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Abstract

Excluding some special cases, computing the critical inverse-temperature βc of a
mixed p-spin spin glass model is a difficult task. The only known method to calculate
its value for a general model requires the full power of the Parisi formula. On the other
hand, an easy application of the second moment method to the partition function yields
an explicit lower bound βm ≤ βc to the critical inverse-temperature. Interestingly, in
the important case of the Sherrington-Kirkpatrick model βm = βc. In this work we
consider the multi-species spherical mixed p-spin models without external field, and
characterize by a simple condition the models for which the second moment method
works in the whole replica symmetric phase, namely, models such that βm = βc. In
particular, for those models we obtain the value of βc.
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1 Introduction

The high-temperature phase of a mixed p-spin spin glass model (with no external
field) consists of inverse-temperatures β ≤ βc such that, for large N ,

EFN,β :=
1

N
E logZN,β ≈

1

N
logEZN,β . (1.1)

Computing the mean of the partition function ZN,β is trivial, and thus for β as above one
has the mean of the free energy FN,β in the large N limit. Beyond the expression for
the free energy, the system simplifies in this phase in several ways. Most importantly,
no ‘replica symmetry breaking’ occurs — that is, independent samples from the Gibbs
measure are typically roughly orthogonal to each other.
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On the second moment method and RS phase

Despite this, computing the critical value βc is generally a difficult problem. For
general mixed p-spin models, the only known method to achieve its value heavily relies
on the Parisi formula [20, 21, 32], one of the deepest, most complicated results in
mean-field spin glass theory. See the works of Chen [11] and Talagrand [31] where a
characterization for sub-critical inverse-temperatures β is derived from the optimality
criterion for the Parisi distribution, for (single-species) models with Ising and spherical
spins respectively.

In sharp contrast to the usage of the Parisi formula in its extreme simplicity, an
application of the second moment method to the partition function ZN,β very easily
allows one to lower bound the critical inverse-temperature βc. Interestingly, for the
important SK model [22], the bound actually gives the correct critical value βc. In this
paper we focus on the question: when does the second moment work up to the critical
βc? We answer this question for the multi-species spherical mixed p-spin models.

1.1 Definition of the model

Consider a finite set of species S , which will be fixed throughout the paper. For each
N ≥ 1, we will suppose that

{1, . . . , N} =
⋃
s∈S

Is, for some disjoint Is.

The subsets Is, of course, vary with N . Denoting Ns := |Is|, we will assume that the
proportion of each species converges

lim
N→∞

Ns
N

= λ(s) ∈ (0, 1), for all s ∈ S .

Let S(d) = {x ∈ Rd : ‖x‖ =
√
d} be the sphere of radius

√
d in dimension d. The

configuration space of the multi-species spherical mixed p-spin model is

SN =
{

(σ1, . . . , σN ) ∈ RN : ∀s ∈ S , (σi)i∈Is ∈ S(Ns)
}
.

Denoting Z+ := {0, 1, . . .} and |p| :=
∑
s∈S p(s) for p ∈ ZS

+ , let

P =
{
p ∈ ZS

+ : |p| ≥ 2
}
.

Given some nonnegative numbers (∆p)p∈P , define the mixture polynomial in x =

(x(s))s∈S ∈ RS ,

ξ(x) =
∑
p∈P

∆2
p

∏
s∈S

x(s)p(s). (1.2)

We will assume that ξ(1 + ε) <∞ for some ε > 0, where for a ∈ R we write ξ(a) for the
evaluation of ξ at the constant function x ≡ a.

The multi-species mixed p-spin Hamiltonian HN : SN → R corresponding to the
mixture ξ is given by

HN (σ) =
√
N

∞∑
k=2

N∑
i1,...,ik=1

∆i1,...,ikJi1,...,ikσi1 · · ·σik , (1.3)

where Ji1,...,ik are i.i.d. standard normal variables and if #{j ≤ k : ij ∈ Is} = p(s) for
any s ∈ S , then ∆i1,...,ik = ∆i1,...,ik(N) is defined by

∆2
i1,...,ik

= ∆2
p

∏
s∈S p(s)!

|p|!
∏
s∈S

N−p(s)s . (1.4)
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On the second moment method and RS phase

By a straightforward calculation, the covariance function of HN (σ) is given by

EHN (σ)HN (σ′) = Nξ(R(σ,σ′)), (1.5)

where we define the overlap vector

R(σ,σ′) :=
(
Rs(σ,σ

′)
)
s∈S

, Rs(σ,σ
′) := N−1

s

∑
i∈Is

σiσ
′
i.

Identifying SN with the product space
∏
s∈S S(Ns), let µ be the product of the

uniform measures on each of the spheres S(Ns). The partition function and free energy
at inverse-temperature β ≥ 0 are, respectively, defined by

ZN,β :=

∫
SN

eβHN (σ)dµ(σ) and FN,β :=
1

N
logZN,β . (1.6)

The Gibbs measure is the random probability measure on SN with density

dGN,β
dµ

(σ) = Z−1
N,βe

βHN (σ).

If |S | = 1, all the definitions above coincide with the usual (single-species) spherical
mixed p-spin model.

By Jensen’s inequality,

EFN,β =
1

N
E logZN,β ≤

1

N
logEZN,β =

1

2
β2ξ(1). (1.7)

It is not difficult to check (also using Jensen’s inequality, see Lemma 2.1 below) that for
any β′ < β,

EFN,β ≤ EFN,β′ +
1

2
(β2 − β′ 2)ξ(1).

Hence, there exists a critical inverse-temperature βc such that

lim
N→∞

EFN,β =
1

2
β2ξ(1) ⇐⇒ β ≤ βc. (1.8)

1.2 The second moment method

By the Paley–Zygmund inequality, if we are able to show for some β that

lim
N→∞

1

N
logEZ2

N,β = lim
N→∞

1

N
log
(

(EZN,β)2
)

= β2ξ(1), (1.9)

then for any θ ∈ (0, 1), ZN,β ≥ θEZN,β with probability not exponentially small in N .
Combined with the well-known concentration of the free energy, (see e.g., [17, Theorem
1.2]) this easily implies that β ≤ βc.

By Fubini’s theorem and symmetry we have that

EZ2
N,β =

∫ ∫
E exp {βHN (σ) + βHN (σ′)} dµ(σ)dµ(σ′)

=

∫
exp

{
Nβ2(ξ(1) + ξ(R(σ,σ0))

}
dµ(σ),

where σ0 ∈ SN is an arbitrary point. Using the coarea formula, one can then check that

EZ2
N,β =

∫
[−1,1]S

∏
s∈S

ωNs−1

ωNs

(
1− r(s)2

)Ns−3
2 eNβ

2(ξ(1)+ξ(r))dr,
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where ωd denotes the volume of the unit sphere in Rd. Therefore

lim
N→∞

1

N
logEZ2

N,β = β2ξ(1) + max
r∈[0,1)S

fβ(r), (1.10)

where

fβ(r) :=
1

2

∑
s∈S

λ(s) log(1− r(s)2) + β2ξ(r).

If we define the threshold inverse-temperature

βm := max

{
β ≥ 0 : max

r∈[0,1)S
fβ(r) = fβ(0) = 0

}
,

then (1.9) holds if and only if β ≤ βm, from which we have that βm ≤ βc.
The second moment method similarly works for models with Ising spins up to a

threshold βm as above, if one appropriately modifies the logarithmic entropy term in the
definition of fβ(r). For the SK model, Talagrand used the method in [29, Section 2] to
show that βm = 1/

√
2 (the fact that βc ≥ 1/

√
2 was first proved in [1]). Exploiting special

properties of the SK model, Comets proved in [14] that βc ≤ 1/
√

2 and therefore βc = βm.
For the p-spin generalization of the SK models, Talagrand [30] used a truncated second
moment argument to prove a lower bound for the critical βc. Bolthausen [9] applied the
second moment method conditional on an event related to the TAP equations to compute
the free energy of the SK model with an external field at high-temperature.

In the context of the spherical models but in a different direction than the above, the
second moment method was used in the study of critical points. In [4, 8, 15, 23, 28] it
was applied to the complexity of critical points to prove its concentration around the
mean [2, 3, 16].

1.3 Main results

Our main result is the following theorem. We will make the following assumption,

x ∈ [0, 1]S \ {0} =⇒ ξ(x) > 0. (A)

The assumption will be used in the proofs to conclude that if r ∈ [0, 1)S and ξ(r) ≈ 0,
then r ≈ 0. In the single-species case |S | = 1, which is also covered by our results, the
assumption always holds.

Theorem 1.1. Assuming (A), βm = βc if and only if( d

dr(s)

d

dr(t)
fβm(0)

)
s,t∈S

is a singular matrix. (1.11)

Since
(

d
dr(s)fβ(0)

)
s∈S

= 0, the matrix in (1.11) determines the local behavior of fβm(r)

around the origin. Roughly speaking, the theorem says that the second moment method
works up to the critical inverse-temperature if for β slightly above βm the condition that
maxr∈[0,1)S fβ(r) = 0 is broken around r = 0.

The proof that βm < βc if the matrix in (1.11) is regular is the easy part of the theorem.
It will follow by showing that in this case βm < β̃m ≤ βc for some other threshold β̃m,
which will arise from applying the second moment method to a random variable different
from ZN,β. The argument essentially uses the same idea as in the truncated second
moment method used by Talagrand in [30].

To prove the main part of the theorem, concerning the case that the matrix (1.11) is
singular, we will prove the following proposition.
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Proposition 1.2. Assuming (A), if for some β,( d

dr(s)

d

dr(t)
fβ(0)

)
s,t∈S

has a non-negative eigenvalue, (1.12)

then βc ≤ β.

For the spherical single-species mixed p-spin models, the Parisi formula for the limit
of the free energy was proved by Talagrand [31] for models with even interactions, and
later generalized to arbitrary mixtures by Chen [10]. For the multi-species spherical
mixed p-spin models, the Parisi formula was recently proved by Bates and Sohn [6, 7],
assuming that the mixture polynomial ξ(x) is convex on [0, 1]S . For the proof of the
Parisi formula for models with Ising spins, see the works of Talagrand and Panchenko
for the single-species case [18, 32] and the work of Panchenko [19] for the multi-species
SK model, where it was also assumed that ξ(x) is convex.

For the single-species spherical models, Talagrand also proved in [31] the following
characterization of sub-critical inverse-temperatures, using the Parisi formula: β ≤ βc if
and only if

∀r ∈ [0, 1) : gβ(r) := log(1− r) + r + β2ξ(r) ≤ 0. (1.13)

Using that log(1− r) = −
∑
n≥1 r

n/n, we have that in the single-species case

∀r ∈ [0, 1) : fβ(r) = gβ(r) +
r3

3
+
r5

5
+
r7

7
+ · · · . (1.14)

Reassuringly, this is consistent with Theorem 1.1. Possibly, an analogue of the character-
ization of the high-temperature phase from [31] for multi-species models can be proved
using the results of [6, 7], assuming the convexity of ξ(x).

For single-species spherical models, one can deduce Theorem 1.1 from the character-
ization (1.13) and (1.14). Still, even in this setting, it is interesting to understand from
basic principles rather than the Parisi formula when does a basic tool like the second
moment method fails or succeeds. For the multi-species models, our main result allows
one to compute βc for a certain class of models. This result is new, as no analogue for
the criterion from [31] is known in this case. In particular, this class includes models
which do not satisfy the assumption that ξ(x) is convex1 as in the proof of the Parisi
formula in the multi-species setting [5, 7, 19]. Finally, one of the main motivations for
this work is that our results are crucial to [27] where we compute the free energy for
pure multi-species spherical models using the TAP representation developed in [26] (in
particular the result we prove in the Appendix).

It is well-known (see Section 3) that for any β ≤ βc and ε > 0, with probability going
to 1 as N →∞,

FN,β ≈
1

N
log

∫
Lβ(ε)

eβHN (σ)dµ(σ),

where we define the subset

Lβ(ε) :=
{
σ ∈ SN :

1

N
HN (σ) ∈ (βξ(1)− ε, βξ(1) + ε)

}
.

Moreover, with high probability,

1

N
logµ

(
Lβ(ε)

)
≈ 1

N
logEµ

(
Lβ(ε)

)
. (1.15)

1For example, if ∆p > 0 only when |p| = 2 then ξ(x) is a quadratic function, from which one can verify that
(1.11) holds. Of course, the coefficients ∆p with |p| = 2 can be chosen so that ξ(x) is not convex. If fβ(r) has
a unique maximum at r = 0, one can add to such a mixture positive small coefficients ∆p > 0 with |p| ≥ 3
such that also after the addition the mixture satisfies (1.11).

EJP 28 (2023), paper 50.
Page 5/21

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP933
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the second moment method and RS phase

For a point σ ∈ SN , an overlap vector r ∈ [−1, 1]S and width δ > 0, define the subset

B(σ, r, δ) :=
{
σ′ ∈ SN : ∀s ∈ S ,

∣∣Rs(σ,σ′)− r(s)∣∣ ≤ δ}.
We will show using (1.15) that for most points σ in Lβ(ε), the free energy on B(σ, r, δ),
namely

1

N
log

∫
B(σ,r,δ)

eβHN (σ′)dµ(σ′), (1.16)

is close to its conditional expectation given HN (σ) (see Lemma 3.2). By estimating this
conditional expectation, we will prove the following in Section 3.

Proposition 1.3. Assume (A) and that ∆p 6= 0 for finitely many p. Let β ≤ βc, t > 0.
Then for any r ∈ [0, 1)S and sufficiently small δ, ε > 0,

lim
N→∞

P

(
µ
(
Lβ(ε) ∩Ar(t)

)
≥ (1− e−Nc) · µ

(
Lβ(ε)

)
> 0

)
= 1, (1.17)

where Ar(t) ⊂ SN is the set of points σ such that∣∣∣ 1

N
log

∫
B(σ,r,δ)

eβHN (σ′)dµ(σ′)− 1

2
β2ξ(1)− fβ(r)

∣∣∣ < κ(r2) + t, (1.18)

for some constant c = c(t, ξ) > 0 and function κ(x) = κ(x, ξ, β) of x ∈ [0, 1)S such that
κ(0) = 0 and whose directional derivatives at the origin in any direction x are zero

lim
ε→0+

κ(εx)

ε
= 0. (1.19)

Obviously, the free energy (1.16) on B(σ, r, δ) lower bounds the total free energy
FN,β . Hence, for β ≤ βc, the proposition in particular gives us a lower bound for the free
energy FN,β by using only one point from the set Lβ(ε) ∩Ar(t), with high probability. To
prove Proposition 1.2, assuming (1.12) we will show that if there were some inverse-
temperature β < β′ < βc, then this lower bound would imply that EFN,β′ >

1
2β
′ 2ξ(1) in

contradiction to (1.7).
In Section 2 we prove Proposition 1.2 and Theorem 1.1, assuming Proposition 1.3

which is be proved in Section 3 that occupies the rest of the paper.

2 Proof of the main results assuming Proposition 1.3

In this section we prove Theorem 1.1 and Proposition 1.2, assuming Proposition 1.3
which we will prove in Section 3.

2.1 Proof of Proposition 1.2

We will first prove the proposition assuming that ∆p 6= 0 for only finitely many p, in
which case we may use Proposition 1.3.

Write fβ(r) = f0(r) + β2ξ(r) where

f0(r) =
1

2

∑
s∈S

λ(s) log(1− r(s)2).

Note that for any r and real α,

d

dα

∣∣∣
α=0

fβ(αr) =
d

dα

∣∣∣
α=0

f0(αr) =
d

dα

∣∣∣
α=0

ξ(αr) = 0
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and
d2

dα2

∣∣∣
α=0

f0(αr) = −
∑
s∈S

λ(s)r(s)2 < 0,

where as usual (αr)(s) = αr(s). Therefore, for any β < β′,

d2

dα2

∣∣∣
α=0

fβ(αr) ≥ 0 =⇒ d2

dα2

∣∣∣
α=0

fβ′(αr) > 0. (2.1)

Let β be some inverse-temperature and assume that the matrix in (1.12) has some
non-negative eigenvalue. Then there exists some r with ‖r‖ = 1 such that the inequality
on the left-hand side of (2.1) holds. From (1.2), it is easy to see that we may assume that
this r belongs to [0, 1)S .

Assume towards contradiction that β < βc and let β′ ∈ (β, βc). Then with the same r,

d

dα

∣∣∣
α=0

fβ′(αr) = 0 and
d2

dα2

∣∣∣
α=0

fβ′(αr) > 0.

Hence, we may choose some small enough α and t > 0 such that

fβ′(αr) > κ(α2r2) + 2t,

where κ(x) is the function from Proposition 1.3.
By the latter proposition, for some small δ > 0 with probability going to 1 as N →∞,

there exists a point σ ∈ SN such that

FN,β′ ≥
1

N
log

∫
B(σ,αr,δ)

eβ
′HN (σ′)dµ(σ′) >

1

2
β′ 2ξ(1) + t.

Combined with the well-known concentration of the free energy (see [17, Theorem
1.2]), this contradicts (1.7). We therefore conclude that βc ≤ β.

It remains to prove the proposition in the case where infinitely many ∆p are non-
zero. Given some ξ(x) consider the mixture ξ̄(X) obtained by replacing by zero all the
coefficients ∆p whenever |p| ≥ 3. Note that the matrix in (1.12) is determined by the
coefficients ∆p with |p| = 2 only. Moreover, by the following lemma, the critical inverse-
temperature of ξ(x) is less than or equal to that of ξ̄(x). From this, the proposition
follows also when infinitely many ∆p are non-zero.

Lemma 2.1. Suppose that

ξ(x) =
∑

p:|p|≥1

∆2
p

∏
s∈S

x(s)p(s), ξ̄(x) =
∑

p:|p|≥1

∆̄2
p

∏
s∈S

x(s)p(s)

are two mixtures such that ∆2
p ≥ ∆̄2

p for any p. Let FN,β and F̄N,β their corresponding
free energies. Then

lim
N→∞

EFN,β =
1

2
β2ξ(1) =⇒ lim

N→∞
EF̄N,β =

1

2
β2ξ̄(1).

Proof. Define the mixture

ξ̂(x) = ξ(x)− ξ̄(x) =
∑

p:|p|≥1

(∆2
p − ∆̄2

p)
∏
s∈S

x(s)p(s).

Denote by HN (σ), H̄N (σ) and ĤN (σ) the Hamiltonians corresponding to ξ(x), ξ̄(x) and
ξ̂(x), respectively. Define H̄N (σ) and ĤN (σ) on the same probability space such that
they are independent. Note that in distribution (as processes)

HN (σ) = H̄N (σ) + ĤN (σ),
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since the covariance functions and expectation of the Gaussian processes in both sides
are equal.

By Jensen’s inequality,

E log

∫
SN

eβHN (σ)dµ(σ) = EE
(

log

∫
SN

eβ(H̄N (σ)+ĤN (σ))dµ(σ)
∣∣∣ (H̄N (σ))σ∈SN

)
≤ E log

∫
SN

eβH̄N (σ)dµ(σ) +
1

2
Nβ2ξ̂(1).

Hence, if limN→∞EFN,β = 1
2β

2ξ(1), then

lim inf
N→∞

EF̄N,β ≥
1

2
β2ξ(1)− 1

2
β2ξ̂(1) =

1

2
β2ξ̄(1).

The matching upper bound follows from (1.7).

2.2 Proof of Theorem 1.1

Recall that βm ≤ βc. If the matrix( d

dr(s)

d

dr(t)
fβm(0)

)
s,t∈S

(2.2)

is singular, then by Proposition 1.2, βc ≤ βm and thus βc = βm.
Henceforth, assume that the matrix above is regular. We will prove that in this case

there exists βm < β ≤ βc. As mentioned in the introduction, the argument we use is
essentially equivalent to the second moment method with truncation used in [30].

Fix some arbitrary γ > 0. For β > 0, consider the random variable

UN,β := µ
({

σ ∈ SN :
∣∣∣ 1

N
HN (β)− βξ(1)

∣∣∣ < N−γ
})
.

It is easy to check that

lim
N→∞

1

N
logEUN,β = −1

2
β2ξ(1),

and similarly to (1.10),

lim
N→∞

1

N
logEU2

N,β = −β2ξ(1) + max
r∈[0,1)S

f̃β(r),

where

f̃β(r) :=
1

2

∑
s∈S

λ(s) log(1− r(s)2) + β2 ξ(1)ξ(r)

ξ(1) + ξ(r)
.

Define the inverse-temperature

β̃m := max

{
β ≥ 0 : max

r∈[0,1)S
f̃β(r) = f̃β(0) = 0

}
.

For any β ≤ β̃m,

lim
N→∞

1

N
logEU2

N,β = lim
N→∞

1

N
log
(

(EUN,β)2
)

= −β2ξ(1).

From the Paley–Zygmund inequality, for such β and any θ ∈ (0, 1), with probability not
exponentially small in N , UN,β ≥ θEUN,β. On this event, FN,β ≥ 1

2β
2ξ(1) + o(1). Hence,

from the well-known concentration of the free energy and (1.7), β̃m ≤ βc.
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Note that βm ≤ β̃m, since on [0, 1)S ,

fβ(r)− f̃β(r) = β2 ξ(r)2

ξ(1) + ξ(r)
≥ 0. (2.3)

Recall that we assume that the Hessian matrix (2.2) is regular. By the definition of
βm, since

∀s ∈ S ,
d

dr(s)
fβ(0) = 0, (2.4)

all the eigenvalues of the Hessian (2.2) of fβm(r) at r = 0 are strictly negative. Choose
some α > 0 such that they are all less than −α. From continuity, the eigenvalues of
the Hessian of fβ(r) at r = 0 are less than −α/2 for any β ≥ βm close enough to βm.
Combined with (2.4), for such β, this implies that

max
r∈A∩[0,1)S

f̃β(r) ≤ max
r∈A∩[0,1)S

fβ(r) = 0,

max
r∈∂A∩[0,1)S

fβ(r) ≤ −ε, (2.5)

for some open neighborhood A of r = 0 and ε > 0 independent of β, where ∂A denotes
the boundary of A.

For small enough δ > 0 and any β ≥ βm close enough to βm,

max
r∈[0,1)S \[0,1−δ]S

f̃β(r) ≤ max
r∈[0,1)S \[0,1−δ]S

fβ(r) < 0.

Define the set

K =
{
r ∈ [0, 1− δ]S \A : fβm(r) ≥ −1

2
ε
}
.

K cannot be empty because this would mean that there is some β ≥ βm for which
fβ(r) ≤ 0 for all r ∈ [0, 1)S .

Assume towards contradiction that M := minr∈K ξ(r) = 0. Since K is a closed set,
the minimum is obtained at some point r ∈ K. Thus, there exists some r ∈ K such that
fβm(r) ≥ −ε/2 and ξ(r) = 0. Note that since ξ(r) = 0 there exists some non-empty T ⊂ S
such that s ∈ T ⇐⇒ r(s) = 0. Note that reducing the value of r(s) for s /∈ T increases
the value of fβm(r). Hence, there is some r′ ∈ ∂A ∩ [0, 1− δ]S for which fβm(r) ≥ −ε/2
in contradiction to (2.5). We conclude that M > 0, i.e. that for any r ∈ [0, 1 − δ]S \ A,
either fβm(r) < − 1

2ε or ξ(r) > M > 0. Combining this with (2.3) one sees that for β > βm
close enough to βm,

max
r∈[0,1−δ]S \A

f̃β(r) < 0.

Hence, by combining the bounds above, such β satisfies β ≤ β̃m ≤ βc, which completes
the proof.

3 Proof of Proposition 1.3

To prove Proposition 1.3, we will need the three auxiliary results below. The first is
an elementary well known result about the volume of approximate level sets, or entropy
for sub-critical β.

Lemma 3.1. If β ≤ βc, for any t > 0, for small enough ε > 0, there exists some c > 0

such that for large N ,

P

(∣∣∣ 1

N
logµ(Lβ(ε)) +

1

2
β2ξ(1)

∣∣∣ < t

)
> 1− e−Nc.
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Define the random fields

φN,β(σ, r, δ) =
1

N
log

∫
B(σ,r,δ)

eβHN (σ′)dµ(σ′)

and
ϕN,β(σ, r, δ) = E

(
φN,β(σ, r, δ)

∣∣∣HN (σ)
)
, (3.1)

and the random set

DN (r, δ, t) =
{
σ ∈ SN−1 :

∣∣φN,β(σ, r, δ)− ϕN,β(σ, r, δ)
∣∣ > t

}
.

Proposition 1.3 concerns the volume of points in Lβ(ε) such that φN,β(σ, r, δ) is close
to a certain value. The next lemma shows that φN,β(σ, r, δ) and ϕN,β(σ, r, δ) are close to
each other on Lβ(ε), up to a subset of small volume. It will allow us to work with the
conditional expectation ϕN,β(σ, r, δ), which only depends on the value of the Hamiltonian
at σ.

Lemma 3.2. Suppose that β ≤ βc. For any r ∈ (−1, 1)S and positive δ and t, for large
N ,

P

(
1

N
logµ

(
Lβ(ε) ∩DN (r, δ, t)

)
≥ −1

2
β2ξ(1) + βε− ε2

2ξ(1)
− t2

8ξ(1)

)
≤ e−

Nt2

10ξ(1) .

The main ingredient in the proof of Proposition 1.3 is the following estimate on the
conditional expectation ϕN,β(σ, r, δ).

Proposition 3.3. Assume (A) and that ∆p 6= 0 for finitely many values of p and β ≤ βc.
Then, for any r ∈ [0, 1)S , almost surely,

lim sup
N→∞

sup
σ∈SN

∣∣∣∣ βN ξ(r)

ξ(1)
HN (σ)− β2ξ(r) + fβ(r) +

1

2
β2ξ(1)− ϕN,β(σ, r, δ)

∣∣∣∣
≤ βδcξ + κ(r2),

(3.2)

for some constant cξ depending only on ξ and function κ(x) = κ(x, ξ, β) as in Proposi-
tion 1.3.

Next we will prove Proposition 1.3, assuming the three results above. They will
be proved in the following subsections. Let t, ε, δ > 0, r ∈ [0, 1)S and α ∈ (0, 1). Set

c = 1
3

(t/2)2

8ξ(1) . By Lemmas 3.1 and 3.2, if ε > 0 is small enough, for some a > 0 and large

enough N , with probability at least 1− e−Na,
1

N
logµ(Lβ(ε)) > −1

2
β2ξ(1)− c,

1

N
logµ

(
Lβ(ε) ∩DN (r, δ, t/2)

)
< −1

2
β2ξ(1)− 3c.

On this event,
µ
(
Lβ(ε) \DN (r, δ, t/2)

)
µ
(
Lβ(ε)

) > 1− e−Nc.

On Lβ(ε), ∣∣∣∣ βN ξ(r)

ξ(1)
HN (σ)− β2ξ(r)

∣∣∣∣ ≤ βε.
By Proposition 3.3, a.s.,

lim sup
N→∞

sup
σ∈SN\DN (r,δ,t/2)

∣∣∣∣ βN ξ(r)

ξ(1)
HN (σ)− β2ξ(r) + fβ(r) +

1

2
β2ξ(1)

− φN,β(σ, r, δ)

∣∣∣∣ ≤ βδcξ + κ(r2) +
1

2
t,
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for cξ and κ(x) as in the proposition.
Hence, a.s.,

lim sup
N→∞

sup
σ∈Lβ(ε)\DN (r,δ,t/2)

∣∣∣fβ(r) +
1

2
β2ξ(1)− φN,β(σ, r, δ)

∣∣∣
< βδcξ + β2κ(r2) +

1

2
t+ βε,

and thus, for small enough ε and δ,

lim
N→∞

P
(
Lβ(ε) \DN (r, δ, t/2) ⊂ Ar(t)

)
= 1.

This completes the proof of Proposition 1.3. It remains to prove the three results above.

3.1 Proof of Lemma 3.1

Suppose that β ≤ βc and let ε, t > 0 be arbitrary numbers. Using Fubini’s theorem,
one sees that for small enough ε > 0,

1

N
logEµ(Lβ(ε)) = −1

2
β2ξ(1) +

t

2
+ o(1). (3.3)

By Markov’s inequality,

P

(
1

N
logµ(Lβ(ε)) > −1

2
β2ξ(1) + t

)
< e−

Nt
2 +o(N).

It remains to show that for some c > 0 and large N ,

P

(
1

N
logµ(Lβ(ε)) < −1

2
β2ξ(1)− t

)
< e−Nc.

For β < βc close enough to βc,

P

(
1

N
logµ(Lβc(ε)) < −

1

2
β2
c ξ(1)− t

)
< P

(
1

N
logµ(Lβ(ε/2)) < −1

2
β2ξ(1)− t

)
,

hence it will be enough to prove the inequality for β < βc.
Assume towards contradiction that for any c > 0, for some large as we wish N ,

P

(
1

N
logµ(Lβ(ε)) < −1

2
β2ξ(1)− t

)
> e−Nc. (3.4)

Let β0 be some inverse-temperature. On the event in (3.4),

1

N
log

∫
Lβ(ε)

eβ0HN (σ)dµ(σ) ≤ −1

2
β2ξ(1)− t+ β0(βξ(1) + ε)

<
1

2
β2

0ξ(1)− t

2
,

(3.5)

where the second inequality holds if we assume that β0 is close enough to β and ε is
sufficiently small.

Assume in addition that β0 ∈ (β − ε/ξ(1), β + ε/ξ(1)). Then,

lim
N→∞

1

N
logE

∫
SN\Lβ(ε)

eβ0HN (σ)dµ(σ) = max
y:|y−βξ(1)|≥ε

{
− y2

2ξ(1)
+ β0y

}
<

1

2
β2

0ξ(1).

EJP 28 (2023), paper 50.
Page 11/21

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP933
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the second moment method and RS phase

By Markov’s inequality, for some a, b > 0 which depend on β, β0, ε and ξ(1), for large N ,

P
( 1

N
log

∫
SN\Lβ(ε)

eβ0HN (σ)dµ(σ) >
1

2
β2

0ξ(1)− a
)
< e−Nb. (3.6)

Since we assumed that β < βc, we may also assume that β0 < βc, and thus
limN→∞EFN,β0 = 1

2β
2
0ξ(1).

Combining the above, we have that for some N as large as we wish, both (3.5) and
the complement of the event in (3.6) occur simultaneously with probability at least
e−Nc − e−Nb. For any small c > 0, for such N we therefore have that

P (FN,β0 < EFN,β0 −min{t/4, a/2}) > 1

2
e−Nc, (3.7)

in contradiction to the well-known concentration of the free energy (see e.g. [17,
Theorem 1.2]). This completes the proof.

3.2 Proof of Lemma 3.2

Let σ ∈ SN be an arbitrary point. Conditional on HN (σ) the value at σ, the Hamilto-
nian is a Gaussian field whose variance is bounded by the variance before conditioning
Nξ(1). Hence, from the well-known concentration of the free energy, for any x ∈ R,

P
(
σ ∈ DN (r, δ, t))

∣∣∣HN (σ) = x
)
≤ 2e−

Nt2

4ξ(1) .

Therefore, from Fubini’s Theorem, as N →∞,

Eµ
(
DN (r, δ, t) ∩ Lβ(ε)

)
= P

(
σ ∈ DN (r, δ, t) ∩ Lβ(ε)

)
≤ 2e−

Nt2

4ξ(1)P
(
σ ∈ Lβ(ε)

)
= exp

(
−N

(
t2

4ξ(1)
+

1

2
β2ξ(1)− βε+

ε2

2ξ(1)

)
+ o(N)

)
.

By Markov’s inequality,

P

(
µ
(
DN (r, δ, t) ∩ Lβ(ε)

)
≥ e−N

(
t2

8ξ(1)
+ 1

2β
2ξ(1)−βε+ ε2

2ξ(1)

))
≤ e−

Nt2

8ξ(1)
+o(N).

3.3 Proof of Proposition 3.3

The proof will be based on the three lemmas below which will be proved in the next
subsections. Define

B(σ, r) := B(σ, r, 0) =
{
σ′ ∈ SN : ∀s ∈ S , Rs(σ,σ

′) = r(s)
}
.

Note that we may identify B(σ, r) with the product spheres, one for each s ∈ S , of codi-
mension 1 in S(Ns). Endow each of those spheres with the uniform probability measure
and let ν = νσ,r denote the product measure on B(σ, r). Similarly to ϕN,β(σ, r, δ), (see
(3.1)) define

ϕN,β(σ, r) = E
( 1

N
log

∫
B(σ,r)

eβHN (σ′)dν(σ′)
∣∣∣HN (σ)

)
.

Lemma 3.4. Let β ≥ 0 and r ∈ [0, 1)S . For large enough N , almost surely,

sup
σ∈SN

∣∣∣ϕN,β(σ, r, δ)− ϕN,β(σ, r)− 1

2

∑
s∈S

λ(s) log(1− r(s)2)
∣∣∣ ≤ δcξβ( max

σ∈SN

|HN (σ)|
N

+ 1
)
,

(3.8)
where cξ > 0 is a constant that only depends on ξ.
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For r ∈ [0, 1)S , define

ξ̃r(x) = ξ((1− r2)x+ r2)− ξ(r2), (3.9)

Here, all operations between functions S → R are performed elementwise, for example,
((1− r2)x)(s) := (1− r(s)2)x(s). Explicitly,

ξ̃r(x) =
∑

p: |p|≥2

∆2
p

( ∏
s∈S

(
(1− r(s)2)x(s) + r(s)2

)p(s) − ∏
s∈S

r(s)2p(s)
)

=
∑

p: |p|≥1

∆2
p,r

∏
s∈S

x(s)p(s),
(3.10)

where

∆2
p,r :=

∑
p′≥p

∆2
p′

∏
s∈S

(
p′(s)

p(s)

)
(1− r(s)2)p(s)r(s)2(p′(s)−p(s)),

where we write p′ ≥ p if p′(s) ≥ p(s) for all s ∈ S .

Remark 3.5. In the Introduction we defined the multi-species mixtures (1.2) with coeffi-
cients for p with |p| ≥ 2 and their corresponding Hamiltonians in (1.3). Of course, one
may consider mixtures with non-zero coefficients also for p with |p| = 1, for which the
summation in the definition of the corresponding Hamiltonian in (1.3) starts from k = 1.

Note that ξ̃r(x) is a mixture as in the remark above and let H̃r
N (σ) be the correspond-

ing Hamiltonian. We remark that the same mixture has been considered in several
previous works in the study of the Gibbs measure [8, 24] and in the context of the TAP
approach [12, 13, 25, 26].

Lemma 3.6. Let β ≥ 0 and r ∈ [0, 1)S . Then, almost surely,

lim
N→∞

sup
σ∈SN

∣∣∣ϕN,β(σ, r)− β

N

ξ(r)

ξ(1)
HN (σ)− 1

N
E log

∫
SN

eβH̃
r
N (σ′)dµ(σ′)

∣∣∣ = 0. (3.11)

The last lemma we need approximates the free energy of H̃r
N (σ), for small r.

Lemma 3.7. Assume (A) and that ∆p 6= 0 for finitely many values of p and β ≤ βc. Then
for any r ∈ [0, 1)S ,

lim sup
N→∞

∣∣∣ 1

N
E log

∫
SN

eβH̃
r
N (σ′)dµ(σ′)− 1

2
β2ξ(1)

∣∣∣ ≤ κ(r2), (3.12)

where κ(x) = κ(x, ξ, β) is a function as in Proposition 1.3.

Suppose that ξ(x) satisfies the assumption in (A) and let β ≤ βc. Combining the three
lemmas above, we have that for r ∈ [0, 1)S , almost surely,

lim sup
N→∞

sup
σ∈SN

∣∣∣ϕN,β(σ, r, δ)−
( β
N

ξ(r)

ξ(1)
HN (σ) +

1

2

∑
s∈S

λ(s) log(1− r(s)2) +
1

2
β2ξ(1)

)∣∣∣
≤ δcξβ

(
max
σ∈SN

|HN (σ)|
N

+ 1
)

+ β2κ(r2),

where cξ and κ(x) are as in the lemmas. By [26, Lemma 25], for some constant Cξ > 0

that depends only on ξ,

E max
σ∈SN

|HN (σ)|
N

≤ Cξ. (3.13)

By the Borell-TIS inequality and the Borel-Cantelli lemma, almost surely,

lim sup
N→∞

max
σ∈SN

|HN (σ)|
N

≤ 2Cξ.

Proposition 3.3 follows by combining the above. It remains to prove the three lemmas
above. This will be done in Subsections 3.4-3.6 below.
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3.4 Proof of Lemma 3.4

Fix some σ? ∈ SN . Since the Hamiltonian HN (σ) is a Gaussian process, it can be
decomposed as

HN (σ) = ĤN (σ) + η(σ)HN (σ?), (3.14)

where η(σ)HN (σ?) = E(HN (σ) |HN (σ?)) with

η(σ) :=
E
(
HN (σ)HN (σ?)

)
E
(
HN (σ?)2

) =
ξ(R(σ,σ?))

ξ(1)

and ĤN (σ) is a centered Gaussian process, independent of HN (σ?), with covariance
function

1

N
E
(
ĤN (σ)ĤN (σ′)

)
=

1

N
E
(
HN (σ)HN (σ′)

)
− 1

N

E
(
HN (σ)HN (σ?)

)
E
(
HN (σ′)HN (σ?)

)
E
(
HN (σ?)2

)
= ξ(R(σ,σ′))− ξ(R(σ,σ?))ξ(R(σ′,σ?))

ξ(1)
.

Note that, since η(σ) = ξ(r)
ξ(1) on B(σ?, r),

ϕN,β(σ?, r) = E
( 1

N
log

∫
B(σ?,r)

eβĤN (σ)dν(σ)
)

+
β

N

ξ(r)

ξ(1)
HN (σ?). (3.15)

For any σ ∈ B(σ?, r, δ),

|η(σ)− η(σ?)| ≤ max
t: t(s)∈[r(s)−δ,r(s)+δ]

∣∣∣∣ ξ(t)ξ(1)
− ξ(r)

ξ(1)

∣∣∣∣ ≤ δ

ξ(1)

∑
s∈S

d

dx(s)
ξ(1) =: cξδ,

and therefore∣∣∣ϕN,β(σ?, r, δ)− E
( 1

N
log

∫
B(σ?,r,δ)

eβĤN (σ)dµ(σ)
)
− β

N

ξ(r)

ξ(1)
HN (σ?)

∣∣∣ ≤ β

N
cξδ|HN (σ?)|.

Hence, to prove the lemma it will be enough to show that for some c > 0 depending
only on ξ, for large N ,∣∣∣∣E 1

N
log

∫
B(σ?,r)

eβĤN (σ)dν(σ) +
1

2

∑
s∈S

λ(s) log(1− r(s)2)

− E 1

N
log

∫
B(σ?,r,δ)

eβĤN (σ)dµ(σ)

∣∣∣∣ < δcβ.

Since the variance of ĤN (σ) is bounded uniformly in σ by Nξ(1), the variance of the
unconditional Hamiltonian, from the concentration of the free energies around their
mean (see [17, Theorem 1.2]) it will be enough to show that∣∣∣∣ 1

N
log

∫
B(σ?,r)

eβĤN (σ)dν(σ) +
1

2

∑
s∈S

λ(s) log(1− r(s)2)

− 1

N
log

∫
B(σ?,r,δ)

eβĤN (σ)dµ(σ)

∣∣∣∣ < δcβ

(3.16)

with probability that goes to 1 as N →∞, for c as above.
By [26, Lemma 25], for any C > 0, for some L > 0 that depends only on ξ, with

probability at least 1− e−NC , for all σ, σ′ ∈ SN ,

1

N

∣∣HN (σ)−HN (σ′)
∣∣ ≤ Lmax

s∈S

√
Rs(σ − σ′,σ − σ′).
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For any σ, σ′ ∈ SN ,

|η(σ)− η(σ′)| ≤ 1

ξ(1)

∑
s∈S

d

dx(s)
ξ(1) ·

√
Rs(σ − σ′,σ − σ′).

Hence, from (3.14) and the fact that HN (σ?) is a Gaussian variable with zero mean and
variance Nξ(1), with the probability going to 1 as N →∞, for all σ, σ′ ∈ SN ,

1

N

∣∣ĤN (σ)− ĤN (σ′)
∣∣ ≤ 2Lmax

s∈S

√
Rs(σ − σ′,σ − σ′).

On this event, (3.16) holds since by the co-area formula,∫
B(σ?,r,δ)

eβĤN (σ)dµ(σ)

=

∫
B(σ?,r)

∫
T (σ,δ)

eβĤN (σ′)
∏
s∈S

ωNs−1

ωNs

(
1−Rs(σ′,σ′)

)Ns−2
2

dρ(σ′)dν(σ)

where ωd denotes the volume of the unit sphere in Rd, ρ denotes the volume measure
corresponding to the Riemannian metric on T (σ, δ) induced by the Euclidean structure
in RN , and

T (σ, δ) :=
{
σ′ ∈ B(σ?, r, δ) :

Ps(σ
′)

Rs(σ′,σ′)
=

Ps(σ)

Rs(σ,σ)
, ∀s ∈ S

}
,

where Ps(σ) is the orthogonal projection of (σi)i∈Is to the orthogonal space to (σ?,i)i∈Is .

3.5 Proof of Lemma 3.6

Fix some r ∈ [0, 1)S . Recall the decomposition (3.14) of HN (σ). In light of (3.15), we
need to prove that

lim
N→∞

∣∣∣ 1

N
E log

∫
B(σ?,r)

exp
(
βĤN (σ)

)
dν(σ)− 1

N
E log

∫
SN

exp
(
βH̃r

N (σ)
)
dµ(σ)

∣∣∣ = 0,

(3.17)
for some arbitrary σ? ∈ SN .

For any σ = (σi)
N
i=1 ∈ B(σ?, r), define σ̃ = (σ̃i)

N
i=1 ∈ B(σ?, 0) ⊂ SN by

σ̃i :=

√
1

1− r(s)2
(σi − r(s)σ?,i), if i ∈ Is, (3.18)

and define the Hamiltonian H̄N (σ̃) = ĤN (σ) on B(σ?, 0). Then, for any two points σ̃1, σ̃2

from B(σ?, 0), by a straightforward calculation,

1

N
E
(
H̄N (σ̃1)H̄N (σ̃2)

)
= ξ̃r(R(σ̃1, σ̃2)) + ξ(r2)− ξ(r)2

ξ(1)
, (3.19)

where the mixture ξ̃r(x) is defined in (3.9).
Extend the Hamiltonian H̄N from B(σ?, 0) to a centered Gaussian field on SN whose

covariance is given by (3.19). Of course,

1

N
E log

∫
B(σ?,r)

exp
(
βĤN (σ)

)
dν(σ) =

1

N
E log

∫
B(σ?,0)

exp
(
βH̄N (σ)

)
dν(σ)

=
1

N
E log

∫
SN

exp
(
βH̄N (σ)

)
dµ(σ) + oN (1).

(3.20)
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Since A(r)2 := ξ(r2)− ξ(r)2

ξ(1) ≥ 0, we may write the Hamiltonian H̄N as

H̄N (σ) = H̃r
N (σ) +

√
NA(r)X,

where X is a standard Gaussian variable independent of the Hamiltonian H̃r
N (σ) with

mixture ξ̃r(x). Obviously,

1

N
E log

∫
SN

exp
(
β(H̃r

N (σ) +
√
NA(r)X)

)
dµ(σ) =

1

N
E log

∫
SN

exp
(
βH̃r

N (σ)
)
dµ(σ).

(3.21)
Combining (3.20) and (3.21) proves (3.17), and completes the proof.

3.6 Proof of Lemma 3.7

Let β ≤ βc and r ∈ [0, 1)S . By (1.7),

1

N
E log

∫
SN

eβH̃
r
N (σ)dµ(σ) ≤ 1

2
β2ξ̃r(1) ≤ 1

2
β2ξ(1),

thus we only need to prove the lower bound

lim inf
N→∞

1

N
E log

∫
SN

eβH̃
r
N (σ)dµ(σ) ≥ 1

2
β2ξ(1)− κ(r2), (3.22)

for κ(x) as in the statement of the lemma.
Given x ∈ [0, 1)S and t > 0, by setting r =

√
tx (where the square root is applied

elementwise
√
tx(s) :=

√
tx(s)), (3.22) becomes

lim inf
N→∞

EF̃N,β(t) ≥ 1

2
β2ξ(1)− κ(tx),

where we define

F̃N,β(t) =
1

N
log

∫
SN

eβH̃
√
tx

N (σ)dµ(σ).

Recall that, in distribution,

H̃
√
tx

N (σ) =
∑

p:|p|≥1

∆p,
√
txHN,p(σ),

where the coefficients ∆p,
√
tx are as in (3.10) and HN,p(σ) are the pure p-spin models

with mixture
∏
s∈S x(s)p(s) which we assume to be independent. Define

H̄t,x
N (σ) =

∑
p:|p|≥1

∆p,t,xHN,p(σ), where ∆p,t,x = ∆p + t · d
dε

∣∣∣
ε=0

∆p,
√
εx.

Since we assume that ∆p for finitely many values of p, for small enough t ≥ 0, ∆p,t,x ≥ 0

for all p.
Of course, for some constants Cp and C :=

∑
p Cp <∞ that depend on ξ and x, for

small t,
|∆2

p,t,x −∆2
p,
√
tx
| ≤ Cpt2

and by Gaussian integration by parts

|F̄N,β(t)− F̃N,β(t)| ≤ Ct2,

where we define

F̄N,β(t) =
1

N
log

∫
SN

eβH̄
t,x
N (σ)dµ(σ).
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Hence, it will be enough to prove that

lim inf
N→∞

EF̄N,β(t) ≥ 1

2
β2ξ(1)− κ(tx), (3.23)

for an appropriate function κ(x).
In order to be able to invoke Talagrand’s positivity principle [33, 17], we will add

a perturbation to the Hamiltonian. Its definition is taken from [19] where Panchenko
introduced a multi-species version of the Ghirlanda-Guerra identities which induce
the positivity of overlaps, and showed that they are satisfied in the presence of the
perturbation Hamiltonian. The results of [19] concern the multi-species SK model, but
they are general and also cover the multi-species spherical models. The proofs for the
spherical case have been worked out in [7].

Let W be a countable dense subset of [0, 1]S . For any p ≥ 1 and vector

w = (ws)s∈S ∈ W

define si(w) =
√
ws for i ∈ Is and s ∈ S , and consider the Hamiltonian

hN,w,p(σ) =
1

N
p
2

∑
1≤i1,...,ip≤N

gw,pi1,...,ip
σi1si1(w) · · ·σipsip(w),

where gw,pi1,...,ip
are i.i.d. standard Gaussian variables, independent for all combinations of

indices p ≥ 1 and 1 ≤ i1, . . . , ip ≤ N .
Consider some one-to-one function j : W → N. Let y = (yw,p)w∈W ,p≥1 be i.i.d. random

variables uniform in the interval [1, 2] and independent of all other variables. Define the
Hamiltonian

hN (σ) =
∑
w∈W

∑
p≥1

2−j(w)−pyw.phN,w,p(σ).

Let γ be an arbitrary number in (0, 1/2) and set sN = Nγ . For t ∈ [0, 1], define

Ht,x
N (σ) = H̄t,x

N (σ) + sNhN (σ)

and

FN,β(t) =
1

N
log

∫
SN

eβH
t,x
N (σ)dµ(σ).

Conditional on y = (yw,p)w∈W ,p≥1, hN (σ) is a Gaussian process with variance bounded
by 4 (see e.g. [19, (26)]). Hence, using Jensen’s inequality, we have that∣∣∣FN,β(t)− F̄N,β(t)

∣∣∣ ≤ 4β2s2
N

N
. (3.24)

Since s2
N/N → 0, (3.23) will follow if we prove that

lim inf
N→∞

EFN,β(t) ≥ 1

2
β2ξ(1)− κ(tx), (3.25)

For t = 0, F̄N,β(0) = FN,β. Therefore, since β ≤ βc, (3.23) and (3.25) hold with
κ(0) = 0. Since ∆p,t,x are affine in t, using Hölder’s inequality one can check that FN,β(t)

is a convex function of t (and thus has one-sided derivatives). Hence, in order to show
that there exists a function κ(x) which satisfies (1.19) and (3.25), it will be enough to
show that

lim
N→∞

d

dt

+∣∣∣
t=0
EFN,β(t) = 0, (3.26)

where d
dt

+∣∣
t=0

denotes the derivative from the right at 0.
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Let G0
N,β be the Gibbs measure

dG0
N,β(σ) =

eβH
0,x
N (σ)∫

SN
eβH

0,x
N (σ′)dµ(σ′)

dµ(σ)

corresponding to

H0,x
N (σ)

d
= HN (σ) + sNhN (σ). (3.27)

For any function f(σ1, . . . ,σn) of n points from SN denote

〈f(σ1, . . . ,σn)〉 =

∫
SnN

f(σ1, . . . ,σn)d(G0
N,β)⊗n,

where (G0
N,β)⊗n denotes the n-fold product measure of G0

N,β with itself.
Note that

d

dt

+∣∣∣
t=0
EFN,β(t) =

1

N
E
〈
β
∑

p:|p|≥1

d

dε

∣∣∣
ε=0

∆p,
√
εx ·HN,p(σ)

〉
. (3.28)

By Gaussian integration by parts [17, Lemma 1.1], the right-hand side of (3.28) is
equal to

E
〈
C(σ1,σ1)− C(σ1,σ2)

〉
, (3.29)

where

C(σ1,σ2) :=
β2

N

∑
p:|p|≥1

(
∆p

d

dε

∣∣∣
ε=0

∆p,
√
εx

)
· E
(
HN,p(σ

1)HN,p(σ
2)
)

=
1

2
β2ηx(R(σ1,σ2)),

where we denote ∂sξ(r) = d
dr(s)ξ(r) and for z : [−1, 1]S → R,

ηx(z) :=
d

dε

∣∣∣
ε=0

ξ̃√εx(z) =
∑
s∈S

(
∂sξ(z)x(s)(1− z(s))− ∂sξ(0)x(s)

)
.

Combining the above, we obtain that

lim
N→∞

d

dt

+∣∣∣
t=0
EFN,β(t) =

1

2
β2
(
ηx(1)− lim

N→∞
E
〈
ηx(R(σ1,σ2))

〉)
. (3.30)

Note that since ∂sξ(0) = 0,
ηx(1) = ηx(0) = 0. (3.31)

Hence, to complete the proof of Lemma 3.7 it will be enough to show that for any ε > 0,

lim
N→∞

E
〈
1
{

max
s∈S
|Rs(σ1,σ2)| < ε

}〉
= 0, (3.32)

where 1{A} is the indicator of an event A.
Note that since β ≤ βc,2

βξ(1) =
d

dβ
lim
N→∞

EFN,β(0) = lim
N→∞

d

dβ
EFN,β(0) = lim

N→∞

1

N
E
〈
H0,x
N (σ)

〉
= β

(
ξ(1)− lim

N→∞
E
〈
ξ(R(σ1,σ2))

〉)
,

2For β = βc the derivative from the left of limN→∞ EFN,β is βcξ(1). Since limN→∞ EFN,β is convex in β,
its derivative from the right exists and is bounded from below by the derivative from the left. The latter is
bounded by βcξ(1), by (1.7). Hence the derivative at βc exists and is equal to βcξ(1).
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where the limit and derivative may be interchanged by the convexity of β 7→ EFN,β(0) =

EFN,β, and the last equality follows from Gaussian integration by parts.
Thanks to the perturbation term sNhN (σ) in (3.6), from Lemma 3.3 of [7], for any

ε > 0,

lim
N→∞

E
〈
1
{

min
s∈S

Rs(σ
1,σ2) < −ε

}〉
= 0.

Combining the above with the assumption (A) one easily concludes (3.32), which
completes the proof.

Appendix

In this appendix we explain how the following result follows by slightly modifying
our proofs. Here we denote by 〈·〉 averaging by the Gibbs measure GN,β corresponding
directly to HN (σ),

dGN,β(σ) =
eβHN (σ)∫

SN
eβHN (σ′)dµ(σ′)

dµ(σ).

Lemma 3.8. Let HN (σ) be a model with mixture ξ(x) =
∑
p∈P ∆2

p

∏
s∈S x(s)p(s) such

that ∆p 6= 0 for finitely many p and let β ≤ βc. Suppose that for any ε > 0,

lim
N→∞

E
〈
1
{

max
s∈S
|Rs(σ1,σ2)| < ε

}〉
= 0. (3.33)

Then, the matrix ( d

dr(s)

d

dr(t)
fβ(0)

)
s,t∈S

(3.34)

is negative semi-definite.

Note that above instead of assuming (A) as we did in the main results, we as-
sume (3.33). This result is crucial to the analysis of the TAP representation of the
multi-species pure p-spin models in [27], where indeed we need to deal with a model
which for some values of p may not satisfy (A).

First we explain how the conclusion of Proposition 1.3 follows in the setting of
Lemma 3.8. The only place we used the assumption of (A) in the proof of Proposition 1.3
is the very last step in the proof of Lemma 3.7, to prove (3.32). So we only need to
explain how to prove the conclusion (3.12) of Lemma 3.7. By the same argument as in
the proof of the latter lemma, the lemma follows if we can prove (3.23). By the argument
we used around (3.26), to prove (3.23) it is enough to show that

lim
N→∞

d

dt

+∣∣∣
t=0
EF̄N,β(t) = 0. (3.35)

As in (3.30),

lim
N→∞

d

dt

+∣∣∣
t=0
EF̄N,β(t) =

1

2
β2
(
ηx(1)− lim

N→∞
E
〈
ηx(R(σ1,σ2))

〉)
, (3.36)

where now the averaging is w.r.t. the Gibbs measure corresponding to the Hamiltonian
without perturbation, which have the same law as GN,β . Thus, (3.35) follows from (3.33)
and (3.31). This proves the conclusion of Proposition 1.3 in the setting of Lemma 3.8.

Now assume towards contradiction that the matrix (3.34) has a positive eigenvalue.
Then for some r, which we can choose to be in [0, 1)S ,

d

dα

∣∣∣
α=0

fβ(αr) = 0 and
d2

dα2

∣∣∣
α=0

fβ(αr) > 0.

By the same argument as in the proof of Proposition 1.2, this leads to a contradiction to
the fact that β ≤ βc, from which we conclude that (3.34) is negative semi-definite.
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