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Abstract

We establish the mean-field bounds γ ≥ 1, δ ≥ 2 and 4 ≥ 2 on the critical exponents
of the Poisson-Boolean continuum percolation model under a moment condition on
the radii; these were previously known only in the special case of fixed radii (in the
case of γ), or not at all (in the case of δ and 4). We deduce these as consequences of
the mean-field bound β ≤ 1, recently established under the same moment condition
[8], using a relative entropy method introduced by the authors in previous work [7].
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1 Introduction

The behaviour of critical statistical physics models is believed to be described by
a set of critical exponents which govern the scaling of macroscopic observables at, or
near, criticality (see, e.g., [13, Chapter 9] for an introduction to critical exponents for
Bernoulli percolation). In general these exponents depend on the dimension of the
ambient space, but they are expected to assume a mean-field value if the dimension
exceeds the upper-critical dimension, conjectured to be dc = 6 for percolation. For many
of the critical exponents, but not all, the low-dimension values are bounded by their
mean-field value; these are known as mean-field bounds.

In this paper we consider mean-field bounds for the Poisson-Boolean model, a contin-
uum percolation model introduced in [11, 14] that is defined as the union of Euclidean
balls centred at the points of a Poisson point process on Rd with intensity λ > 0, whose
radii are independently drawn from a radius distribution µ supported on R+. Equiva-
lently, we can define Poisson-Boolean percolation as

O =
⋃

(x,r)∈η

{x+Br}, (1.1)
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Mean-field bounds for Poisson-Boolean percolation

where η is a Poisson point process on Rd×R+ with intensity λdx⊗dµ, dx is the Lebesgue
measure on Rd, and Br ⊂ Rd denotes the Euclidean ball of radius r centred at 0. We
think of the radius distribution µ as being fixed and the intensity λ as variable, and write
Pλ for the law of O with intensity λ, with corresponding expectation Eλ. We refer to
[27, 24] for background on this model, and see [1, 8] for a selection of recent results.

We say two sets X,Y ⊂ Rd are connected if there exists a path in O between X and
Y , and we denote this event by {X ←→ Y } (with the standard abuse of notation if X or
Y are singletons). The infinite cluster density of the model is defined as

θ(λ) = Pλ[0←→∞] = lim
R→∞

Pλ[0←→ ∂BR],

and the critical parameter of the model is

λc = λc(µ) = inf{λ ≥ 0 : θ(λ) > 0} ∈ [0,∞].

Although a priori one could have λc ∈ {0,∞}, it is known that the integrability condition∫
rddµ(r) <∞ (1.2)

is both necessary and sufficient for λc ∈ (0,∞) [14, 12]. We assume (1.2) for the
remainder of the paper; this is without loss of generality, since if (1.2) is violated then
O = Rd almost surely so the model is trivial.

1.1 Critical exponents

As mentioned above we are interested in the critical exponents of the model which
we now define. We denote by C the connected component (or ‘cluster’) of O that contains
the origin (setting C = ∅ if 0 /∈ O), with Vol(C) its volume. It is believed that both the
density θ(λ), λ > λc, and the susceptibility χ(λ) = Eλ[Vol(C)], λ < λc, have power law
behaviour as, respectively, λ ↓ λc and λ ↑ λc, and also that the cluster volume Vol(C) has
a power law tail at λ = λc. Hence it is natural to define critical exponents β, γ and δ via

θ(λ) = (λ− λc)β+o(1), λ ↓ λc,

χ(λ) = (λc − λ)−γ+o(1), λ ↑ λc,

and
Pλc [Vol(C) > y] = y−1/δ+o(1), y →∞,

whenever these exponents exist. It is further expected that, for each k ∈ N,

Eλ[Vol(C)k] = (λc − λ)−γ−4(k−1)+o(1), λ ↑ λc,

and we define the ‘gap exponent’ 4 whenever it exists.
By analogy with Bernoulli percolation, it is natural to expect that these critical

exponents exist and satisfy the mean-field bounds

β ≤ 1 , γ ≥ 1 , δ ≥ 2 and 4 ≥ 2, (1.3)

and that these bounds are saturated above the upper-critical dimension d ≥ dc = 6.
In the case of Bernoulli percolation the bounds (1.3) are classical [5, 3, 2, 9], and the
fact that they are saturated in sufficiently high dimension has also been established
[3, 15, 10].

For Poisson-Boolean percolation much less is known about the critical exponents. It
was recently shown [8] that under the stronger moment condition∫

r5d−3dµ(r) <∞, (1.4)
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Mean-field bounds for Poisson-Boolean percolation

the mean-field density lower bound

θ(λ) ≥ c(λ− λc) (1.5)

holds for some c = c(µ) > 0 and all λ > λc sufficiently close to λc. This implies β ≤ 1

if this exponent exists, and extends previous results that established (1.5) in the case
of bounded radii [21, 28]. The mean-field bounds on γ, δ and 4 have not yet been
established at this level of generality. Indeed to our knowledge only the inequality γ ≥ 1

is known, and only for fixed radius [16] (note however that [16] used a slightly different
definition of γ; see the discussion in Section 1.3 below). In the fixed radius case it is
further known that γ = 1 in sufficiently high dimension [16].

1.2 Main results

Our main result establishes the mean-field bounds (1.3) under the assumption (1.4):

Theorem 1.1 (Mean-field bounds). Assume (1.4) and suppose that the exponents γ, δ
and 4 exist. Then

γ ≥ 1 , δ ≥ 2 and 4 ≥ 2.

The mean-field bounds stated above are conditional in the sense that they assume the
existence of the critical exponents γ, δ and 4. We next present unconditional versions
of these bounds, which also demonstrate that Theorem 1.1 is a consequence of the
mean-field bound (1.5) in full generality. In the following results we do not assume (1.4)
(this condition is relevant to us only as a sufficient condition to ensure (1.5)).

Theorem 1.2 (Bounds on the susceptibility). For every λ0 ∈ (0, λc) there exists c =

c(µ, λ0) such that, for all λ ∈ (λ0, λc),

χ(λ) ≥ c(λc − λ)−2θ(2λc − λ) (1.6)

and
χ(λ) ≥ c(λc − λ)−2Pλc [Vol(C) ≥ (λc − λ)−2]. (1.7)

Theorem 1.3 (Bounds on the critical cluster volume). Suppose there exist c0, β0 > 0 and
λ1 > λc such that

θ(λ) ≥ c0(λ− λc)β0 , for all λ ∈ (λc, λ1).

Then there exists a c = c(µ, c0, β0, λ1) such that, for all y ≥ 1,

Pλc [Vol(C) ≥ y]2/β0−1

∫ y

0

Pλc [Vol(C) ≥ u]du ≥ c. (1.8)

Moreover for every λ0 ∈ (0, λc) there exists a c = c(µ, λ0) such that, for all λ ∈ (λ0, λc)

and y ≥ 1,

log
Pλ[Vol(C) ≥ y]

Pλc [Vol(C) ≥ y]
≥ −1− c(λc − λ)2(Pλc [Vol(C) ≥ y])−1

∫ y

0

Pλc [Vol(C) ≥ u]du. (1.9)

To state the final set of unconditional bounds we introduce the (critical) magnetisation

M(ρ) = Eλc
[
1− e−ρVol(C)], ρ > 0,

following the pioneering approach to Bernoulli percolation in [2]. One can define an
associated critical exponent δM via

M(ρ) = ρ1/δM+o(1), ρ ↓ 0,

if such an exponent exists, and by general properties of the Laplace transform one can
verify that δ = δM if both exponents exist.
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Theorem 1.4 (Bounds on the magnetisation). For every λ0 < λc there exists a c = c(µ, λ0)

such that, for all λ ∈ (λ0, λc),

χ(λ) ≥ c(λc − λ)−2M((λc − λ)2). (1.10)

Suppose in addition there exist c0, β0 > 0 and λ1 > λc such that

θ(λ) ≥ c0(λ− λc)β0 , for all λ ∈ (λc, λ1).

Then there exists a c = c(µ, c0, β0, λ1) such that, for all ρ ∈ (0, 1],

M(ρ) ≥ cρβ0/2. (1.11)

Remark 1.5. If we assume the existence of the exponents β, γ and δ, the results in
Theorems 1.2–1.4 imply the inequalities

γ ≥ 2− β , γ ≥ 2− 2/δ and δ ≥ 2/β, (1.12)

which can be deduced, respectively, from (1.6), (1.7) (or alternatively (1.9) or (1.10))
and (1.8) (or alternatively (1.11)); these inequalities are saturated if the exponents take
their mean-field values β = γ = 1 and δ = 2. While the inequalities (1.12) are classical
in the context of Bernoulli percolation [25, 26, 2], to our knowledge they were not
yet known for any dependent percolation model in general dimension d ≥ 2. Even for
Bernoulli percolation, our method to obtain these inequalities is novel and quite different
from classical methods, since it does not rely on the analysis of differential inequalities.

Interestingly, to our knowledge the bound (1.9) is new even in the context of Bernoulli
percolation. Under the assumption that the exponent δ exists, this bound takes the form
(see (1.15) for a precise statement)

Pλ[Vol(C) ≥ y] & y−1/δ exp(−c(λc − λ)2y),

and under the standard percolation near-critical scaling hypothesis (see [13, Chapter
9]) it is natural to expect that this bound is sharp, up to constants in the exponent, for
d > dc = 6 (this has recently been proven in sufficiently high dimension [17], and see also
[4, 19] for related ‘near-critical scaling’ results for Bernoulli percolation in sufficiently
high dimension).

To finish the section we verify that Theorem 1.1 is a consequence of the above bounds:

Proof of Theorem 1.1 assuming Theorems 1.2–1.4. Since we assume (1.4), the bound on
the density (1.5) is available. Hence (1.6) implies that χ(λ) ≥ c(λc − λ)−1 for some c > 0

and λ sufficiently close to λc, from which γ ≥ 1 follows.
To prove δ ≥ 2 we observe that if δ exists then, for every ε > 0 and y ≥ y0 = y0(ε) ≥ 1,

y−1/δ−ε ≤ Pλc [Vol(C) ≥ y] ≤ y−1/δ+ε. (1.13)

Hence (1.8) implies that (taking β0 = 1 since (1.5) is available), for y ≥ y0,

c ≤ Pλc [Vol(C) ≥ y]

∫ y

0

Pλc [Vol(C) ≥ u] ≤ y−1/δ+ε
(∫ y

y0

u−1/δ+εdu+ y0

)
. (1.14)

If δ < 1 then taking ε < 1/δ − 1 the right-hand side of (1.14) tends to zero as y → ∞,
which is a contradiction. On the other hand if δ ≥ 1 then the right-hand side of (1.14) is
at most, for sufficiently large y,

y−1/δ+ε
(

(1− 1/δ + ε)−1y1−1/δ+ε + y0

)
≤ (1− 1/δ + ε/2)−1y1−2/δ+2ε.
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Sending y →∞ we deduce that 1− 2/δ + 2ε ≥ 0, and sending ε→ 0 yields that δ ≥ 2.
To establish 4 ≥ 2 we assume that δ ≥ 2 exists and use the bounds (1.13) to deduce

from (1.9) that, for every ε > 0, λ0 < λc, λ ∈ (λ0, λc), and y ≥ y0 for some y0 = y0(ε) ≥ 1,

Pλ[Vol(C) ≥ y] ≥ c1y−1/δ−ε exp
(
− c2(λc − λ)2y1/δ+εy1−1/δ+ε

)
= c1y

−1/δ−ε exp
(
− c2(λc − λ)2y1+2ε

)
, (1.15)

for constants c1, c2 > 0 depending only on µ and λ0. Then for every k ∈ N, λ ∈ (λ0, λc),
and ε > 0,

Eλ[Vol(C)k] = k

∫ ∞
0

yk−1Pλ[Vol(C) ≥ y]dy ≥ kc1
∫ ∞
y0

y(k−1)−1/δ−εe−c2(λc−λ)2y1+2ε

dy.

Changing variables to y′ = (λc − λ)2y1+2ε, we deduce that

Eλ[Vol(C)k] ≥ kc1(λc − λ)−2/(1+2ε)×(1−1/δ+(k−1)−ε)

×
∫ ∞
λ2
cy

1+2ε
0

(y′)1/(1+2ε)×(k−1/δ−ε)−1e−c2y
′
dy′

= c3(λc − λ)−2/(1+2ε)×(1−1/δ+(k−1)−ε) (1.16)

for all ε > 0, some c3 = c3(µ, λ0, δ, ε, k), and all λ ∈ (λ0, λc). On the other hand, since we
assume that the exponents γ and 4 also exist, for each k ∈ N,

Eλ[Vol(C)k] = (λc − λ)−γ−4(k−1)+o(1), λ ↑ λc. (1.17)

Sending λ ↑ λc in (1.16), comparing with (1.17), and then sending ε→ 0, shows that

γ +4(k − 1) ≥ 2− 2/δ + 2(k − 1),

which gives a contradiction for sufficiently large k unless 4 ≥ 2.

1.3 Other possible definitions of the exponents

In certain applications it may be more natural to consider other definitions of the
critical exponents γ, δ and 4. Our proof can be adapted in some cases but not all.

1.3.1 Interpreting ‘volume’ as the number of balls that comprise the cluster

If the Poisson-Boolean model is considered as a random graph on the projection of η
onto Rd with connections induced by intersecting balls, it could be more natural to
define the exponents relative to the number of balls that comprise the cluster of the
origin, #C = |(x, r) ∈ η : x ∈ C|, rather than the Euclidean volume Vol(C); this is how
the exponent γ is defined in the work [16] mentioned above. In the case that the radius
distribution µ is bounded it is straightforward to adapt our proof to show that the mean-
field bounds hold for the exponents γ, δ and 4 defined in this way – essentially this is
due to the universal volume comparison #C ≥ cVol(C) for some c = c(µ) > 0. However
this comparison is no longer valid if µ is unbounded, and we do not know whether the
mean-field bounds hold in full generality in that case.

1.3.2 Percolation of the vacant set

One could also consider the dual percolation problem associated with the vacancy set V
(the closure of the complement of O) and define the associated critical exponents γ, δ
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and 4 relative to the volume of the component of V that contains the origin. Once again,
in the case that µ is bounded we believe that our proof can be adapted to establish the
mean-field bounds on γ, δ and4, but in general there are additional complications (again
the issue lies in establishing the relevant ‘volume comparison’, analogous to Section 3.1).
We leave the general case as an open problem.

1.4 About the proof

The proof of Theorems 1.2–1.4 makes use of a ‘relative entropy method’ that can
be summarised as follows. Combining exploration arguments with properties of the
relative entropy, one can efficiently bound from above the relative entropy, for different
λ, between the laws of certain well-chosen observables of O (such as Vol(C)). By applying
this to λ ranging between slightly subcritical to slightly subcritical, and combining with
general entropic bounds (e.g. Pinsker’s inequality), one can deduce information on
critical exponents.

This strategy was introduced by the authors in a previous work [7], where it was used
to give bounds on the one-arm exponent for Bernoulli percolation and other Gaussian de-
pendent percolation models. It was subsequently exploited in [18] where it used to show,
in the context of Bernoulli percolation, that mean-field behaviour of the susceptibility
implies mean-field behaviour of the infinite cluster density and critical cluster volume.

In this paper we show how to adapt this method to the Poisson-Boolean model, where
certain extra technical difficulties arise. As well as the applications in the current
paper, we expect that similar applications to those developed in [7, 18] could also
be implemented for the Poisson-Boolean model using this approach. We expect this
method can also be adapted to other models in the Bernoulli universality class, such as
Poisson-Voronoi percolation.

2 The entropic bounds

In this section we establish the main entropic bounds (see Proposition 2.1) that will
underpin the proof of Theorems 1.2–1.4. These are similar to bounds proven in [7] in the
setting of Bernoulli and Gaussian percolation.

Recall that the Poisson-Boolean model O can be defined via (1.1) as a function of
the Poisson point process η on Rd × R+ with intensity λdx ⊗ dµ. We now introduce
the concept of a randomised algorithm for the point process η. Let C = (Ci)i∈Zd×Z+

denote the set of hypercubes Ci = i + [0, 1]d × [0, 1] which partition Rd × R+ up to
boundaries. A (randomised) algorithm A is an adapted procedure which sequentially
reveals η|Cij for a random sequence of hypercubes (Cij )j∈N, terminates at a (possibly
infinite) stopping time τ ∈ N ∪ {∞}, and upon termination returns a value in {0, 1}. We
denote byWA = ∪1≤j≤τCij the union of the hypercubes revealed by A.

For an event A measurable with respect to η, an algorithm is said to locally determine
A if, for every λ > 0, the following hold almost surely:

• For every n ∈ N there exists a (deterministic) finite subset Dn ⊂ Zd ×Z+, indepen-
dent of λ > 0, such that ∪1≤j≤nCij ⊂ Dn;

• If the algorithm terminates in finite time, it returns the value 1A;

• On the event A, the algorithm terminates in finite time.

In words, this means that the algorithm has only a bounded number of choices at each
step, and if the event A occurs the algorithm must verify this in finite time. Note that
this allows the algorithm to never terminate if A does not occur, which is convenient in
our setting since to determine O on any set requires determining η on an infinite number
of hypercubes.

EJP 28 (2023), paper 33.
Page 6/24

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP923
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Mean-field bounds for Poisson-Boolean percolation

For a Borel subset S ⊂ Rd × R+, we write Ṽol(S) to denote its ‘Poisson-Boolean
volume’

Ṽol(S) =

∫
S

dx⊗ dµ.

Note that Ṽol(WA) may be finite even if A does not terminate.

Proposition 2.1 (Entropic bounds). Let A be an event and let A be an algorithm that
locally determines A. Then for all λ1, λ2 > 0,

|Pλ1 [A]− Pλ2 [A]| ≤ |λ2 − λ1|√
λ2

√
2 max(Pλ1 [A],Pλ2 [A])Eλ1 [Ṽol(WA)],

and if Pλ1
[A] and Pλ2

[A] are both non-zero then

logPλ1 [A]− logPλ2 [A] ≤ λ−1
2 (λ2 − λ1)2Eλ1

[Ṽol(WA)]

Pλ1 [A]
+ 1.

Remark 2.2. Our definition of an algorithm that ‘locally determines’ an event is analo-
gous to the notion of Borel computation introduced in [18, Section 3] in the context of
Bernoulli percolation.

Remark 2.3. The bounds in Proposition 2.1 are in terms of the Poisson-Boolean volume
Ṽol(WA) of the revealed set, rather than volume in the ambient space Rd. In Section 3
we show that, for the events we consider, we can convert between these two volumes up
to multiplicative constants outside an event of negligible probability.

Related to this, instead of exploring η restricted to unit hypercubes, one might try
to work with ε-scale hypercubes and take the limit ε → 0 so as to explore η ‘in the
continuum’. While Proposition 2.1 itself does not depend on ε, a difficulty arises when
translating the bound in terms of volume in the ambient space, where the conversion
degenerates with ε.

To analyse the magnetisation M(ρ) we need to extend these bounds slightly. For
ρ > 0, let G denote a Poisson point process on Rd with intensity ρ, independent of O, with
Pλ,ρ and Eλ,ρ denoting the joint law of (O,G) and corresponding expectation; we refer
to G as the ghost field. The relevance of G to the magnetisation is that, by conditioning
on O and using the independence of G and O,

Pλc,ρ[0←→ G] = Eλc
[
Pλc,ρ[|C ∩ G| ≥ 1 | O]

]
= Eλc

[
1− e−ρVol(C)] =: M(ρ). (2.1)

In the presence of G, a (randomised) algorithm A is an adapted procedure which
first reveals G and then sequentially reveals η for a random sequence of hypercubes
(Cij )1≤j≤τ , withWA defined as before. We extend the definition of the algorithm ‘locally
determining’ an event in the natural way.

Proposition 2.4 (Entropic bounds with the ghost field). Let A be an event that depends
on (G, η) and let A be an algorithm that locally determines A. Then for all λ1, λ2 > 0 and
ρ > 0, the conclusion of Proposition 2.1 holds with Pλi and Eλi replaced by Pλi,ρ and
Eλi,ρ respectively.

The remainder of the section is devoted to proving Propositions 2.1 and 2.4. For this
we first recall some basic properties of the relative entropy, and then present a ‘stopping
time lemma’ that is the main ingredient in the proof.

2.1 Basic properties of the relative entropy

Let P and Q be probability measures defined on a common measurable space. The
relative entropy (or Kullback-Leibler divergence) from P to Q is defined as

DKL(P ||Q) :=

∫
log
(dP
dQ

)
dP
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if P is absolutely continuous with respect to Q, and DKL(P ||Q) := ∞ otherwise;
DKL(P ||Q) is non-negative by Jensen’s inequality. If X and Y are random variables
taking values in a common measurable space, with respective laws P and Q, we also
write DKL(X||Y ) for DKL(P ||Q). We recall two basic properties of the relative entropy
(see e.g [20, Theorem 2.2 and Corollary 3.2] and [6, Theorem D.13]):

1. (Chain rule) Let X = (X1, X2) and Y = (Y1, Y2) be random variables on a common
product of Borel spaces. Then

DKL(X||Y ) = DKL(X1||Y1) + Ex∼X1

[
DKL((X2|X1 = x)||(Y2|Y1 = x))

]
. (2.2)

If particular if X2 and Y2 are identically distributed and independent of X1 and Y1

respectively, then
DKL(X||Y ) = DKL(X1||Y1). (2.3)

2. (Contraction) Let X and Y be random variables taking values in a common measur-
able space and let F be a measurable map from that space. Then

DKL(F (X)||F (Y )) ≤ DKL(X||Y ). (2.4)

We shall also make use of the following general bounds involving the relative entropy:

Lemma 2.5. Let P and Q be probability measures on a common measurable space and
let A be an event. Then

|P (A)−Q(A)| ≤
√

2 max{P (A), Q(A)}DKL(P‖Q),

and if P [A] and Q[A] are both non-zero then

logP [A]− logQ[A] ≤ DKL(P ||Q)

P [A]
+ 1.

Proof. The first statement is a variant of Pinsker’s inequality, and is proven in [7, Lemma
2.12]. For the second statement, by Jensen’s inequality

−DKL(P‖Q) =

∫
log

dQ

dP
dP =

∫
A

log
dQ

dP
dP +

∫
Ac

log
dQ

dP
dP

≤ P [A]
(

log
Q[A]

P [A]
+
P [Ac]

P [A]
log

Q[Ac]

P [Ac]

)
≤ P [A]

(
log

Q[A]

P [A]
+ 1
)
,

where the last inequality is since Q[Ac] ≤ 1 and supx∈[0,1]
1−x
x log 1

1−x = 1, which is easily
verified. Rearranging gives the result.

Finally we need a bound for the relative entropy between Poisson point processes
with proportionate intensities:

Lemma 2.6. Let (D,A, µ) be a finite Borel space, and let X and Y be Poisson point
processes on D with respective intensities λXdµ and λY dµ with λX , λY > 0. Then

DKL(X||Y ) ≤ µ(D)
(λY − λX)2

λY
.

Proof. Let U and V be Poisson random variables with respective parameter λXµ(D)

and λY µ(D), and let S = (Si)i≥1 be an i.i.d. sequence of random variables in D with

distribution proportional to µ. Then X
d
=
∑
i≤U δSi and Y

d
=
∑
i≤V δSi , where δ is a
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unit Dirac mass, so that X (resp. Y ) is a measurable function of (U, S) (resp. (V, S)).
Further, U (resp. V ) and S are both defined on Borel spaces. Hence by the contraction
property (2.4) and the chain rule (2.3),

DKL(X||Y ) ≤ DKL

(
(U, S)||(V, S)

)
= DKL

(
Pois(λXµ(D))||Pois(λY µ(D))

)
.

A simple computation shows that

DKL

(
Pois(λ1)||Pois(λ2)

)
= λ2 − λ1 + λ1 log(λ1/λ2)

for any λ1, λ2 > 0. Hence using the bound log x ≤ x− 1, valid for all x > 0, we have

DKL(X||Y ) ≤ µ(D)
(
λY − λX + λX

(λX − λY
λY

))
= µ(D)

(λY − λX)2

λY
.

2.2 The stopping time lemma

The proof of Proposition 2.1 relies on an exact formula for the relative entropy
between stopped sequences of independent random variables; this is a generalisation of
[7, Lemma 2.11] which considered the i.i.d. case.

Fix n ≥ 1 and a collection (Ei)1≤i≤n of Borel spaces, and consider the product space
E = E1 × · · · × En. A decision tree σ with stopping time τ is a measurable mapping
x ∈ E 7→ (σi(x))1≤i≤n, τ) ∈ {1, . . . , n}n × {1, . . . , n} such that (i) σk(x) and {τ(x) ≥ k}
are determined by (xσi(x))i≤k−1, and (ii) σi(x) 6= σj(x) for all j < i. We define the
corresponding stopped sequence xτ as xτi = xσi(x) for i ≤ τ , and xτi = † for i > τ , where
† is an arbitrary symbol.

Lemma 2.7. Let X = (Xi)1≤i≤n and Y = (Yi)1≤i≤n be sequences of independent random
variables such that Xi and Yi take values in Ei with respective laws νX,i and νY,i which
are mutually absolutely continuous. Let σ be a decision tree with stopping time τ , and
let Xτ and Y τ be the corresponding stopped sequences. Then

DKL

(
Xτ
∥∥Y τ) = E

[ ∑
k≤τ(X)

d(σk(X))
]
,

where d(i) = DKL(νX,i‖νY,i).

Proof. Define Xk∧τ = (Xτ
i )i≤k and analogously for Y . By the chain rule (2.2), for each

k ≥ 1,

DKL

(
X(k+1)∧τ∥∥Y (k+1)∧τ)

= DKL

(
Xk∧τ∥∥Y k∧τ)+ Ex∼(Xτi )i≤k

[
DKL

(
Xτ
k+1

∣∣(Xτ
i )i≤k=x

∥∥Y τk+1

∣∣(Y τi )i≤k=x
)]

= DKL

(
Xk∧τ∥∥Y k∧τ)

+ Ex∼(Xτi )i≤k

[
1τ(X)≥k+1DKL

(
Xτ
k+1

∣∣(Xτ
i )i≤k=x

∥∥Y τk+1

∣∣(Y τi )i≤k=x
)]
.

Since σk+1(x) 6= σj(x) for all j ≤ k, Xσk+1(X) depends on (Xτ
i )i≤k only through σk+1(X).

Hence

DKL

(
Xτ
k+1

∣∣(Xτ
i )i≤k=x

∥∥Y τk+1

∣∣(Y τi )i≤k=x
)

= d(σk+1(x)),

and so by induction,

DKL

(
Xτ
∥∥Y τ) =

∑
1≤k≤n

E
[
1τ(X)≥kd(σk(X))

]
= E

[ ∑
k≤τ(X)

d(σk(X))
]
.
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2.3 Proof of Propositions 2.1 and 2.4

First we prove Proposition 2.1. It is convenient to work with a truncation of the
algorithm A and the event A. Precisely, for n ∈ N, we define An to be the algorithm
that explores the same hypercubes as A except terminates at τn = min{τ, n} and returns
value 0 if τ > n, and define also the event An = A ∩ {τ ≤ n}. Since A locally determines
A, the truncated algorithm and event satisfies the following properties for every λ > 0:

• For every n ∈ N, An explores a subset of a deterministic finite set Dn ⊂ Zd × Z+

of hypercubes and terminates in bounded time τn ≤ n with value 1An ;
• Pλ[An]→ Pλ[A] as n→∞; and
• For every n ∈ N, Eλ[Ṽol(WAn)] ≤ Eλ[Ṽol(WA)].

Now let X = (Xi)i∈Dn and Y = (Y )i∈Dn be sequences of independent point processes
such that Xi and Yi are distributed as η|Ci under Pλ1

and Pλ2
respectively. Since

Xi
d
=
∑
j≤Ni δSij , where Ni

d
= Pois(η(Ci)) and (Sij)j is an i.i.d. sequence of random

variables on Ci with distribution proportional to η|Ci , we can view Xi as a random
variable taking values in a Borel space. In particular, the results in Section 2.1 apply to
X and Y .

The algorithm An defines a decision tree σ and stopping time τ for the sequences X
and Y , and since An determines the value of 1An , by the contraction property (2.4) the
relative entropy between the law of 1An under Pλ1 and Pλ2 is at most DKL

(
Xτ
∥∥Y τ). By

Lemma 2.6 we have, for any i ∈ Dn,

d(i) = DKL(Xi||Yi) ≤
(λ2 − λ1)2

λ2
Ṽol(Ci). (2.5)

Applying Lemma 2.7 and (2.5) we have

DKL

(
Xτ
∥∥Y τ) = Eλ1

[ ∑
k≤τ(X)

d(σk(X))
]
≤ Eλ1

[ ∑
k≤τ(X)

(λ2 − λ1)2

λ2
Ṽol(Cσk(X))

]

=
(λ2 − λ1)2

λ2
Eλ1

[
Ṽol
(
∪k≤τ(X) Cσk(X)

)]
=

(λ2 − λ1)2

λ2
Eλ1 [Ṽol(WAn)].

(2.6)

Combining with Lemma 2.5 yields the bounds

|Pλ1 [An]− Pλ2 [An]| ≤ |λ2 − λ1|√
λ2

√
2 max(Pλ1 [An],Pλ2 [An])Eλ1 [Ṽol(WAn)]

and

logPλ1 [An]− logPλ2 [An] ≤ λ−1
2 (λ2 − λ1)2Eλ1 [Ṽol(WAn)]

Pλ1
[An]

+ 1,

and taking n→∞ establishes Proposition 2.1.
For Proposition 2.4 we redefine X = (Xi)i∈Dn∪{0} and Y = (Yi)i∈Dn∪{0} where X0

and Y0 are independent point processes distributed as G under Pλ1,ρ and Pλ2,ρ. Since

d(0) = DKL(X0||Y0) = 0,

the same argument that led to (2.6) gives

DKL

(
Xτ
∥∥Y τ) ≤ Eλ1,ρ

[ ∑
k≤τ(X)

1σk(X)6=0
(λ2 − λ1)2

λ2
Ṽol(Cσk(X))

]

=
(λ2 − λ1)2

λ2
Eλ1,ρ[Ṽol(WAn)].

Combining with Lemma 2.5 and taking n→∞ completes the proof as before
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3 Volume comparison

In this section we establish volume comparison results which allow us to convert
Poisson-Boolean volume, as appears in the entropic bounds from the previous section,
into volume in the ambient space which is relevant for the main results.

3.1 From the percolation volume to the number of intersecting cubes

We first compare the volume of a subset of the Poisson-Boolean percolation O to the
number of unit cubes that it intersects.

Let S = (Si)i∈Zd denote the set of cubes Si = i + [0, 1]d which partition Rd up to
boundaries (we call these ‘cubes’ to distinguish them from the ‘hypercubes’ Ci ⊂ Rd×R+

that were introduced in Section 2). For a subset D ⊂ Rd, possibly random, denote by SD
the collection of cubes that intersect D.

We introduce the collection O = {
⋃

(x,r)∈η′{x+Br} : η′ ⊂ η} of all possible subsets of
balls which comprise the Poisson-Boolean percolation O. In particular C ∈ O.

Proposition 3.1. For every λ1 > 0 there exists δ > 0 and a sequence of events (Gn)n∈N
such that, for every λ ≤ λ1 and n ∈ N,

Pλ[Gn] ≥ 1− e−δn,

and moreover on the event Gn, for every connected O′ ∈ O with |SO′ | ≥ n,

δ|SO′ | ≤ Vol(O′) ≤ |SO′ |. (3.1)

The non-trivial content of Proposition 3.1 is the lower bound; roughly speaking the
intuition is that since O′ is connected it is unlikely to contain too many balls of very small
radius, which means that O′ must have volume comparable to the number of cubes |SO′ |
that it intersects. Note that if the radius distribution µ were bounded away from zero
then (3.1) would hold even without the event Gn, but we do not wish to assume this.

Before proceeding we deduce two corollaries which will be used in the next sec-
tion. The first states that the density θ(λ) could equivalently be defined as θ(λ) =

Pλ[Vol(C) =∞], and the second shows that the probabilities of the cluster exceedence
and magnetisation events {Vol(C) ≥ y} and {0←→ G} are continuous functions of λ.

Corollary 3.2. For every λ > 0, almost surely

{0←→∞} = {|SC | =∞} = {Vol(C) =∞}.

Moreover, for every y, ρ > 0 the maps

λ 7→ Pλ[Vol(C) ≥ y] and λ 7→ Pλ,ρ[0←→ G]

are continuous functions of R+.

Proof. For subsets X,Y, Z ⊂ Rd define the connectivity relation

{X Z←→ Y } = {there exists a path in Z between X and Y }.

For R > 0 define

OR =
⋃

(x,r)∈η such that
{x+Br}∩BR 6=∅

{x+Br} and CR = {x ∈ Rd : 0
OR←→ x},

which are, respectively, the union of all balls in the Poisson-Boolean percolation which
intersect BR and the cluster of the origin in this set. For later use we note that, due to
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the integrability (1.2), OR is generated by a Poisson point process of finite total intensity,
and hence λ 7→ Pλ[A] is continuous for any event A measurable with respect to OR.

Let λ1 > 0 be given, and let δ > 0 and (Gn)n∈N be defined as in the statement of

Proposition 3.1. Notice that the event {0 CR←→ ∂BR} implies that |SCR | ≥ dR/2e. Applying
Proposition 3.1 to CR ∈ O we deduce that, for all λ ≤ λ1 and R > 0,

Pλ[{0 CR←→ ∂BR} \ {Vol(CR) ≥ δR/2}] ≤ 1− Pλ[GdR/2e] ≤ e−δR/2. (3.2)

We will show that all statements in Corollary 3.2 follow from (3.2).
For the first statement, by (3.2) and the Borel-Cantelli lemma there almost surely

exists an R0 > 0 such that, for all natural numbers R ≥ R0,

{0 CR←→ ∂BR} ⊂ {Vol(CR) ≥ δR/2}.

Hence almost surely

{0←→∞} = ∩R≥R0
{0 CR←→ ∂BR} ⊂ ∩R≥R0

{Vol(CR) ≥ δR/2} = {Vol(C) =∞},

which completes the proof since trivially {Vol(C) =∞} ⊂ {|SC | =∞} = {0←→∞}.
For the second statement, we proceed by local approximation of the events {Vol(C) ≥

y} and {0 ←→ G}. Let y, ρ > 0 be given. We claim that, by (3.2), there exists a
c = c(λ1, y, ρ) > 0 such that, for every λ ≤ λ1 and R ≥ 1,

Pλ[{0 CR←→ ∂BR} \ {V ol(CR) ≥ y}] ≤ e−cR (3.3)

and
Pλ,ρ[{0

CR←→ ∂BR} \ {0
CR←→ G}] ≤ e−cR. (3.4)

Indeed (3.3) follows directly from (3.2) by taking R sufficiently large such that δR/2 ≥ y
and adjusting constants. For (3.4), we have by (3.2)

Pλ,ρ[{0
CR←→ ∂BR} \ {0

CR←→ G}] ≤ Pλ,ρ[{Vol(CR) ≥ δR/2} \ {0 CR←→ G}] + e−δR/2.

On the other hand, by conditioning on O and using the independence of the ghost field
G,

Pλ,ρ[{Vol(CR) ≥ δR/2} \ {0 CR←→ G}] = Eλ
[
1Vol(CR)≥δR/2Eλ,ρ[{|CR ∩ G| = 0} |O]

]
≤ Eλ

[
1Vol(CR)≥δR/2e

−ρVol(CR)
]
≤ e−ρδR/2,

which gives the result.
Given (3.3), the continuity of λ 7→ Pλ[Vol(C) ≥ y] follows by noticing that {Vol(CR) ≥

y} ⊂ {Vol(C) ≥ y} and

{Vol(C) ≥ y} \ {Vol(CR) ≥ y} ⊂ {0 CR←→ ∂BR} \ {Vol(CR) ≥ y}.

Together with (3.3) we deduce that, for λ ≤ λ1,

Pλ[Vol(C) ≥ y] ≥ Pλ[Vol(CR) ≥ y] ≥ Pλ[Vol(C) ≥ y]− e−cR,

and since λ 7→ Pλ[Vol(CR) ≥ y] is continuous (recall that the event {Vol(CR) ≥ y} is
measurable with respect to OR), the desired continuity follows from the uniform limit
theorem by taking R→∞.

Similarly, since {0 CR←→ G} ⊂ {0←→ G} and

{0←→ G} \ {0 CR←→ G} ⊂ {0 CR←→ ∂BR} \ {0
CR←→ G},
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Figure 1: An illustration of the geometric fact used in the proof of Lemma 3.3. Every
ball of radius ε < 1/2 that intersects Si (in red) is contained in S+

i , and any ball of larger
radius intersecting Si (in light blue) contains such a ball.

by (3.4) we deduce that

Pλ,ρ[0←→ G] ≥ Pλ,ρ[0
CR←→ G] ≥ Pλ,ρ[0←→ G]− e−cR

and we again deduce the continuity of λ 7→ Pλ,ρ[0←→ G] by taking R→∞.

We move on to the proof of Proposition 3.1. Since the upper bound is trivial, it
remains to prove the lower bound.

A collection of cubes S ⊂ S is connected if its index set in Zd is connected (i.e. con-
nectivity is induced by cubes sharing a (d− 1)-dimensional face rather than intersection);
a connected S is an animal if it contains S0 = [0, 1]d. For a cube Si denote by S+

i its
union with its neighbours.

The events (Gn)n∈N in Proposition 3.1 will be defined by introducing a notion of
‘good’ cube. For ε > 0 and a cube Si ∈ S, define Gε(Si) to be the event that Si does not
intersect any ball in O with radius less than ε, i.e.

Gε(Si) =
{
Si ∩

(
∪(x,r)∈η,r≤ε {x+Br}

)
= ∅
}
.

For ε, δ > 0 and a finite collection S = (Sij )j=1,...,k of cubes, let Gε,δ(S) denote the event
that at least δ|S| of the cubes in S verify Gε(Sij ). Finally, for n ∈ N define the event
Gn,ε,δ that Gε,δ(S) is satisfied for every animal S with n ≤ |S| <∞.

Lemma 3.3. Fix ε ∈ (0, 1/2), δ > 0, and n ∈ N, and let cd > 0 denote the volume of the
unit ball in Rd. On the event Gn,ε,δ, for every connected O′ ∈ O with |SO′ | ≥ n,

Vol(O′) ≥ cd3−dεdδ|SO′ |. (3.5)

If |SO′ | =∞, (3.5) is interpreted as Vol(O′) =∞.

Proof. First consider the case that n ≤ |SO′ | < ∞. We use the simple geometric fact
that if ε ∈ (0, 1/2) then any ball of radius larger than ε that intersects a cube Si has
volume at least cdεd contained in S+

i (see Figure 1). Now since O′ is connected, SO′ is an
animal, so the event Gn,ε,δ implies that there exist at least δ|SO′ | cubes in SO′ which only
intersect balls in O of radius larger than ε. For each such cube Si, using the geometric
fact mentioned above we have

Vol(S+
i ∩ O

′) ≥ cdεd.
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Summing over Si ∈ SO′ , and since each cube of SO′ contributes to the sum at most 3d

times, we have
3dVol(O′) ≥ δ|SO′ |cdεd.

as required. On the other hand, if |SO′ | = ∞ then for any n′ ∈ N we can find a subset
O′′ ⊂ O′ such that O′′ ∈ O and SO′′ is an animal with |SO′′ | ≥ n′. Taking n′ → ∞ and
using the same argument as before we deduce that

Vol(O′) ≥ Vol(O′′) ≥ cd3−dεdδn′ →∞

as required.

We next argue that, for small enough ε, δ > 0, the event Gn,ε,δ occurs with overwhelm-
ing probability:

Lemma 3.4. For every λ1 > 0 there exists a δ0 > 0, such that for any λ ≤ λ1 and n ∈ N,

Pλ[Gn,δ0,δ0 ] ≥ 1− e−δ0n.

The proof will make use of a result of Lee on lattice animals. Abusing notation slightly,
we will call a subset ξ ⊂ Zd an animal if it is connected in Zd and contains the origin.

Proposition 3.5 ([22, Theorem 5]). Let (Yv)v∈Zd be i.i.d non-negative random variables
with P[Y0 = 0] < pc(d), where pc(d) > 0 is the critical parameter of Bernoulli site
percolation on Zd. Then there exist δ0, c > 0 such that, for every n ∈ N,

P
[
there exists an animal ξ ⊂ Zd such that |ξ| ≥ n and

∑
v∈ξ

Yv ≤ δ0n
]
≤ 4e−cn.

Proof of Lemma 3.4. For i ∈ Zd and ε > 0 define the random variable Y εi to be the
indicator of the event that S+

i does not intersect {(x, r) ∈ η : r ≤ ε}. Now for every λ > 0,
i ∈ Zd, and ε > 0, we have

Pλ[Y εi = 0] = P[Pois(3dλµ([0, ε])) ≥ 1] = 1− e−3dλµ([0,ε]),

and so for ε = ε(λ1) > 0 sufficiently small,

Pλ[Y εi = 0] < pc(d) (3.6)

for every λ ≤ λ1 and i ∈ Zd.
We cannot directly apply Proposition 3.5 to the random variables (Y εi )i∈Zd since they

are not independent. Nevertheless, they are finite-range dependent since Y εi and Y εj are
independent unless Si and Sj have a common neighbour, and so by a classical result of
Liggett, Schonmann and Stacey [23, Theorem 0.0], for sufficiently small ε = ε(λ1) > 0

there exists a family (Zi)i∈Zd of i.i.d. Bernoulli random variables which is stochastically
dominated by (Y εi )i∈Zd for every λ ≤ λ1 and also verifies P[Zi = 0] < pc(d) for every
i ∈ Zd.

Applying Proposition 3.5 to (Zi)i∈Zd yields constants δ0, c > 0, depending only on µ
and ε, such that, for every λ ≤ λ1 and n ∈ N,

Pλ

[
there exists an animal S = (Si) with n ≤ |S| <∞ such that

at most δ0n of the cubes in S verify {Zi = 1}
]
≤ 4e−cn.

By stochastic domination, the same is true for Y εi replacing Zi. Since for ε < 1/2 we have

Y εi = 1 =⇒ Gε(Si) holds,
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Figure 2: An illustration of the cone above a compact set D in the case d = 2.

we deduce that

Pλ

[
for every animal S = (Si) with n ≤ |S| <∞ at least δ0n of the cubes verify Gε(Si)

]
≥ 1− 4e−cn.

Since⋂
m≥n

{
for every animal S = (Si) with |S| = m at least δ0m of the cubes verify Gε(Si)

}
is contained in Gn,ε,δ0 , this implies that, for every λ ≤ λ1 and n ∈ N,

Pλ[Gn,ε,δ0 ] ≥ 1− 4
∑
m≥n

e−cm = 1− 4e−cn
1

1− e−c

and we deduce the result by adjusting constants.

Proof of Proposition 3.1. Let λ1 > 0 be given and let δ0 > 0 be the constant appearing in
Lemma 3.4. Then by combining Lemmas 3.3 and 3.4 the result follows for the constant
δ = min{cd3−dδd+1

0 , δ0} and the events Gn = Gn,δ0,δ0 .

3.2 From the number of intersecting cubes to the Poisson-Boolean volume

The next lemma shows that, up to multiplicative constants, we may neglect the extra
dimension of Poisson-Boolean space.

For a point x ∈ Rd, we define the cone above x to be the set defined by

Cone(x) =
⋃
y≥0

(By + x, y) = {(x′, y) ∈ Rd ×R+ : dist(x′, x) ≤ y} ⊆ Rd ×R+,

and for D ⊂ Rd, define Cone(D) =
⋃
x∈D

Cone(x) to be the cone above D (see Figure 2).

Lemma 3.6. There exists a constant cµ > 0 such that, for every finite collection of cubes
S = (Sij )j=1,...,k,

|S| ≤ Ṽol(Cone(∪jSij )) ≤ cµ|S|.
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Figure 3: The two bounds in the proof of Lemma 3.6 in the case d = 2: the Poisson-
Boolean volume of the union of cones is at least (resp. most) that of the shape depicted
on the left (resp. right), S being represented in dark blue.

Proof. Fix a collection S = (Sij )j=1,...,k. For the lower bound,

Ṽol(Cone(∪jSij )) ≥ Ṽol(∪jSij × (0,∞)) = |S|,

where we used that µ is a probability measure. For the upper bound, we write

Ṽol(Cone(∪jSij )) = Ṽol(∪jCone(Sij )) ≤
∑
j

Ṽol(Cone(Sij )) = cµ|S|,

where cµ is the Poisson-Boolean volume of the cone above a single cube. Both arguments
are illustrated in Figure 3.

4 Proof of the main results

In this section we complete the proof of Theorems 1.2–1.4, which will consist of
applying the entropic bounds from Section 2 to well-chosen algorithms.

4.1 The template algorithm

We wish to define algorithms which verify the events (recall that G is the ghost field
introduced in Section 2)

{0←→ ∂BR}, {Vol(C) ≥ y} and {0←→ G}, (4.1)

and it will be convenient to base these on a single template.
Recall that an algorithm is an adapted procedure which sequentially reveals η|Cij for

a random sequence of hypercubes (Cij )j∈N. For such an algorithm, define ηn = ∪j≤nη|Cij
to be the points that are revealed by the algorithm up to step n, and similarly define the
revealed portion of the Poisson-Boolean model and the cluster of the origin in this set

On =
⋃

(x,r)∈ηn

{x+Br} and Cn = {x ∈ Rd : 0
On←→ x}.

Template algorithm T for an event A.

• Initialise n = 0 and the revealed set R = ∅, and define the active set A to be the
collection of hypercubes which intersect Cone(0), the cone above 0.

• Iterate the following:

– Increment n→ n+ 1.
– If A is empty skip to the end of the iteration (and thus enter an infinite loop).
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– Assuming A is non-empty, define Cin to be the hypercube in A whose index
i ∈ Zd ×Z+ has smallest sup-norm, breaking ties arbitrarily.

– Add Cin to the revealed set R and update the active set

A =
{
Ci : Ci ∩ Cone(SCn) 6= ∅

}
\ R.

In words, the active set consists of all unrevealed hypercubes which are in the
cone above the cubes that intersect the cluster of the origin in the revealed
portion of the model.

– If {On ∈ A} holds, terminate and return value 1.

See Figure 4 below for an illustration of T for the event A = {0←→ ∂BR}.
We also define a magnetic version of T in the setting where we have a ghost field G

and the event A may depend on G; in this case, T first reveals G before proceeding as
before, and terminates if {(On,G) ∈ A}.

For the entropic bounds in Section 2 to apply, we need conditions guaranteeing that
T ‘locally determines’ the event A. We say that A is increasing if {O ∈ A} ⊂ {O′ ∈ A}
for any O ⊂ O′. We say that A is a local cluster event if it is almost-surely witnessed by

{x ∈ D : 0
O∩D←→ x} for some (random) compact D ⊂ Rd (or witnessed by ({x ∈ D : 0

O∩D←→
x},G) in the magnetic case); clearly the events in (4.1) are local cluster events.

Lemma 4.1. Suppose A is an increasing local cluster event. Then T locally determines
A.

Proof. We need to verify the three conditions of the definition of ‘locally determine’.
By definition, the hypercube Cin that T reveals at step n is in Cone(SCn) ⊂ Cone({Sj :

‖j‖∞ ≤ n}). Also, since Cin is chosen among the active hypercubes with lowest sup-norm,
and the hypercubes above S0 are all initially active, the (d+ 1)-coordinate of Cin is at
most n. Hence Cin ∈ {Cj : ‖j‖∞ ≤ 2n}, and the first condition holds.

Next observe that, due to the integrability (1.2), the cone Cone(D) above a compact
D ⊂ Rd has finite Poisson-Boolean volume, and so almost surely η|Cone(D) is finite.
Further, define

S ′ = {Ci intersecting Cone({x ∈ D : 0
O∩D←→ x}) : Ci ∩ η 6= ∅},

and let M be the maximal sup-norm of the indices in S ′. By definition, T reveals at most
(2M + 1)d+1 hypercubes before revealing all the hypercubes in S ′ (since if S ′ is not yet
revealed and T is yet to terminate then there is at least one hypercube in S ′ which is

active), and if all the hypercubes in S ′ are revealed, the whole of {x ∈ D : 0
O∩D←→ x} is

known. Hence, for every compact D ⊂ Rd, T eventually reveals the set {x ∈ D : 0
O∩D←→ x}

unless it terminates before doing so. We have assumed that A is a local cluster event,
thus we consider D to be its witness compact set. The previous argument justifies that if
A occurs then it will eventually be witnessed by On, for n smaller or equal to (2M+1)d+1.
At that point T will terminate and return 1. On the other hand, if A does not occur then,
since A is increasing, {On ∈ A} never holds and T does not terminate by definition.
Together these verify the second and third conditions.

4.2 Bounds on the volume of the revealed set

Recall that the entropic bounds in Section 2 are stated in terms of the Poisson-Boolean
volume of the revealed set. The next proposition bounds this in terms of the ambient
volume:
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Proposition 4.2. For every 0 < λ0 < λ1 there exists a c > 0 such that, for every
λ ∈ [λ0, λ1], ρ > 0, and event A, the algorithm T satisfies

Eλ,ρ[Ṽol(WT )] ≤ cEλ[Vol(C)],

where we recall that WT is the union of the hypercubes revealed by T . Moreover, if
y ≥ 1 and A = {Vol(C) ≥ y}, then

Eλ[Ṽol(WT )] ≤ c
∫ y

0

Pλ[Vol(C) ≥ u]du.

Finally, for every 0 < λ0 < λ1 and ρ0 > 0 there exists a c > 0 such that, for every
λ ∈ [λ0, λ1] and ρ ∈ (0, ρ0], if A = {0←→ G}, then

Eλ,ρ[Ṽol(WT )] ≤ cρ−1Eλ
[
1− e−ρVol(C)].

Proof. For the first statement we separate the cases (i) Ṽol(WT ) is infinite with positive
probability, and (ii) Ṽol(WT ) is finite almost surely.

In the first case it suffices to show that {Ṽol(WT ) =∞} ⊂ {Vol(C) =∞}. Recall that
SC ⊂ S denotes the collection of cubes which intersect C, which is necessarily an animal.
Since T always reveals, at step n, a hypercube in Cone(Sn) ⊂ Cone(SC), it follows that
WT ⊂ Cone(SC). Hence by using the upper bound in Lemma 3.6 and then Corollary 3.2,
for every λ, ρ > 0, almost surely

{Ṽol(WT ) =∞} ⊂ {Ṽol(Cone(SC)) =∞} ⊂ {|SC | =∞} = {Vol(C) =∞} (4.2)

as required.
We turn to the second case. Fix the constant δ > 0 and the events (Gn)n≥N guaranteed

to exist by Proposition 3.1 (applied to λ1), and also the constant cµ > 0 defined by
Lemma 3.6. For s > 0 define n = ns = ds/cµe ∈ N. Recalling that WT ⊂ Cone(SC)
and then using the upper bound in Lemma 3.6 and the lower bound in Proposition 3.1
(applied to C ∈ O), for every λ ≤ λ1 and s > 0,

{Ṽol(WT ) ≥ s}∩Gn⊂ {Ṽol(Cone(SC)) ≥ s}∩Gn⊂ {|SC | ≥ s/cµ}∩Gn⊂ {Vol(C) ≥ δs/cµ}.

Hence we have

Pλ,ρ[Ṽol(WT ) ≥ s] ≤ Pλ[Vol(C) ≥ δs/cµ] + e−δs/cµ .

Integrating over s ∈ (0,∞) (recall that we assume Ṽol(WT ) is finite almost surely), we
have

Eλ,ρ[Ṽol(WT )] ≤ (cµ/δ)Eλ[Vol(C)] + cµ/δ.

Since λ 7→ Eλ[Vol(C)] is increasing, and so bounded away from zero over λ ≥ λ0, this
implies the first statement by adjusting constants.

For the second statement, recall that τ denotes the (possibly infinite) stopping time of
T , and define τ̄ = τ − 1τ<∞. The crucial observation is that Vol(Cτ̄ ) < y since otherwise
T would have verified the event A = {Vol(C) ≥ y} prior to step τ̄ and terminated. On
the other hand WT ⊂ Cone(S+

Cτ̄ ), where S+
Cτ̄ =

⋃
Si∈SCτ̄

S+
i is the union of SCτ̄ with its

neighbours. Noticing that |S+
Cτ̄ | ≤ 3d|SCτ̄ |, redefining n = ns = 3−ds/cµ, and using similar

reasoning as before (this time applying Proposition 3.1 to Cτ̄ ), for every λ ≤ λ1 and s > 0,

{Ṽol(WT ) ≥ s} ∩Gn ⊂ {Ṽol(Cone(S+
Cτ̄ )) ≥ s} ∩Gn ⊂ {|S+

Cτ̄ | ≥ s/cµ} ∩Gn
⊂ {|SCτ̄ | ≥ 3−ds/cµ} ∩Gn ⊂ {Vol(Cτ̄ ) ≥ δ3−ds/cµ}.
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Since Vol(Cτ̄ ) < y, the latter event is empty if s ≥ cµ3dy/δ. Hence

Pλ[Ṽol(WT ) ≥ s] ≤

{
Pλ[Vol(Cτ̄ ) ≥ δ3−ds/cµ] + e−δ3

−ds/cµ if s ≤ cµ3dy/δ,

e−δ3
−ds/cµ if s ≥ cµ3dy/δ.

Using that Vol(C) ≥ Vol(Cτ̄ ), and integrating over s ∈ (0,∞), gives

Eλ[Ṽol(WT )] ≤ (cµ3d/δ)

∫ y

0

Pλ[Vol(C) ≥ u]du+ cµ3d/δ,

and since
∫ y

0
Pλ[Vol(C) ≥ u]du is bounded away from zero over λ ≥ λ0 and y ≥ 1, the

result follows by adjusting constants.
For the third statement. Defining τ̄ as before, this time the crucial observation is that

|Cτ̄ ∩ G| = 0 since otherwise the algorithm would have verified the event A = {0←→ G}
prior to step τ̄ and terminated. Hence conditioning on O and using the independence of
G, for any λ, ρ, s > 0,

Pλ,ρ[Vol(Cτ̄ ) ≥ s] = E
[
1Vol(C)≥sPλ,ρ[Vol(Cτ̄ ) ≥ s

∣∣O]
]
≤ e−ρsPλ[Vol(C) ≥ s]

where we used that Vol(C) ≥ Vol(Cτ̄ ) in the first step. To justify the second step, recall
that Pλ,ρ[Vol(Cτ̄ ) ≥ s

∣∣O] is a measurable function of O. And for any fixed configuration
O of O such that C has volume larger than s, Pλ,ρ[Vol(Cτ̄ ) ≥ s

∣∣O = O] is the probability
of there being no point of the ghost field in a deterministic set of volume larger than s,
thus the value of the function is smaller than e−ρs. Arguing as in the proof of the second
statement we deduce that, for every λ ≤ λ1 and ρ, s > 0,

Pλ,ρ[Ṽol(WT ) ≥ s] ≤ Pλ,ρ[Vol(Cτ̄ ) ≥ δ3−ds/cµ] + e−δ3
−ds/cµ

≤ e−ρδ3
−ds/cµPλ[Vol(C) ≥ δ3−ds/cµ] + e−δ3

−ds/cµ .

Integrating over s ∈ (0,∞) we obtain

Eλ,ρ[Ṽol(WT )] ≤ (cµ3d/δ)

∫ ∞
0

e−ρuPλ[Vol(C) ≥ u]du+ cµ3d/δ

= (cµ3d/δ)ρ−1Eλ[1− e−ρVol(C)] + cµ3d/δ,

where in the last step we used that, for every ρ > 0 and non-negative random variable X,∫ ∞
0

e−ρuP[X ≥ u]du = E
[ ∫ ∞

0

e−ρu1X≥udu
]

= E
[ ∫ X

0

e−ρudu
]

= ρ−1E
[
1− e−ρX

]
.

Finally, since ρ−1Eλ[1− e−ρVol(C)] is bounded away from zero over λ ≥ λ0 and ρ ∈ (0, ρ0],
the result follows by adjusting constants.

4.3 Proof of Theorem 1.2

It is enough to prove the result for λ < λc sufficiently close to λc. We begin with (1.6).
Fix λ < λc and consider the algorithm T for the event A = {0←→ ∂BR} (illustrated by
Figure 4). By the first statement of Proposition 2.1 (with λ1 = λ and λ2 = 2λc − λ > λc),

P2λc−λ[0←→ ∂BR]−Pλ[0←→ ∂BR] ≤ (2/λc)
1/2(λc−λ)

√
P2λc−λ[0←→ ∂BR]Eλ[Ṽol(WT )].

The first statement of Proposition 4.2 gives that Eλ[Ṽol(WT )] ≤ c1Eλ[Vol(C)] for a con-
stant c1 > 0, for all R and all λ sufficiently close to λc. Thus we have

P2λc−λ[0←→ ∂BR]−Pλ[0←→ ∂BR] ≤ (2/λc)
1/2(λc−λ)

√
c1P2λc−λ[0←→ ∂BR]Eλ[Vol(C)].
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Figure 4: Some early steps (i.e. the first two points discovered) and the final step of
algorithm T in determining the event {0←→ ∂BR} in the case d = 1. The red and blue
points are points of η corresponding to balls which contribute to the cluster C. Their
projection onto R is represented in matching colour. The dashed lines represent the
boundaries of the successive cones that are active. The algorithm reveals the set of unit
hypercubes intersecting these cones one by one starting with those closest to the origin.

Taking R→∞, this gives

θ(2λc − λ) ≤ (2/λc)
1/2(λc − λ)

√
c1θ(2λc − λ)Eλ[Vol(C)]

and hence
Eλ[Vol(C)] ≥ c−1

1 (λc/2)(λ− λc)−2θ(2λc − λ),

which is (1.6).
On to (1.7). Fix λ < λc, abbreviate y = (λc − λ)−2, and consider the algorithm T for

the event A = {Vol(C) ≥ y}. Similarly to as before, by applying Proposition 2.1 (with
λ1 = λ and λ2 = λc) and then using Proposition 4.2, we deduce that, for a constant c2 > 0

and all λ sufficiently close to λc,

Pλc [Vol(C) ≥ y]− Pλ[Vol(C) ≥ y] ≤ c2(λc − λ)
√
Pλc [Vol(C) ≥ y]χ(λ).

Applying Markov’s inequality to Pλ[Vol(C) ≥ y], this gives

Pλc [Vol(C) ≥ y]− (λc − λ)2χ(λ) ≤ c2(λc − λ)
√
Pλc [Vol(C) ≥ y]χ(λ). (4.3)

There are two cases to consider:

1. If (λc − λ)2χ(λ) ≥ 1
2Pλc [Vol(C) ≥ y], then by rearranging we have

χ(λ) ≥ 1

2
(λc − λ)−2Pλc [Vol(C) ≥ y].

2. If (λc − λ)2χ(λ) ≤ 1
2Pλc [Vol(C) ≥ y], then returning to (4.3),

1

2
Pλc [Vol(C) ≥ y] ≤ c2(λc − λ)

√
Pλc [Vol(C) ≥ y]χ(λ),
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so that

χ(λ) ≥ 1

4c22
(λc − λ)−2Pλc [Vol(C) ≥ y].

Inequality (1.7) is thus established with c = min( 1
2 ,

1
4c22

).

4.4 Proof of Theorem 1.3

We begin with the proof of (1.8). First we recall from Corollary 3.2 that θ(λ) =

Pλ[Vol(C) =∞] for every λ > 0; hence we may assume θ(λc) = 0 because otherwise (1.8)
holds trivially. It also suffices to prove the result for y sufficiently large, by adjusting
constants.

For y > 0 define λ = λ(y) > λc such that

Pλ[Vol(C) ≥ y] = 2Pλc [Vol(C) ≥ y],

which exists by the continuity of λ→ Pλ[Vol(C) ≥ y] (see Corollary 3.2). We claim that
λ(y) → λc as y → ∞. Indeed if lim supy→∞ λ(y) = λ0 > λc, then along a subsequence
yk →∞,

2Pλc [Vol(C) ≥ yk] = Pλ[Vol(C) ≥ yk] ≥ Pλ0
[Vol(C) =∞] = θ(λ0) > 0,

whereas we assume that, as y →∞,

Pλc [Vol(C) ≥ y]→ θ(λc) = 0,

a contradiction. Hence, in particular, there exist y0, c0, β0 > 0 such that θ(λ) ≥ c0(λ−λc)β0

for all y ≥ y0.
Now fix y ≥ y0 and consider the algorithm T for the event A = {Vol(C) ≥ y}. Applying

the first statement of Proposition 2.1 (with λ1 = λc and λ2 = λ) we have

Pλc [Vol(C) ≥ y] = Pλ[Vol(C) ≥ y]− Pλc [Vol(C) ≥ y]

≤ (2/λ)1/2(λ− λc)
√
Pλ[Vol(C) ≥ y]Eλc [Ṽol(WA)]

≤ 2λ−1/2
c (λ− λc)

√
Pλc [Vol(C) ≥ y]Eλc [Ṽol(WA)]

and hence
Pλc [Vol(C) ≥ y] ≤ (4/λc)(λ− λc)2Eλc [Ṽol(WA)].

Combining with

2Pλc [Vol(C) ≥ y] = Pλ[Vol(C) ≥ y] ≥ Pλ[Vol(C) =∞] = θ(λ) ≥ c0(λ− λc)β0 ,

yields
Pλc [Vol(C) ≥ y]2/β0−1Eλc [Ṽol(WA)] ≥ (λc/4)(2/c0)2/β0 .

The result then follows by the second statement of Proposition 4.2.
For (1.9) we fix λ ≤ λc and y ≥ 1 and again consider the algorithm T for the event

A = {Vol(C) ≥ y}. This time applying the second statement of Proposition 2.1 (with
λ1 = λc and λ2 = λ) and combining with the second statement of Proposition 4.2, there
exists a constant c = c(λ0) > 0 such that, for all λ ∈ [λ0, λc],

logPλc [Vol(C) ≥ y]− logPλ[Vol(C) ≥ y] ≤ λ−1(λc − λ)2Eλc [Ṽol(WA)]

Pλc [Vol(C) ≥ y]
+ 1

≤
cλ−1(λc − λ)2

∫ y
0
Pλc [Vol(C) ≥ u]du

Pλc [Vol(C) ≥ y]
+ 1

as required.
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4.5 Proof of Theorem 1.4

We start with the proof of (1.10), which is similar to the proof of (1.7). By adjusting
constants, it is enough to prove the result for λ < λc sufficiently close to λc. Recall
from (2.1) that the magnetisation can be defined as M(ρ) = Pλc,ρ[0←→ G]. Fix λ < λc
and consider the algorithm T for the event A = {0←→ G}. Applying the first statement
of Proposition 2.4 (with λ1 = λ, λ2 = λc, and ρ = (λc − λ)2), and then using the first
statement of Proposition 4.2, gives that

M((λc − λ)2)− Pλ,(λc−λ)2 [0←→ G] ≤
√

2/λc(λc − λ)

√
M((λc − λ)2)Eλ[Ṽol(WA)]

≤ c1(λc − λ)
√
M((λc − λ)2)χ(λ)

for some constant c1 > 0 and λ sufficiently close to λc. By Markov’s inequality and using
the independence of the ghost field G,

Pλ,(λc−λ)2 [0←→ G] = Pλ,(λc−λ)2 [|C ∩ G| ≥ 1] ≤ Eλ,(λc−λ)2 [|C ∩ G|]
= (λc − λ)2Eλ[Vol(C)] = (λc − λ)2χ(λ).

Combining gives

M((λc − λ)2)− (λc − λ)2χ(λ) ≤ c1(λc − λ)
√
M((λc − λ)2)χ(λ)

and applying the same disjunction as in the proof of (1.7) (with M((λc − λ)2) replacing
Pλc [Vol(C) ≥ y]) gives the result.

Next, the proof of (1.11), which is similar to the proof of (1.8). First observe that we
may assume limρ→0M(ρ) = 0, since otherwise the result is trivial. Also, by adjusting
constants, it is enough to prove the result for sufficiently small ρ. Define λ(ρ) > λc such
that

Pλ(ρ),ρ[0←→ G] = 2Pλc,ρ[0←→ G]

which exists by the continuity of λ → Pλ,ρ[0 ←→ G] (see Corollary 3.2). We claim that
λ(ρ) → λc as ρ → 0. Indeed if lim supρ→0 λ(ρ) = λ0 > λc then along a subsequence
ρk → 0

2M(ρk) ≥ 2Pλc,ρk [0←→ G] = Pλ(ρk),ρk [0←→ G]. (4.4)

Recall from Corollary 3.2 that θ(λ) = Pλ[Vol(C) =∞], which by the independence of the
ghost field G implies that

Pλ,ρ[0←→ G] ≥ θ(λ)

for all λ, ρ > 0. Hence (4.4) violates our assumption that M(ρ)→ 0. In particular, there
exist ρ0, c0, β0 > 0 such that Pλ(ρ),ρ[0←→ G] ≥ θ(λ(ρ)) ≥ c0(λ(ρ)− λc)β0 for all ρ ∈ (0, ρ0).

Now fix ρ ∈ (0, ρ0) and consider the algorithm T for the event A = {0←→ G}. As in
the proof of (1.8), applying the first statement of Proposition 2.1 (in its entropic form in
Proposition 2.4, with λ1 = λc and λ2 = λ(ρ)) we have

Pλc,ρ[0←→ G] = Pλ(ρ),ρ[0←→ G]− Pλc,ρ[0←→ G]

≤ (2/λ(ρ))1/2(λ(ρ)− λc)
√
Pλ(ρ),ρ[0←→ G]Eλc,ρ[Ṽol(WA)]

≤ 2λ−1/2
c (λ(ρ)− λc)

√
Pλc,ρ[0←→ G]Eλc,ρ[Ṽol(WA)]

and hence
Pλc,ρ[0←→ G] ≤ (4/λc)(λ(ρ)− λc)2Eλc,ρ[Ṽol(WA)].

Combining with

2Pλc,ρ[0←→ G] = Pλ(ρ),ρ[0←→ G] ≥ θ(λ(ρ)) ≥ c0(λ(ρ)− λc)β0
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yields
Pλc,ρ[0←→ G]2/β0−1Eλc [Ṽol(WA)] ≥ (λc/4)(2/c0)2/β0 .

Applying the third statement of Proposition 4.2, we deduce the existence of a constant
c2 > 0 such that, for all ρ sufficiently small,

Pλc,ρ[0←→ G]2/β0−1ρ−1Eλc
[
1− e−ρVol(C)] ≥ c2.

Recalling from (2.1) that

M(ρ) = Eλc
[
1− e−ρVol(C)] = Pλc,ρ[0←→ G]

we conclude that M(ρ)2/β0ρ−1 ≥ c2 as required.
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