to describe
all the transitive graphs of polynomial growth it is enough to consider the (asymptotic)
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structure of finitely generated nilpotent groups. Fortunately, the latter was done nearly
50 years ago in [6] and [21].

Recall from elementary group theory (or see [40], Theorem 10.20) the fundamental
structure theorem of finitely generated Abelian groups. One of its consequences is
the following observation: if we are given a finitely generated Abelian group Γ then
there exists a nonnegative integer d ∈ N such that Γ contains a subgroup of finite index
isomorphic with the free Abelian group Zd. In this case, this integer d is called the rank
(or the free-rank) of the Abelian group and is denoted by rk(Γ).

Now, if we are given a finitely generated nilpotent group Γ with lower central
series (γi(Γ))si=0 then, as we mentioned previously, the quotient groups γi(Γ)/γi+1(Γ)

are (finitely generated) Abelian groups. Consequently, it is meaningful to define the
nonnegative integer

d(Γ) :=

s∑
i=1

i rk (Γi−1/Γi) . (A.4)

As the following result, the so-called Bass-Guivarc’h formula, says, this number d(Γ)

can be used to describe the structure of a finitely generated nilpotent group. Let us
mention here that the name comes from the fact that in [21] (see Theorem II.4. therein)
an identical result was proved for topological groups.

Theorem A.8 ([6], Theorem 2.). If Γ is a finitely generated nilpotent group then we have

VΓ(n) ∼ nd(Γ). (A.5)

An immediate consequence of this result, using Lemma A.7, is the following: if a
finitely generated group has a finite-index nilpotent subgroup then it has polynomial
growth. Note that this consequence (accompanied with Theorem A.5) gives a characteri-
zation of transitive graphs with polynomial growth. Moreover, due to Lemma A.4, this
result also implies the desired at least cubic growth in the polynomial growth regime
and hence we just arrived at the following corollary, which can be considered as the first
step in the proof of Lemma 2.5.

Corollary A.9. If G is a transient transitive graph then we have VG(n) � n3, i.e., such a
graph has at least cubic growth.

A.3 Isoperimetry and transition probabilities

Although most of the authors use the notion of edge boundary in the following
definition of isoperimetry, due to the local finiteness of the graph and the fact that we
don’t strive for the optimal constant, let us use something else. Namely, given a finite
subset of vertices K ⊂⊂ V (G), we define its inner vertex boundary ∂K to be the set of
vertices inside K with at least one neighbour outside K.

Definition A.10. Let ψ : R+ → R+ be a non-decreasing function. We say that G
satisfies the ψ-isoperimetric inequality ISψ if there exists a constant c > 0 such that

|∂K| ≥ cψ (|K|) (A.6)

holds for any finite subset of vertices K ⊂⊂ V (G). In particular, if ψ(t) = t1−1/d (with
some 1 ≤ d ≤ ∞), then we speak about d-dimensional isoperimetric inequality, denoted
by ISd.

Despite the fact that we are mostly interested in (at least) 3-dimensional isoperimetry,
it is worth mentioning that for example the d-dimensional lattice Zd has ISd, which was
originally proved in [9] using compression by gravity. However, a better known approach
is to use the more general result of Theorem A.11 below.
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Now, according to the plan, we would like to use Corollary A.9 to obtain an at least
3-dimensional isoperimetry for our graphs in question. This can be achieved by the next
result, which was originally proved by Coulhon and Saloff-Coste in [14]. The referenced
version of the statement is a combination of Lemma 10.46 and Proposition 8.14 from
[29].

Theorem A.11. Define the inverse growth rate of the transitive graph G by

ρ(n) := min {r : VG(r) ≥ n} , (A.7)

that is, ρ(n) is the smallest radius of a ball in G that contains at least n vertices. Then
for all finite subset of vertices K ⊂⊂ V (G) we have

|∂K|
|K|

≥ 1

2ρ (2|K|)
. (A.8)

Noting that VG(n) � n3 implies ρ(n) ≤ Cn1/3, this instantly yields the desired
corollary, which can be considered as the second step towards to the proof of Lemma 2.5.

Corollary A.12. If G is a transitive graph which has at least cubic growth, then there
exists a constant c > 0 such that for any finite subset of vertices K ⊂⊂ V (G) we have

|∂K| ≥ c|K|1−1/3, (A.9)

that is, G satisfies the 3-dimensional isoperimetric inequality IS3.

For the final step, we would like to use this isoperimetry to obtain the desired upper
bound on the transition probabilities of random walks. Let us note that while results
of this kind are originated in [53] (see also [54]), where the authors used tools from
functional analysis, what we will present here is the result of [32], which follows from a
purely probabilistic argument.

Recall that we only consider a symmetric random walk on the given transitive,
transient graph G, which is a reversible Markov chain. Moreover, since G is assumed to
be transitive, and whence all the degrees are the same – denoted by D – the constant
function π(x) = D (x ∈ V (G)) is a reversible measure.

Now, for x, y ∈ V (G) let us introduce Q(x, y) := π(x)p1(x, y) = D · p1(x, y), where
recall from (2.9) that p1(x, y) denotes the one-step transition probability from x to y.
Since the random walk is simple, note that Q is just the adjacency matrix of the graph.

This can be extended for any subsets K,K ′ ⊆ V (G) as Q(K,K ′) :=
∑
x∈K,y∈K′ Q(x, y).

Since for a finite set K ⊂⊂ V (G) the quantities π(K) and Q(K,Kc) are just a more
general way to measure the size and the size of the boundary respectively, the next
notion can be considered as slight extension of the isoperimetric dimension.

Definition A.13. The isoperimetric profile of a reversible Markov chain on the transitive
graph G is

Φ(r) := inf

{
Q(K,Kc)

π(K)
: K ⊂⊂ V (G), π(K) ≥ r

}
, r ≥ D, (A.10)

where π is the reversible measure and D is the degree of a vertex.

Observe that the d-dimensional isoperimetry ISd implies that there exists some con-
stant c > 0 such that Φ(r) ≥ cr−1/d.

As it was mentioned earlier, a version of the next theorem was first proved in [32] (see
Theorem 2. therein) using a specific spatial martingale called the evolving set process.
The form below, which is easier to use to achieve our goals, is Theorem 6.31 from [29].
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Theorem A.14. Suppose that we are given a reversible Markov chain with reversible
measure π on the graph G. If x, y ∈ V (G), n ∈ N and ε > 0 satisfies

n ≥ 1 +

∫ 4/ε

min{π(x),π(y)}

16

u · Φ2(u)
du, (A.11)

then we have
pn(x, y) ≤ π(x) · ε. (A.12)

As the following corollary shows, Theorem A.14 indeed gives us the required impli-
cation from lower bounds on the isoperimetric profile to upper bounds on transition
probabilities and whence the final step in the proof of Lemma 2.5. Let us note here that
the proof of Corollary A.15 is almost identical to that of Corollary 6.32(ii) from [29].

Corollary A.15. Suppose that we have a simple random walk on a transitive graph G
satisfying d-dimensional isoperimetry. Then there exists a constant C = C(G) <∞ such
that

pn(x, y) ≤ C · n−d/2 (A.13)

holds for all x, y ∈ V (G).

Proof. As we mentioned previously, d-dimensional isoperimetry ISd implies that there
exists c > 0 such that Φ(r) ≥ cr−1/d. Therefore, given ε ∈ (0, 1) let

n ≥ 1 + C

∫ 4/ε

0

u2/d−1 du = 1 + cε−2/d, (A.14)

where c is a constant. However, by Theorem A.14 this means that the n-step transition
probability is less than D · ε. Consequently, choosing the minimum ε in terms of n yields
pn(x, y) ≤ Cn−d/2.

To sum up, the desired proof now follows as an easy chain of implications. In-
deed, applying Corollary A.9, then Corollary A.12 and Corollary A.15 for d = 3 yields
Lemma 2.5.
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Nomenclature

cap(K) The capacity of the set K, that is
∑
x∈K eK(x). See equation (2.13).

d(x, y) Usual graph metric between x and y in the graph G.

ΛK(w) The localisation map of trajectories. It naturally extends to labeled trajectories
and point measures of (labeled) trajectories. See Definition 4.4.

ΛwK(ω) Point measure of labels of copies of the trajectory w in the local image. See
Definition 4.6.

dK(ω, ω′) Local pseudo-distance of the point measures ω and ω′, locallized by set K. See
Defnition 4.7.

esK(x) The probability that a random walk of length s starting from x doesn’t hit the set
K (except at time 0). See equation (2.13).

eK(x) The probability that a random walk starting from x never visits the set K (except
at time 0). See equation (2.12).

e(w) The terminal point of the finite trajectory w. The function extends to M(WT ) in
a natural way. See equation (4.2) and below.

K ⊂⊂ V K is a finite subset of V .

H Set of finite or infinite sub-intervals of Z.

HK(w) First entrance time of set K by the trajectory w. See equation (2.7).

LK(w) Time of last visit of set K by the trajectory w. See equation (2.8).

I1 The index set with which the points of R1 and X1 are indexed. See equations
(6.4), (7.2).

I2 The index set with which the points of R2 and X2 are indexed. See equations
(6.4), (7.2).

i(w) The initial point of the finite trajectory w. The function extends to M(WT ) in a
natural way. See equation (4.2) and below.

µS The counting measure on the countable set S. See Definition 2.9.

M(X) The space of locally finite point measures on the space X. See Definition 2.7.

p1 Projection to the first coordinate. See page 24.

p2 Projection to the second coordinate. See page 24.

π∗ The time-shift equivalence relation projection W →W ∗. See Definition 2.1.

pn(x, y) The probability that a random walk of length n starting from x ends at y. See
equation (2.9).

PPP Poisson point process.

Ψv,T Equivariant map that doubles the length of unlabeled finite-length interlacements
using "extra i.i.d. input". See Lemma 5.4.

Ψ̂T,m Equivariant map that doubles the length of labeled finite-length interlacements
using "extra i.i.d. input". See Lemma 5.3.
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Ψ∗α,L Equivariant map that produces a partial matching of two i.i.d. PPPs on V using
"extra i.i.d. input". See Lemma 6.1.

Pv,1 The law of the Poisson point process on V with intensity measure v · µV . See
Definition 2.10.

Pv,T The law of the finite-length random interlacement Poisson point process of length
T . See Definition 2.11.

Px The law of the simple random walk on G starting from x. See Definition 2.4.

P±x The law of the doubly infinite simple random walk on G starting from x. See
Definition 2.4.

Q∞ The law of the labeled random interlacement PPP with label range [0, 1]. See
Definition 2.16.

QT The law of the Poisson point process of the length T random interlacement with
labels. See Definition 2.13.

R1 PPP on V . We want to pair its points with points in R2 using soft local time
method. See Lemma 6.1 and also (7.3).

R2 PPP on V . We want to pair its points with points in R1 using soft local time
method. See Lemma 6.1 and also (7.3).

sn(w) The n’th step in the trajectory w. See Definition 4.1.

W Space of doubly infinite transient nearest-neighbour trajectories on G. Also
denoted by W(−∞,∞). See Subsection 2.3.

W+ Space of semi-infinite transient nearest neighbour trajectories on G indexed by
non-negative integers. Also denoted by W[0,+∞). See Subsection 2.3.

W− Space of semi-infinite transient nearest neighbour trajectories on G indexed by
non-positive integers. Also denoted by W(−∞,0]. See Subsection 2.3.

WH Space of transient nearest neighbour trajectories indexed by the finite or infinite
interval H. See equation (2.2).

W♦ The (disjoint) union of the spaces W ∗, W •, W+, and W−. See equation (2.6).

W ∗ Space of equivalence classes of doubly infinite transient nearest neighbour
trajectories on G modulo time-shift equivalence. See Subsection 2.3.

WT Space of finite nearest-neighbour trajectories on G indexed by [0, T − 1]. Also
denoted by W[0,T−1]. See Subsection 2.3.

W • The space of finite nearest-neighbour trajectories on G indexed by [0, T − 1] for
some T , i.e.,

⋃∞
T=1WT . See Subsection 2.3.

W♦(K),WH(K),W •(K),W ∗(K) Spaces of trajectories that visit the set K ⊂⊂ V . See
Definition 2.3.

XnT Point process of unlabeled trajectories derived from ZT where the original labels
are in

[
n−1
m , nm

]
. See equation (5.10).

Z The random interlacement point process with labels in R+. See Definition 2.16.

ZnT Point process of labeled trajectories derived from ZT where the labels are in[
n−1
m , nm

]
. See equation (5.10).
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