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A note on some critical thresholds of Bernoulli
percolation*
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Abstract

Consider Bernoulli bond percolation on a locally finite, connected graph G and let
pcut be the threshold corresponding to a “first-moment method" lower bound. Kahn
(Electron. Comm. Probab. Volume 8, 184-187. (2003)) constructed a counter-example
to Lyons’ conjecture of pcut = pc and proposed a modification. Here we give a positive
answer to Kahn’s modified question. The key observation is that in Kahn’s modification,
the new expectation quantity also appears in the differential inequality of one-arm
events. This links the question to a lemma of Duminil-Copin and Tassion (Comm. Math.
Phys. Volume 343, 725-745. (2016)). We also study some applications for Bernoulli
percolation on periodic trees.
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1 Introduction

Let G = (V,E) be a locally finite (i.e., each vertex has finite degree), connected,
infinite graph. For p ∈ [0, 1], Bernoulli(p) bond percolation studies the random
subgraph ω of G formed by keeping each edge with probability p and removing otherwise,
independently of each other. The edges kept in ω are called open edges and the edges
removed are called closed edges. The connected components are called (open) clusters.
For background on Bernoulli percolation, see Chapter 7 of [12] or [5]. For p ∈ [0, 1], let Pp
denote the law of Bernoulli(p) bond percolation and Ep the corresponding expectation.

Let C(x) denote the open cluster of x in Bernoulli percolation. Let |C(x)|V , |C(x)|E
denote the number of vertices and edges in the cluster C(x) respectively. Let A←→ B

denote the event that there is an open path connecting some vertex x ∈ A and y ∈ B. Let
x←→∞ denote the event that the diameter of C(x) is infinite. The critical probability
pc is defined as

pc = pc(G) := sup{p ≥ 0: Pp(x←→∞) = 0}.
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Thresholds for Bernoulli percolation

Since for a locally finite graph G, the three events x ←→ ∞, |C(x)|V = ∞ and
|C(x)|E =∞ are actually the same event, one can also define

pc = pc(G) := sup{p ≥ 0: Pp(|C(x)|V =∞) = 0}

or
pc = pc(G) := sup{p ≥ 0: Pp(|C(x)|E =∞) = 0}.

Let x be a vertex in G. We say that ΠE is a edge cutset separating x from infinity, if
ΠE is a set of edges such that the connected component of x in G\ΠE is finite. Similarly
one can define vertex cutsets.

Definition 1.1. Suppose G is a locally finite, connected, infinite graph. Define

pcut,E = pcut,E(G) := sup{p ≥ 0: inf
ΠE

Ep[|C(x) ∩ΠE |] = 0},

where the infimum is taken over all edge cutsets ΠE separating x from infinity and
C(x) ∩ΠE denotes the intersection of the edge set of C(x) with ΠE .

Define
pcut,V = pcut,V(G) := sup{p ≥ 0: inf

ΠV

Ep[|C(x) ∩ΠV |] = 0},

where the infimum is taken over all vertex cutsets ΠV separating x from infinity and
C(x) ∩ΠV denotes the intersection of the vertex set of C(x) with ΠV .

For any edge (or vertex) cutset Π separating x from infinity, if the event {x←→∞}
occurs, then C(x) ∩Π is nonempty. Hence

Pp(x←→∞) ≤ Pp(|C(x) ∩Π| ≥ 1) ≤ Ep[|C(x) ∩Π|]. (1.1)

Thus one has that
pcut,E ≤ pc and pcut,V ≤ pc. (1.2)

Historically another critical value pT is also of great interest (coincide with the
notation pT,V below).

Definition 1.2. Suppose G is a locally finite, connected, infinite graph. Define

pT,V = pT,V(G) := sup{p ≥ 0: Ep[|C(x)|V ] <∞}

and
pT,E = pT,E(G) := sup{p ≥ 0: Ep[|C(x)|E ] <∞}.

If p < pT,V, then
∑∞
n=1Ep[|C(x)∩Πn|] ≤ Ep[|C(x)|V ] <∞, where Πn := {y : dG(y, x) =

n} is the cutset consisting of vertices at graph distance n to x. Hence p < pT,V implies
that p ≤ pcut,V. Thus

pT,V ≤ pcut,V. (1.3)

Similarly one has that
pT,E ≤ pcut,E. (1.4)

It is easy to see that these critical values pc, pcut,E, pcut,V, pT,E, pT,V do not depend on
the choice of x by Harris’ inequality [12, Section 5.8].

By (1.2), (1.3) and (1.4) we now have

pT,E ≤ pcut,E ≤ pc.

and
pT,V ≤ pcut,V ≤ pc.
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Thresholds for Bernoulli percolation

Lyons showed that pc = pcut,V holds for trees [11] and tree-like graphs [10] and
pointed out pcut,V = pc for transitive graphs in [11] since pT,V = pc for such graphs
[1, 13]; and these results for pcut,V applied equally to pcut,E on these graphs. In view of
these examples Lyons conjectured that pc = pcut,V for general graphs (lines 11–12 on
page 955 of [11]).

Later Kahn [8] constructed a family of counterexamples to Lyons’ conjecture. Kahn’s
examples exhibited a sequences of vertex cutsets Πn such that the quantity |C(x)∩Πn| =∑
v∈Πn

1(x←→v) is usually zero but has a large expectation for some p < pc(G). That was
achieved by large correlation among the events {x←→ v} for v ∈ Πn, i.e., conditioned
on the event that v is connected to x via an open path, with high probability a lot of other
vertices in Πn are also connected to x via v. In light of this Kahn proposed the following
modification of Lyons’ conjecture:

Question 1.3. Does pc(G) = p′cut,V(G) hold for every locally finite, connected, infinite
graph G?

Here the notation p′cut,V = p′cut,V(G) from [8] (there it was denoted by p′cut) is defined
as follows.

Definition 1.4. Suppose G is a locally finite, connected, infinite graph. For x ∈ V , let
ΠV be a vertex cutset which separates x from infinity. For each v ∈ ΠV , let A(x, v,ΠV )

denote the event that x is connected to v via an open path without using vertices in
ΠV \{v}. Define

p′cut,V = p′cut,V(G) := sup
{
p ≥ 0: inf

ΠV

∑
v∈ΠV

Pp[A(x, v,ΠV )] = 0
}
,

where the infimum is taken over all vertex cutsets ΠV separating x from infinity.
Similarly for an edge cutset ΠE separating x from infinity and e ∈ ΠE , let A(x, e,ΠE)

denote the event that x is connected to e via an open path without using edges in ΠE\{e}
(Here we assume e itself is also open on A(x, e,ΠE).) Define

p′cut,E = p′cut,E(G) := sup
{
p ≥ 0: inf

ΠE

∑
e∈ΠE

Pp[A(x, e,ΠE)] = 0
}
,

where the infimum is taken over all edge cutsets ΠE separating x from infinity.

Similarly one can ask ([12, Question 5.16]):

Question 1.5. Does pc(G) = p′cut,E(G) hold for every locally finite, connected, infinite
graph G?

Our main result is the following affirmative answer to Question 1.3 and 1.5 for
Bernoulli bond percolation.

Theorem 1.6. For Bernoulli bond percolation on every locally finite, connected, infinite
graph G, one has that

p′cut,E = p′cut,V = pc.

The same result holds for Bernoulli site percolation on a locally finite, connected, infi-
nite graph with bounded degree if one defines p′cut,E, p

′
cut,V accordingly using Bernoulli

site percolation; see Remark 5.1 and Conjecture 5.2 for more discussions.

2 Some relations of the critical thresholds

For any edge cutset Π separating x from infinity, if the event {x←→∞} occurs, then
there is at least one edge e such that the event A(x, e,Π) occurs. Hence by union bounds,

Pp(x←→∞) ≤
∑
e∈Π

Pp[A(x, e,Π)] (2.1)
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Thresholds for Bernoulli percolation

Thus one has that

p′cut,E ≤ pc. (2.2)

Similarly one has that

p′cut,V ≤ pc. (2.3)

Also obviously for any edge cutset Π one has that
∑
e∈ΠPp[A(x, e,Π)] ≤

∑
e∈ΠPp[e ∈

C(x)] = Ep[|C(x) ∩Π|]. Hence one has that

pcut,E ≤ p′cut,E. (2.4)

Similarly one has that

pcut,V ≤ p′cut,V. (2.5)

By (1.3), (1.4), (2.2), (2.3), (2.4) and (2.5) one has that

pT,V ≤ pcut,V ≤ p′cut,V ≤ pc (2.6)

and

pT,E ≤ pcut,E ≤ p′cut,E ≤ pc. (2.7)

We also have the following relations.

Lemma 2.1. Suppose G is a locally finite, connected, infinite graph. Then

pcut,E ≤ pcut,V (2.8)

If moreover G has bounded degree, then the equality holds in (2.8).

Lemma 2.2. Suppose G is a locally finite, connected, infinite graph. Then

pT,E ≤ pT,V (2.9)

If moreover G has bounded degree, then the equality holds in (2.9).

Proof of Lemma 2.2. For (2.9), if p > pT,V, then Ep[|C(x)|V ] = ∞. Since C(x) is con-
nected, |C(x)|E ≥ |C(x)|V − 1. Hence Ep[|C(x)|E ] = ∞. Therefore if p > pT,V, then
p ≥ pT,E. Thus pT,E ≤ pT,V as desired.

If G has bounded degree, i.e., D(G) := sup{deg(v) : v ∈ V } < ∞, then by |C(x)|E ≤
D(G)|C(x)|V one can get the other direction similarly. Hence if G has bounded degree,
then pT,V(G) = pT,E(G).

Example 2.3. Here we give an example G with unbounded degree and such that pT,E <

pT,V. Let M > 1 be an integer. Let Cn be a complete graph with Mn vertices. Let
o = (0, 0) be the origin of Z2 and let (n, 0) ∈ Z2, n ≥ 1 be the points on the x-axis. For
each n ≥ 1, add an edge from (n, 0) to each vertex of Cn. Let G be the graph obtained
in this way; see Figure 1. Then obviously pc(G) = pc(Z2) = 1

2 . Note that for p ∈ (0, pc),
Pp[o ←→ (n, 0) in G] = Pp[o ←→ (n, 0) in Z2] ≈ e−nϕ(p), where ϕ(p) is the reciprocal
of the correlation length (see Proposition 6.47 in [5] for example.) When computing
Ep[|Co|V ], each clique Cn contributes roughly p · e−nϕ(p) · Mn but when computing
Ep[|Co|E ], each clique Cn contributes roughly p2 · e−nϕ(p) ·M2n. Using the properties
of ϕ(p) (Theorem 6.14 in [5]) it is easy to show that 0 < pT,E(G) = ϕ−1(2 logM) <

pT,V(G) = ϕ−1(logM) < pc(G) and we omit the details.

Before proving Lemma 2.1, we recall the definitions of boundaries of a set of vertices.
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(0, 0) (1, 0)

· · ·
C1

(2, 0)

· · ·
C2

(3, 0)

· · ·
C3

(4, 0)

· · ·
C4

Figure 1: An example with 0 < pT,E < pT,V < pc < 1.

Definition 2.4. For a nonempty set of vertices K ⊂ V , we define its inner vertex
boundary, outer vertex boundary and edge boundary as follows. The inner vertex
boundary ∂in

VK is

∂in
VK := {y ∈ K : ∃ z /∈ K s.t. y ∼ z},

where y ∼ z denotes that y and z are neighbors in G. The outer vertex boundary ∂VK

is

∂VK := {z /∈ K : ∃ y ∈ K s.t. y ∼ z}.

The edge boundary ∆K is defined as

∆K := {e = (y, z) ∈ E : y ∈ K, z /∈ K}.

Lemma 2.5. If Π is a minimal vertex cutset separating x from infinity, then ∂V S(Π) = Π,
where S(Π) is the connected component of x in the subgraph G\Π. Similarly, if Π is
a minimal edge cutset separating x from infinity, then ∆S(Π) = Π, where S(Π) is the
connected component of x in the subgraph G\Π.

Definition 2.6. Suppose G is a locally finite, connected, infinite graph. Fix x ∈ V (G).
Let BE = BE(x) be the collection of edge cutsets that are the edge boundary of some
finite cluster of x. In other words,

BE = {∆S : S is a finite connected subgraph containing x}.

We call BE the family of boundary edge cutset. Similarly we denote by BV the
collection of vertex cutsets that arise as outer vertex boundary of some finite cluster of x
and call BV the family of boundary vertex cutset.

Proof of Lemma 2.5. Suppose Π is a minimal vertex cutset separating x from infinity.
The connected component S(Π) of x in G\Π is finite.

First we show that ∂V S(Π) ⊂ Π. For any z ∈ ∂V S(Π), by definition of ∂V S(Π), there
is some vertex y ∈ S(Π) such that y ∼ z. Then if z /∈ Π, then by definition of S(Π), then z
can be connected to x via a path from x to y in G\Π and the edge (y, z). This implies that
z ∈ S(Π) if z /∈ Π, which contradicts with the choice of z ∈ ∂V S(Π). Hence ∂V S(Π) ⊂ Π.

On the other hand, since ∂V S(Π) is also a vertex cutset and Π is minimal with respect
to inclusion, one has that ∂V S(Π) ⊃ Π.

The case of minimal edge cutset can be proved similarly and we omit the details.

Remark 2.7. The reverse of Lemma 2.5 is not true. For example consider the half
integer line G = (N, E), where E = {(n, n + 1): n ∈ N}. Let S = {10, 11, . . . , 100}, then
∆S = {(9, 10), (100, 101)} is not minimal.
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Proof of Lemma 2.1. For any edge cutset ΠE separating x from infinity, let S(ΠE) be
the connected component of x in G\ΠE . Since ΠE is a cutset, S(ΠE) is finite. Let
ΠV = ΠV (ΠE) be the endpoints of edges in ∆S(ΠE) that are not in S(ΠE). Then ΠV is
a vertex cutset, since every infinite path from x to infinity has to leave S(ΠE), the first
vertex on the path that is not in S(ΠE) must be a vertex in ΠV . For each v ∈ ΠV , pick an
arbitrary edge e = e(v) ∈ ∆S(ΠE) such that e is incident to v. Note that

1. ∆S(ΠE) ⊂ ΠE;

2. for distinct v ∈ ΠV , the edges e(v) are also distinct (since each such edge e(v) has
exactly one endpoints not in S(ΠE), i.e., v);

3. for such v and e = e(v), P[e ∈ C(x)] ≥ pPp[v ∈ C(x)] (By insertion-tolerance of
Bernoulli bond percolation, see [12, Exercise 7.1]).

x

S(ΠE)

v

u3

u2

u1 ev

Figure 2: A systematic drawing of S(ΠE), v ∈ ΠV (ΠE) and e = e(v); edges in ∆S(ΠE)

are colored brown.

Hence

Ep[|C(x) ∩ΠV |] =
∑
v∈ΠV

Pp[v ∈ C(x)] ≤ 1

p

∑
e∈ΠE

Pp[e ∈ C(x)] =
1

p
Ep[|C(x) ∩ΠE |] (2.10)

If 0 < p < pcut,E, then infΠE
Ep[|C(x) ∩ΠE |] = 0. Thus by (2.10), for p < pcut,E

inf
ΠV

Ep[|C(x) ∩ΠV |] = 0.

Hence if p < pcut,E, then p ≤ pcut,V. This implies (2.8).
Now we assume that G has bounded degree. Let ΠV be a vertex cutset and without

loss of generality we assume that x /∈ ΠV . Let S(ΠV ) denote the connected component
of x in G\ΠV . Since ΠV is a cutset, the connected component of S(ΠV ) is finite. Let
ΠE = ΠE(ΠV ) be the edge boundary ∆S(ΠV ). Now for each edge e ∈ ∆S(ΠV ), there is
a unique vertex v = v(e) ∈ ΠV associated to e: v is incident to e (the other endpoint of e
is in S(ΠV ), which is disjoint from ΠV by its definition). Note that

1. for each v ∈ ΠV , there are at most D = D(G) edges in ∆S(ΠV ) associated to it;

2. for each e ∈ ∆S(ΠV ) and its associated vertex v = v(E) ∈ ΠV , Pp[v ∈ C(x)] ≥
Pp[e ∈ C(x)].
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Hence

Ep[|C(x) ∩ΠE |] =
∑
e∈ΠE

Pp[e ∈ C(x)] ≤ D
∑
v∈ΠV

Pp[v ∈ C(x)] = DEp[|C(x) ∩ΠV |] (2.11)

Thus when D <∞, by (2.11) one has that

∀ p < pcut,V, inf
ΠE

Ep[|C(x) ∩ΠE |] = 0.

Hence when D < ∞, p < pcut,V ⇒ p ≤ pcut,E. Together with (2.8) one has the equality
when D <∞.

When considering pcut,V and pcut,E, obviously it suffices to consider minimal cutsets
(with respect to inclusion). However a priori it is not clear whether it is sufficient to
consider minimal cutsets for p′cut,E and p′cut,V. This consideration for minimal cutsets
together with Lemma 2.5 motivates us to consider p′′cut,E and p′′cut,V in Definition 2.8 and
it turns out they all coincides with each other; see Theorem 2.9.

Definition 2.8. Suppose G is a locally finite, connected, infinite graph. Fix x ∈ V (G).
Define

p′′cut,V = p′′cut,V(G) := sup
{
p ≥ 0: inf

Π∈BV

∑
v∈Π

Pp[A(x, v,Π)] = 0
}
,

where the infimum is taken over all boundary vertex cutsets Π that separate x from
infinity.

Similarly, we define

p′′cut,E = p′′cut,E(G) := sup
{
p ≥ 0: inf

ΠE∈BE

∑
e∈ΠE

Pp[A(x, e,ΠE)] = 0
}
,

where the infimum is taken over all boundary edge cutsets ΠE that separate x from
infinity.

By Definition 1.4 and 2.8, and inequalities (2.2), (2.3) one has that

p′′cut,E ≤ p′cut,E ≤ pc and p′′cut,V ≤ p′cut,V ≤ pc. (2.12)

Theorem 1.6 is contained in the following more general theorem.

Theorem 2.9. For Bernoulli bond percolation on every locally finite, connected, infinite
graph G, one has that

p′′cut,E = p′cut,E = p′′cut,V = p′cut,V = pc.

Lemma 2.10. Suppose G is a locally finite, connected infinite graph. Then

p′′cut,E ≤ p′′cut,V. (2.13)

Proof. Let ΠE ∈ BE be a boundary edge cutset separating x from infinity. Let S be the
finite connected component of x in G\ΠE . By definition ΠE = ∆S. Let ΠV = ∂V S be the
outer vertex boundary of S. Then ΠV ∈ BV is a boundary vertex cutset separating x

from infinity.
For each v ∈ ΠV , if the event A(x, v,ΠV ) occurs, then there is a self-avoiding open

path γx,v from x to v only using v in ΠV . Hence this path uses only one edge e in ∆S,
namely the edge e on γx,v that is incident to v. Hence the event A(x, e,ΠE) occurs for
this edge e on the path γx,v. Thus

Pp(A(x, v,ΠV )) ≤
∑

e∈∆S : e∼v
Pp(A(x, e,ΠE)),
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where e ∼ v denotes that v is an endpoint of e.
Note that for any two distinct vertices v, v′ ∈ ΠV , the two sets {e ∈ ∆S : e ∼ v} and

{e′ ∈ ∆S : e′ ∼ v′} are disjoint. Hence summing the above inequality over v ∈ ΠV = ∂S,
one has that ∑

v∈ΠV

Pp(A(x, v,ΠV )) ≤
∑
e∈ΠE

Pp(A(x, e,ΠE)).

From this we have that p < p′′cut,E ⇒ p ≤ p′′cut,V and then we have the desired inequal-
ity (2.13).

3 Proof of Theorem 2.9

Duminil-Copin and Tassion [3] gave a new proof of the sharpness of the phase
transition [1, 13]. For our purpose, we just need to look at the short version for Bernoulli
percolation [4].

For p ∈ [0, 1], x ∈ V and a finite set S with x ∈ S ⊂ V , define

ϕp(x, S) := p
∑
y∈S

∑
z/∈S,(y,z)∈E

Pp(x
S←→ y), (3.1)

where {x S←→ y} denotes the event that there is an open path connecting x and y only
using vertices lying in S. Recall that the edge boundary ∆S of S is the set of edges that
connect S to its complement. So ϕp(x, S) is the expected number of open edges on the
edge boundary ∆S which has an endpoint is connected to x via an open path entirely
lying in S. For transitive graphs, Duminil-Copin and Tassion defined

p̃c := sup{p ≥ 0: inf{ϕp(x, S) : x ∈ S, S is finite} < 1}

and showed that p̃c = pc for transitive graphs.
The main new ingredient of the proof of Theorem 2.9 is the following observation.

Proposition 3.1. For Bernoulli bond percolation on a locally finite, connected, infinite
graph G one has that

inf
Π∈BE

∑
e∈Π

Pp(A(x, e,Π)) = inf
S
ϕp(x, S), (3.2)

where the infimum on the left hand side of (3.2) is over all the boundary edge cutsets
separating x from infinity and the infimum on the right is over all finite sets containing x.

We have that pc(G) = sup{p ≥ 0: inf{ϕp(x, S) : x ∈ S, S is finite} = 0} for all locally
finite, connected, infinite graphs in light of Proposition 3.1 and Theorem 2.9.

Proof of Proposition 3.1. On the one hand, for any finite set S containing x, let S′ be
the connected component of x in the induced subgraph of S. Then Π(S) := ∆S′ is a
boundary edge cutset separating x from infinity. For each edge e = (y, z) ∈ ∆S′, say
y ∈ S′, z /∈ S′, it is easy to see that z /∈ S and

Pp(A(x, e,Π(S))) = p · Pp[x
S←→ y].

Summing this over all edges e ∈ ∆S′, one has that

inf
Π∈BE

∑
e∈Π

Pp(A(x, e,Π)) ≤
∑

e∈Π(S)

Pp(A(x, e,Π(S))) = ϕp(x, S
′) = ϕp(x, S),

where the last equality is a simple observation from the definition of S′.
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Hence
inf

Π∈BE

∑
e∈Π

Pp(A(x, e,Π)) ≤ inf
S
ϕp(x, S).

On the other hand, for any boundary edge cutset Π separating x from infinity, let
S = S(Π) be the connected component of x in the graph G\Π. By Definition 2.6, ∆S = Π.
For each edge e = (y, z) ∈ ∆S = Π, say y ∈ S, z /∈ S, one has that

Pp(A(x, e,Π)) = p · Pp[x
S←→ y].

Summing this over all edges e ∈ ∆S, one has that for a boundary edge cutset Π and
S = S(Π) ∑

e∈Π

Pp(A(x, e,Π)) = ϕp(x, S(Π)) ≥ inf
S
ϕp(x, S).

Hence one has the other direction

inf
Π∈BE

∑
e∈Π

Pp(A(x, e,Π)) ≥ inf
S
ϕp(x, S).

Next we recall a lemma from [4]. For a finite set Λ, let Λc denote its complement in
V . Let Λn denote the ball {y : d(x, y) ≤ n} of radius n centered at x, where d denotes the
graph distance on G.

Lemma 3.2 (Lemma 2.1 of [4]). For x ∈ V and ball Λn with n ≥ 1, one has

d

dp
Pp(x←→ Λcn) ≥ 1

p(1− p)
· inf
S⊂Λn,x∈S

ϕp(x, S) · [1− Pp(x←→ Λcn)] (3.3)

Proof of Theorem 2.9. By (2.12) and Lemma 2.10, it suffices to show p′′cut,E ≥ pc.
Suppose p′′cut,E < pc. Pick p0, p1 such that p′′cut,E < p0 < p1 < pc.
By the definition of p′′cut,E and Proposition 3.1, there is a constant κ > 0 such that for

any p ∈ [p0, p1],
inf
S
ϕp(x, S) ≥ κ.

Write θx(p) := Pp(x ←→ ∞) and θx,n(p) := Pp(x ←→ Λcn). By (3.3) one has that for
p ∈ [p0, p1],

θ′x,n(p)

1− θx,n(p)
≥ κ

p(1− p)
.

Integrating this inequality from p0 to p1, one has that

θx,n(p1) ≥ 1−
(

1− p1

p1
· p0

1− p0

)κ
+θx,n(p0)

(
1− p1

p1
· p0

1− p0

)κ
≥ 1−

(
1− p1

p1
· p0

1− p0

)κ
.

(3.4)
Letting n→∞ one has that

θx(p1) ≥ 1−
(

1− p1

p1
· p0

1− p0

)κ
> 0,

which contradicts with the choice that p1 < pc. Hence p′′cut,E ≥ pc and we are done.

4 Percolation probability for subperiodic trees

To highlight the importance of Proposition 3.1, in this section we discuss some
applications of it to subperiodic trees.

For transitive graphs, Duminil-Copin and Tassion pointed out that inf{ϕp(x, S) : x ∈
S, S is finite} ≥ 1 at p = pc. Using this they obtained a lower bound for percolation
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probability on transitive graphs with pc ∈ (0, 1): θ(p) ≥ p−pc
p(1−pc) for p ≥ pc. Here for

transitive graphs, the percolation probability θ(x, p) does not depend on x and we simply
write it as θ(p). This lower bound can be extended to 0-subperiodic trees. We first adopt
some notations and then recall the definitions of periodic and subperiodic trees as in
[12, Section 3.3].

Notation. Suppose T is an infinite, locally finite tree with a distinguished vertex o,
called the root of T . Write |x| for the graph distance from x to o; x ≤ y if x is on the
shortest path from o to y; x < y if x ≤ y and x 6= y; x→ y if x ≤ y and |y| = |x|+ 1 and in
this case we call x the parent of y; and T x for the subtree of T containing the vertices
y ≥ x. For Bernoulli(p) percolation on the tree T with root o, let θ(p) := Pp[o←→∞] be
the probability that o is in an infinite cluster.

Definition 4.1 (Definition on page 82 of [12]). Let N ≥ 0 be an integer. An infinite,
locally finite tree T with root x is called N-periodic (resp., N-subperiodic), if ∀x ∈ T
there exists an adjacency-preserving bijection (resp., injection) f : T x → T f(x) with
|f(x)| ≤ N . A tree is periodic (resp., subperiodic) if there is some N ≥ 0 for which it is
N -periodic (resp., N -subperiodic).

Remark 4.2. For a 0-subperiodic tree T with root o, one has that infΠ

∑
e∈Π br(T )−|e| ≥ 1

(formula (3.7) on page 85 of [12]). It is well-known that pc(T ) = 1/br(T ) for every locally
finite infinite tree T (for instance see [12, Theorem 5.15]). Hence

inf
Π∈BE

∑
e∈Π

Ppc(A(o, e,Π)) = inf
Π∈BE

∑
e∈Π

p|e|c ≥ inf
Π

∑
e∈Π

br(T )−|e| ≥ 1.

Then by Proposition 3.1 one can set p0 = pc and κ = 1 in (3.4) and letting n→∞ to get

θ(p) = Pp(o←→∞) ≥ p− pc

p(1− pc)
, p ≥ pc

for every 0-subperiodic tree T .

Actually this is true for all subperiodic trees with nontrivial pc.

Proposition 4.3. Consider Bernoulli percolation on a subperiodic tree T with pc(T ) < 1.
Then the lower right Dini derivative of the percolation probability θ(p) at pc belong to
(0,∞].

Proof. Theorem 3.8 in [12] says that infΠ

∑
e∈Π br(T )−|e| > 0 for a general subperiodic

tree T with pc(T ) < 1, where Π runs over all edge cutsets separating the root of T from
infinity. Define

α(o, p) := inf{ϕp(o, S) : o ∈ S, S is finite}.

Then as before, one has that for a subperiodic tree T with root o and pc < 1,

α(o, pc)
Prop.3.1

= inf
Π∈BE

∑
e∈Π

Ppc(A(o, e,Π)) = inf
Π∈BE

∑
e∈Π

p|e|c ≥ inf
Π

∑
e∈Π

br(T )−|e| > 0.

By the definition of ϕ in (3.1) it is obvious that α(o, p) is increasing in p. Setting p0 = pc

in (3.4) and letting n→∞ one has that

θ(p)− θ(pc)

1− θ(pc)
≥ 1−

(
1− p
p
· pc

1− pc

)α(o,pc)

.

This implies that the lower right Dini derivative of the percolation probability θ(p) at pc

is positive:

D+θ(pc) := lim inf
p→p+c

θ(p)− θ(pc)

p− pc
≥ α(o, pc)(1− θ(pc))

pc(1− pc)
> 0.

EJP 28 (2023), paper 38.
Page 10/22

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP926
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Thresholds for Bernoulli percolation

Without of the restriction of (sub)periodicity, it is possible to have the lower right
Dini derivative of the percolation probability being equal to zero. See the following two
remarks.

Remark 4.4. It is easy to construct trees with the property that at p = pc,

inf{ϕp(o, S) : o ∈ S, S is finite} = 0.

Indeed, we construct a spherically symmetric tree T with root o as follows. Let Tn denote
the set of vertices with graph distance n to the root o. If n = 2k for some k ≥ 0, let each
vertex in Tn have exactly one child; otherwise, let each vertex in Tn have exactly two
children. Then it is easy to see that

|Tn| �
2n

n
.

Here for two positive function f, g on Z+, f(n) � g(n) means that there exist constants
c1, c2 > 0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n > 0.

Hence br(T ) = lim infn |Tn|1/n = 2 by Exercise 1.2 in [12]. Thus pc(T ) = 1/br(T ) =

1/2. Let Sn be the ball of radius n and center x. Then at p = pc = 1/2,

ϕp(o, Sn) = |Tn+1| ·
1

2n+1
≤ c2
n+ 1

.

Thus inf{ϕp(o, S) : o ∈ S, S is finite} = 0.

Remark 4.5. For the spherically symmetric tree T in Remark 4.4, one also has

θ(p) �
(
p− 1

2

)2
, p ≥ pc

and in particular, the upper right Dini derivative D+θ(pc) := lim supp→p+c
θ(p)−θ(pc)
p−pc = 0.

In fact, let c(e) = (1 − p)−1p|e| be the conductance of edge e. Then formula (5.12)
on page 142 of [12] is satisfied with P = Pp. Since T is spherically symmetric, for
p > pc = 1/2, the effective resistance is

R(o←→∞) =

∞∑
n=1

(1− p)p−n/|Tn| �
∞∑
n=1

(1− p)n
(2p)n

� 1− p
(2p− 1)2

.

Then by Theorem 5.24 [12] one has

θ(p) � C (o←→∞)

1 + C (o←→∞)
=

1

1 + R(o←→∞)
�
(
p− 1

2

)2
, p > pc.

Proposition 4.3 states that the lower right Dini derivative of the percolation probability
on a subperiodic tree with pc ∈ (0, 1) is positive at pc and it might equal to infinity in
some cases (Example 4.10). This leads us to the following question:

Question 4.6. What kind of subperiodic trees have the property that the right Dini
derivatives of θ(p) at pc are finite? What kind of subperiodic trees have the property that
limp↓pc

θ(p)−θ(pc)
p−pc ∈ (0,∞)?

The critical exponent β for Bernoulli percolation is characterized by θ(p)− θ(pc) ≈
(p − pc)β. For Z2, it is conjectured that θ(p) − θ(pc) ≈ (p − pc)β for β = 5

36 [5, Table
10.1 on page 279], in particular in this case the lower right Dini derivative at pc is
infinite [9]. Indeed for site percolation on the triangular lattice in the plane, one does
have θ(p) − θ(pc) = (p − pc)

5
36 +o(1) [14, Theorem 1.1]. Question 4.6 asks what kind of

subperiodic trees have β = 1.
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A partial answer for Question 4.6 is Theorem 4.7 which considers directed covers
of strongly connected graphs. An oriented graph G is called strongly connected if for
any two vertices u, v of G, there is a directed path in G from u to v. Suppose that G is a
finite oriented graph and v is any vertex in G. The directed cover of G based at v is the
tree T whose vertices are the finite paths of edges 〈e1, e2, . . . , en〉 in G that start at v. We
take the root of T to be the empty path and we join two vertices in T by an edge when a
path is an extension of the other path by one more edge in G. Every periodic tree is a
directed cover of a finite directed graph G; for a proof see pages 82-83 of [12]. Also not
all periodic trees have finite right derivatives for θ(p) at pc; see item 3 in Example 4.10.

Theorem 4.7. If T is a periodic tree with root o and pc(T ) ∈ (0, 1) and it is the directed
cover of some strongly connected graph, then the right derivative of θ(p) exists at pc and
this derivative is positive and finite.

We first outline the ideas of the proof of Theorem 4.7. Suppose T is the directed
cover of some finite strongly connected directed graph G = (V,E) based at some vertex
v1 ∈ V , where V = {v1, . . . , vn}. Let θi(p) be the percolation probability of the tree Ti
that is the directed cover of G based at vi. Then these quantities θi(p) are related by a
family of algebraic equations (4.1). We will then proceed as follows:

1. We first show that θi(p) are continuous at pc(Ti) (Lemma 4.8).

2. Then we show that these trees Ti have the same critical probability pc and the
upper right Dini derivatives of θi(p) are finite at pc (Lemma 4.9).

3. We finish the preparation by showing that the right derivatives of θi(p) at pc exist
via a convexity/concavity argument in Lemma 4.12. The proof of Lemma 4.12 is a
little bit involved and we will need two more lemmas for its proof:

• the functions θi(p) are analytic on (pc, 1) (Lemma 4.13) and
• the uniqueness of θi(p) as solutions of (4.1) (Lemma 4.14).

4. We then finish the proof of Theorem 4.7: the existence is from Step 3 (Lemma 4.12),
the positiveness is from Proposition 4.3 and the finiteness is from Step 2 (Lemma 4.9).

Lemma 4.8. Suppose T is a periodic tree with root o and pc(T ) < 1. Then θ(pc) = 0.

Proof. At p = pc = 1
br(T ) , if we put conductance c(e(x)) = (1 − pc)−1p

|x|
c , where e(x) is

the edge from x to its parent, then (5.12) on page 142 of [12] is satisfied. As noted on
page 142 line 17 of [12], these conductances correspond to the homesick random walk
RWbr(T ). If we put resistance Φ(e(x)) = λ|x|−1 for the edge e(x) instead, then it is known
that as λ ↑ λ∗ = 1

pc
, the effective resistance from the root to infinity of the corresponding

network is tend to infinity [11, Theorem 5.1]. This implies that the homesick random
walk RWbr(T ) is recurrent. Hence by Corollary 5.25 of [12] we know θ(pc) = 0.

Now we restrict to a subset of periodic trees that are directed covers of finite strongly
connected oriented graphs.

Lemma 4.9. Suppose G = (V (G), E(G)) is a finite, strongly connected directed graph
and V (G) = {v1, . . . , vn}. Let λ∗ be the largest eigenvalue of the adjacency matrix AG
of G. Let Ti be the directed cover of G based at vi and denote its root by oi. Then
pc(T1) = · · · = pc(Tn) = 1

λ∗
.

Moreover if λ∗ > 1, then the upper right Dini derivative of θi(p) at pc is finite for
every i ∈ {1, · · · , n}, where θi(p) := Pp[oi ←→∞ in Ti] denotes the probability that the
root oi of Ti is in an infinite open cluster.
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Proof. The first part is a standard result. See the discussion on pages 83-84 of [12] for
example.

Since G is strongly connected, AG is irreducible. Hence by the Perron-Frobenius
theorem (e.g. see [6, Theorem 8.4.4]) there is a left λ∗-eigenvector v∗ = (v1, . . . , vn) all
of whose entries are positive. We also normalize v∗ such that its l2-norm is 1.

Since oi 6↔ ∞ in Ti if and only if oi can’t connect to infinity via any of its children, we
have the following relations for these percolation probabilities:

1− θi(p) =

n∏
j=1

[1− pθj(p)]aij , i ∈ {1, . . . , n},

i.e.,

θi(p) = 1−
n∏
j=1

[1− pθj(p)]aij , i ∈ {1, . . . , n}, (4.1)

where aij is the (i, j)-entry of the matrix AG, i.e., the number of directed edges in G from
vertex vi to vj .

Denote by θmax(p) = max{θ1(p), · · · , θn(p)}. Since G is strongly connected, there
exists M > 0 such that there is a directed path with length at most M from vi to vj for
any pair vi, vj ∈ V (G). Hence θi(p) ≥ pMθmax(p) for all i = 1, . . . , n. Thus for p > pc,

0 < θi(p) � θmax(p), i ∈ {1, . . . , n}, . (4.2)

By Lemma 4.8 and the right continuity of θi(p) (e.g., see [12, Exercise 7.33]), one has
that

0 < θi(p) = o(p− pc), 0 < p− pc � 1. (4.3)

Using (4.3) when 0 < p− pc � 1 and i ∈ {1, . . . , n}, we can rewrite (4.1) as

θi(p) = p

n∑
j=1

aijθj(p)− p2
n∑
j=1

(
aij
2

)
θ2
j (p)− p2

∑
j 6=k

aijaikθj(p)θk(p) + θ2
max(p) · o(1), (4.4)

where we use the convention that
(
aij
2

)
= 0 if aij = 0, 1.

Multiplying vi on both sides of (4.4) and adding them up, one has that

n∑
i=1

viθi(p) = p

n∑
i=1

vi

n∑
j=1

aijθj(p) + θ2
max(p) · o(1)

−p2
n∑
i=1

vi

[ n∑
j=1

(
aij
2

)
θ2
j (p) +

∑
j 6=k

aijaikθj(p)θk(p)

]
(4.5)

Since pc(Ti) = 1
λ∗

< 1, there exists some i such that either aij ≥ 2 for some j or
aijaik ≥ 1 for some j 6= k. Therefore by (4.2) and (4.5) there exists c > 0 such that

n∑
i=1

viθi(p) ≤ p
n∑
i=1

vi

n∑
j=1

aijθj(p)− cp2θ2
max(p), 0 < p− pc � 1. (4.6)

Since v∗ is a left λ∗-eigenvector of AG, one has that

n∑
i=1

vi

n∑
j=1

aijθj(p) = v∗AGθ(p) = λ∗v∗ · θ(p) = λ∗

n∑
i=1

viθi(p), (4.7)

where θ(p) = (θ1(p), · · · , θn(p))T is the vector of percolation probabilities in Rn.
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Plugging (4.7) into (4.6) and using λ∗ = 1
pc

and (4.2) one has that for 0 < p− pc � 1,

cp2θ2
max(p) ≤ p− pc

pc

n∑
i=1

viθi(p) ≤ c′θmax(p)(p− pc),

for some constant c′ > 0. This implies that θi(p) ≤ θmax(p) ≤ c′′(p− pc) for 0 < p− pc � 1

and then we have the desired result on the upper right Dini derivative.

The strongly connectedness of G is needed for the finiteness of the right Dini deriva-
tive. See the following example.

v1

Ga

v1 v2

Gb

v1 v2

v4 v3

Gc

Figure 3: Directed graphs Ga, Gb, Gc from left to right.

Example 4.10. Let Ga, Gb, Gc be as illustrated in Figure 3. Let Ts, s ∈ {a, b, c} be the
directed cover of Gs based at v1(Gs).

1. The tree Ta is a binary tree with root o. It is easy to see that pc(Ta) = 1
2 and for

p ≥ 1
2 , θ(p) = 2p−1

p2 . In this case θ′+(pc) = 8 and θ(p) is concave on (pc, 1).

2. The tree Tb is a Fibonacci tree with root o and deg(o) = 2. See Figure 3.2 on page 83

of [12] for an illustration of the Fibonacci tree. It is easy to see that pc(Tb) =
√

5−1
2 .

Writing θ(p) = Pp[o←→∞] and using (4.1) one has that θ(p) = p2+p−1
p3 for p ≥

√
5−1
2 .

Hence in this case θ′+(pc) = 5 +
√

5 and θ(p) is also concave on (pc, 1).

3. The tree Tc also has pc(Tc) =
√

5−1
2 . Actually if we define Ti, θi(p) as in Lemma 4.9,

then it is easy to check that pc(Ti) =
√

5−1
2 , i = 1, 2, 3, 4. Solving (4.1) one can find

that for p ∈ (pc, 1),

θ1(p) =
(1−2p)(p2+p−1)+

√
(p2+p−1)(−3p2+5p−1)

2p2(1−p2)

θ2(p) =
p2+p−1+

√
(p2+p−1)(−3p2+5p−1)

2p2

θ3(p) = p2+p−1
p2

θ4(p) = p2+p−1
p3

(4.8)

In particular, θ(p) = θ1(p) = Θ(
√
p− pc) for 0 < p− pc � 1 and thus the right Dini

derivative at pc is infinite. One can also check that θ1(p) and θ2(p) are concave on
(pc, 1).

Example 4.10 and the fact that θ(p)− θ(pc) ≈ (p− pc)5/36 on the triangle lattice on
the plane [14, Theorem 1.1] lead us to the following question:
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Question 4.11. For a transitive graph or a periodic tree with root o, is the percolation
probability θ(p) concave on (pc, 1)?

We now proceed to show the right derivatives of θi(p) exist at pc.

Lemma 4.12. The right derivative of θi(p) exists at pc for all i ∈ {1, . . . , n}.
As mentioned earlier, the proof of Lemma 4.12 is somewhat long and we begin by

showing that θi(p) is analytic on (pc, 1) for all i ∈ {1, . . . , n}.
Lemma 4.13. Under the same assumptions as Lemma 4.9 one has that θi(p) is analytic
on (pc, 1) for all i ∈ {1, · · · , n}.

Proof. Recall that the percolation probabilities satisfy (4.1):

θi(p) = 1−
n∏
j=1

[1− pθj(p)]aij , i ∈ {1, . . . , n},

where aij is the number of directed edges in G from vertex vi to vj .

Define fi : R1+n → R for i ∈ {1, . . . , n} by

fi((x, y1, . . . , yn)T ) = yi − 1 +

n∏
j=1

[1− xyj ]aij .

Write f = (f1, · · · , fn)T . By (4.1), we know that (p, θ1(p), . . . , θn(p)) is a positive solution
of f = 0 when p > pc.

Note that when i 6= j,

∂fi
∂yj

(p, θ1(p), . . . , θn(p)) = −paij [1− pθj(p)]aij−1 ·
∏
j′ 6=j

[1− pθj′(p)]aij′
(4.1)
=
−paij(1− θi(p))

1− pθj(p)

and

∂fi
∂yi

(p, θ1(p), . . . , θn(p)) = 1−paii[1−pθi(p)]aii−1 ·
∏
j′ 6=i

[1− pθj′(p)]aij′
(4.1)
= 1− paii(1− θi(p))

1− pθi(p)
.

Therefore the Jacobi matrix J =
[
∂fi
∂yj

(p, θ1(p), . . . , θn(p))
]
1≤i,j≤n can be written as

J = I −BC (4.9)

where I is the identity matrix and B is a diagonal matrix with bii = 1− θi(p) and C is a
matrix with (i, j)-entry cij =

paij
1−pθj(p) .

Notice that Bernoulli(p) percolation on Ti can also be viewed as a multi-type Galton–
Watson tree Z. Each vertex u on the tree corresponds to a directed path on G. If the
endpoint of the path is vj , then we say that u has type j. In particular, we view the root of
Ti is of type i. The number of type j children of a type i vertex has Binomial distribution
Bin(aij , p). The percolation probability θi(p) is just the non-extinction probability for such
a n-type Galton–Watson tree started with a single type i vertex. Let Ps and Es denote the
probability measure and corresponding expectation for such an n-type Galton-Watson
tree started with a single ancestor with type s ∈ {1, . . . , n}.

Now let Ext denote the event that the n-type Galton–Watson tree is extinct. Then
Pi[Ext] = 1 − θi(p). Let Z1j denote the number of children of type j of Z0. For a
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nonnegative integer sequence (t1, . . . , tn) with ti ≤ aij , one has that

Pi
[
Z1j = tj , j = 1, 2, . . . , n

∣∣Ext]
=

1

1− θi(p)
·
n∏
j=1

(
aij
tj

)
ptj (1− p)aij−tj · (1− θj(p))tj

=
1

1− θi(p)
·
n∏
j=1

(
aij
tj

)
(1− p)aij−tj · (p− pθj(p))tj

(4.1)
=

n∏
j=1

(
aij
tj

)( 1− p
1− pθj(p)

)aij−tj
·
(p− pθj(p)

1− pθj(p)

)tj
=

n∏
j=1

(
aij
tj

)(p− pθj(p)
1− pθj(p)

)tj
·
(

1− p− pθj(p)
1− pθj(p)

)aij−tj
. (4.10)

By [7] we know conditioned on extinction, the n-type Galton-Watson tree is still
a multi-type Galton–Watson tree. Let P̃s and Ẽs denote the probability measure and
corresponding expectation for the n-type Galton-Watson tree started with a single
ancestor with type s conditioned on extinction. By (4.10), conditioned on extinction,
the number of type j children of a type i vertex has Binomial distribution Bin(aij ,

p−pθj(p)
1−pθj(p) ).

Hence the mean offspring matrixM has (i, j)-entrymij = aij
p−pθj(p)
1−pθj(p) = (1−θj(p))· paij

1−pθj(p) .
Observe that

M = CB (4.11)

Let q := max1≤j≤n[1 − θj(p)] be the maximum of the extinction probability. For p > pc,
we know q < 1. Let Zk denote the size of k-th generation of the multi-type Galton-Watson
tree. As the last displayed inequality on page 547 of [7], one has that

Ẽs[Zk] ≤ 1

1− θs(p)
· Es

[
Zkq

Zk
]
→ 0 as k →∞.

Hence the largest eigenvalue λ1(M) for the mean offspring matrix M satisfies λ1(M) < 1.
By [6, Theorem 1.3.22], the largest eigenvalue of BC satisfies that λ1(BC) = λ1(CB) =

λ1(M) < 1. Therefore by (4.9) the Jacobi matrix J is invertible for p ∈ (pc, 1). Hence by
the analytic implicit function theorem, we obtain that the functions θi(p) are analytic on
(pc, 1).

Lemma 4.14. The solution (p, θ1(p), . . . , θn(p)) of (4.1) in (pc, 1)× (0, 1)n is unique.

The following Proposition 4.15 will be needed for Lemma 4.14.
For p ∈ [0, 1], we define the operator Bp : [0, 1]n −→ [0, 1]n as given by (4.1):

Bp(α)i = 1−
n∏
j=1

[1− pαj ]aij , (4.12)

where α = (α1, · · · , αn)T ∈ [0, 1]n. For example, Bp(0) = 0.
For α,β ∈ [0, 1]n, write α ≤ β if αi ≤ βi for all i ∈ {1, · · · , n} and write α ≺ β if α ≤ β

and α 6= β.

Proposition 4.15. We have the following properties for the operator Bp.

(a) The operator Bp is increasing in the sense that if α ≤ β, then Bp(α) ≤ Bp(β).

(b) Moreover, if p ∈ (0, 1), then Bp is strictly increasing in the sense that if α ≺ β, then
Bp(α) ≺ Bp(β).

(c) If 0 ≤ p1 < p2 ≤ 1 and α ∈ [0, 1]n, then Bp1(α) ≤ Bp2(α).
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(d) Moreover, if α ∈ [0, 1]n and α 6= 0, then for 0 ≤ p1 < p2 < 1, one has that
Bp1(α) ≺ Bp2(α).

(e) For p > 0, if 0 6= α ∈ [0, 1]n is a fixed point of Bp, i.e., Bp(α) = α, then αi > 0 for
all i ∈ {1, · · · , n}.

Proof of Proposition 4.15. The items (a) and (c) are obvious from the definition of Bp.
For item (b), suppose αj < βj for some j ∈ {1, · · · , n}. Since G is strongly connected,
there exists some i such that aij ≥ 1. Then

[1− pαj ]aij > [1− pβj ]aij

and [1− pαj′ ]aij′ ≥ [1− pβj′ ]aij′ ≥ [1− p]aij′ > 0 for j′ 6= j. Therefore Bp(α)i < Bp(β)i.
Together with item (a) we know Bp(α) ≺ Bp(β).

For item (d), the proof is similar to item (b) and we omit it.
For item (e), if aij ≥ 1, by (4.12) and the fact that α is a fixed point,

αi = Bp(α)i ≥ 1− [1− pαj ]aij ≥ 1− [1− pαj ] = pαj .

Repeating this argument, we get

αi = Bp(α)i ≥ pMαj′ ,∀ j′ ∈ {1, · · · , n},

where M is the maximum of the lengths of the shortest oriented paths connecting two
points in G. Therefore since αj > 0 for some j, then αi > 0 for all i ∈ {1, · · · , n}.

Proof of Lemma 4.14. Write θi,k(p) := Pp[oi is connected to level k of Ti], where by level
k we mean the set of vertices in Ti with graph distance k to the root. Let θk(p) =

(θ1,k(p), · · · , θn,k(p))T ∈ [0, 1]n. In particular, θ0(p) = 1. Then as (4.1), one has that

θk+1(p) = Bp(θk(p))

and thus θk(p) = B◦kp (1). By the definition of θi,k(p), θi(p),

θ(p) = lim
k→∞

θk(p) = lim
k→∞

B◦kp (1).

Suppose α ∈ [0, 1]n is some fixed point of Bp, i.e., Bp(α) = α. Then α ≤ 1. By
item (a) of Proposition 4.15, one has that α = Bp(α) ≤ Bp(1) = θ1(p), and then
α = Bp(α) ≤ Bp(θ1(p)) = θ2(p), · · · In the end, we have

α ≤ lim
k→∞

θk(p) = θ(p),

i.e., θ(p) is the largest fixed point for the operator Bp in [0, 1]n.
Now suppose p ∈ (pc, 1) and we have some solution α ∈ [0, 1]n\{0} for (4.1), i.e., α

is a nonzero fixed point of Bp in [0, 1]n. Since α ∈ [0, 1]n is a fixed point of Bp, we have
showed that α ≤ θ(p). Since θ(p) ≥ α 6= 0, by item (e) in Proposition 4.15, α ∈ (0, 1)n.
Define p1 := sup{t ≥ pc : θ(t) ≤ α}.

Since α ≤ θ(p) and limt↓pc θ(t)→ 0 (Lemma 4.8), one has that p1 ∈ (pc, p]. Since θ(p)

is infinite differentiable (Lemma 4.13) and increasing in (pc, 1), one has that θ(p1) ≤ α
and for some i ∈ {1, . . . , n}, θi(p1) = αi.

Since θ(p1) is a fixed point of Bp1 and α is a fixed point of Bp, one has that

θi(p1) = 1−
n∏
j=1

[1− p1θj(p1)]aij = αi = 1−
n∏
j=1

[1− pαj ]aij . (4.13)

EJP 28 (2023), paper 38.
Page 17/22

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP926
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Thresholds for Bernoulli percolation

Since G is strongly connected, there is some j such that aij ≥ 1. As in the proof of item
(e) in Proposition 4.15, to satisfy (4.13), by p1 ≤ p and θ(p1) ≤ α one must have

1− p1θj(p1) = 1− pαj .

Since 0 < θj(p1) ≤ αj ≤ θj(p) and pc < p1 ≤ p < 1, one must have p1 = p and
αj = θj(p1). Therefore by p1 = p and the continuity of θ one has the other direction
α ≥ limt↑p1 θ(t) = θ(p1) = θ(p). Hence α = θ(p) is the unique solution of (4.1) in (0, 1)n

for p ∈ (pc, 1).

Now we are ready to prove Lemma 4.12.

Proof of Lemma 4.12. First by (4.1) and Lemma 4.14 we know that the set

{(p, θ1(p), . . . , θn(p)) ∈ (pc, 1)× (0, 1)n}

is semi-algebraic (Definition 2.1.4 of [2]). By Theorem 2.2.1 of [2], its projection S :=

{(θ1(p), . . . , θn(p)) : p ∈ (pc, 1)} is also semi-algebraic set and by Definition 2.2.5 the map
p 7→ (θ1(p), . . . , θn(p)) is a semi-algebraic map from (pc, 1) to S in view of (4.1).

By Theorem 2.2.1 and Proposition 2.2.6 of [2], the maps p 7→ θi(p) are also semi-
algebraic functions on (pc, 1).

By Lemma 4.13 we already know that the functions p 7→ θi(p) are infinitely differ-
entiable on (pc, 1). Hence by Proposition 2.9.1 of [2], we know the second derivatives
θ′′i (p) are also semi-algebraic functions on (pc, 1), i.e., the sets {(p, θ′′i (p)) : p ∈ (pc, 1)} are
semi-algebraic sets for all i ∈ {1, . . . , n}.

Hence for every i ∈ {1, . . . , n}, {(p, θ′′i (p)) : p ∈ (pc, 1), θ′′i (p) = 0} is a semi-algebraic
set since it is the intersection of two semi-algebraic sets, {(p, θ′′i (p)) : p ∈ (pc, 1)} and
{(p, 0) : p ∈ (pc, 1)}. Thus by Theorem 2.2.1 of [2] for every i ∈ {1, . . . , n}, the projection
{p : p ∈ (pc, 1), θ′′i (p) = 0} is a semi-algebraic set. By Proposition 2.1.7 of [2], for every
i ∈ {1, . . . , n}, the set {p : p ∈ (pc, 1), θ′′i (p) = 0} is a finite union of points and open
intervals. Hence there exists some εi > 0 such that θ′′i (p) cannot change its sign on
(pc, pc + εi). Taking ε = min{εi : i = 1, 2, . . . , n} we have that the function θ′′i (p) does
not change its sign (i.e. remains nonnegative or nonpositive) on (pc, pc + ε) for all
i ∈ {1, 2, . . . , n}.

By Lemma 4.12 and the right continuity of the functions θi(p) at pc, we know these
functions θi(p) are either convex or concave on [pc, pc + ε). Hence limp↓pc

θi(p)−θi(pc)
p−pc =

limp↓pc
θi(p)−0
p−pc exists, i.e., the right derivative of θi(p) at pc exists.

Proof of Theorem 4.7. The existence of the right derivative of θ(p) follows from Lemma
4.12. The positiveness and finiteness of the right derivatives follow from Proposition 4.3
and Lemma 4.9 respectively.

5 Concluding remarks and questions

5.1 Remark on Bernoulli site percolation

For p ∈ [0, 1], if we instead keep each vertex with probability p and remove it otherwise.
Call the vertices kept open vertices and those removed closed vertices. Bernoulli(p)
site percolation studies the random subgraph ξ of G induced by the open vertices. For
Bernoulli site percolation, an edge is call open if and only if its two endpoints are open.
When talking about Bernoulli site percolation, we will use Psite

p and Psite
p to stress that.

Remark 5.1. If the connected graph G has bounded degree, say, with a upper bound D,
then for Bernoulli site percolation, the following analogue of Lemma 3.2 holds:

d

dp
Psite
p (x←→ Λcn) ≥ 1

1− p
min(1,

infS⊂Λn,x∈S ϕp(x, S)

D − 1
) · [1− Psite

p (x←→ Λcn)] (5.1)
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where ϕp(x, S) :=
∑
y∈S

∑
z/∈S,(y,z)∈E P

site
p [x

S←→ y]. If one defines p′cut,site accordingly for
site percolation, one can prove pc,site = p′cut,site similarly as the bond percolation case.

This leads us to the following conjecture:

Conjecture 5.2. The answers for Question 1.3 and 1.5 are also positive for Bernoulli
site percolation.

5.2 Is there an example with pcut,E < pcut,V?

We have seen examples with pT,E < pT,V (Example 2.3). One can ask the same
question for pcut,E and pcut,V:

Question 5.3. Is there a locally finite, connected, infinite graph G such that pcut,E <

pcut,V?

In view of Lemma 2.1, if there is a graph G with pcut,E < pcut,V, then it must have
unbounded degree and for a vertex cutset ΠV , for “most” v ∈ ΠV there should be a
lot of edges in the corresponding edge cutset ΠE = ∆S(ΠV ) incident to v. One might
first want to consider certain 1-dimensional multigraphs. However there is no simple
1-dimensional example; see Proposition 5.5.

Definition 5.4. Let (an)n≥0 be a sequence of positive integers. Let G = G((an)n≥0)

be the graph with vertex set V = N = {0, 1, 2, · · · } and edge set E =
⋃
nEn, where

En = {en,j : j = 1, . . . , an} is the set of an parallel edges from n to n+ 1.

Proposition 5.5. There is no sequence of positive integers (an)n≥0 such that G =

G((an)n≥0) has the property of pcut,E(G) < pcut,V(G).

We need a technical lemma.

Lemma 5.6. There is no sequence of positive integers (an)≥0 that satisfies both

∞∑
i=0

(1− p2)ai =∞ (5.2)

and
an ≥

c∏n−1
i=0

[
1− (1− p1)ai

] ,∀n ≥ 1. (5.3)

for some constants 0 < p1 < p2 < 1 and c > 0.

Proof of Proposition 5.5 assuming Lemma 5.6. Notice that

Pp[0←→ n] =

n−1∏
i=0

[
1− (1− p)ai

]
(5.4)

Thus

p < pc ⇒ lim
n→∞

n−1∏
i=0

[
1− (1− p)ai

]
= 0 ⇔

∞∑
i=0

(1− p)ai =∞ (5.5)

and
∞∑
i=0

(1− p)ai <∞ ⇔ lim
n→∞

n−1∏
i=0

[
1− (1− p)ai

]
> 0 ⇒ p ≥ pc (5.6)

Notice that the minimal vertex cutsets are {Πn} where Πn = n and the minimal edge
cutsets are En = {en,j : j = 1, · · · , an}, the an parallel edges from n to n+ 1.

Hence Ep[|C(0) ∩Πn|] = Pp[0←→ n] =
∏n−1
i=0

[
1− (1− p)ai

]
. Thus pcut,V = pc.

Suppose there is some sequence (an)n≥0 such that pcut,E < pcut,V. Pick p1, p2 such
that pcut,E < p1 < p2 < pcut,V.
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Since p2 < pcut,V = pc, by (5.5) one has that

∞∑
i=0

(1− p2)ai =∞

Since we choose p1 > pcut,E and noting that Ep[|C(0) ∩ En|] = panPp[0 ←→ n], one
has that

inf
n
p1an

n−1∏
i=0

[
1− (1− p1)ai

]
> 0 (5.7)

i.e., there exists c > 0 s.t.

an ≥
c∏n−1

i=0

[
1− (1− p1)ai

] ,∀n ≥ 1.

But this contradicts with Lemma 5.6 and hence Proposition 5.5 holds.

Proof of Lemma 5.6. First we reduce to the case of increasing sequence. If there is
some sequence satisfies both (5.2) and (5.3) for some 0 < p1 < p2 < 1, then

n−1∏
i=0

[
1− (1− p1)ai

]
≤
n−1∏
i=0

[
1− (1− p2)ai

] (5.2)→ 0 as n→∞.

Thus by (5.3), one has that an →∞. In the following for simplicity we write p = p1.
Now we consider the sequence (a′n), the rearrangement of an in the non-decreasing

order. Obviously, (a′n) also satisfies (5.2). As for (5.3), let m = m(n) be the last index
such that am ≤ a′n, i.e., m = max{k : ak ≤ a′n}. Obviously m ≥ n. Since ak → ∞ as
k →∞, m <∞. Then we claim that there exists a constant c0 > 0 such that

a′n

n−1∏
i=0

[
1− (1− p)a

′
i
]
≥ c0am

m−1∏
i=0

[
1− (1− p)ai

] (5.3)
≥ cc0, (5.8)

Write A = {vi : v1 < v2 < · · · } for the all the values of the sequence (an). For each
v ∈ A, let N(v) = |{j : aj = v}| ≥ 1 be the number of times the sequence taking the value
v.

Case one: am = a′n. By the definition of a′n, we assume a′n = vk and then

n−1∏
i=0

[
1− (1− p)a

′
i
]
≥
[
1− (1− p)vk

]N(vk)−1 ×
k−1∏
i=1

[
1− (1− p)vi

]N(vi) (5.9)

By the choice of m, the multi-set {a0, · · · , am−1} contains at least N(vk)− 1’s vk and all
the N(vi)’s vi for i < k. Hence

[
1− (1− p)vk

]−1 ×
k∏
i=1

[
1− (1− p)vi

]N(vi) ≥
m−1∏
i=0

[
1− (1− p)ai

]
. (5.10)

By a′n = am and the above two inequalities (5.9), (5.10) we have (5.8) for all c0 ≤ 1.
Case two: am < a′n, say a′n = vk and am = vj for some j < k. Then by the choice of

m, the multi-set {a0, · · · , am−1} contains at least N(vj)− 1’s vj and all the other N(vi)’s
vi for i ≤ k, i 6= j. Hence

[
1− (1− p)vj

]−1 ×
k∏
i=1

[
1− (1− p)vi

]N(vi) ≥
m−1∏
i=0

[
1− (1− p)ai

]
. (5.11)

EJP 28 (2023), paper 38.
Page 20/22

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP926
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Thresholds for Bernoulli percolation

By (5.9) and (5.11) we have that

a′n
∏n−1
i=0

[
1− (1− p)a′i

]
am
∏m−1
i=0

[
1− (1− p)ai

] ≥ vk
[
1− (1− p)vk

]−1

vj
[
1− (1− p)vj

]−1 ≥ p
vk
vj
≥ p.

where in the second inequality we use the fact that

f(x) =
x

1− (1− p)x
∈ (x,

x

p
], x ≥ 1.

Hence in this case (5.8) holds with c0 = p = p1.
Combining the two cases one has that (5.8) holds with c0 = p = p1.
By the reduction, we can assume (an)n≥0 is increasing. Thus there is a strictly

increasing sequence (nj) such that for n ∈ [nj , nj+1 − 1], an = vj . In particular, (5.2)
becomes

∞∑
j=1

(nj+1 − nj)(1− p2)vj =∞ (5.12)

and (5.3) becomes (only needs to look at times nj+1 − 1)

vj ≥
c
[
1− (1− p1)vj

]∏j
i=1

[
1− (1− p1)vi

]ni+1−ni
(5.13)

By (5.13) one has that

c

vj
[
1− (1− p1)vj

]nj+1−nj−1 ≤
j−1∏
i=1

[
1− (1− p1)vi

]ni+1−ni ≤ 1.

Hence

vj
[
1− (1− p1)vj

]nj+1−nj−1 ≥ c.

Taking logarithm one has that

log vj + (nj+1 − nj − 1) log[1− (1− p1)vj ] ≥ log c

Hence

nj+1 − nj − 1 ≤ log c− log vj
log[1− (1− p1)vj ]

≤ c′ log vj
(1− p1)vj

, when vj > 1.

But this contradicts with (5.12): (noting {vj} is a strictly increasing subsequence of N
and 1− p2 < 1− p1)

∞∑
j=1

(nj+1−nj)(1−p2)vj ≤ (n2−n1)(1−p2)v1 +

∞∑
j=2

(1−p2)vj +

∞∑
j=2

c′ log vj
(1− p1)vj

(1−p2)vj <∞.

This contradiction implies Lemma 5.6.
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