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Abstract

We study the size of the largest component of two models of random graphs with
prescribed degree sequence, the configuration model (CM) and the uniform model
(UM), in the (barely) subcritical regime. For the CM, we give upper bounds that are
asymptotically tight for certain degree sequences. These bounds hold under mild
conditions on the sequence and improve previous results of Hatami and Molloy on
the barely subcritical regime. For the UM, we give weaker upper bounds that are
tight up to logarithmic terms but require no assumptions on the degree sequence. In
particular, the latter result applies to degree sequences with infinite variance in the
subcritical regime.
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1 Introduction

Let [n] := {1, . . . , n} be a set of n vertices. Let dn = (d1, . . . , dn) be a degree sequence
with m :=

∑
i∈[n] di an even positive integer. Without loss of generality, we will assume

that d1 ≤ · · · ≤ dn. Additionally, we may assume that d1 ≥ 1; if there are elements with
degree 0 we can remove them and study the remainder of the sequence. Let ∆ = ∆n be
the maximum degree of dn.

The configuration model, denoted by CMn = CMn(dn) and introduced by Bollobás
in [1], is the random multigraph on [n] generated by assigning di half-edges (or stubs)
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Largest component of subcritical random graphs

to vertex i, and then pairing the half-edges uniformly at random. The uniform model,
denoted by Gn = Gn(dn), is the random simple graph on [n] obtained by choosing a
simple graph uniformly at random among all graphs on [n] where vertex i has degree
di. Throughout the paper, all the results on the uniform model will assume that the
sequence dn is graphical ; that is, there exists at least one graph on [n] with such degree
sequence. We will use the Landau notation for functions o,O to denote the asymptotic
behavior of functions on n, as n goes to infinity.

For any graph G on [n], let L1(G) denote the order of a largest component. A central
problem in random graph theory is to find a parameter of the model α = α(n) and a value
α0 = α0(n) such that L1 undergoes a phase transition at α = α0. The set of parameters is
then divided into three regimes: subcritical, where α ≤ (1− ε)α0 for some ε > 0; critical,
where α = (1 + o(1))α0; and supercritical, where α ≥ (1 + ε)α0 for some ε > 0. The
problem of determining the critical window is to find a value α1 = α1(n) with α1 = o(α0),
such that L1 has the same asymptotic order for any α such that (α − α0)/α1 = O(1).
Then the critical regime is further divided into three parts: barely subcritical, where
(α− α0)/α1 → −∞; critical window, where (α− α0)/α1 = O(1); and barely supercritical,
where (α− α0)/α1 →∞.

The main goal of this paper is to study the largest component phase transition
L1(CMn) and L1(Gn) in the subcritical and the barely subcritical regimes. Generally
speaking, the study of configuration model is simpler due to the existence of an explicit
model with good independence properties. In contrast, most of the results existing for
Gn arise from CMn by observing that the probability that CMn generates a simple graph
is sufficiently large.

In order to understand the phase transition, define

Q = Qn(dn) :=
1

m

∑
i∈[n]

di(di − 2) , (1.1)

R = Rn(dn) :=
1

m

∑
i∈[n]

di(di − 2)2 . (1.2)

The parameter Q should be understood as the drift (expected change per step) of an
exploration process that will be defined later; R will control the variance of this drift.

In the first part of the paper, we will focus on the case Qn ≤ 0. It is easy to check that
the bound on Qn implies ∆n = O(

√
n) and m ≤ 2n. Also note the implicit bound on the

maximum degree ∆n = O(n1/3R
1/3
n ) obtained by just considering the contribution of a

vertex of maximum degree to Rn.
Let Dn be the degree of a uniform random vertex and let D̂n be its size-biased

distribution; that is, for k ≥ 1,

P(D̂n = k) =
knP(Dn = k)

m
. (1.3)

For b, h ∈ N, let L(b, h) := {b + hk : k ∈ Z} be the integer lattice containing b with
step h. For a random variable X on Z, the step of X is the largest integer h such that
P(X ∈ L(b, h)) = 1 for some b ∈ N.

We will study the CMn under the following conditions on the degree sequence:

Assumption 1.1. There exists a discrete random variable D supported on Z≥0 such
that

(i) Dn → D in distribution;

(ii) Qn → 0;
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Largest component of subcritical random graphs

(iii) P(D 6∈ {0, 2}) > 0;

(iv) for all n, the random variables D and Dn have the same step;

(v) E(D4
n) ≤ ∆

1/2
n .

Remark 1.2. Conditions (i)-(iii) are usual in this setting. In particular, they imply that
Rn is bounded away from zero, which will be often used in the proofs.

Condition (iv) simply asks that the limiting degree distribution D has the same step
as the random variables Dn which converge to it. This restriction is not particularly
strong and forbids no limiting degree sequence, only the way in which we converge to it.

Condition (v) is the most restrictive one. As Qn = o(1), we have E[D2
n] = O(1),

which implies E[D4
n] = O(∆2

n). Thus, this condition can be understood as a “polynomial
limitation” on the contribution of large degree vertices to the fourth moment. It would
be interesting to see up to which point a condition on the fourth moment is needed.

Our first result upper bounds the size of the largest component when Q is not too
large with respect to R.

Theorem 1.3. Let ε > 0. Let dn be a degree sequence satisfying Theorem 1.1 and
∆|Q| = o(R). If Q ≤ −ω(n)n−1/3R2/3 for some ω(n)→∞, then

P

(
L1(CMn(dn)) ≤ (1 + ε)

2R

Q2
log

(
|Q|3n
R2

))
= 1− o(1) . (1.4)

Remark 1.4. As noted in [11], under the condition |Q|∆ = o(R) the critical window is
|Q| = O(n−1/3R2/3). Therefore, Theorem 1.3 bounds the largest component in the whole
barely subcritical regime. See Section 1.1 for further discussion.

Let η := ηn = D̂n − 2 and note that

Q = E [η] and R = E
[
η2
]
. (1.5)

Consider its moment generating function

ϕ(θ) := ϕn(θ) = E
[
eθηn

]
. (1.6)

Theorem 1.3 is in fact a consequence of a more general result that does not require a
bound of Q in terms of R.

Theorem 1.5. Let ε > 0. Let dn be a degree sequence satisfying Theorem 1.1 and
∆n ≤ n1/6. Let θ0 ∈ (0, 1) be the smallest solution θ of ϕ′(θ) = 0. Define

Tn :=
1

| logϕ(θ0)|
· log

(
| logϕ(θ0)|3/2

ϕ′′(θ0)1/2
E
[
Dne

θ0Dn
]
n

)
. (1.7)

If θ0m ≥ ω(n)Tn for some ω(n)→∞, then

P(L1(CMn(dn)) ≤ (1 + ε)Tn) = 1− o(1) . (1.8)

Remark 1.6. The value θ0 exists and is bounded as n → ∞. We have ϕ(0) = 1 and
ϕ′(0) = Q < 0. Recall that η is supported in {−1, 0, 1, . . . }. By Theorem 1.1, items (ii) and
(iii), {D ≥ 3} happens with positive probability and so if we define p := P(D ≥ 3), then
P(η ≥ 1) ≥ p and ϕ(θ) ≥ (1 − p)e−θ + peθ. So ϕ(θ) → ∞ as θ → ∞ and it must at some
point have positive derivative. Thus, there exists θ0 ∈ (0, 1) such that ϕ′(θ0) = 0.

It is interesting to understand if these results also hold in the uniform setting. It is
well known that CMn conditioned on being simple is distributed as Gn [1]. Here we use
a version of this result that needs no assumption on the maximum degree.
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Theorem 1.7 (Bollobás [1]; Janson [15, Theorem 1.1]). Let dn be a degree sequence
satisfying m = Θ(n) and E

[
D2
n

]
= O(1). Then

lim inf
n→∞

P(CMn(dn) is simple) > 0 , (1.9)

and conditioned on being simple, CMn has the same law as Gn. Therefore, any result
that holds with probability 1− o(1) for CMn(dn), also holds with probability 1− o(1) for
Gn(dn).

As Theorem 1.3 and Theorem 1.5 assume that Qn ≤ 0, we have that E
[
D2
n

]
= O(1)

and we can use Theorem 1.7 to transfer their conclusions to Gn, provided that their
hypothesis are satisfied.

The second part of our paper focuses on the size of the largest component in the
(barely) subcritical regime of Gn without further assumptions on the degree sequence.
The lack of a tractable model for Gn hampers its analysis and the upper bounds obtained
are weaker than the ones obtained for CMn and probably not of the right order.

Let S∗ be a smallest set of vertices of largest degree that satisfies∑
u∈[n]\S∗

du(du − 2) ≤ 0 (1.10)

and define

m∗ =
∑
v∈S∗

dv . (1.11)

We may assume that S∗ is formed by vertices of largest degrees. Note that if Q ≤ 0, then
S∗ = ∅ and m∗ = 0.

For any m0 ≥ 0 and Q0 ≤ 0, we call dn an (m0, Q0)-subcritical degree sequence if
there exists S ⊆ [n] with∑

v∈S
dv ≤ m0 and

1

m

∑
w∈[n]\S

dw(dw − 2) ≤ Q0 . (1.12)

Our most general result on Gn is the following.

Theorem 1.8. Let dn be an (m0, Q0)-subcritical degree sequence for some parameters

satisfying m0 ≥ 3m∗, m0|Q0| ≥ (∆|Q0| + R) log
(

nQ2
0

∆|Q0|+R

)
and Q2

0n ≥ ω(n)m0 for some

ω(n)→∞. Then, there exists an absolute constant C > 0 such that

P (L1(Gn(dn)) ≤ Cm0/|Q0|) = 1− o(1) .

Remark 1.9 (Infinite degree variance). The main strength of Theorem 1.8 is that it
applies to degree sequences with subcritical behaviour but infinite degree variance. To
our knowledge, the only results available in this setting are of the form L1(Gn(dn)) =

o(n) [2, 18]. Note that, even if such results were available for CMn, Theorem 1.7 is not
strong enough to transfer them to Gn.

Remark 1.10 (The Q ≤ 0 case). To compare it with previous work, let us get more
explicit results for the case Q ≤ 0 (i.e. E[D2

n] ≤ 2E[Dn]). In this case, m∗ = 0 and we

can choose Q0 := Q and m0 := (∆ +R/|Q0|) log
(

nQ2
0

∆|Q0|+R

)
. Also note that Q ≤ 0 implies

R = O(∆).

(a) If |Q| is bounded away from zero, then all conditions in Theorem 1.8 are satisfied
and

L1(Gn(dn)) = O(∆ log n) . (1.13)
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(b) If |Q| = o(1), then we split depending on how R and ∆|Q| compare to each other.

(b.1) If ∆|Q| = O(R), then for any Q ≤ −ω(n)n−1/3R1/3,

L1(Gn(dn)) = O

(
R

Q2
log

(
nQ2

R

))
, (1.14)

obtaining a weaker version of Theorem 1.3, that is valid for all degree se-
quences.

(b.2) If R = O(∆|Q|), then for any Q ≤ −ω(n)n−1/2∆1/2,

L1(Gn(dn)) = O

(
∆

|Q|
log

(
nQ

∆

))
. (1.15)

Remark 1.11. If Q2
0n = O(m0), then the behaviour of Gn is no longer (barely) subcritical.

It is interesting to study the size of the largest component in this case.

We finally provide the existence of infinitely many degree sequences showing the
tightness of some of our upper bounds (see Theorem 1.13).

Proposition 1.12. For any Q < 0, ∆ = o(
√
n) and log n = o(∆), there exists a degree

sequence d̂n with ∆n(d̂n) = ∆, Qn(d̂n) ∼ Q and R = Rn(d̂n) ∼ ∆, such that

P

(
L1(Gn(d̂n)) ≥ (1 + o(1))

2R

Q2
log
( n

R2

))
= 1− o(1) .

The degree sequence in the previous theorem is obtained by having roughly (1 +

Q)n/∆2 vertices of degree ∆ and the rest of degree 1.

Remark 1.13. We can compare the lower bound in Theorem 1.12 with our upper
bounds. The degree sequence d̂n satisfies R ∼ ∆, so ∆|Q| = O(R). In the case
∆ < n1/2−δ for some constant δ > 0, the proposition gives a family of degree sequences
for which Eq. (1.13) is of the right order.

While Theorem 1.12 is only stated for Q bounded away from zero, one could similarly
define degree sequences d̂n for whichQ = o(1), in which case ∆|Q| = o(R). Provided that
Q ≤ −ω(n)n−1/3R2/3 for some ω(n)→∞, one obtains the lower bound in Eq. (5.8) that
coincides asymptotically with Theorem 1.3 and, up to logarithmic terms, with Eq. (1.14).
(See Theorem 5.3.)

1.1 Previous work

The foundational paper of Erdős and Rényi [8] located the phase transition for
the existence of a linear order component in a uniformly chosen graph on n vertices
and m edges, G(n,m), showing that the order of the largest component undergoes a
double jump at m = n/2, in particular L1(G(n,m)) = O(log n) if m ≤ cn and c < 1/2,
L1(G(n,m)) = Θ(n2/3) if m = n/2, and L1(G(n,m)) = Θ(n) if m ≤ cn and c > 1/2. This
result can be easily transferred to the Binomial random graph G(n, p) with p = 2m/n,
which has become the reference model for random graphs. The size of the largest
component in all regimes is well understood, see e.g. Sections 4 and 5 in [12].

The study of the phase transitions in random graphs with given degree sequences
was pioneered by Molloy and Reed [20]. The so-called Molloy-Reed criterion determines
the phase transition at Q = 0, provided that the degree sequence satisfies a number of
technical conditions. The criterion has been extended to degree sequences with bounded
degree variance [16] and uniformly integrable sequences [2], providing the asymptotic
value of L1 in the supercritical regime Q > 0 in terms of the survival probability of an
associated branching process, similarly as in the G(n, p) case. Interestingly, the criterion
is no longer valid for general degree sequences due to the presence of high degree
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vertices (hubs) or an extremely large number of degree 2 vertices. Joos et al. [18] gave
an extended criterion that determines whether any given degree sequence typically
produces a linear order component.

While the behaviour of the largest component in the supercritical regime resembles
the simpler Erdős-Rényi model, this does not happen in the subcritical one, when Q < 0.
Trivially, we have L1(Gn) ≥ ∆ + 1 which could be much larger than logarithmic. In [20]
the authors showed that L1(CMn) = O(∆2 log n) for subcritical sequences. More precise
results are known for power-law degree sequences. Durrett [6] conjectured1 that if
P(Dn = k) ∼ ck−γ for some γ > 3 and c > 0, then L1(CMn) = O(∆). In this setting,
γ > 3 implies E

[
Dγ−1
n

]
= O(1). Pittel [25] showed that L1(CMn) = O(∆ log n) for

subpower-law distributions. Janson [14] proved a strong version of the conjecture: if
P(Dn ≥ k) = O(k1−γ) for some γ > 3, then

L1(CMn) =
∆

|Q|
+ o(n1/(γ−1)) (1.16)

For power-law distributions, we have ∆ = Θ(n1/(γ−1)) with high probability, and the
second term is negligible. From the intuitive point of view, the largest component is
obtained by starting a subcritical branching process with expected offspring 1 +Q from
each vertex adjacent to the vertex of largest degree. The expected total progeny of
such process is 1/|Q|. One can interpret the result of Theorem 1.8 in a similar spirit:
in the largest component there might be at most O(m0) edges and from each of these
edges a piece of size O(1/|Q0|) hangs. For Q < 0, (1.16) can be compared to the weaker
bound Eq. (1.13) that holds regardless of the shape of the degree sequence tail. As
shown in Theorem 1.10, for general degree sequences Eq. (1.13) cannot be improved.

The critical regime has attracted a lot of interest in recent years [3, 4, 11, 13, 19, 26]
with several papers specialising on the finite second or finite third moment cases. Here
we focus on the results known for the barely subcritical regime.

Riordan [26] showed that if ∆ = O(1) then Eq. (1.4) holds, even more, one has
asymptotic equality and control on the second order term. Theorem 1.5 can be seen as
a generalization of the upper bound in [26] to a wider class of sequences that allows
∆→∞ as n→∞.

Hatami and Molloy [11] studied the critical window under some mild conditions on
the degree sequence. They showed that |Q| = O(n−1/3R2/3) is the critical window of
CMn. Regarding the barely subcritical regime, for Q ≤ −ω(n)n−1/3R2/3 with ω(n)→∞,
they showed that

L1(CMn) = O

(√
n

|Q|

)
. (1.17)

One can check that Eq. (1.17) coincides in order with Eq. (1.4) at the boundary of the
critical window |Q| = Θ(n−1/3R2/3), while Eq. (1.4) improves Eq. (1.17) in the whole
barely subcritical regime, provided that Theorem 1.1 holds.

Under infinite variance, the probability of CMn being simple can be exponentially
small in n. Thus, only results that hold with exponentially high probability can be
transferred from CMn to Gn, see e.g. [2]. Another approach is to study Gn directly using
the switching method [18]. With both strategies, the best bound given in the subcritical
regime is L1(Gn) = o(n). Theorem 1.8 provides the first explicit general bound to L1 at
subcriticallity for infinite variance degree sequences. As discussed in Theorem 1.13, this
bound cannot be substantially improved without further assumptions.

1In fact, this was conjectured for a slightly different model where the degrees are i.i.d. copies of Dn

conditioned on their sum being even.
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It thus remains as an open question to determine the exact size of the largest
component in the (barely) subcritical regime. Hofstad, Janson and Łuczak conjectured
that L1(CMn) is concentrated in this regime [13]. Supported by the result of Riordan
for constant maximum degree, we conjecture that the upper bound in Eq. (1.8) is
asymptotically tight for all degree sequences that satisfy some mild assumptions. Note
that certain conditions on the degree sequence are needed; for instance, in Theorem 5.2
we exhibit a degree sequence for which the second moment does not converge to the
second moment of the limit distribution, and L1(CMn) is non-concentrated.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we prove Theorem 1.3 and Theo-
rem 1.5. This is done by reducing the problem to computing the probability that a sum
of independent random variables (that approximates the exploration process) takes a
particular value, in a similar way as in [23, 26]. Later, in Section 4, building upon results
of Mukhin [22], we develop a novel local limit theorem to estimate such a probability.
In Section 3 we prove Theorem 1.8 on the uniform model. As we consider graphs
with infinite variance, we cannot apply Theorem 1.7 to transfer the results from the
configuration to the uniform model. Instead, we take a more combinatorial approach
using the switching method, similar to the arguments used in [18]. Finally, in Section 5
we prove Theorem 1.12.

2 Barely subcritical regime for the configuration model

2.1 Exploration process

In this section we introduce a process that given a vertex v ∈ [n] explores CMn

starting by the component containing v. We set a total order of the half-edges as follows.
For every vertex v, consider an arbitrary order of its dv half-edges. Then, the half-edges
are ordered, first by its corresponding vertex (using the total order on [n]) and then by
the order given within the half-edges incident to a vertex.

The process constructs CMn by, at each step, pairing two unpaired half-edges,
resulting in a new edge of the graph. We will denote by Ft the history of the process
at time t. With a slight abuse of notation, we treat Ft as the subgraph formed by the
partial matching at time t and the vertices that are incident to the edges in the matching.
Given the total order of the half-edges, v and the subgraph Ft, we can recover the whole
history of the process at time t, which justifies the abuse of notation.

The main random variable we would like to track is Xt = Xt(v), defined as the number
of unmatched half-edges incident to V (Ft) when the process started at v. Note that if
Xt = 0, there are no unpaired half-edges and thus Ft is a union of components of CMn

containing the component of v.
The exploration process of CMn starting at v ∈ [n] is defined as follows:

1) Let F0 be the single-vertex graph on {v} and X0 = dv.

2) While V (Ft) 6= [n],

2a) If Xt = 0, choose a uniformly unmatched half-edge and let u be the vertex
incident to it. Let Ft+1 be constructed from Ft by adding {u} as an isolated
vertex, and let Xt+1 = du.

2b) Otherwise, choose the smallest unmatched half-edge e incident to V (Ft) and
pair it with a half-edge f chosen uniformly at random from all the unmatched
ones. Let u be the vertex incident to f .

i) If u /∈ V (Ft), let Ft+1 be constructed from Ft by adding vertex u and edge
ef and let Xt+1 = Xt + du − 2.
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ii) Otherwise, let Ft+1 be constructed from Ft by adding edge ef and let
Xt+1 = Xt − 2.

Note that Xt is measurable with respect to Ft. We define the following parameters:

ηt+1 := Xt+1 −Xt ,

Mt := Xt +
∑

u/∈V (Ft)

du ,

Qt =
1

Mt − 1

∑
u/∈V (Ft)

du(du − 2) ,

Rt =
1

Mt − 1

∑
u/∈V (Ft)

du(du − 2)2 .

(2.1)

It is straightforward to check that if Xt > 0, then

E [ηt+1 | Ft] = Qt and E
[
(ηt+1)2 | Ft

]
= Rt . (2.2)

2.2 Stochastic domination and random sums

Recall the definition of T = Tn given in Eq. (1.7).
Define the random variable β as follows: for every ` ∈ L := {−1, 0, 1, . . . , n− 3},

P(β = `) :=

{
m

m−4T P(η = −1)− 4T
m−4T if ` = −1 ,

m
m−4T P(η = `) if ` ≥ 0 .

(2.3)

The random variable β is defined in such a way it stochastically dominates ηt during the
first 2T steps of the exploration process, regardless of the particular exploration.

Let Qβ, Rβ, ϕβ(θ), θβ0 , and Tβ be defined as in (1.5)–(1.7) replacing η by β. By the
choice of β all main parameters are asymptotically equal to the original ones, as the
following result demonstrates.

Lemma 2.1. For every k ≥ 0, we have ϕ
(k)
β (θ) = (1 + o(θ0))ϕ(k)(θ) + o(θ0). Moreover,

Qβ = (1 + o(1))Q, Rβ = (1 + o(1))R and Tβ = (1 + o(1))T .

We postpone the proof of the lemma until the end of the section.
Let (βt)t≥1 be a sequence of iid copies of β. For s ∈ N , define the stochastic process

Wt = W s
t by W0 = s and for t ≥ 0

Wt+1 = Wt + βt = s+

t∑
i=1

βi . (2.4)

Define the stopping time

τsW := inf{t : W s
t = 0} .

In order to study τsW we will need a precise control on the probability that Wt takes
a particular value. Thus, we introduce the following local limit theorem, that will be
proved in Section 4.

Theorem 2.2. Let X1, X2, . . . , Xn be independent and identically distributed random
variables with step h and taking values on L(v0, h) for some v0 ∈ N. Define Sn =

∑n
i=1Xi.

Suppose that µ = E(X1) = 0, σ2 = Var(X1) and γ = E|X1|3. Then,

sup
w∈L(nv0,h)

∣∣∣∣P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)∣∣∣∣ ≤ 32hγ

σ4n
+

π3/2γ

hσ2nHh(X1)
. (2.5)
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Largest component of subcritical random graphs

We are now ready to prove the main technical result of this part, which bounds the
probability that the stopping time takes a particular value.

Lemma 2.3. For every t ≥ Tβ and s = s(n) we have

P(τsW = t) ≤ 2h · seθ
β
0 s
(
ϕ′′β(θβ0 )

)−1/2 (ϕβ(θβ0 ))t

t3/2
, (2.6)

where h is the step of D.
Moreover, for every ε > 0 we have that

P(τsW ≥ (1 + ε)Tβ) = o

 seθ
β
0 s

E
[
Dneθ

β
0Dn

] · Tβ
n

 . (2.7)

Proof. The dependence on s is implicit in all the notation below. Recall that L :=

{−1, 0, 1, . . . , n− 3}. Define the following sequences

It = {b = (b1, . . . , bt) ∈ Lt : s+ b1 + · · ·+ bt = 0}

Ît = {b = (b1, . . . , bt) ∈ It : s+ b1 + · · ·+ bi > 0,∀i ∈ [t− 1]}
(2.8)

We can write

P(Wt = 0) =
∑
b∈It

t∏
i=1

P(βi = bi) and P(τsW = t) =
∑
b∈Ît

t∏
i=1

P(βi = bi) (2.9)

A variant of Spitzer’s lemma [23, Lemma 9] implies that

P(τsW = t) ≤ s

t
P(Wt = 0) (2.10)

We use exponential tilting to bound the probability that Wt = 0, as in [23, 26]. Consider
the random variable βθ defined for ` ∈ L by

P(βθ = `) =
eθ`P(β = `)

ϕβ(θ)
. (2.11)

Let (βθ,t)t≥1 be a sequence of iid copies of βθ. Define the stochastic process Wθ,t by
Wθ,0 = s and for t ≥ 0

Wθ,t+1 = s+

t∑
i=1

βθ,i . (2.12)

Algebraic manipulations give

P(Wt = 0) = (ϕβ(θ))teθsP(Wθ,t = 0) . (2.13)

By definition of θβ0 , E
[
βθβ0

]
= E

[
βeβθ

β
0

]
= 0. We may write Wθβ0 ,t

= s + St, where

St =
∑t
i=1 Yi and (Yi)i∈[t] is a collection of iid copies of βθβ0

. In particular, we have

µ = E [Y1] = ϕ′β(θβ0 ) = 0 ,

σ2 = E
[
Y 2

1

]
=
ϕ′′β(θβ0 )

ϕβ(θβ0 )
,

γ = E
[
|Y1|3

]
≤ 2 + E

[
Y 3

1

]
=

2ϕβ(θβ0 ) + ϕ′′′β (θβ0 )

ϕβ(θβ0 )
.

(2.14)
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Largest component of subcritical random graphs

where in the inequality, we have used that Y1 ≥ −1.
We will apply Theorem 2.2 and show that the error term is negligible with respect to

the Gaussian probability. Recall that h is the step of the limiting distribution D, which
by Theorem 1.1(iv) is also the step of the distribution of Y1. Since h and Hh(Y1) (as
defined in (4.16)) are constants, the order of the first error term in (2.5) is at most the
order of the second one, and it suffices to bound the latter. Theorem 1.1(iii) implies that
σ2 ≥ P(D̂n 6= 2) > 0 for large n, and that γ = O(∆1/2). Therefore, for any t ≥ Tβ

γ

σ2t
= O

(
1√
σ2t
·

√
∆

Tβ

)
= o

(
1√
σ2t

)
.

where we used that ∆ = o(T ) and T ∼ Tβ by Theorem 2.1.
Since P(Y1 = −1) > 0, we may choose v0 = −1. Thus, for sufficiently large n, we

conclude that for any w ∈ L(−t, h),

P(St = w) ≤ 2h√
2πtσ2

(2.15)

We can now use (2.15) with w = −s to obtain

P(Wθ0,t = 0) = P(St = −s) ≤ 2h√
2πt

(
ϕβ(θβ0 )

ϕ′′β(θβ0 )

)1/2

(2.16)

Let us show that ϕβ(θβ0 ) is close to 1. On the one hand, we will use the inequality
ex ≤ 1 + xex for all x ∈ R, with equality if and only if x = 0. Since P(β = 0) 6= 1, by the
choice of θβ0

ϕβ(θβ0 ) = E
[
eθ
β
0 β
]
< 1 + θβ0E

[
βeθ

β
0 β
]

= 1 (2.17)

On the other hand, using ex ≥ 1 + x for x ∈ R, that θβ0 is bounded as n → ∞ and
E [β] = o(1), we obtain

ϕβ(θβ0 ) ≥ 1 + θβ0E [β] = 1 + o(1) . (2.18)

We conclude that ϕβ(θβ0 ) ∼ 1 and thus, we use have the asymptotic equivalence

| logϕβ(θβ0 )| ∼ 1− ϕβ(θβ0 ). (2.19)

Combining Eqs. (2.10), (2.13), (2.16) and (2.17), we obtain

P(τsW = t) ≤ 2h · seθ
β
0 s
(
ϕ′′β(θβ0 )

)−1/2 (ϕβ(θβ0 ))t

t3/2
.

proving the first part of the lemma.
For the second statement of the lemma, it suffices to prove it for small enough ε, so

we may assume ε ∈ (0, 1). Observe that P(τsW = t) 6= 0 implies that s = hk − t for some
k ∈ Z. Since v0 = −1 and h are coprime, there are at most dT/he values t ∈ [T ] such that
P(τsW = t) 6= 0.

As our bound on P(τsW = t) is decreasing in t, and h = o(Tβ) we have

P(τsW ≥ (1 + ε)Tβ) =
∑

t≥(1+ε)Tβ
t∈L(−1,h)

P(τsW = t) ≤
∑

t≥(1+ε)Tβ−h

P(τsW = t)

h
≤

∑
t≥(1+ε/2)Tβ

P(τsW = t)

h
.
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Using (2.17) for the geometric sum and (2.19), it follows that

P(τsW ≥ (1 + ε)Tβ) ≤ 2seθ
β
0 s
(
ϕ′′β(θβ0 )

)−1/2 (ϕβ(θβ0 ))(1+ε/2)Tβ

T
3/2
β

∑
`≥0

(ϕβ(θβ0 ))`

∼ 2seθ
β
0 s
(
ϕ′′β(θβ0 )

)−1/2 (ϕβ(θβ0 ))(1+ε/2)Tβ

| logϕβ(θβ0 )|T 3/2
β

. (2.20)

Using the definition of T in (1.7) and Theorem 2.1, we obtain that

Tβ ∼
1

| logϕβ(θβ0 )|
log
(
| logϕβ(θβ0 )|3/2(ϕ′′β(θβ0 ))−1/2E

[
Dne

θβ0Dn
]
n
)

∼ 1

| logϕβ(θβ0 )|
log
(
T
−3/2
β (ϕ′′β(θβ0 ))−1/2E

[
Dne

θβ0Dn
]
n
)
.

Using that (ϕβ(θβ0 ))(1+ε/2)Tβ = o

((
T
−3/2
β (ϕ′′β(θβ0 ))−1/2E

[
Dne

θβ0Dn
]
n
)−1

)
, noting that

| logϕβ(θβ0 )|−1 = O(Tβ), and plugging the bounds in (2.20) we obtain

P(τsW ≥ (1 + ε)Tβ) = o

 seθ
β
0 s

E
[
Dneθ

β
0Dn

] · Tβ
n

 .

2.3 Proof of Theorem 1.5

Fix ε > 0 sufficiently small and v ∈ [n]. Define the following stopping time with
respect to the filtration given by Ft starting at v,

τX(v) := inf{t : Xt(v) = 0} .

Note that τX(v) is the number of edges in the component of v, denoted by C(v). Moreover,
for every t ≤ 2T ∧ τX(v) the random variable β stochastically dominates ηt. Thus, Xt(v)

is stochastically dominated by W dv
t .

Let δ = ε/3. It follows from Theorems 2.1 and 2.3 that

P(τX(v) ≥ (1 + 2δ)T ) ≤ P(τX ≥ (1 + δ)Tβ) ≤ P(τsW ≥ (1 + δ)Tβ) =o

 dve
θβ0 dv

E
[
Dneθ

β
0Dn

] · T
n

 .

(2.21)

Let Z be the number of components of order at least (1 + ε)T . For any ε > 0, we can
write

Z =
∑
C

1|C|≥(1+ε)T =
∑
v∈[n]

1|C(v)|≥(1+ε)T

|C(v)|
≤ 1

T

∑
v∈[n]

1|C(v)|≥(1+ε)T , (2.22)

where the first sum is over the connected components of CMn.
Since C(v) is a connected subgraph, it has at least |C(v)| − 1 edges. Thus, the

probability of |C(v)| ≥ k is bounded from above by the probability τX(v) ≥ k − 1.
Using Eq. (2.21) we obtain

E [Z] ≤ 1

T

∑
v∈[n]

P(τX(v) ≥ (1 + ε)T − 1) = o

 1

E
[
Dneθ

β
0Dn

]
n

 ∑
v∈[n]

dve
θβ0 dv = o(1) .

Theorem 1.5 follows by Markov’s inequality on Z.
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2.4 Proof of Theorem 1.3

Recall that ∆|Q| = o(R) and that ϕ(θ) is the moment generating function of η. Thus,
ϕ(0) = 1, ϕ′(0) = Q, ϕ′′(0) = R and ϕ(k)(0) ≤ ∆k−3R for all k ≥ 3. This implies that the
radius of convergence of ϕ (and so of any of its derivatives) is at least 2|Q|/R. So, for
any θ with |θ| < 2|Q|/R, we have

ϕ′(θ) = ϕ′(0) + θϕ′′(0) +O(θ2ϕ′′′(0)) = Q+ θR+ o(Q) .

By the choice of θ0, we have ϕ′(θ0) = 0 and θ0 ∼ |Q|/R, so we can also write

ϕ(θ0) = ϕ(0) + θ0ϕ
′(0) +

θ2
0ϕ
′′(0)

2
+ o(1) ∼ 1− Q2

2R
.

and

| logϕ(θ0)| ∼ Q2

2R
.

By considering the Taylor expansion of ϕ around θ0, similar arguments give that ϕ′′(θ0) ∼
R.

Finally, observe that for any δ > 0,

E
[
DeDθ0

]
≤ E

[
De(1+δ)∆Q/R

]
= E

[
Deo(1)

]
= O(1) . (2.23)

Using all previous estimations, we can write

T ∼ 2R

Q2
log

(
|Q|3n
R2

)
.

It is straightforward to check that, in this case, the condition θ0m ≥ ω(n)Tn is equivalent
to Q ≤ −ω(n)n−1/3R2/3.

Note that the condition ∆n ≤ n1/6 is only required in Theorem 2.1 in the case
R = O(∆|Q|). Thus, the desired result follows from Theorem 1.5 without further
restrictions on the degree sequence.

2.5 Proof of Theorem 2.1

The first part of the lemma follows directly from

ϕ
(k)
β (θ) = E(βkeθβ) =

m

m− 4T
E(ηkeθη)− 4T

m− 4T
(−1)ke−θ (2.24)

= (1 +O(T/m))ϕ(k)(θ) +O(T/m)

= (1 + o(θ0))ϕ(k)(θ) + o(θ0). (2.25)

where in the last line we used the hypothesis T = o(mθ0) in Theorem 1.5.
Using ex ≥ 1 + x, we have

0 = E[ηeθ0η] ≥ E[η(1 + θ0η)] = Q+ θ0R

and, as R is bounded away from zero, by Theorem 1.1(iii)

0 ≤ θ0 ≤
|Q|
R

= O(Q) = o(1). (2.26)

Since Qβ = E(β) and Rβ = E(β2), it follows from (2.25) with θ = 0 and, k = 1 and
k = 2, respectively, and from (2.26) that

Qβ = (1 + o(1))Q and Rβ = (1 + o(1))R. (2.27)
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For the second part, we split into two cases. If ∆|Q| = o(R), we are in the setting
of Theorem 1.3. In such case

| logϕβ(θβ0 )| ∼
Q2
β

2Rβ
∼ Q2

2R
∼ | logϕ(θ0)|,

(see Section 2.4 for the first and third equivalences) and the result follows from the first
part of the lemma.

Otherwise R = O(∆|Q|). As R is bounded away from zero by Theorem 1.1(iii) and
∆n ≤ n1/6, it follows that |Q| is of order at least n−1/6. Again all we need to show is that
| logϕβ(θβ0 )| ∼ | logϕ(θ0)| and then the rest will follow by the first part of the lemma. We
do this by bounding ϕ(θ0)− ϕβ(θβ0 ).

By construction, β stochastically dominates η and it follows that ϕ(k)
β (θ) ≥ ϕ(k)(θ) for

all k ≥ 0 and θ ≥ 0. In particular,

0 < θβ0 ≤ θ0 (2.28)

Combining (2.24) for k = 0, (2.26) and (2.28),

ϕβ(θβ0 )− ϕ(θβ0 ) =
4T

m− 4T
(ϕ(θβ0 )− e−θ

β
0 ) ≤ 4Tθ0

m
(1 + o(1)) = O

(
T |Q|
mR

)
. (2.29)

As ϕ′′β is an increasing function with ϕ′′β(0) = (1 +o(1))R and ϕ′β(θβ0 ) = 0, the fundamental
theorem of calculus implies

(θ0 − θβ0 )R ≤ (1 + o(1))

∫ θ0

θβ0

ϕ′′β(t)dt = (1 + o(1))ϕ′β(θ0) = O

(
T

m

)
. (2.30)

where the last equality follows from (2.25).
We have |ϕ′(t)| ≤ |Q| for all t ∈ [0, θ0]; indeed, ϕ′ is increasing with ϕ′(0) = Q and

ϕ′(θ0) = 0, Similarly as before, using (2.30) we conclude that

ϕ(θ0)− ϕ(θβ0 ) =

∫ θ0

θβ0

ϕ′(t)dt ≤ (θ0 − θβ0 )|Q| = O

(
T |Q|
mR

)
. (2.31)

Combining (2.29) and (2.31),

ϕβ(θβ0 )− ϕ(θ0) = O

(
T |Q|
mR

)
. (2.32)

Recall that ϕ′(0) = Q < 0. Using the inequality ex ≤ 1 + 2x for x ∈ [0, 1], we have

ϕ′
(
|Q|
5∆

)
≤ E

[
η

(
1 +

2|Q|η
5∆

)]
= Q+

2|Q|R
5∆

< 0

where the final inequality holds because Q < 0 implies R < 2∆. It follows that θ0 ≥ |Q|5∆ .
By using the fact that ϕ′(θ) < 0 for all θ ∈ [0, θ0) and Taylor expansion of ϕ(θ) around

θ = 0, we obtain

ϕ(θ0) ≤ ϕ
(
|Q|
5∆

)
≤ 1− Q2

5∆
+
∑
k≥2

E[ηk]

k!
·
(
|Q|
5∆

)k

≤ 1− Q2

5∆
+

2Q2

25∆

∑
`≥0

(
|Q|
5

)`
≤ 1− Q2

10∆
. (2.33)
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where in the third inequality we used that E[ηk] ≤ 2∆k−1 for all k ∈ N, since Q < 0.
Using the bound (2.33) in the definition of T gives the simple upper bound T ≤

10∆
Q2 log(n). By our bounds on ∆ and Q, T 2|Q| = O(n5/6 log n) = o(mR). Thus, substituting

this into (2.32), we have

ϕβ(θβ0 )− ϕ(θ0) = o

(
1

T

)
. (2.34)

By definition, | logϕ(θ0)| ≥ 1/T . Therefore,

ϕ(θ0) ≤ e−1/T = 1− 1 + o(1)

T
(2.35)

Combining (2.34) and (2.35),

| logϕβ(θβ0 )| ∼ 1− ϕβ(θβ0 ) ∼ 1− ϕ(θ0) ∼ | logϕ(θ0)|,

concluding the proof of the lemma.

3 Subcritical regime for the uniform model

3.1 Exploration process

We will use the exploration process described in [18] that, given V0 ⊂ [n], reveals the
components of Gn one by one starting with the components containing V0.

We first describe the exploration process on a fixed graph where each vertex has an
order in its adjacency list. Precisely, an input is a pair (G,Π), with G a graph on [n] and
Π = (πv)v∈[n] a collection of permutations where πv has length dv and induces a natural
order on the edges incident to v. The process constructs a sequence of sets V0 ⊂ V1 ⊂ . . .
such that at time t all the edges in G[Vt] have been revealed. Let E(A,B) be the set
of edges between sets A and B; we write E(v,B) if A = {v}. Similarly as before, we
define Xt = Xt(v) = |E(Vt, [n] \ Vt)| to be the number of edges between the explored
and unexplored parts. If Xt = 0, Vt is a set of vertices forming a union of components,
including the ones intersecting V0. We also define Mt =

∑
w∈[n]\Vt dw, and we let Lt be

the number of leaves v ∈ [n] \ Vt, that is dv = 1.
The exploration process of (G,Π) starting at V0 ⊂ [n] is defined as follows:

1) Let X0 = |E(V0, [n] \ V0)|.
2) While Vt 6= [n],

2a) If Xt = 0, choose a vertex u in [n] \ Vt with probability proportional to its
degree and let wt+1 = u, i.e. P(wt+1 = u) = du

Mt
. Let Vt+1 = Vt ∪{wt+1} so that

Xt+1 = dwt+1
.

2b) Otherwise, choose vt+1 the smallest vertex incident to at least one edge in
[n] \ Vt and let et+1 be the smallest edge in E(vt+1, [n] \ Vt). Let wt+1 be the
endpoint of et+1 in [n]\Vt. Reveal the existence of all edges in E(wt+1, Vt). Let
Vt+1 = Vt ∪ {wt+1} so that Xt+1 = Xt − 1 + dwt+1

− |E(wt+1, Vt)|.

There are two main differences between this exploration process and the one defined in
Section 2.1: we explore vertex by vertex instead of edge by edge, and we start from a
set instead of a single vertex.

We will run the exploration process on an input (G,Π) chosen uniformly at random
from all the inputs where G is a graph on [n] with degree sequence dn. This is equivalent
to sampling G ∼ Gn and, independently, letting Π = Π(dn) be a collection of uniformly
and independent permutations of lengths (dv)v∈[n]. We will use the principle of deferred
decisions exposing the restriction of πvt+1

to E(vt+1, [n] \ Vt) at time t. Let (Ft)t≥0
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be the filtration of the space of inputs given by the history of the process just after
exposing the order on E(vt+1, [n] \ Vt). The random objects Xt, Vt, Mt, Lt, vt+1 and et+1

are Ft-measurable, while wt+1 is Ft+1-measurable. We will use Pt(·) := P(· | Ft) and
Et [·] := E [· | Ft] to denote respectively the probability and expected value conditioned
to Ft.

3.2 Deterministic properties of the process

Let dn be an (m0, Q0)-subcritical degree sequence, as defined in (1.12). We will
assume that dn, m0 and Q0 satisfy the conditions in Theorem 1.8, namely:

(C1) m0 ≥ 3m∗ (where m∗ is defined in (1.11));

(C2) m0|Q0| ≥ (∆|Q0|+R) log
(

nQ2
0

∆|Q0|+R

)
;

(C3) Q2
0n ≥ ω(n)m0 for some ω(n)→∞.

First of all, we may assume that m0 = o(n), as otherwise since |Q0| ≤ 1, there is
nothing to prove. Let ni be the number of vertices v ∈ [n] with dv = i. By (1.10), we have
that ∑

w∈[n]\S∗
dw≥3

dw ≤
∑

w∈[n]\S∗
dw≥3

dw(dw − 2) ≤ n1 .

It follows that ∑
w∈[n]\S∗

dw ≤ n1 + 2n2 +
∑

w∈[n]\S∗
dw≥3

dw ≤ 2(n1 + n2) ≤ 2n.

By condition (C1) and since m0 = o(n), we conclude that m ≤ 3n.
Define

T :=
m0

|Q0|
≥ ∆|Q0|+R

Q2
0

log λ (3.1)

where,

λ :=
nQ2

0

∆|Q0|+R
≥ ω(n)

|Q0|
→ ∞ , (3.2)

by (C3).
Also by (C3) and since n = Θ(m), we have that T = o(|Q0|m); we will use this bound

repeatedly throughout the proof.
Let S be the set that certifies (m0, Q0)-subcriticality as defined in (1.12). As remarked,

we may assume that S is formed by vertices of largest degrees. Condition (C2) implies
that ∆ = o(m0). So, we may also assume that∑

v∈S
dv ≥

m0

2
, (3.3)

as increasing the set S can only decrease Q0.
Throughout the proof, we will assume that

∆′ := max
w∈[n]\S

dw ≥ 2 . (3.4)

Otherwise there are at most m0 vertices of degree at least 2 and any component has
order at most O(m0) and we are done.

Given v ∈ [n], we will run the exploration process by starting from V0 = S ∪ {v}. We
now give some basic deterministic properties of the process with such initial set.

For any t ∈ N, let ni(t) be the number of vertices v ∈ [n] \ St with dv = i.
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Lemma 3.1. If V0 = S ∪ {v}, then:

1.
∑
u∈V0

du ≤ 2|Q0|T ;

2. ∆′ = o
(
n1

∆

)
.

Moreover, for every t = O(T ) we have:

3. n1(t) ≥ n1/2;

4. Mt ≥ m/3.

Proof. For Item 1, just observe that dv ≤ ∆ ≤ m0 = |Q0|T .
For Item 2, since condition (C1) holds, ∆′ ≥ 2 and by Eqs. (1.10), (1.11) and (3.3), we

have

0 ≥
∑

v∈[n]\S∗

dv(dv − 2) ≥ −n1 + (∆′ − 2)
∑

w∈S\S∗

dw ≥ −n1 + (∆′ − 2)(m0/2−m∗) ,

From here it follows that ∆′ = O(n1/m0) = o(n1/∆).
For Item 3, by (1.12) and (3.4) we can write

|Q0|m ≤ −
∑

v∈[n]\S

dv(dv − 2) ≤ n1 −
∑

v∈[n]\S
dv≥3

dv(dv − 2) ≤ n1

Since T = o(|Q0|m), we have n1(t) ≥ n1 − 1− t ≥ n1/2.
For Item 4, by Eq. (1.10) we have

0 ≥ −n1 +
∑

v∈[n]\S∗
dv≥3

dv = m−m∗ − 2(n1 + n2) .

Counting only the contribution of vertices of degree 1 or 2 to Mt, by the previous
inequality we obtain

Mt ≥ n1 + 2n2 − 2t ≥ m−m∗
2

− 2t ≥ m

3

since m∗ ≤ m0 which we assumed is o(m) and t ≤ T = o(m).

3.3 Bounding the increments

We chose V0 to contain all the large degree vertices so we have control on the
maximum degree outside the initial set (Theorem 3.1). This allows us to estimate the
probability of connecting to a vertex w at step t via switchings.

Lemma 3.2. For any v ∈ [n], any t = O(T ) and any w ∈ [n] \ Vt, we have

Pt(wt+1 = w) ≤ (1 + o(1))
dw
Mt

. (3.5)

Moreover, if dw = 1

Pt(wt+1 = w) ≥ (1 + o(1))
dw
Mt

. (3.6)

Proof. The proof uses an edge-switching argument. A switching is a local operation that
transforms an input into another one. Given an input (G,Π) and two oriented edges (a, b)

and (c, d) with ab, cd ∈ E(G) and ac, bd /∈ E(G), we obtain the new input by deleting the
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edges ab and cd, and adding the edges ac and bd. Note that this operation preserves
the degree of each vertex and does not modify the permutations of the adjacency lists.
Also note that we must ensure that ac and bd are non-edges, as otherwise the operation
would not produce an input. We will restrict to switchings that do not modify the edges
within Vt in order to switch between inputs in Ft.

Fix w ∈ [n]\Vt. If Xt = 0, then w is chosen with probability dw/Mt, so we may assume
that Xt > 0. Let vt+1, et+1 and wt+1 as described in the process. Given Ft, vt+1 and et+1

are fixed, while wt+1 is a random vertex. Let A ⊆ Ft be the set of inputs with wt+1 = w

and B = Ft \ A. We will estimate the number of switchings between A and B to prove
the lemma.

We first proof Eq. (3.5). To switch from B toA, we need to switch the edges (vt+1, wt+1)

and (w, u) for u ∈ N(w) and there are at most dw such switchings for each input in B. To
switch from A to B, it suffices to select the edges (vt+1, w) and (x, y) with x /∈ N(vt+1)∪Vt
and y /∈ N(w). By Theorem 3.1, there are at most ∆∆′ + ∆′∆ = o(n1) = o(Mt) oriented
edges (x, y) with x ∈ [n] \ Vt that violate the previous condition. Thus, there are at least
(1 + o(1))Mt switchings for each input in A. It follows that

Pt(wt+1 = w) =
|A|

|A|+ |B|
≤ |A|
|B|
≤ (1 + o(1))

dw
Mt

.

We now prove Eq. (3.6). Suppose that dw = 1. To switch from A to B we must choose
the oriented edge (vt+1, w) and an oriented edge (x, y) with x ∈ [n] \ Vt, otherwise we
would alter the edges within Vt. It follows that there are at most Mt switchings for each
input in A. To switch from B to A, we must choose the oriented edge (vt+1, wt+1) and
the unique oriented edge (w, u), where u is the only neighbour of w. Observe that if
either vt+1w or wt+1u is an edge of the graph, the switching is invalid. Instead of giving
a lower bound for the number of switchings of a fixed input in B, we will give a lower
bound for the average number of switchings over B. For each z ∈ [n] \ (Vt ∪ {w}), let
Bz be the set of inputs in B with wt+1 = z. Given an input (G,Π) and x ∈ [n] \ Vt with
dx = 1, we say that the input is x-good if vt+1x, zy /∈ E(G), where y is the only neighbour
of x; otherwise we call the input x-bad. Since dx = 1 and dz ≤ ∆′, by Theorem 3.1, there
are at most ∆ + ∆′∆ = o(n1) = o(n1(t)) vertices x for which a given input is x-bad. We
can generate a random input in Bz, by first choosing one uniformly at random and then
permuting the labels of the vertices of degree 1 in [n] \ (Vt ∪ {z}). Thus, the probability
that a random input in Bz is w-bad is o(1). If an input is w-good, switching (vt+1, wt+1)

with (w, u) yields an input in A. It follows that

Pt(wt+1 = w) =
|A|

|A|+ |B|
=

1

1 + |B|/|A|
≥ 1

1 + (1 + o(1))Mt
= (1 + o(1))

1

Mt

Define ηt = dwt − 2. Next result bounds the first and second moments of ηt. In
this lemma we crucially use that T = o(|Q0|m). Namely, by (1.12), the initial drift of
Xt is at most |Q0|m + 1 and in T steps its asymptotic order will not change (as it can
only increase by one at each step). If Q2

0n = O(m0), then |Q0|m = O(T ) and the initial
drift is not governing the evolution of Xt throughout the exploration process, as noted
in Theorem 1.11.

Lemma 3.3. For any v ∈ [n] and any t = O(T ), we have

Et [ηt+1] ≤ Q0

2
and Et

[
(ηt+1)2

]
≤ 4R . (3.7)
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Proof. Note that
∑t
i=1 dwi(dwi − 2) ≥ −t. Using Theorem 3.1 and t = O(T ) = o(|Q0|m),

∑
w∈[n]\Vt

dw(dw − 2) =
∑

w∈[n]\V0

dw(dw − 2)−
t∑
i=1

dwi(dwi − 2) ≤ Q0m+ t+ 1 ≤ Q0m

2
≤ 0 .

(3.8)

Applying Theorem 3.2 and Mt ≤ m,

Et [ηt+1] =
∑

w∈[n]\Vt

(dw − 2)Pt(wt+1 = w) ≤ 1 + o(1)

Mt

∑
w∈[n]\Vt

dw(dw − 2) ≤ Q0/2 .

Similarly, we can bound the second moment. By Theorem 3.1 and Eq. (3.5),

Et
[
(ηt+1)2

]
=

∑
w∈[n]\Vt

(dw − 2)2Pt(wt+1 = w) ≤ (1 + o(1))

Mt

∑
w∈[n]\Vt

(dw − 2)2dw ≤ 4R

3.4 Proof of Theorem 1.8

Let γ := 80. Define the stopping time

τX = τX(v) = inf{t : Xt = 0} ∧ (γT + 1) ,

where Xt is obtained by starting the process with V0 = S ∪ {v}. We omit the floor and
ceiling functions in this section for ease of notation.

Instead of studying Xt, we focus on the stochastic process (Zt)t≥0 defined by Z0 =

2|Q0|T and for t ∈ N

Zt+1 := Zt + ηt+1 = 2|Q0|T +

t∑
i=0

ηi+1 . (3.9)

Observe that Zt is Ft-measurable. For any t < τX , we can bound the increments
Xt+1 −Xt ≤ dwt+1 − 2 = ηt+1. Therefore, for every t ≤ τX(v) we have Xt+1 ≤ Zt+1.

Define the stopping time

τZ = τZ(v) := inf{t : Zt = 0} ∧ (γT + 1) , (3.10)

where Zt is obtained by starting the process with V0 = S ∪ {v}. Hence, τX(v) ≤ τZ(v)

and it suffices to bound the latter from above.
Write µt+1 := (ηt+1 − Et [ηt+1])1t<τZ and St+1 :=

∑t
i=0 µi+1. For every t < τZ , we can

write

Zt+1 = 2|Q0|T + St+1 +

t∑
i=0

Ei [ηi+1] . (3.11)

Since Ei [µi+1] = 0 for all i ≥ 0, St is a martingale with respect to Ft with S0 = 0.
We will use the following Bennett-type concentration inequality for martingales due to
Freedman.

Lemma 3.4 ([9]). Let (St)t≥0 be a martingale with respect to a filtration (Ft)t≥0 with
S0 = 0 and increments µt+1 = St+1 − St. Suppose there exists c > 0 such that
maxt≥0 |µt+1| ≤ c almost surely. For t ≥ 0, define

V (t+ 1) :=

t∑
i=0

Ei
[
(µi+1)2

]
.
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Then, for every α, β > 0

P (St ≥ α and V (t) ≤ β for some t ≥ 1) ≤ exp

(
−α2

2(β + cα)

)
.

Deterministically, we have maxt≥0 |µt+1| ≤ ∆ =: c. Moreover, by Theorem 3.3 for all
t ≥ 0,

V (t) ≤
t−1∑
i=0

Ei
[
(ηi+1)21i<τZ

]
≤ 4R(t ∧ γT ). (3.12)

Choose α = (γ/3)|Q0|T and β = 4RγT . Thus, for all t ≥ 0, V (t) ≤ β deterministically and,
since |Q0| ≤ 1, 2(β + cα) ≤ 8γ(R+ ∆|Q0|)T . By Theorem 3.4, uniformly on the choice of
v ∈ [n]

P(St ≥ α for some t) ≤ exp

(
− γT |Q0|2

72(R+ ∆|Q0|)

)
= O (1/λ) . (3.13)

using (3.1) and since γ ≥ 72.
By Eq. (3.7) we have

∑γT−1
i=0 Ei [ηi+1] ≤ (γ/2)|Q0|T . Combining it with Eq. (3.13), we

obtain uniformly on v ∈ [n]

P (τZ(v) > γT ) = P (Zt > 0 for all t ≤ γT ) ≤ P (SγT > (γ/2− 2)|Q0|T ) = O (1/λ) .

(3.14)

since γ ≥ 12.
Observe that if |C(v)| > (γ + 2)T , then τZ(v) ≥ τX(v) > γT . As in Eq. (2.22), letting Z

be the number of components of size larger than (γ + 2)T and by Eq. (3.14)

E [Z] ≤ 1

(γ + 2)T

∑
v∈[n]

P(|C(v)| > (γ + 2)T ) ≤ 1

T

∑
v∈[n]

P(τZ(v) > γT ) = O (1/ log λ) = o(1) .

Markov’s inequality concludes the proof.

4 A local limit theorem

A local limit theorem estimates the probability distribution of a suitably rescaled sum
of independent random variables, by the density function of an infinitely divisible random
variable, in our case a Gaussian. Local limit theorems are a useful tool to determine the
component size in random graphs [23, 26]. For our application, we will need the step
distribution to allow for the existence of very large degrees, as well as the fact that the
degree sequence may be supported on an lattice with step different than 1. This prevents
us from using classical results such as Berry-Esseen Theorem (see [7, Theorem 3.4.9]).
Our goal is to develop a precise local limit theorem which will allow us to deal with our
step distributions. Our result is based on previous local limit theorems by Doney [5] and
Mukhin [22, 21] from which we derive more explicit error bounds. In particular the main
result of this section is following,

Theorem 4.1. Let X1, X2, . . . , Xt be independent and identically distributed random
variables with step h and taking values on L(v0, h) for some v0 ∈ N. Define St =

∑t
i=1Xi.

Suppose that µ = E(X1) = 0, σ2 = Var(X1) and γ = E|X1|3, and let ϕ(s) be the
characteristic function of X1. Then,

sup
w∈L(tv0,h)

∣∣∣∣P(St = w)− h√
2πtσ2

exp

(
− w2

2tσ2

)∣∣∣∣ ≤ 32hγ

σ4t
+
h

π

∫ π
h

σ2

4γ

|ϕ(s)|tds. (4.1)
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To prove this theorem, we will require the following Fourier inverse theorems.

Theorem 4.2 (Continuous Fourier Inverse Theorem [7, Theorem 3.3.5]). Suppose that X
is a random variable with characteristic function ϕX(s). Suppose further that ϕX(s) is
integrable, then X is a continuous random variable with density function f(y) defined by

f(y) =
1

2π

∫
R

e−isyϕX(s)ds.

Theorem 4.3 (Discrete Fourier Inverse Theorem [7, Exercise 3.3.2 (ii)]). Let X be a
random variable with characteristic function ϕX(s). Suppose that there exists h > 0

such that P(X ∈ hZ) = 1. Then for any a ∈ hZ,

P(X = a) =
h

2π

∫ π
h

−πh
e−isaϕX(s)ds.

As we are interested in local limit theorems it will be useful to note that the charac-
teristic function of the standard normal distribution is given by N(s) = e−

s2

2 . We will use
next lemma that bounds the pointwise difference between the characteristic function of
a sum of independent random variables (suitably renormalized), with N(s).

Lemma 4.4 ([24, Page 109, Lemma 1]). Let X1, . . . , Xt be independent random variables
such that for every i ∈ [t], E(Xi) = 0, σ2

i = Var(Xi) and γi = E|Xi|3. Define

Bt :=

t∑
i=1

σ2
i , Lt := B

−3/2
t

t∑
i=1

γi, Tt := B
−1/2
t

t∑
i=1

Xi .

Let ft(s) be the characteristic function of Tt. Then,

|ft(s)−N(s)| ≤ 16Lt|s|3e−
s2

3 for |s| ≤ 1

4Lt
. (4.2)

Proof of Theorem 4.1. Let ϕ(s) be the characteristic function of X1 and ψt(s) the char-
acteristic function of St. By basic properties of characteristic functions, it is easy to see
that ψt(s) = ϕ(s)t. By Theorems 4.2 and 4.3 we may deduce that

P(St = w)− h√
2πtσ2

exp

(
− w2

2tσ2

)
=

h

2π

∫ π
h

−πh
e−isw(ψt(s)−N(sσ

√
t))ds− h

π

∫ ∞
π
h

e−iswN(sσ
√
t)ds.

Therefore, by applying various forms of the triangle inequality we obtain the bound

|P(St = w)− h√
2πtσ2

exp

(
− w2

2tσ2

)∣∣∣∣
≤ h

2π

∫ π
h

−πh
|ψt(s)−N(sσ

√
t)|ds+

h

π

∫ ∞
π
h

N(sσ
√
t)ds.

(4.3)

To bound the first integral in (4.3) we split it into three parts. For ε > 0 (which we shall
pick later) we have∫ π

h

−πh
|ψt(s)−N(sσ

√
t)|ds ≤

∫ ε

−ε
|ψt(s)−N(sσ

√
t)|ds+ 2

∫ π
h

ε

N(sσ
√
t)ds+ 2

∫ π
h

ε

|ϕ(s)|tds

(4.4)
This bound is useful because both ψt(s) and N(sσ

√
t) only contribute a non-trivial amount

to the left hand side of (4.4) for s very close to 0.
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In bounding the first integral of (4.4) we will use Theorem 4.4, which is applicable in
our setting. Rescaling we can write (4.2) as

|ψt(s)−N(sσ
√
t)| ≤ 16γt|s|3e− t

2σ2s
3 for |s| ≤ σ2

4γ
.

So, for any ε ≤ σ2/(4γ) we have∫ ε

−ε
|ψt(s)−N(sσ

√
t)|ds ≤ 16γt

∫ ε

−ε
|s|3e− s

2σ2t
3 ds

≤ 16γt

∫ ∞
−∞
|s|3e− s

2σ2t
3 ds

=
16γ

σ4t

∫ ∞
−∞
|s|3e− s

2

3 ds =
144γ

σ4t
. (4.5)

The next step is to bound the second term of (4.4). Note that we can combine this with
bounding the second term of (4.3), so we need to give an upper bound on∫ ∞

ε

N(sσ
√
t)ds =

1

σ
√
t

∫ ∞
εσ
√
t

e−
s2

2 ds =

√
2π

σ
√
t
P(N (0, 1) > εσ

√
t). (4.6)

We use the Chernoff’s bound for the standard normal distribution, P(N (0, 1) > x) ≤ e− x
2

2

and the simple inequality e−x ≤ x−1/2 for x > 0, to obtain∫ ∞
ε

N(sσ
√
t)ds =

√
2π

σ
√
t
P(N (0, 1) > εσ

√
t) ≤ 2

√
π

εσ2t
(4.7)

Choosing ε = σ2/(4γ) and combining (4.3), (4.4), (4.5) and (4.7), we find that for any
w ∈ L(tv0, h),∣∣∣∣P(St = w)− h√

2πtσ2
exp

(
− w2

2tσ2

)∣∣∣∣ ≤ (72

π
+

16√
π

)
hγ

σ4t
+
h

π

∫ π
h

σ2

4γ

|ϕ(s)|tds

≤ 32hγ

σ4t
+
h

π

∫ π
h

σ2

4γ

|ϕ(s)|tds, (4.8)

concluding the proof of the theorem.

For the remainder of this section we will focus on bounding the integral term in
the RHS of (4.1), thus proving Theorem 2.2. To this end we introduce the parameter
HM (X), which generalises a similar parameter introduced by Mukhin [21, 22]. For an
integer-valued random variable X, we define X∗ = X −X ′ to be the symmetrisation of
X, where X ′ is an independent copy of X. Furthermore, for α ∈ R define 〈α〉 to be the
distance from α to the nearest integer. Then for a random variable X and m ∈ R we
define the following parameter

H(X,m) := E〈X∗m〉2.

The parameter H(X,m) measures in a certain sense how close is X∗ to be a random
variable supported on a lattice with step 1/|m| centered at the origin.

Additionally, for m ∈ R we define

D(X,m) := inf
α∈R

E〈(X − α)m〉2 = inf
α∈R

E〈mX − α〉2. (4.9)

Here D(X,m) measures how close is X to be a random variable supported on a transla-
tion of the lattice with step 1/|m|

The following lemma from [21] will be useful.
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Lemma 4.5. If ϕ(s) is the characteristic function of the random variable X then

4H
(
X,

s

2π

)
≤ 1− |ϕ(s)| ≤ 2π2H

(
X,

s

2π

)
(4.10)

We provide a full proof of the statement, for the sake of completeness.

Proof. We look at the characteristic function of X∗, ϕ∗(s). Note that X∗ is by definition
symmetric around the origin and hence so is ϕ∗(s). Writing D(X∗) for the domain of X∗

which is discrete, we have

ϕ∗(s) =
ϕ∗(s) + ϕ∗(−s)

2
=

∑
x∈D(X∗)

eisx + e−isx

2
P(X∗ = x) =

∑
x∈D(X∗)

cos(sx)P(X∗ = x).

(4.11)
As cos(x) is symmetric around π and periodic with period 2π, we have the identity

cos(x) = cos
(

2π
〈 x

2π

〉)
.

We can use this identity to rewrite (4.11) as

ϕ∗(s) =
∑

x∈D(X∗)

cos
(

2π
〈 sx

2π

〉)
P(X∗ = x). (4.12)

Consider the following bounds on cos(x) valid for x ∈ [0, π],

1− x2

2
≤ cos(x) ≤ 1− 2x2

π2
. (4.13)

As 2π
〈
y

2π

〉
∈ [0, π] for any y ∈ R, we can use (4.13) in combination with (4.12) to deduce

that

1− 2π2E

〈
X∗s

2π

〉2

≤ ϕ∗(s) ≤ 1− 8E

〈
X∗s

2π

〉2

(4.14)

Finally, by definition of X∗, note that ϕ∗(s) = ϕ(s)ϕ(−s) = |ϕ(s)|2. As |ϕ(s)| ∈ [0, 1] we
may deduce that

1− 2π2H
(
X,

s

2π

)
≤ |ϕ(s)| ≤ 1− 4H

(
X,

s

2π

)
(4.15)

which may easily be rearranged to give the statement of the lemma.

For M ∈ N and an integer-valued random variable X we define

HM (X) := inf
1

4M≤m≤
1

2M

H(X,m) (4.16)

The following results of Mukhin bound H(X,m) in terms of D(X,m) and of HM (X) for
an appropriately chosen M .

Lemma 4.6 ([22, Lemmas 1 and 5]). For any integer-valued random variable X, and
m ∈ R

D(X,m) ≤ H(X,m) ≤ 4D(X,m) . (4.17)

Moreover, for any q ∈ [0, 1] and d ∈ R, we have

H(X, qd) ≥ q2

4
inf

1≤λ≤2
H(X,λd) =

q2

4
H1/4d(X). (4.18)
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Note that (4.18) trivially holds for any q ∈ [1, 2], as the value H(X, qd) is included
in the infimum and q2/4 ≤ 1. Letting d = 1/4M and q = 4mM and using the previous
observation, (4.18) can be written as: for any 2mM ≤ 1

H(X,m) ≥ 4M2m2HM (X). (4.19)

Proof of Theorem 2.2. We will apply Theorem 4.1 and use Theorem 4.5 to give an explicit
upper bound on the integral term in (4.1) as follows. Recall that X1 is integer-valued
with step h. By Theorem 4.5 and using ln(1/x) ≥ 1− x for x > 0,∫ π

h

σ2

4γ

|ϕ(s)|tds ≤
∫ π

h

σ2

4γ

e−t(1−|ϕ(s)|)ds ≤
∫ π

h

σ2

4γ

e−4tH(X, s2π )ds. (4.20)

Now, note that the upper limit of the integral in (4.20) is π/h. So, as (π/h)/(2π) = 1/(2h)

we may apply Lemma 4.6 in the form of (4.19) with M = h and m = s/2π ≤ 1/2h (so
2mM ≤ 1) to deduce that∫ π

h

σ2

4γ

|ϕ(s)|tds ≤
∫ π

h

σ2

4γ

e−
4th2Hh(X)s2

π2 ds ≤
∫ ∞
σ2

4γ

e−
4th2Hh(X)s2

π2 ds

=
π3/2

2h(tHh(X))1/2
P

(
N (0, 1) >

σ2h(tHh(X))1/2

√
2πγ

)
≤ π3/2

2h(tHh(X))1/2
e
−σ

4h2tHh(X)

4π2γ2 , (4.21)

where the final inequality follows by the Chernoff’s bound. This allows us to deduce,
once again using the inequality e−x < x−1/2, that this integral is bounded above as∫ π

h

σ2

4γ

|ϕ(s)|tds ≤ π5/2γ

h2σ2tHh(X)
,

concluding the proof of the theorem.

To give an explicit upper bound on the error probability, we need to deduce that
Hh(X1) is bounded from below. For x = (x1, x2, . . . , xk) ∈ Zk, define

w(x) := max
i6=` 6=j

|xi − x`|
gcd(|xi − x`|, |xj − x`|)

.

Then the fact that Hh(X1) is bounded from below is implied by the following lemma,

Lemma 4.7. Let X be an integer valued random variable with step h and with atoms
x1, . . . , xk. Then there exists an absolute constant C > 0 such that

Hh(X) ≥ C ·
mini∈[k]P(X = xi)

k(w(x)h)2
(4.22)

Proof. By (4.17), we have that

Hh(X) ≥ min
1/4h≤d≤1/2h

D(X, d)

For all x ∈ Zk and β, d ∈ R, define

S(x, β, d) :=

k∑
i=1

〈β + xid〉 (4.23)
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Cauchy-Schwartz’s inequality implies that

D(X, d) := inf
α∈R

E〈(X − α)d〉2

= inf
β∈R

k∑
i=1

〈β + xid〉2P(X = xi)

≥ min
i∈[k]

P(X = xi) inf
β∈R

k∑
i=1

〈β + xid〉2

≥
mini∈[k]P(X = xi)

k
inf
β∈R

S(x, β, d)2. (4.24)

It thus suffices to bound the infimum of S when x and d are fixed. The derivative of S
with respect to β satisfies the following properties:

(i) it is well defined for all β such that 〈β + xid〉 6∈ {0, 1/2} for all i ∈ [k];

(ii) it is constant between any two consecutive values at which the derivative is
undefined;

(iii) it takes integer values in {−k, . . . , k} anywhere where it is defined.

Thus, the minimum of S is attained at β0, for which the derivative is not defined. By
relabelling the xi, we may assume that 〈β0 + xkd〉 ∈ {0, 1/2}. If 〈β0 + xkd〉 = 1/2, then
infβ∈R S(x, β, d)2 ≥ 1/2 and plugging it in (4.24) we obtain

Hh(X) ≥ D(X, d) ≥
mini∈[k]P(X = xi)

2k

and as h,w(x) ≥ 1, (4.22) holds.
So we may assume that 〈β0 + xkd〉 = 0, and, in fact, we can choose β0 = −xkd. For

i ∈ [k − 1], define yi := xi − xk. Since X has step h, the xi are not all contained in a
non-trivial arithmetic progression and gcd(y1, y2, . . . , yk−1) = h. By a simple extension
of Bézout’s Lemma there exist λi ∈ Z with |λi| ≤ w(x)h for all i ∈ [k − 1] and λ1y1 +

λ2y2 + . . . + λk−1yk−1 = h. Now, using the identities 〈mβ〉 ≤ |m|〈β〉 for any m ∈ Z and
〈β1 + β2〉 ≤ 〈β1〉+ 〈β2〉, we obtain

inf
β∈R

S(x, β, d) =

k∑
i=1

〈β0 + xid〉 =

k−1∑
i=1

〈yid〉 ≥
k−1∑
i=1

〈λiyid〉
|λi|

≥

〈
k−1∑
i=1

λiyid

〉
w(x)h

=
〈hd〉
w(x)h

(4.25)

Observing that 〈hd〉 = hd for all d ≤ 1/2h, we obtain,

Hh(X) ≥ min
1/4h≤d≤1/2h

D(X, d)

≥ min
1/4h≤d≤1/2h

mini∈[k]P(X = xi)

k

(
〈hd〉
w(x)h

)2

=
mini∈[k]P(X = xi)

16k(w(x)h)2
.

5 Proof of Theorem 1.12

In this section we prove Theorem 1.12. This show that the upper bound in Theorem 1.8
cannot be vastly improved; in particular the order is tight for some sequences with Q < 0.
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Given ε ∈ (0, 1) and ∆ = ∆(n) = o(
√
n) with log n = o(∆), define

` =
⌊
(1− ε) n

∆2

⌋
. (5.1)

Consider the degree sequence d̂n that contains n− ` vertices of degree 1 and ` vertices
of degree ∆. We may assume that the sum of the degrees is even, otherwise we may
add another vertex of degree 1. For the sake of simplicity, we will omit the floor in the
definition of `. Straightforward computations show that m = (1 +O( 1

∆ ))n and Q ∼ −ε.
Let L ⊆ [n] denote the set of vertices of degree ∆. Let G∗ be the random subgraph

induced by CMn(d̂n) on L. Let G(L, p) be the Erdős-Rényi random graph on the vertex
set L, where each edge in

(
L
2

)
is chosen independently with probability p. Let P∗(·) and

Pp(·) be the probability measures on (multi)graphs with vertex set L associated to G∗
and G(L, p), respectively, and let E∗ [·] and Ep [·] the expected value operator defined in
these probability spaces.

We briefly sketch the proof. Most of the half-edges in d̂n are incident to vertices of
degree 1. So typically, all vertices in L will pair most of their half-edges with the ones
incident to V \ L and the order of the largest component in CMn(d̂n) will be of order
at least ∆L1(G∗). To estimate L1(G∗), we will show that G∗ behaves like G(L, p∗) with

p∗ := ∆2

n = (1−ε)
` . Classic results on the subcritical regime of random graphs will give

lower bounds for L1(G(L, p∗)) that also apply to L1(G∗). We will finally use Eq. (1.9) to
transfer the lower bound on the largest component from CMn(d̂n) to Gn(d̂n).

Precisely, we will show that certain small subgraphs in G∗ appear with the same
probability as in G(L, p∗). Let Zs be the number of isolated trees of size s in G∗. Paley-
Zygmund’s inequality implies

P∗(Zs > 0) ≥ E∗ [Zs]
2

E∗ [Z2
s ]

. (5.2)

Lemma 5.1. For every s = O(log `) we have,

E∗ [Zs] = (1 + o(1))Ep∗ [Zs]

E∗
[
Z2
s

]
= (1 + o(1))Ep∗

[
Z2
s

]
.

Proof. Choose S ⊂ L with |S| = s and any tree T with V (T ) = S. Let AT be the event
that S induces an isolated copy of T in L, which can be defined for G∗ and G(L, p).

Fix an arbitrary ordering of E(T ), e1, . . . , es−1. A realisation of T is a set of pairs of
half-edges {a1b1, . . . , as−1bs−1} such that the endpoints of ei are the vertices incident to
ai and bi. Let k(T ) be the number of realisations of T . If d1, . . . , ds is the degree sequence
of T , then

∑s
i=1 di = 2(s− 1) and

k(T ) =

s∏
i=1

∆!

(∆− di)!
= ∆2(s−1)

s∏
i=1

(
1 +O

( s
∆

))
= (1 + o(1))∆2(s−1) , (5.3)

since s2 = o(∆).

The event AT admits a partition into k(T ) subevents A1
T , . . . , A

k(T )
T depending on the

realisation of T . For i ∈ [k(T )], P∗(AiT ) is equal to the probability that CMn satisfies:

(P1) the i-th realisation of T is in CMn;

(P2) for every u ∈ S and every incident half-edge a not in the i-th realisation, a is paired
in CMn to a half-edge incident to V \ L.
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For i ∈ [k], consider the i-th realisation of T , let (ai1b
i
1, . . . , a

i
s−1b

i
s−1) be a sequence of

pairings (a pairing is a pair of half-edges that have been matched in CMn) corresponding
to E(T ) and let (āisb̄

i
s, . . . , ā

i
r b̄
i
r) (where r = s(`− s) +

(
s
2

)
) be a sequence of all pairs that

are not a pairing and have at least one half-edge in S (we will assume āij is always
incident to S). Let Bj be the event that ailb

i
l is a pairing for all l ≤ j ∧ (s− 1) and āil b̄

i
l is

not a pairing for all s ≤ l ≤ j.
We can write

P∗(AT ) =

k(T )∑
i=1

s−1∏
j=1

P(aijb
i
j ∈ E(CMn) | Bj−1)

r∏
j=s

P(āij b̄
i
j /∈ E(CMn) | Bj−1) (5.4)

We first estimate the probability of (P1) given by the first product in (5.4). Each term on
the first product in Eq. (5.4) is 1

m−O(s) =
(
1 +O( sm + 1

∆ )
)

1
n ; so the first product is

s−1∏
j=1

P(aijb
i
j ∈ E(CMn) | Bj−1) =

(
1 +O

(
s2

m
+
s

∆

))
1

ns−1 (5.5)

In order to estimate the probability of (P2), which is given by the second product
in Eq. (5.4), we compute the probability that each half-edge a incident to S is not paired
with half-edges in L. There are exactly s∆−2(s−1) such events, and each has probability
1− `∆−O(s∆)

m+O(s∆) =
(
1− `∆

n

) (
1 +O( s∆+`

n )
)
. Thus, we have

r∏
j=s

P(āij b̄
i
j /∈ E(CMn) | Bj−1) =

(
1− `∆

n

)s∆−2(s−1)(
1 +O

(
s∆ + `

n

))s∆

=

(
1− ∆2

n

)s`
eO(s/`+s/∆)

(
1 +O

(
s2

`
+
s

∆

))
= (1 + o(1)) (1− p∗)r−s+1

, (5.6)

where we used that (1− x/N)y = (1− y/N)xeO((x2y+y2x)/N2) with x = `, y = ∆, N = n/∆,
and that s = o(∆), s2 = o(`).

Plugging Eqs. (5.3), (5.5) and (5.6) into Eq. (5.4), we obtain

P∗(AT ) = (1 + o(1))ps−1
∗ (1− p∗)r−s+1 = (1 + o(1))Pp∗(AT ) .

Adding over all sets S ⊂ L with |S| = s and over all trees T with V (T ) = S, we obtain
the first part of the lemma.

For the second part, choose S, S′ ⊂ [m] with |S| = |S′| = s and any pair of trees T and
T ′ with V (T ) = S and V (T ′) = S′. Note that P∗(AT , AT ′) = 0 unless S = S′ and T = T ′,
or S ∩ S′ = ∅. Suppose we are in the latter case, and let r = 2s(m− 2s) +

(
2s
2

)
. Following

similar computations as the ones we did for a single tree, we obtain

P∗(AT , AT ′) = (1 + o(1))Pp∗(AT , AT ′) ,

and adding over all pairs of sets and trees supported on these sets, the second part also
follows.

The moments of Zs in G(L, p) are well-studied in random graph theory. Let Iλ = λ−
1− lnλ be the large deviation rate function for Poisson random variables with mean λ > 0.
For λ = 1− ε, any a < (Iλ)−1 and s0 = ba log `c, we have Ep∗

[
Z2
s0

]
= (1 + o(1))Ep∗ [Zs0 ]

2

(see e.g. Lemma 2.12(i) in [10]). Combining this with Theorem 5.1 and Eq. (5.2), G∗ has
with high probability an isolated tree of size s0. As every vertex in L has degree ∆, there
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are exactly ∆s0 − 2(s0 − 1) vertices of degree 1 that attach to the given tree. Therefore,
there exists a component in CMn(d̂n) of order (1 + o(1))∆s0.

Observe that Iλ = ε2

2 +O(ε3) and since Q ∼ −ε, we have Iλ ∼ Q2

2 . As E
[
D2
]

= O(1)

and R ∼ ∆, we can use Theorem 1.7 to deduce that

L1(Gn(d̂n)) ≥ (1 + o(1))∆s0 ≥ (1 + o(1))
2R

Q2
log
( n

R2

)
,

with probability 1− o(1). This concludes the proof of the proposition.

Remark 5.2 (Concentration of L1(Gn(dn))). Theorem 1.12 imposes the condition ∆ =

o(
√
n), or equivalently `→∞ as n→∞. If ∆ is of order

√
n, it is easy to check that the

probability that G∗ = H is bounded away from 0 for every H of order `. Since the size of
the largest component is asymptotically equal to ∆L1(G∗), L1(CMn(d̂n)) and L1(Gn(d̂n))

are not concentrated.

Remark 5.3 (The case Q = o(1)). The largest component of Erdős-Rényi is well-studied
in the barely subcritical regime (see e.g. Theorem 5.6 in [17]). If p = 1−ε(`)

` with ε(`) > 0

and `−1/3 � ε(`)� 1, then

L1(G(`, p)) ∼ 2ε2 log(ε3`) . (5.7)

Let ` = (1 − ε(n)) n
∆2 and define the degree sequence d̂n as before. Again, Q ∼ −ε

and R ∼ ∆. In particular ∆|Q| = o(R) holds.
Set p = 1−ε(n)

` . The same argument as in the proof of Theorem 1.12 and Eq. (5.7)
gives

L1(Gn(d̂n)) ≥ ∆L1(G(`, p))

≥ (1 + o(1))
2∆

ε2
log

(
ε3n

∆2

)
≥ (1 + o(1))

2R

Q2
log

(
|Q|3n
R2

)
.

(5.8)

The condition ε(`)� `−1/3 for Eq. (5.7) is equivalent to Q ≤ −ω(n)n−1/3R2/3, for some
ω(n)→∞.
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