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Abstract

We consider the Generalized Gibbs ensembles of the Ablowitz-Ladik lattice and of
the Schur flow. We derive large deviations principles for the distribution of the
empirical measures for these ensembles. As a consequence, we deduce their almost
sure convergence. Moreover, we are able to characterize their limits in terms of the
equilibrium measure of the Circular, and the Jacobi beta ensemble, respectively.
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1 Introduction

The defocusing Ablowitz-Ladik (AL) lattice is the system of ODEs

iα̇j = −(αj+1 + αj−1 − 2αj) + |αj |2(αj−1 + αj+1) , (1.1)

that describe the evolution of the complex functions αj(t), j ∈ Z and t ∈ R, here

α̇j =
dαj
dt

. We assume N -periodic boundary conditions αj+N = αj , for all j ∈ Z. For

simplicity, we consider the case N even, and, when not mentioned, the limits as N →∞
is taken along N even. This system was introduced by Ablowitz and Ladik [2,3] as a
spatial discretization of the defocusing Nonlinear Schrödinger Equation (NLS)

i∂tψ(x, t) = −1

2
∂2xψ(x, t) + |ψ(x, t)|2ψ(x, t). (1.2)
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LDP for AL lattice, and the Schur flow

The NLS is a well-known integrable model [40], and the Ablowitz-Ladik lattice is one of
the several discretizations that preserve integrability [31].

It is straightforward to verify that the two quantities

K(0) :=

N∏
j=1

(
1− |αj |2

)
, K(1) := −

N∑
j=1

αjαj+1, (1.3)

are constants of motion for the AL lattice. Since K(0) is conserved along the flow, it
implies that if |αj(0)| < 1 for all j = 1, . . . , N , then |αj(t)| < 1 for all times. Thus, we can
consider DN as our phase space, where D = {z ∈ C | |z| < 1}.

On this phase space we consider the symplectic form ω [16,19,30,32]

ω = i

N∑
j=1

1

ρ2j
dαj ∧ dαj , ρj =

√
1− |αj |2 . (1.4)

The corresponding Poisson bracket is defined for functions f, g ∈ C∞(DN ) as

{f, g} = i

N∑
j=1

ρ2j

(
∂f

∂αj

∂g

∂αj
− ∂f

∂αj

∂g

∂αj

)
. (1.5)

Using this Poisson bracket, it is possible to rewrite the equations of motion (1.1) of the
AL lattice in Hamiltonian form as

α̇j = {αj , HAL}, HAL(α) = −2 ln(K(0)) +K(1) +K(1) , (1.6)

here α = (α1, . . . , αN ).

Conserved quantities As we already mentioned, the AL lattice is an integrable model:
this was proved by Ablowitz and Ladik [1,2]. Specifically, they were able to obtain a Lax
pair for the Ablowitz-Ladik lattice by discretizing the 2× 2 Zakharov-Shabat Lax pair of
the cubic nonlinear Schrödinger equation.

Nenciu and Simon in [30, 32] constructed a new Lax pair for the Ablowitz-Ladik
lattice, exploiting the connection of this system to the orthogonal polynomials on the
unit circle. This link is the analogue of the well-known link between the Toda lattice
and orthogonal polynomials on the real line (see e.g. [10]). This connection was also
generalized to the non-commutative case [8].

Following [30,32], we construct the Lax matrix as follows. Consider the 2× 2 unitary
matrices

Ξ(αj) = Ξj =

(
αj ρj
ρj −αj

)
, ρj =

√
1− |αj |2, j = 1, . . . , N , (1.7)

and the N ×N matrices

M =



−αN ρN
Ξ2

Ξ4

. . .

ΞN−2
ρN αN


, L =


Ξ1

Ξ3

. . .

ΞN−1

 . (1.8)

Now let us define the Lax matrix
E = LM , (1.9)
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LDP for AL lattice, and the Schur flow

which has the following structure

E =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.

The matrix E is a periodic CMV matrix (after Cantero, Moral and Velazquez [9]). It
is straightforward to verify that the equations of motions (1.1) are equivalent to the
following Lax equation for the matrix E:

Ė = i
[
E , E+ + (E+)†

]
, (1.10)

where † stands for hermitian conjugate, and

E+j,k =


1
2Ej,j j = k

Ej,k k = j + 1 mod N or k = j + 2 mod N

0 otherwise.

(1.11)

Remark 1.1. We notice that since all the Ξj are unitary, then also E is unitary, this
implies that all the eigenvalues λj lie on the unit circle, and they can be written in terms
of their argument, namely for all j = 1, . . . , N there exists a θj ∈ T := [−π, π) such that

λj = eiθj .

In view of this identification, and in order to simplify the notations, for any function
f(z) : ∂D→ R, we write f(θ) in place of f(eiθ) when it is convenient. Further, we will
write indifferently

∫
T
f(θ)dµ(θ) or

∫
∂D
f(z)dµ(z) for any probability measure µ having

support on the circle.

Remark 1.2. We notice that (E+)† + (E†)+ = E† and [E , E†] = 0 since E is unitary.
Therefore, the Lax pair (1.10) can be rewritten in the equivalent form

Ė = i
[
E , E+ − (E†)+

]
. (1.12)

The formulation (1.10) implies that the quantities

K(`) = Tr
(
E`
)
, ` = 1, . . . , N − 1, (1.13)

are constants of motion for the defocusing AL system (1.1).
As in [21,37], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik

lattice, namely the following probability measure on the phase space DN

dPV,βAL,N (α1, . . . , αN ) =
1

ZALN (V, β)

N∏
j=1

(1−|αj |2)β−11{αj∈D} exp(−Tr(V (E)))d2α, (1.14)

where V (eiθ) : T→ R is a continuous function, 1A is the indicator function of the set A,
and ZALN (V, β) is the partition function of the system

ZALN (V, β) =

∫
DN

N∏
j=1

(1− |αj |2)β−1 exp(−Tr(V (E)))d2α.
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LDP for AL lattice, and the Schur flow

Furthermore, we consider the empirical measure µN (E) of the eigenvalues eiθ1 , . . . , eiθN

of the matrix E (1.9), namely

µN (E) =
1

N

N∑
j=1

δ
eiθj(E)

, (1.15)

here δx is the delta function centred at x, furthermore, we notice that we can just
consider the arguments θ1, . . . , θN of the eigenvalues since the matrix E is unitary, see
Remark 1.1.

Our main result is a large deviations principle (LDP) with good rate function for the
sequence (µN (E))N even under the law P

V,β
AL,N (1.14). Namely, denoting by P(T) the set

of probability measures on the Torus T endowed with the topology of weak convergence,
there exists a function JVβ : P(T)→ [0,+∞] such that:

1. it is lower semicontinuous/good, namely for any a ≥ 0, {µ ∈ P(T) | JVβ (µ) ≤ a} ⊂
P(T) is compact,

2. it satisfies a large deviations lower bound, namely for all O ⊂ P(T) open,

− inf
O
J ≤ lim inf

N even

1

N
lnP(µN (E) ∈ O), (1.16)

3. it satisfies a large deviations upper bound, namely for all F ⊂ P(T) closed,

lim sup
N even

1

N
lnP(µN (E) ∈ F ) ≤ − inf

F
J. (1.17)

We refer to [11] for a general introduction to large deviations.

Remark 1.3. We notice that, by compactness of P(T), it is sufficient to prove a weak
large deviations principle, see [11, Section 1.2], which is the same as a full large
deviations principle, except that the large deviation upper bound (point 3) holds only for
compact subsets of P(T).

From this large deviations principle we are able to deduce that µN (E) converges
almost surely as N goes to infinity.

Theorem 1.4. Let β > 0. For any continuous function V : T → R the following holds:

a. the sequence µN (E) under the law P
V,β
AL,N satisfies a large deviations principle at

speed N with a good rate function JVβ ,

b. JVβ achieves its minimum at a unique probability measure νVβ ,

c. µN (E) converges almost surely and in L1(T) towards νVβ .

Moreover, following [21,22,37], we are able to characterize the measure νVβ in terms
of the equilibrium measure of the Circular beta ensemble at high temperature [23,24].
More precisely, consider the functional µ 7→ fVβ (µ) given, for any µ ∈ P(T) absolutely

continuous with respect to Lebesgue measure and with density dµ
dθ , by

fVβ (µ) = −β
∫
T×T

log
(
|eiθ − eiϕ|

)
µ(dθ)µ(dϕ) + β log(2) +

∫
T

V (θ)µ(dθ)

+

∫
T

log

(
dµ

dθ
(θ)

)
µ(dθ) + log(2π) .

(1.18)
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LDP for AL lattice, and the Schur flow

It is shown in [23], that the previous functional reaches its minimum for a unique
absolutely continuous probability measure µVβ . Moreover, in [21] it is proved that this
measure is almost surely differentiable with respect to β. Exploiting this result, and
Theorem 1.4 we are able to show that

Theorem 1.5. For any continuous V, f : T → R∫
T

f(θ)dνVβ (θ) = ∂β

(
β

∫
T

f(θ)dµVβ (θ)

)
. (1.19)

Thus, we obtain a unique characterization of the measure νVβ .
In [21,37], the authors considered the GGE (1.14) with polynomial potential, and they

were able to prove Theorem 1.5 for this particular class of potentials using a transfer
operator technique. In this sense, we generalize their result, extending it to the class of
continuous and bounded potentials.

In the last part of the manuscript, we consider another integrable model related to
the Ablowitz-Ladik lattice, namely the so-called Schur flow [20]. Also for this system,
the Lax matrix is E (1.9). Following the same construction as in the Ablowitz-Ladik
lattice case, we define a GGE for this model. We are able to show analogous results to
Theorem 1.4 and Theorem 1.5 for the Schur flow. The main difference is that in place of
the Circular beta ensemble, we have the Jacobi one.

To give a wider overview of the relevant literature, we mention that, H. Spohn in [37],
applying the theory of generalized hydrodynamics [13], argues that the correlation
functions of the Ablowitz-Ladik lattice with respect to the GGE (1.14) show a ballistic
behaviour. As we already mentioned, in [21] the authors rigorously proved Theorem 1.5
for polynomial potential V (z). Moreover, they computed explicitly the density of states
in the case V (z) = η(z + z), which corresponds to the classical Gibbs ensemble.

It is worth to mention that this link between random matrix and integrable system
was first noticed in [34]. In this paper the author considered the GGE for the Toda
lattice, and he was able to study this ensemble, comparing it with the Gaussian beta
ensemble [14]. We refer to [21,22,28,33,35,36] for subsequent developments.

In particular, our work was inspired by the recent paper [22]. In this paper, the
authors obtained a large deviations principle for the Toda lattice, and obtain an analogous
result to Theorem 1.5, where in place of the Circular beta ensemble, they had the
Gaussian one.

Moreover, we want to underline that in [26,27,29] the authors were able to describe
the local statistics at high temperature of respectively the Circular β ensemble, the
Gaussian β ensemble, and Coulomb and Riesz gases, including the case of the Gaussian
β-ensemble with general potential. They discovered that they are described by a Poisson
point process.

Finally, we notice that in [7] the authors introduced the Circular Jacobi Ensemble,
which has a matrix representation in terms of a Hessenberg matrix. It would be inter-
esting to understand if this ensemble admits a matrix representation in terms of a CMV
matrix as the Circular β ensemble. In this way, it would be possible to apply our result
also to this other matrix ensemble.

The structure of the paper is the following. In Section 2, we prove the first point of
Theorem 1.4. In Section 3, we collect some known results related to the Circular beta
ensemble in the high-temperature regime. Moreover, we reformulate the already known
large deviations principle for this ensemble in terms of the AL lattice. In Section 4, we
conclude the proof of Theorem 1.4, and we prove Theorem 1.5. Section 5, is dedicated
to the Schur flow, where we prove the analogue of Theorem 1.4 and Theorem 1.5 for
this integrable model. Finally, we defer to the appendix the most technical results of our
manuscript.
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LDP for AL lattice, and the Schur flow

2 Existence of a Large deviations principle for the empirical mea-
sure of the Ablowitz-Ladik lattice

The aim of this section is to prove the first point of Theorem 1.4, namely to show that,
for N 3 N ≥ 2 and even, the sequence of empirical measures µN (E) = 1

N

∑N
j=1 δeiθj(E)

satisfies a large deviations principle. The strategy of proof is the following. First,
we show that if E is distributed according to PβAL,N := P

0,β
AL,N defined in (1.14), then

the sequence of random probability measures (µN (E))N even satisfies a large deviations
principle in P(T), the space of probability measures on T, endowed with the topology
of weak convergence. Since according to this toppology P(T) is compact, it suffices to
show that the sequence (µN (E))N even satisfies a weak large deviations principle, see
Remark 1.3. Then, applying Varadhan’s Lemma [15, Theorem 1.2.1], we obtain the
existence of a large deviations principle for arbitrary continuous V , i.e. the first point of
Theorem 1.4.

We also notice that when V = 0 in (1.14) the αi’s are independent and identically
distributed (i.i.d ) with distribution Θ2β+1, where Θν is defined for ν > 1 as the random
variable such that for f : C→ R bounded and measurable

E[f(X)] =
ν − 1

2π

∫
D

f(z)(1− |z|2)
ν−3
2 d2z. (2.1)

Remark 2.1. We recall that for integer ν ≥ 2, such measure has the following geomet-
rical interpretation: if u = (u1, . . . , uν+1) is chosen at random according to the surface
measure on the unit sphere Sν in Rν+1, then u1 + iu2 is Θν distributed [25].

To show that the sequence (µN (E))N even satisfies a weak large deviations principle
according to the law P

β
AL,N , we only need the αi’s to be i.i.d according to some law σ

with supp(σ) ⊆ D. Thus, we just assume the latter hypothesis, and we prove the result in
more generality.

2.1 Large deviations principle for periodic CMV matrix

Let d be the distance on P(T) defined by

d(µ, ν) = sup
‖f‖Lip≤1,‖f‖BV≤1

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣} , (2.2)

where the Lipschitz and the bounded variation norms are defined on the space of
functions f : T→ R as

‖f‖Lip = sup
θ1,θ2∈T
θ1 6=θ2

|f
(
eiθ1
)
− f

(
eiθ2
)
|

|eiθ1 − eiθ2 |
, (2.3)

‖f‖BV = sup
n≥1,0=θ1<θ2<...<θn=2π

n−1∑
k=1

∣∣f (eiθk+1
)
− f

(
eiθk

)∣∣ . (2.4)

The distance d is compatible with the weak convergence of probability measures [22].
We recall that for a N ×N matrix A, its empirical measure of eigenvalues is defined by

µ(A) =
1

N

N∑
j=1

δλj(A),

where λj(A), j = 1, . . . , N , are the eigenvalues of A. The following Lemma, whose proof
can be found in Appendix A, gives an upper bound on the distance of the empirical
measures of two unitary matrices.
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LDP for AL lattice, and the Schur flow

Lemma 2.2. For any A, B unitary matrices of size N ×N ,

• For f with bounded variation,∣∣∣∣∫ fdµ(A)−
∫
fdµ(B)

∣∣∣∣ ≤ ‖f‖BV
rank(A−B)

N
,

• For f Lipschitz,∣∣∣∣∫ fdµ(A)−
∫
fdµ(B)

∣∣∣∣ ≤ ‖f‖Lip
1

N

N∑
i,j=1

|(A−B)i,j |.

As a consequence,

d(µ(A), µ(B)) ≤ min

rank(A−B)

N
,

1

N

N∑
i,j=1

|(A−B)i,j |

 . (2.5)

We are now in position to prove that the sequence µN (E) with (αi)i≥1 i.i.d with law σ,
such that supp(σ) ⊆ D, satisfies a large deviations principle. The proof of the following
Lemma follows the same line as the corresponding one in [22].

Lemma 2.3. Let (αi)i≥1 be an i.i.d sequence of law σ with supp(σ) ⊆ D, and E be the as-
sociated matrix defined in (1.9). Then the sequence of empirical measures (µN (E))N even

satisfies a large deviations principle in P(T) endowed with the topology of weak conver-
gence.

Proof. We use a subadditivity argument to show that for any fixed µ ∈ P(T) the following
holds

lim
δ→0

lim inf
N even

1

N
lnP

(
µN (E) ∈ Bµ(δ)

)
= lim
δ→0

lim sup
N even

1

N
lnP

(
µN (E) ∈ Bµ(δ)

)
, (2.6)

where Bµ(δ) := {ν ∈ P(T) | d(µ, ν) < δ}. Then, applying [11, Theorem 4.1.11], along
with the fact that in our setting a weak LDP is equivalent to a full LDP, due to the
compactness of P(T), see remark 1.3, we conclude.

The first step to prove the result is to approximate the matrix E (whose law we denote
by E(N)) by a diagonal block matrix of independent blocks. To this end, fix q ∈ N even
such that q ≤ N , write the euclidean division of N by q, N = kq + r with 0 ≤ r < q. We
considerM given by (1.8),

M =



−αN ρN
Ξ2

Ξ4

. . .

ΞN−2
ρN αN


,

and approximate it the following way.
Let M̃ = diag(M1, . . . ,Mk, R), whereMi is the block diagonal matrix given by

Mi =



−α̃(i−1)q ρ̃(i−1)q
Ξ(i−1)q+2

Ξ(i−1)q+4

. . .

Ξiq−2
ρ̃(i−1)q α̃(i−1)q


,
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LDP for AL lattice, and the Schur flow

where (α̃(i−1)q)1≤i≤k are i.i.d of law σ, independent of the αi’s, ρ̃i =
√

1− |α̃i|2, and the
remaining block (of size r × r) R is defined similarly:

R =



−α̃kq ρ̃k
Ξkq+2

Ξkq+4

. . .

ΞN−2
ρ̃kq+1 α̃kq


.

Following the same decomposition of N = kq + r we write L = diag(L1, . . . ,Lk,Lk+1),
with Li of size q for 1 ≤ i ≤ k and Lk+1 of size r.

Notice that by construction, we have

rank(M−M̃) ≤ 2(k + 1). (2.7)

Now, defining Ẽ = LM̃, Ẽ is a block diagonal matrix diag(E1, . . . , Ek, Ek+1). Then, the
blocks Ei, 1 ≤ i ≤ k + 1 are independent, each Ei, i = i, . . . , k, has law E(q), and Ek+1 has
law E(r).

Furthermore, using that rank(AB) ≤ min {rank(A); rank(B)} for A,B two square
matrices, and (2.7) we get

rank(E − Ẽ) = rank(L(M−M̃)) ≤ 4(k + 1).

By the first point of Lemma 2.2 we deduce

d(µN (E), µN (Ẽ)) ≤ 4(k + 1)

N
≤ 8

q
.

Moreover, we can rewrite µN (Ẽ) as

µN (Ẽ) =
q

N

k∑
`=1

µq(E`) +
r

N
µr(Ek+1) . (2.8)

Using the independence of the blocks of Ẽ , we deduce that

P

(
µq(E1) ∈ Bµ(δ)

)k
P

(
µr(Ek+1) ∈ Bµ(δ)

)
= P

(
µq(E1), . . . , µq(Ek), µr(Ek+1) ∈ Bµ(δ)

)
≤ P

(
q

N

k∑
l=1

µq(El) +
r

N
µr(Ek+1) ∈ Bµ(δ)

)
= P

(
µN (Ẽ) ∈ Bµ(δ)

)
≤ P

(
µN (E) ∈ Bµ

(
δ +

8

q

))
,

Where we used the convexity of balls in the first inequality.
This implies that, setting

uN (δ) = − ln (P(µN ∈ Bµ(δ))) , (2.9)

we have

uN

(
δ +

8

q

)
≤ kuq(δ) + ur(δ). (2.10)
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LDP for AL lattice, and the Schur flow

We now conclude as in [22, Lemma 2.3]. Let δ > 0 and choose q in such a way that 8
q ≤ δ,

so we deduce that

uN (2δ)

N
≤
uN

(
δ + 8

q

)
N

≤ uq(δ)

q
+
ur(δ)

N
, (2.11)

since ur(δ)
N → 0 as N →∞, we deduce that

lim sup
N→∞

uN (2δ)

N
≤ uq(δ)

q
. (2.12)

The previous inequality holds true for all q big enough, so we conclude that

lim sup
N→∞

uN (2δ)

N
≤ lim inf

N→∞

uN (δ)

N
. (2.13)

From this last inequality we deduce that

lim
δ→0

lim sup
N→∞

uN (δ)

N
≤ lim
δ→0

lim inf
N→∞

uN (δ)

N
, (2.14)

thus we obtain (2.6), and the conclusion follows applying [11, Theorem 4.1.11].

Since (P(T), d) is compact, Lemma 2.3 automatically implies the existence of a
strong large deviations principle. Furthermore, the corresponding rate function J ,
which depends on the distribution σ of the entries of L andM, can be seen to be convex.
We collect these results in the following proposition.

Proposition 2.4. In the same hypothesis and notations as in Lemma 2.3, the sequence
of empirical measures (µN (E))N even satisfies a large deviations principle with good,
convex rate function J : P(T)→ [0,+∞], i.e.

• The function J is convex and its level sets J−1([0, a]), a ≥ 0, are compact,

• For all O ⊂ P(T) open,

− inf
O
J ≤ lim inf

N even

1

N
lnP(µN (E) ∈ O),

• For all F ⊂ P(T) closed,

lim sup
N even

1

N
lnP(µN (E) ∈ F ) ≤ − inf

F
J.

Proof. We already established all the claims except the fact that the function J is convex
and that the level sets J−1([0, a]) are compact. The latter comes from the fact that these
sets are closed, see [11, Theorem 4.1.11]. To prove the convexity of J , we follow the
same argument as [22, Theorem 2.4].

Let µ1, µ2 ∈ P(T). Since µ2N (E) can be approximated by the sum of two independent
µN (E)’s up to a mistake smaller than 4

N by the first point of Lemma 2.2, for δ > 0 the
following holds

P (µN (E) ∈ Bµ1
(δ))P (µN (E) ∈ Bµ2

(δ)) ≤ P
(
µ2N (E) ∈ Bµ1+µ2

2

(
δ +

4

N

))
, (2.15)

taking minus the logarithm of both sides, dividing by 2N , taking the limit for N going to
infinity and then for δ to zero, we deduce that:

J

(
µ1 + µ2

2

)
≤ 1

2
(J(µ1) + J(µ2)) , (2.16)

which, together with the lower semi-continuity of J , implies the convexity of J , see [11,
Lemma 4.1.21].
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2.2 Large deviations principle for the Ablowitz-Ladik lattice

Taking σ = Θ2β+1 given by equation (2.1), Proposition 2.4 applies to (µN (E))N even,
where E follows PβAL,N defined in (1.14). Thus, (µN (E))N even with law P

β
AL,N satisfies a

large deviations principle, with a good convex rate function, that we denote by Jβ .
We can now state the existence of a large deviations principle for (µN (E))N even under

P
V,β
AL,N for V continuous.

Corollary 2.5. Let β > 0, and V : T → R be continuous. Under PV,βAL,N the sequence

(µN (E))N even fulfils a large deviations principle with good, convex rate function JVβ (µ) =

gVβ (µ)− infν∈P(T) g
V
β (ν), where gVβ (µ) is given for µ ∈ P(T) by

gVβ (µ) = Jβ(µ) +

∫
T

V dµ . (2.17)

Proof. Let us write

dPV,βAL,N =
ZALN (0, β)

ZALN (V, β)
e−N

∫
T
V dµNdPβAL,N =

1

ZAL,VN

e−N
∫
T
V dµNdPβAL,N .

The function µ 7→
∫
T
V dµ being bounded continuous, by the large deviations principle

under PβAL,N and Varadhan’s Lemma, [15, Theorem 1.2.1], we see that for any bounded
continuous f : P(T)→ R we have

lim
N

1

N
ln

∫
DN

eNf(µN )dPV,βAL,N

= sup
µ∈P(T)

{
f(µ)−

(
Jβ(µ) +

∫
V dµ− inf

ν∈P(T)

{
Jβ(ν) +

∫
V dν

})}
,

which ensures by [15, Theorem 1.2.3] that (µN ) satisfies a large deviations principle
under PV,βAL,N with the announced rate function. Since the function JVβ is an affine

perturbation of Jβ , which is convex, JVβ is also convex.

The first point of Theorem 1.4 is proven.

3 Circular β ensemble at high temperature

In this section, we consider the Circular β ensemble, and we collect some known
results that we exploit in our treatment. The aim of this section is to prove an alternative
formulation of the large deviations principle for the Circular beta ensemble in the high-
temperature regime, see Theorem 3.11 below. Our formulation allows us to relate the
large deviations principle of the Coulomb gas with the one of Ablowitz-Ladik, proved in
the previous section.

3.1 Large deviations principle for Circular β ensemble

Coulomb gas on the torus T = [−π, π) at temperature β̃−1 are described by

dPV,β̃C,N =
1

ZCN (V, β̃)

∏
j≤`≤N

|eiθj − eiθ` |β̃e−
∑N
j=1 V (θj)dθ , (3.1)

here V : T → R is a continuous potential, and θ = (θ1, . . . , θN ). When V = 0, Killip

and Nenciu showed that dP0,β̃
C,N is the law of the eigenvalues of a CMV matrix [24], see

Theorem 3.4. In this manuscript, we are interested in the so-called high-temperature
regime of this ensemble, namely the limit of number of particles N going to infinity
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with the constraint that β̃N → 2β > 0. From [18], [6], one deduces the following large
deviations principle for the measure µN = 1

N

∑N
j=1 δeiθj , where the θj are distributed

according to (3.1).

Theorem 3.1. Let β̃ = 2β
N , β > 0 and assume V : T→ R to be continuous. Define for

any µ ∈ P(T) absolutely continuous with respect to the Lebesgue measure the functional

fVβ (µ) = −β
∫
T×T

log
(
|eiθ − eiϕ|

)
µ(dθ)µ(dϕ) + β log(2) +

∫
T

V (θ)µ(dθ)+∫
T

log

(
dµ

dθ
(θ)

)
µ(dθ) + log(2π) ,

(3.2)

then

i. the functional fVβ (µ) is strictly convex and achieves its minimal value at the unique

probability measure µVβ absolutely continuous with respect to the Lebesgue mea-
sure;

ii. the sequence (µN ) satisfies a large deviations principle in P(T) equipped with the
weak topology at speed βN with rate function defined for absolutely continuous
µ ∈ P(T) with respect to Lebesgue measure by IVβ (µ) = fVβ (µ) − fVβ (µVβ ), and

IVβ (µ) = +∞ otherwise. In particular

µN
a.s.−−−−→

N→∞
µVβ . (3.3)

Exploiting this result, in [21] the authors deduced several useful properties of the
minimizer µVβ , specifically they proved the following.

Lemma 3.2 (cf. [21] Lemma 3.5 ). Let β > 0, consider a continuous potential V : T→ R,
then the following holds

i. The map β → inf
(
fVβ (µ)

)
is Lipschitz;

ii. Let D be the distance on P(T) given by

D(µ, µ′) =

(
−
∫
T×T

ln

∣∣∣∣sin(θ − φ2

)∣∣∣∣ (µ− µ′)(dθ)(µ− µ′)(dφ)

)1/2

=

√∑
k≥1

1

k
|µ̂k − µ̂′k|

2
,

(3.4)

where µ̂k =
∫
T
eikθµ(dθ). Then for any ε > 0 there exists a finite constant Cε such

that for all β, β′ > ε

D(µVβ , µ
V
β′) ≤ Cε |β − β′| . (3.5)

Remark 3.3. We observe that if f ∈ L2(T) with derivative in L2(T), we can set ||f || 1
2

=√∑
k≥1 k|f̂k|2. So, for any measure ν with zero mass we obtain the following∫

T

f(θ)ν(dθ) =
∑
k 6=0

f̂kν̂k =
∑
k 6=0

√
|k|f̂k

ν̂k√
|k|

. (3.6)

Then, by Cauchy-Schwartz inequality, we deduce the following inequality∣∣∣∣∫
T

f(θ)ν(dθ)

∣∣∣∣2 ≤
∣∣∣∣∣∣
∑
k 6=0

√
|k|f̂k

∑
k 6=0

ν̂k√
|k|

∣∣∣∣∣∣ ≤ 4||f ||21
2
D(ν, 0)2. (3.7)
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Combining (3.5) and (3.7), we deduce that for any function f with finite ||f || 1
2

norm, the

map β →
∫
T
fdµVβ (θ) is Lipschitz for β > 0.

3.2 Relation with the large deviations principle of the Ablowitz-Ladik lattice

In the case V = 0, for any β̃ > 0, Killip and Nenciu in [24] showed that the law

P
0,β̃
C,N (3.1) coincides with the distribution of the eigenvalues of a certain CMV matrix.

Specifically they proved the following:

Theorem 3.4 (cf. [24] Theorem 1.2). Consider the block diagonal N ×N matrices

L = diag (Ξ1,Ξ3,Ξ5 . . . , ) and M = diag (Ξ0,Ξ2,Ξ4, . . .) , (3.8)

where the block Ξj , j = 1, . . . , N − 1, takes the form

Ξj =

(
αj ρj
ρj −αj

)
, ρj =

√
1− |αj |2, (3.9)

while Ξ0 = (1) and ΞN = (αN ) are 1× 1 matrices. Define the N ×N sparse matrix

E = LM, (3.10)

and suppose that the entries αj are independent complex random variables with αj ∼
Θβ̃(N−j)+1 for 1 ≤ j ≤ N − 1 and αN is uniformly distributed on the unit circle. Then the
eigenvalues of E are distributed according to the Circular Ensemble (3.1) at temperature
β̃−1.

To simplify the notation, we will denote by Pβ̃C,N the law P
0,β̃
C,N . We give an alternative

formulation of the large deviations principle for the empirical measure under the law

P
2β
N

C,N based on the Killip-Nenciu matrix representation. This alternative formulation
allows us to relate the rate function of the Coulomb gas Iβ in terms of the rate function
Jβ of the Ablowitz-Ladik lattice. Finally, applying Varadhan’s Lemma [15, Theorem 1.2.1]
we obtain an alternative formulation of the large deviations principle for the Circular
beta ensemble at high temperature with continuous potential, see Theorem 3.11 below.

To achieve our goal, we need several technical results regarding the distribution
Θν (2.1), and the CMV matrixE (3.10). First, in the next Lemma, we give a representation
of Θν in terms of Gaussian, and Chi distributions.

Lemma 3.5. Let ν > 1. Let X1, X2, Yν be independent, X1, X2 standard Gaussian
variables and Yν be χν−1 distributed, i.e. with density

χν−1(x) =
2

3−ν
2

Γ(ν−12 )
xν−2e−x

2/21x>0 ,

here Γ(x) is the classical Gamma function [12, §5]

Γ(x) =

∫ +∞

0

tx−1e−tdt , (3.11)

Then, Z := X1+iX2

(X2
1+X

2
2+Y

2
ν )1/2

follows the law Θν .

Remark 3.6. If ν ≥ 2 is an integer, Y 2
ν has the law of

∑ν−1
i=1 N

2
i where the Ni’s are i.i.d.

standard gaussians random variables, thus Z is equal in distribution to X1+iX2

(X2
1+···+X2

ν+1)
1
2

,

which follows the law Θν by Remark 2.1.
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Proof. We identify C with R2 and check that for any f : D→ R bounded and measurable,

E[f(Z)] =
ν − 1

2π

∫
D

f(z)(1− |z|2)
ν−3
2 d2z,

i.e. that for some constant c,

∫
R2×R∗+

f

(
x1

(x21 + x22 + y2)1/2
,

x2
(x21 + x22 + y2)1/2

)
e−

x21+x22
2 e−

y2

2 yν−2dx1dx2dy

= c

∫
D

f(u, v)(1− (u2 + v2))
ν−3
2 dudv .

(3.12)

For fixed y > 0, we perform the diffeomorphic change of variables (u, v) = 1
(x2

1+x
2
2+y

2)1/2

(x1, x2). Its inverse (x1, x2) = y
(1−(u2+v2))1/2

(u, v) has Jacobian equal to y2(1− (u2 +v2))−2.
The integral becomes∫
D

f(u, v)

(1− (u2 + v2))2

∫
R∗+

e
− y2

2(1−(u2+v2)) yνdydudv=

√
π

2

∫
D

f(u, v)

(1− (u2 + v2))3/2
E[|Xu,v|ν ]dudv ,

(3.13)
where Xu,v denotes a Gaussian variable N (0, 1− (u2 + v2)). By [39],

E[|Xu,v|ν ] = cν(1− (u2 + v2))
ν
2

for some constant cν independent of u, v. Substituting this last equality in the previous
integral, we conclude.

To obtain our main result, we need some technical lemmas. Since they are based
on standard techniques, we just state them here, and we defer their proofs to the
appendix A.

The first one gives an estimate that we use combined with Lemma 2.2.

Lemma 3.7. Let N = 2k be even and A be a N ×N matrix. Then,

•
∑N
i,j=1 |(LA)i,j | ≤ 2

∑N
i,j=1 |Ai,j |,

•
∑N
i,j=1 |(AM)i,j | ≤ 2

∑N
i,j=1 |Ai,j |,

whereM, and L are defined in (1.8).

We now give an explicit coupling between Θν (2.1) and Θν+h for ν > 1, h > 0.

Let X1, X2 be N (0, 1) independent variables, and let Yν−1 ∼ χν−1, Yh ∼ χh be
independent, and independent of X1, X2 (notice that (Y 2

h + Y 2
ν−1)

1
2 is χν+h−1 distributed).

Let

αν =
X1 + iX2

(X2
1 +X2

2 + Y 2
ν−1)

1
2

, αν+h =
X1 + iX2

(X2
1 +X2

2 + Y 2
ν−1 + Y 2

h )
1
2

. (3.14)

By Lemma 3.5, αν ∼ Θν and αν+h ∼ Θν+h.

Exploiting this coupling, we bound the differences |αν − αν+h| and |ρν − ρν+h| by a
random variable Zh, where ρν =

√
1− |αν |2, and ρν+h =

√
1− |αν+h|2. Moreover, we

find an upper bound for the exponential moments of Zh.

Lemma 3.8. Let αν and αν+h defined by equation (3.14). Define ρν =
√

1− |αν |2, and
ρν+h =

√
1− |αν+h|2, then the following holds
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i.

|αν − αν+h| ≤
Yh

(X2
1 +X2

2 + Y 2
h )

1
2

almost surely ,

|ρν − ρν+h| ≤
Yh

(X2
1 +X2

2 + Y 2
h )

1
2

almost surely,

(3.15)

where X1, X2 ∼ N (0, 1), Yh ∼ χh are all independent.

ii. define Zh = Yh

(X2
1+X

2
2+Y

2
h )

1
2

, and a(h) = − 1
2 ln(h) + 1, then there exists a constant K

independent of h such that

sup
0<h<1

E [exp(a(h)Zh)] ≤ K . (3.16)

Remark 3.9. Let h < h′, and let Zh, Zh′ be given by

Zh =
Yh

(X2
1 +X2

2 + Y 2
h )

1
2

, Zh′ =
Yh′

(X2
1 +X2

2 + Y 2
h′)

1
2

,

where Yh ∼ χh and Yh′ ∼ χh′ are χ variables coupled by

Yh′ =
√
Y 2
h + Z2,

Z being a χh′−h variable independent of Yh. Then, because of the monotonicity of the
function x 7→ x√

a+x2
for a > 0, we have almost surely Zh ≤ Zh′ .

We are now in position to give an alternate formulation of the large deviations princi-

ple for the sequence of measures (µN (E)) under the law P
2β
N

C,N , given by Theorem 3.1.

Lemma 3.10. Let β > 0. The law of the empirical measure (µN (E))Neven under P
2β
N

C,N

satisfies a large deviations principle at speed N and with a good rate function

Iβ(µ) = lim
δ→0

lim inf
q→∞

inf
νβ/q,...,νβ

1
q

∑
i νiβ/q∈Bµ(δ)

{
1

q

q∑
i=1

Jiβ/q(νiβ/q)

}
, (3.17)

where Jη is the rate function of Proposition 2.4 applied to σ = Θ2η+1.

Proof. Following the same line as in [22, Lemma 3.3], we proceed by exponential
approximation. Let q ≥ 1 be an integer, since N is even, we can write N = kq + r, with
k even, and with 0 ≤ r < 2q − 2. Consider the following family of matrices L(i),M(i),
i = 1, . . . q defined as

M(i)
k =



−αik ρik

Ξ
(i)
2

Ξ
(i)
4

. . .

Ξ
(i)
k−2

ρik αik


, L(i)

k =


Ξ
(i)
1

Ξ
(i)
3

. . .

Ξ
(i)
k−1

 ,

(3.18)
where Ξ

(i)
` are defined as

Ξ
(i)
` (αi(k−1)+`) = Ξ

(i)
` =

(
αi(k−1)+` ρi(k−1)+`
ρi(k−1)+` −αi(k−1)+`

)
,

ρi(k−1)+` =
√

1− |αi(k−1)+`|2 ,
` = 1, . . . , k − 1 , (3.19)
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and (αi(k−1)+`)1≤i≤q,1≤`≤k is a family of independent random variables such that

αi(k−1)+` ∼ Θ2βN−ikN +1, ` = 1, . . . k, i = 1, . . . , q.

From these two families of matrices, we can define a third one, namely E(i)k = L(i)
k M

(i)
k , i =

1, . . . , q. We notice that E(i)k is distributed according to P
βN−ikN

AL,k , and that the E(i)k , 1 ≤ i ≤ q,
are independent.

Our aim is to prove that the empirical measure of the matrix CqN

CqN =


E(1)k

E(2)k

. . .

E(q)k

0r×r

 , (3.20)

where 0r×r is a null block of size r×r, is an exponential approximation (see [11, Definition

4.2.14]) of the empirical measure of E ∼ P
2β
N

C;N (3.10), that is, for any positive real number
δ:

lim
q→∞

lim sup
N→∞

1

N
ln (P (d (µN (E), µN (CqN ))) > δ) = −∞ , (3.21)

where P denotes the coupling introduced in equation (3.14). In this way, we obtain the
claim as an application of [11, Theorem 4.2.16]. The strategy of proof is the following.
First we approximate CqN and E by two block diagonal matrices C̃qN , Ẽ

q
N respectively.

Finally, we will prove that both C̃qN , and ẼqN approximate a third matrix BqN .

Consider another family of matrices (M̃(i)
k )1≤i≤q of size k × k, defined as

M̃(i)
k = diag

(
Ξ̃
(i)
0 ,Ξ

(i)
2 ,Ξ

(i)
4 , . . . , Ξ̃

(i)
k

)
, (3.22)

where the matrices Ξ
(i)
` are defined in (3.19), while Ξ̃

(i)
0 = (1) and Ξ̃

(i)
k = (αik) are 1× 1

matrices, where the αik are independent, uniformly distributed on the unit circle for all
i = 1, . . . , q, and independent of (αi(k−1)+l)1≤i≤q,1≤`≤k−1. Define the k × k family of CMV
matrices

Ẽ(i)k = L(i)
k M̃

(i)
k i = 1, . . . , q .

From the family of matrices (Ẽ(i)k )1≤i≤q, we define the block diagonal matrix:

C̃qN =


Ẽ(1)k

Ẽ(2)k

. . .

Ẽ(q)k

0r×r

 . (3.23)

We claim that C̃qN is such that

rank(CqN − C̃
q
N ) ≤ 2q . (3.24)

Indeed, we take the same α(i)
j in the construction of Ẽ ik and of E ik, except for the entries

of the corners of M(i)
k , where M(i)

k (1, 1) is replaced by 1, M(i)
k (k, k) is replaced by a

uniform variable on the circle, and both entriesM(i)
k (1, k) andM(i)

k (k, 1) are replaced by
0. This shows that

rank(M(i)
k − M̃

(i)
k ) ≤ 2,
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and
rank(E(i)k − Ẽ

(i)
k ) = rank(L(i)

k (M(i)
k − M̃

(i)
k )) ≤ rank(M(i)

k − M̃
(i)
k ) ≤ 2,

and we deduce (3.24). From (3.24) and Lemma 2.2, we deduce that

d(µN (CqN ), µN (C̃qN )) ≤ 2

k
, (3.25)

and for any δ > 0 and sufficiently large N , we can take k such that 2
k ≤

δ
4 .

Consider now another two families of matrices (L
(i)
k )1≤i≤q, and (M

(i)
k )1≤i≤q, con-

structed in the same way as (L(i)
k )1≤i≤q, and (M̃(i)

k )1≤i≤q by means of independent
variables α̃(i−1)k+j , where each α̃(i−1)k+j ∼ Θ

2β
N−(i−1)k−j

N
is coupled to α(i−1)k+j by equa-

tion (3.14), for all j = 0, . . . , k − 1, and i = 1, . . . , q, and where α̃ik = αik for i = 1, . . . , q is
uniformly distributed on the unit circle. Define the family of CMV matrices (E

(i)
k )1≤i≤q as

E
(i)
k = L

(i)
k M

(i)
k , i = 1, . . . , q . (3.26)

Define the block diagonal matrix EqN as:

EqN =


E
(1)
k

E
(2)
k

. . .

E
(q)
k

0r×r .

 (3.27)

From the definition of P
2β
N

C,N and EqN , we conclude that for some E ∼ P
2β
N

C,N , we have

rank(E − EqN ) ≤ 2q + r . (3.28)

As before, from the previous inequality we deduce that

d(µN (E), µN (ẼqN )) ≤ 4

k
. (3.29)

Finally, we define the matrix BqN as

BqN =


B

(1)
k

B
(2)
k

. . .

B
(q)
k

0r×r ,

 (3.30)

where B(i)
k = L

(i)
k M̃

(i)
k .

Let δ > 0, for N large enough such that 4
k ≤

δ
4 , we have almost surely

d(µN (CqN ), µN (C̃qN )) + d(µN (E), µN (EqN )) >
δ

2
.

As a consequence,

P (d(µN (CqN ), µN (E)) > δ)

≤ P
(
d(µN (CqN ), µN (C̃qN )) + d(µN (C̃qN ), µN (BqN ))

+ d(µN (BqN ), µN (EqN )) + d(µN (EqN ), µN (E)) > δ
)

≤ P
(
d(µN (C̃qN ), µN (BqN )) + d(µN (BqN ), µN (EqN )) >

δ

2

)
.

(3.31)
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Moreover, combining Lemma 2.2 and Lemma 3.7 we deduce that

d(µN (C̃qN ), µN (BqN )) ≤ 2

N

q∑
i=1

∑
1≤`,j≤k

|L(i)
k (`, j)− L(i)

k (`, j)| ,

d(µN (BqN ), µN (ẼqN )) ≤ 2

N

q∑
i=1

∑
1≤`,j≤k

|M(i)
k (`, j)− M̃(i)

k (`, j)| .
(3.32)

Applying Lemma 3.8 point i., we deduce that

d(µN (C̃qN ), µN (BqN )) + d(µN (BqN ), µN (ẼqN )) ≤ 8

N

q∑
i=1

k−1∑
j=0

Z
(i)
k−j
N

, (3.33)

where the last sum denotes the sum of independent random variables with law Z k−j
N

,
defined in Lemma 3.8.

Thus, for N large enough such that 4
k ≤

δ
4 , we deduce that for any non-negative

function a(q−1):

P (d(µN (CqN ), µN (E)) > δ) ≤ P

 q∑
i=1

k−1∑
j=0

Z
(i)
k−j
N

>
Nδ

16


≤ e−a(q

−1)Nδ/16

(
sup

0<h<1
E [exp(a(h)Zh)]

)qk
,

(3.34)

Where in the last inequality we used Remark 3.9, namely, since k−j
N ≤ 1

q , we have

E[exp(a(q−1)Z k−j
N

] ≤ E[exp(a(q−1)Z 1
q
].

Setting a(h) = − 1
2 ln(h) + 1 and applying Lemma 3.8 point ii., we deduce that there

exist constants K̃ and c > 0, independent of q, such that

1

N
ln (P (d(µN (CqN ), µN (E)) > δ)) ≤ −c ln(q)δ + K̃ , (3.35)

And we obtain the claim.

We can apply the previous Lemma to study the case of continuous potential, indeed
as a consequence of Varadhan’s Lemma we obtain the main result of this section, namely

Theorem 3.11. In the same notation as before. Let β > 0, and V : T→ R continuous.

The law of the empirical measures µN (E) under dP
V, 2βN
C,N satisfies a large deviations

principle at speed N , with a good rate function IVβ (µ) = fVβ (µ)− infν∈P(T) f
V
β (ν), where

fVβ (µ) = lim
δ→0

lim inf
q→∞

inf
νβ/q,...,νβ

1
q

∑
i νiβ/q∈Bµ(δ)

{
1

q

q∑
i=1

(
Jiβ/q(νiβ/q) +

∫
T

V dνiβ/M

)}
, (3.36)

4 Proof of the main results

In this section, we conclude the proof of Theorem 1.4 and prove Theorem 1.5. The
main tool to prove these theorems is the uniqueness of the minimizer of the rate function
for the β ensemble.
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Define the free energies of the Ablowtiz-Ladik lattice and the Circular beta ensemble
at high temperature as

FAL(V, β) = inf
ν∈P(T)

gVβ (ν) , FC(V, β) = inf
ν∈P(T)

fVβ (ν) , (4.1)

where gVβ , and fVβ are given by (2.17) and (3.36). We claim that

Lemma 4.1. Let β > 0, and V : T→ R continuous, then the following holds:

a. the map β → FC(V, β) is continuously differentiable on R∗+. Moreover:

FAL(V, β) = ∂β(βFC(V, β)) ; (4.2)

b. for almost all β > 0 there exists a unique minimizer νVβ of the functional JVβ (µ), see
Corollary 2.5, given by

νVβ = ∂β(βµVβ ) , (4.3)

i.e. for continuous f : T→ R,∫
T

fdνVβ = ∂β

(
β

∫
T

fdµVβ

)
. (4.4)

we recall that the measure µVβ is defined as the unique minimizer of the functional

IVβ in Theorem 3.11.

Remark 4.2. Our definition of Free Energy is different from the one used in [21,37].
Indeed, in virtue of Varadhan’s Lemma [15, Theorem 1.2.1], we have

FAL(V, β) = inf
ν∈P(T)

gVβ (ν) = − lim
N

1

N
lnEβAL,N

[
e−TrV (E)

]
,

FC(V, β) = inf
ν∈P(T)

fVβ (ν) = − lim
N

1

N
lnEβC,N

[
e−TrV (E)

]
,

(4.5)

instead in [21,37], the authors defined the free energies as

F̃AL(V, β) = − lim
N→∞

1

N
ln(ZALN (V, β)) ,

F̃C(V, β) = − lim
N→∞

1

N
ln(ZCN (V, β)) .

(4.6)

We notice that it is possible to recover one expression from the other since

FAL(V, β) = F̃AL(V, β)− F̃AL(0, β) ,

FC(V, β) = F̃C(V, β)− F̃C(0, β) .
(4.7)

To prove uniqueness of the minimizer νVβ , we need to consider a continuous family

(µ∗s)0<s<β, where each µ∗s minimizes JVs , see Corollary 2.5. We address the existence of
such a family in the next Lemma, which we prove in the appendix A.

Lemma 4.3. Let MV
β = (JVβ )−1({0}) be the set of minimizers of JVβ , defined in Corol-

lary 2.5. Then, β 7→ MV
β is continuous in the sense that for all ε > 0, there exists

δ > 0 such that for all 0 ≤ h ≤ δ, MV
β+h ⊂ (MV

β )ε, where for A ⊂ P(T) we denote
Aε = {µ ∈ P(T) | d(µ,A) ≤ ε}.
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Proof of Lemma 4.1. First, we notice that for any probability measure µ ∈ P(T), Theo-
rem 3.11 implies

fVβ (µ) ≥ lim inf
q→∞

inf
ν∈P(T)

{
1

q

q∑
i=1

(
Jiβ/q(ν) +

∫
T

V dν

)}

=

∫ 1

0

inf
ν∈P(T)

gVsβ(ν) =

∫ 1

0

FAL(V, sβ)ds ,

(4.8)

Where we noticed that the Riemann sums indeed converge towards the integral since s 7→
FAL(V, sβ) is concave, this can be seen by applying Hölder inequality to equation (4.5).

To prove the first part of the claim, we show that the lower bound is achieved. For
s ∈ [0, 1], let ν∗sβ be a minimizer of infν∈P(T) g

V
sβ(ν). From Lemma 4.3, we can choose ν∗sβ

such that the map s→ ν∗sβ is continuous. This implies that µ∗β =
∫ 1

0
ν∗sβds is a well-defined

probability measure on T. We claim that this measure minimizes fVβ (3.36), and so IVβ .
Indeed, from Theorem 3.11, we deduce that

fVβ (µ∗β) = lim
δ→0

lim inf
q→∞

inf
νβ/q,...,νβ

1
q

∑
i νiβ/q∈Bµ∗

β
(δ)

{
1

q

q∑
i=1

(
Jiβ/q(νiβ/q) +

∫
T

V dνiβ/q

)}

≤ lim inf
q→∞

{
1

q

q∑
i=1

(
Jiβ/q(ν

∗
iβ/q) +

∫
T

V dν∗iβ/q

)}

= lim inf
q→∞

{
1

q

q∑
i=1

inf
ν∈P(T)

(
Jiβ/q(ν) +

∫
T

V dν

)}

=

∫ 1

0

inf
ν∈P(T)

gVsβ(ν) =

∫ 1

0

FAL(V, sβ)ds .

(4.9)

Combining (4.8)-(4.9), and performing the change of coordinates sβ = t we deduce
that:

βFC(V, β) =

∫ β

0

FAL(V, t)dt . (4.10)

Moreover, from Lemma 3.2 we deduce that the map β → FC(V, β) is Lipschitz in β, and
so almost surely differentiable. This implies that for almost all β > 0

FAL(V, β) = ∂β(βFC(V, β)) . (4.11)

Furthermore, we have just shown that IVβ (µ) = fVβ (µ)− infν∈P(T) f
V
β (ν) reaches its

minimum at
∫ 1

0
ν∗sβds. By uniqueness of the minimizer of IVβ (µ), Theorem 3.1, we deduce

that we have the equality between probability measures µVβ =
∫ 1

0
ν∗sβds. Taking f : T→ R

continuous we get

β

∫
T

fdµVβ =

∫ β

0

∫
T

fdν∗sds.

Note that the function s 7→
∫
T
fdν∗s is continuous, therefore by differentiating this

equality, we get that ν∗β is the unique minimizer of JVβ , which we denote by νVβ , and
satisfies for f continuous ∫

T

fνVβ = ∂β

(
β

∫
T

fµVβ

)
, (4.12)

proving point b.

Remark 4.4. As a corollary of the previous Lemma we obtain Theorem 1.4.
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5 The Schur Flow

In this section, we consider another integrable model, namely the Schur flow. Our
goal is to show that is possible to obtain a similar result to the one that we presented
for the Ablowitz-ladik lattice. Namely, we prove the existence of a large deviations
principle for the Schur flow, and we relate its density of state to the one of the Jacobi
beta ensemble in the high temperature regime.

5.1 Generalized Gibbs Ensemble

The Schur flow is the system of ODEs [20]

α̇j = ρ2j (αj+1 − αj−1) , ρj =
√

1− |αj |2 , (5.1)

and, as before, we consider periodic boundary conditions, namely αj = αj+N for all
j ∈ Z.

In [3], it is argued that the continuum limit of (5.1) is the modified Korteweg-de Vries
equation:

∂tu = ∂3xu− 6u2∂xu . (5.2)

We notice that, if one chooses an initial data such that αj(0) ∈ R for all j = 1, . . . , N ,
then αj(t) ∈ R for all times. Moreover, it is straightforeward to verify that K0 =∏N
j=1

(
1− |αj |2

)
is conserved along the Schur flow. This implies that we can choose as

phase space for the Schur flow the N -cube IN , where I := (−1, 1).
On this phase space, we consider the Poisson braket (1.5), so we can rewrite the

Schur flow (5.1) in Hamiltonian form as

α̇j = {αj , HS}, HS = −i
N∑
j=1

(αjαj+1 − αjαj+1) . (5.3)

It is well known that the Schur flow admits as Lax matrix the same one as the AL [20],
namely E (1.9) is the Lax matrix of the Schur flow. This implies that the Ablowitz-Ladik’s
constants of motion are conserved also along the Schur flow (5.1).

Following the same construction made for the Ablowitz-Ladik lattice, on IN we define
the finite volume limit GGE as

dPV,βS,N (α1, . . . , αN ) =
1

ZSN (V, β)

N∏
j=1

(1− α2
j )
β−11{αj∈I} exp(−Tr(V (E)))dα, (5.4)

where ZSN (V, β) is the partition function of the system

ZSN (V, β) =

∫
IN

N∏
j=1

(1− α2
j )
β−1 exp(−Tr(V (E)))dα.

Since according to the measure (5.4) the matrix E is real, its eigenvalues come in
pairs [32], meaning that if eiθj is an eigenvalue, then its conjugate e−iθj is also an
eigenvalue. This implies that for a system of size N even, there are just n = N/2

independent eigenvalues. Following the same idea as in [24], it is more convenient
to restrict the argument of the eigenvalues in [0, π) and then consider xj = cos(θj),
j = 1, . . . , n. In these variables, the empirical spectral measure µn(E) reads:

µn(E) =
1

n

n∑
j=1

δxj , xj ∈ I . (5.5)
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As a corollary of Lemma 2.3 and Proposition 2.4, we obtain the existence of a large
deviations principle for the sequence (µn(E)), namely:

Corollary 5.1. Let V : I → R be continuous. Under PV,βS,n the sequence (µn(E))n≥1
fulfils a large deviations principle with good, convex rate function SVβ (µ) = hVβ (µ) −
infν∈P(I) h

V
β (ν), where

hVβ (ν) = Kβ(ν) +

∫
I

V dν , (5.6)

where Kβ(ν) is the rate function of µn under the law P
0,β
S,n.

5.2 Jacobi beta ensemble in the high temperature regime

The Jacobi beta ensemble refers to the distribution of charges constrained to the
segment I, and subjected to an external potential W (x) = −a ln(1−x)−b ln(1+x)+V (x),
here a, b > −1 and W (x) ∈ C0(I). Specifically the joint distribution of these particles is

dP
(V,β̃)
J,n =

1

ZJN (V, β̃)

∏
i<j

|xi − xj |β̃
n∏
j=1

(1− xj)a(1 + xj)
be−V (xj)dxj . (5.7)

In [24], Killip and Nenciu were able to show that the distribution (5.7) can be realized
as the eigenvalues distribution of a particular CMV matrix, specifically they proved the
following

Theorem 5.2 (cf. [24] Proposition 5.3). Let N = 2n, consider the CMV matrix E in (3.10)
with parameters α1, . . . , α2n−1 ∈ I distributed according to

dB(V,β̃)
n

=
1

Zn(V, β̃)

2n−1∏
j=1

(1−α2
j )
β̃(2n−j)/4−1

2n−1∏
j=1

(1−αj)a+1−β̃/4(1 + (−1)j+1αj)
b+1−β̃/4e−TrV (E)dαj ,

(5.8)

and α2n = −1, here ZN (V, β) is the normalization constant. Then all the eigenvalues of
E come in pairs, meaning that if eiθj is an eigenvalue, then also e−iθj is one. Moreover,
under the change of variables cos(θj) = xj , the xjs are distributed according to (5.7).

Remark 5.3. We notice that the previous proposition is not stated in this way in [24],
but this equivalent formulation is more useful for our purpose.

Also in this case, we are interested in the high temperature regime for this ensemble.

Specifically we consider the situation β̃ = 4β
N = 2β

n , and a = b = −1 + β̃
4 , in this regime

dP
(V, βn )
J,n reads

dP
(V, 2βn )
J,n =

1

ZJN

(
V, βn

) ∏
i<j

|xi − xj |
2β
n

n∏
j=1

(1− xj)−1+
β
2n (1 + xj)

−1+ β
2n e−V (xj)dxj , (5.9)

and dB
(V, βn )
n becomes

dB
(V, βn )
n =

1

Zn

(
V, βn

) 2n−1∏
j=1

(1− α2
j )
β(1− j

2n )−1
2n−1∏
j=1

e−TrV (E)dαj . (5.10)
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We mention that this particular regime was considered in [17,38]. In these papers
the authors computed the density of states for this ensemble in the case V = 0.

We can apply [18, Corollary 1.3] to (5.9) to obtain a large deviations principle for the
empirical measure µn(E) = 1

n

∑n
j=1 δxj . Specifically, we deduce that

Proposition 5.4. For any continuous V : I → R. The law of the empirical measures

µn(E) under dP
(V, 2βn )
J,n satisfies a large deviations principle at speed n in the space P(I),

with a good rate function µ 7→ QVβ (µ) given for µ absolutely continuous with respect to

Lebesgue measure, and with density dµ
dx , by QVβ (µ) = qVβ (µ)− infν∈P(I) q

V
β (ν), where

qVβ (µ) =

∫
I

(V (x) + ln(1 + x) + ln(1− x))dµ(x)

− 2β

∫
I×I

ln(|x− y|)dµ(x)dµ(y) +

∫
I

ln

(
dµ

dx
(x)

)
dµ(x) , (5.11)

and QVβ (µ) = +∞ otherwise.

We notice that the arguments in Section 3 and 4 can be applied also in this context

with dP
(V, 2βn )
J,n in place of dP

(V, 2βN )
C,N , and dPV,βS,N in place of dPV,βAL,N . Hence, we deduce the

following result

Theorem 5.5. Consider the sequence of measures µn(E) (5.5) under the law dPV,βS,2n (5.4),
then

µn(E)
a.s.−−→ νVβ . (5.12)

Moreover, νVβ is absolutely continuous with respect to the Lebesgue measure, and it
reads

νVβ = ∂β(βµVβ ) , (5.13)

where µVβ is the unique minimizer of the functional qVβ (5.11).

Finally, it is worth to mention that in the case V (x) = 0, it is possible to compute
explicitly the densities of states for both the Jacobi beta ensemble at high temperature
and for the Schur flow [17,28].

A Technical results

In this appendix we collect the proof of all the technical results that we exploit along
the proof of the main theorem. For reader convenience, we report here the statement of
Lemmas.

Proof of Lemma 2.2

Lemma A.1. For any A, B unitary matrices of size N ×N , we have

• For f with bounded variation,∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ ‖f‖BV
rank(A−B)

N
,

• For f Lipschitz, ∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ ‖f‖Lip
1

N

∑
i,j

|(A−B)i,j |.
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As a consequence,

d(µ(A), µ(B)) ≤ min

rank(A−B)

N
,

1

N

∑
i,j

|(A−B)i,j |

 . (A.1)

Proof. The first point is a consequence of the fact that the eigenvalues of A and B

interlace on the unit circle.

First, we order the eigenvalues λ1(A), . . . , λN (A), λ1(B), . . . , λN (B) of A,B in such a
way that

− π ≤ arg(λ1(A)) ≤ . . . ≤ arg(λN (A)) < π , (A.2)

and analogously for B.

Write B = (IN + (B −A)A−1)A and set U := IN + (B −A)A−1. One checks that U is
unitary, B = UA, and that rank(U − I) = rank(B − A) =: r. By [5, section 6, equation
(85)], we deduce that for 1 ≤ j ≤ N

arg(λj−r(A)) ≤ arg(λj(B)) ≤ arg(λj+r(A)) . (A.3)

This means that λj(B) lies on the anticlockwise arc (arg(λj−r(A)), arg(λj+r(A))) of
the circle. If j − r ≤ 0 we identify λj−r with λj−r+N , and analogously for the case
j + r > N .

It is a classical result (see [4]) to deduce from (A.3) that∣∣∣∣∫ fdµN (A)−
∫
fdµN (B)

∣∣∣∣ ≤ ‖f‖BV
r

N
=

r

N
,

for any f : T→ R such that ||f ||BV ≤ 1. As a consequence, we obtain the first point.

The proof of the second point is the same as in the symmetric case, see [22, (16)].
Indeed, we only use the fact that a normal matrix is unitarily diagonalizable.

Proof of Lemma 3.7

Lemma A.2. Let N = 2k be even and A be a N ×N matrix. Then,

•
∑
i,j |(LA)i,j | ≤ 2

∑
i,j |Ai,j |,

•
∑
i,j |(AM)i,j | ≤ 2

∑
i,j |Ai,j |,

whereM, and L are defined in (1.8).

Proof. We will just prove the first point, since the proof of the second one follows the
same lines.

For 0 ≤ l ≤ k − 1 and 1 ≤ j ≤ N , consider

(LA)2l+1,j = α2l+1A2l+1,j + ρ2l+1A2l+2,j and (LA)2l+2,j = ρ2l+1A2l+1,j − α2l+2A2l+2,j .

Summing over i, j,

∑
i,j

|(LA)i,j |=
k−1∑
l=0

N∑
j=1

|(LA)2l+1,j |+|(LA)2l+2,j | ≤ 2

k−1∑
l=0

N∑
j=1

|A2l+1,j |+|A2l+2,j | = 2
∑
i,j

|Ai,j |,

where we used that |αi|, ρi ≤ 1.
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Proof of Lemma 3.8

Lemma A.3. Let αν and αν+h defined by equation (3.14). Define ρν =
√

1− |αν |2, and
ρν+h =

√
1− |αν+h|2, then the following hold

i.

|αν − αν+h| ≤
Yh

(X2
1 +X2

2 + Y 2
h )

1
2

, almost surely ,

|ρν − ρν+h| ≤
Yh

(X2
1 +X2

2 + Y 2
h )

1
2

, almost surely ,

(A.4)

where X1, X2 ∼ N (0, 1), Yh ∼ χh are all independent.

ii. define Zh = Yh

(X2
1+X

2
2+Y

2
h )

1
2

, and a(h) = − 1
2 ln(h) + 1, then there exists a constant K

independent of h such that

sup
0<h<1

E [exp(a(h)Zh)] ≤ K . (A.5)

Proof. First, we focus on claim i..

We recall that αν , αν+h are defined by

αν=
X1 + iX2

(X2
1 +X2

2 + Y 2
ν−1)

, αν+h=
X1 + iX2

(X2
1 +X2

2 + Y 2
ν−1 + Y 2

h )
. (A.6)

From the previous equation, we deduce that

|αν − αν+h| =
|X1 + iX2|

(X2
1 +X2

2 + Y 2
ν−1)

1
2

(
1−

(
X2

1 +X2
2 + Y 2

ν−1
X2

1 +X2
2 + Y 2

ν−1 + Y 2
h

) 1
2

)

=
|X1 + iX2|

(X2
1 +X2

2 + Y 2
ν−1)

1
2

(
1−

(
1− Y 2

h

X2
1 +X2

2 + Y 2
ν−1 + Y 2

h

) 1
2

)

≤
(

X2
1 +X2

2

X2
1 +X2

2 + Y 2
ν−1

) 1
2 Yh

(X2
1 +X2

2 + Y 2
ν−1 + Y 2

h )
1
2

,

where we used in the previous line that for 0 ≤ a ≤ b we have

√
b ≤
√
b− a+

√
a , (A.7)

and we took a =
Y 2
h

X2
1+X

2
2+Y

2
ν−1+Y

2
h

, b = 1. The last term is bounded by the announced

bound.

One can proceed analogously for |ρν − ρν+h| obtaining that

|ρ(αν+h)− ρ(αν)|

=
√

1− |αν+h|2 −
√

1− |αν |2 ≤
√
|αν |2 − |αν+h|2

=

√
X2

1 +X2
2

X2
1 +X2

2 + Y 2
ν−1

√
1−

X2
1 +X2

2 + Y 2
ν−1

X2
1 +X2

2 + Y 2
ν−1 + Y 2

h

≤ Yh

(X2
1 +X2

2 + Y 2
ν−1 + Y 2

h )
1
2

,

(A.8)

where we used again equation (A.7) with a = 1− |αν |2 and b = 1− |αν+h|2. Thus, point i.
is proved.
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To prove point ii., we find explicitly the law of Zh. Thus, we consider a continuous
function f : (0, 1) → R, and we compute:∫

R2×R+

f

(
y

(x21 + x22 + y2)
1
2

)
e−

x21+x22+y2

2 yh−1dx1dx2dy . (A.9)

Performing the change of coordinates (u, v) = 1
(x2

1+x
2
2+y

2)1/2
(x1, x2), which is the same

one that we performed in Lemma 3.5, we obtain that

∫
R2×R+

f

(
y

(x21 + x22 + y2)
1
2

)
e−

x21+x22+y2

2 yh−1dx1dx2dy

=

∫
D×R+

f
(√

1− u2 − v2
)

(1− u2 − v2)2
e
− y2

2(1−u2−v2) yh+1dudvdy

√
1−u2−v2t=y

=

∫
D×R+

f
(√

1− u2 − v2
) (

1− u2 − v2
)h

2−1 e−
t2

2 th+1dudvdt .

(A.10)

We can now explicitly compute the integral in t. Moreover, we can express the remaining
part of the integral in polar coordinates; namely, we apply the change of variables
u = ρ cos(θ), v = ρ sin(θ), obtaining that:

∫
D×R+

f
(√

1− u2 − v2
) (

1− u2 − v2
)h

2−1 e−
t2

2 th+1dudvdt

= 2π2
h
2 Γ

(
h

2
+ 1

)∫ 1

0

ρf(
√

1− ρ2)
(
1− ρ2

)h
2−1 dρ

√
1−ρ2=w

= 2π2
h
2 Γ

(
h

2
+ 1

)∫ 1

0

f(w)wh−1dw ,

(A.11)

here Γ(x) is the gamma function (3.11). Thus, in order to obtain the estimate (A.5), we
have to deduce an upper bound for

sup
0<h<1

∫ 1

0
ea(h)wwh−1dw∫ 1

0
wh−1dw

. (A.12)

For any 0 < h < 1, we can explicitly compute the denominator as∫ 1

0

wh−1dw =
1

h
. (A.13)

Moreover, we can give an upper bound on the numerator as∫ 1

0

ea(h)wwh−1dw
a(h)w=r

=
1

a(h)h

∫ a(h)

0

errh−1dr =
1

a(h)h

(∫ 1

0

errh−1dr +

∫ a(h)

1

errh−1dr

)

≤ 1

a(h)h

(
e

∫ 1

0

rh−1dr +

∫ a(h)

1

erdr

)
≤ e

a(h)hh
+
ea(h)

a(h)h
.

(A.14)

Combining (A.13)-(A.14), with our choice of a(h) = − 1
2 ln(h) + 1, we deduce that there

exists a constant K independent of h such that (A.5) holds.
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Proof of Lemma 4.3

Lemma A.4. Let MV
β = (JVβ )−1({0}) be the set of minimizers of JVβ . Then, β 7→ MV

β is
continuous in the sense that for all ε > 0, there exists δ > 0 such that for all 0 ≤ h ≤ δ,
MV
β+h ⊂ (MV

β )ε, where for A ⊂ P(T) we denote Aε = {µ ∈ P(T) | d(µ,A) ≤ ε}.

Proof. Let ε > 0. We are going to show that for h > 0 small enough, we have

− inf
[(MV

β )ε]
c
JVβ+h < 0,

which will ensure that JVβ+h > 0 on
[
(MV

β )ε
]c

, thus
[
(MV

β )ε
]c
⊂
[
(MV

β+h)
]c

, and hence

the conclusion.
By the large deviations principle for (µN )N even under PV,βAL,N , Corollary 2.5, since[

(MV
β )ε

]c
is open, we have

− inf
[(MV

β )ε]
c
JVβ+h ≤ lim inf

N even

1

N
lnPV,β+hAL,N

(
µN (E) ∈

[
(MV

β )ε
]c)

= lim inf
N even

1

N
lnPV,β+hAL,N

(
d(µN (E),MV

β ) > ε
)

≤ lim sup
N even

1

N
lnPV,β+hAL,N

(
d(µN (E),MV

β ) ≥ ε
)
.

Since for any positive h and α ∈ DN
∏N
j=1(1−|αj |2)h ≤ 1,we deduce that for any A ⊆ DN

1

N
ln
(
P
V,β+h
AL,N (A)

)
≤ 1

N

(
ln

(
ZALN (V, β)

ZALN (V, β + h)

)
+ ln

(
P
V,β
AL,N (A)

))
, (A.15)

we recall that PV,βAL,N is defined in (1.14).

Applying the previous inequality in the case A = {d(µN (E),MV
β ) ≥ ε}, we conclude

that

− inf
[(MV

β )ε]
c
JVβ+h ≤ lim sup

N→∞

1

N

(
ln

(
ZALN (V, β)

ZALN (V, β + h)

)
+ ln

(
P
V,β
AL,N (d(µN (E),MV

β ) ≥ ε)
))

.

(A.16)
From Corollary 2.5, we deduce that there exists a positive constant c, independent of

h, such that

lim sup
N→∞

1

N
P
V,β
AL,N (d(µN (E),MV

β ) ≥ ε)) ≤ − inf
[(MV

β )ε]
c
JVβ < −c . (A.17)

Thus, to conclude we have just to prove that the function g(β) = limN→∞
1
N ln

(
ZALN (V, β)

)
is continuous in β. Actually, we prove that this function is convex in β. Let 1/p+ 1/q = 1,
and β1, β2 ∈ R+ then

ZALN

(
V,
β1
p

+
β2
q

)
=

∫
DN

N∏
j=1

(1− |αj |2)
β1
p +

β2
q −1 exp(−Tr(V (E)))d2α

=

∫
DN

N∏
j=1

(1− |αj |2)
β1−1
p +

β2−1
q exp

(
−
(

1

p
+

1

q

)
Tr(V (E))

)
d2α

≤ ZALN (V, β1)
1
p ZALN (V, β2)

1
q ,

(A.18)
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where in the last inequality we used Hölder inequality. This implies that

g

(
β1
p

+
β2
q

)
≤ 1

p
g(β1) +

1

q
g(β2) , (A.19)

thus g(β) is convex, and so continuous, for β > 0. We can now choose h is such a way
that ∣∣∣∣∣ lim sup

N→∞

1

N
ln

(
ZALN (V, β)

ZALN (V, β + h)

) ∣∣∣∣∣ < c ,

so we obtain that
inf

[(MV
β )ε]

c
JVβ+h > 0 . (A.20)
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