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On the largest and the smallest singular value of
sparse rectangular random matrices*†
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Abstract

We derive estimates for the largest and smallest singular values of sparse rectangular
N × n random matrices, assuming limN,n→∞

n
N

= y ∈ (0, 1). We consider a model
with sparsity parameter pN such that NpN ∼ logαN for some α > 1, and assume
that the moments of the matrix elements satisfy the condition E |Xjk|4+δ ≤ C < ∞.
We assume also that the entries of matrices we consider are truncated at the level
(NpN )

1
2
−κ with κ := δ

2(4+δ)
.
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1 Introduction

In the last five to ten years, significant progress has been made in studying the
asymptotic behavior of the spectrum of sparse random matrices. A typical example of
such matrices is the incidence matrix of a random graph. Thus, for Bernoulli matrices
Konstantin Tikhomirov obtained exact asymptotics for the probability of singularity,
see [14]; also, see [9]. For the adjacency matrix of Erdös-Renyi random graphs, H.-T.
Yau and L. Erdös & Co. proved a local semicircular law and investigated the behavior of
the largest and the smallest singular values and as well as eigenvector statistics, see
the papers of [2, 4] and the literature therein. In particular for adjacency matrices of
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Extremal singular value of sparse rectangular random matrices

regular graphs, local limit theorems and the behavior of extremal eigenvalues were
investigated by H.-T. Yau and co-authors [1]. For non-Hermitian sparse random matrices
M. Rudelson and K. Tikhomirov proved the circular law under unimprovable conditions
on the probability of sparsity and the moments of distributions of the matrix elements
(see [12]). J.O. Lee and J.Y. Hwang studied the spectral properties of sparse sample
covariance matrices, which includes adjacency matrices of the bipartite Erdös–Renyi
graph model). In [7] the authors prove a local law for the eigenvalues density up to the
upper spectral edge assuming that sparsity probability p has order N−1+ε for some ε > 0

(here N denotes the growing order of the matrix) and entries of matrix Xij are i.i.d. r.v.’s
such that (in our notations)

E |X11|2 = 1 and E |X11|q ≤ (Cq)cq for every q ≥ 1. (1.1)

They also prove the Tracy-Widom limit law for the largest eigenvalues of sparse sample
covariance matrices. However, in the proof of the local Marchenko-Pastur law and the
Tracy-Widom limit, they assume a priori that the result of [3, Lemma 3.11] holds for
sparse matrices (see [7, Proposition 2.13]), which includes, in particular, the bounded-
ness of the largest singular value (that is the operator norm) of a sparse matrix. They
don’t investigate the smallest singular value of sparse rectangular matrices though.

We derive bounds for the smallest and the largest singular values of sparse rectan-
gular random matrices assuming that the probability pN decreases in such a way that
NpN ≥ log

2
κ N for some κ > 0, and that the moment conditions are weaker than those

in (1.1) (see condition (1.6)). Our main result is devoted to the smallest singular value of
a sparse rectangular random matrix from an ensemble of dilute Wigner type matrices.

Suppose n ≥ 1 and N > n. Consider independent identically distributed zero mean
random variables Xjk, 1 ≤ j ≤ N , 1 ≤ k ≤ n with EX2

jk = 1 (where the distribution of
Xjk may depend on N ), which are independent of a set of independent Bernoulli random
variables ξjk, 1 ≤ j ≤ N , 1 ≤ k ≤ n, with E ξjk = pN . In what follows we shall simplify
notation by denoting p = pN . We now introduce the following model of dilute sparse
matrices as a sequence of random matrices of the following type

X = (ξjkXjk)1≤j≤N,1≤k≤n. (1.2)

Denote by s1 ≥ · · · ≥ sn the singular values of X, and let Y = X∗X denote the sample
covariance matrix.

Put y = y(N,n) = n
N . We shall assume that y(N,n) → y0 < 1 as N,n → ∞. In what

follows we shall vary the parameter N only.

Theorem 1.1. Let EXjk = 0 and E |Xjk|2 = 1. Suppose that there exists a positive
constant C > 0 such that

E |Xjk|4+δ ≤ C <∞, (1.3)

for any j, k ≥ 1 and for some δ > 0. Suppose also that there exists a positive constant B,
such that

Np ≥ B log
3

2κ N, (1.4)

where κ = δ
2(4+δ) .

Then for every Q ≥ 1 and A > 0 there exists a constant K = C(Q, δ, µ4+δ, A,B) such
that

Pr{ s1 ≥ K
√
Np} ≤ CN−Q+N2pPr{|X11| > A(Np)

1
2−κ lnN}.

Theorem 1.2. Let EXjk = 0 and E |Xjk|2 = 1. Suppose that

E |X11|4 = µ4 <∞,
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Extremal singular value of sparse rectangular random matrices

and there exists a positive constant B, such that

Np ≥ B log2N. (1.5)

Then there exists a constant τ0 > 0 such that for every τ ≤ τ0, Q ≥ 1 and K > 0 there
exists a constant C = C(Q,µ4,K,B) with

Pr{ sn ≤ τ
√
Np} ≤ CN−Q+ Pr{s1 > K

√
Np}.

These results immediately imply the following corollary.

Corollary 1.3. Under conditions of Theorem 1.1 there exist a constant τ0 > 0 such that
for any τ ≤ τ0 and for any A > 0 there exists a constant C = C(A, δ) depending on A and
δ such that the following inequality holds

Pr{ sn ≤ τ
√
Np} ≤ CN−Q+N2pPr{|X11| > A(Np)

1
2−κ lnN}.

Corollary 1.4. Assume the conditions of Theorem 1.1. In addition assume that there
exists a constant B such that for every N ≥ 1

p = pN ≥ B/ ln4N.

Then

Pr{ s1 ≥ K
√
Np} ≤ CN−Q +

C

lnδ N
.

Proof. Applying Markov’s inequality, we obtain

Pr{|X11| > A(Np)
1
2−κ lnN} ≤ µ4+δ

(Np)2 ln4+δ N
.

By the conditions of Corollary 1.4, we get

Pr{|X11| > A(Np)
1
2−κ lnN} ≤ µ4+δ

N2B4+δ lnδ N
.

The result follows now immediately from theorem 1.1. Thus, Corollary 1.4 is proved.

We may consider random variables Xij for i = 1, . . . , N ; j = 1, . . . , n, with identical
distributions depending on N . In this case we have the following result.

Corollary 1.5. In addition to conditions of Theorem 1.1 assume that for any q such that
4 + δ ≤ q ≤ C log n

E |X11|q ≤ Cq0qq(Np)q(
1
2−κ)−2. (1.6)

Then for every Q ≥ 1 and A > 0 there exist constants K = K(Q, δ, µ4+δ, A) and C =

C(Q, δ, µ4+δ, A) such that

Pr{ s1 ≥ K
√
Np} ≤ CN−Q.

and there exists a constant τ0 > 0 such that for every τ ≤ τ0, Q ≥ 1 there exists a
constant C = C(Q, δ, µ4+δ)

Pr{ sn ≤ τ
√
Np} ≤ CN−Q (1.7)
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Extremal singular value of sparse rectangular random matrices

2 Proof of Theorem 1.1

Let X̃ij denote truncated random variables Xij , i.e.

X̃ij = XijI{|Xij | ≤ A(Np)
1
2−κ lnN},

where I{B} denotes the indicator of an event B. Let X̃ denote the matrix with entries
ξijX̃ij . By ‖A‖ we denote the operator norm of a matrix A. First we estimate the spectral

norm of the matrix E X̃. Since Xij and ξij are identically distributed random variables
we have

‖E X̃‖ = np|E X̃11|.

By condition (1.3), we have

|E X̃11| = |EX11I{|X11| > A(Np)
1
2−κ lnN}| ≤ C

A3(Np)
3
2+κ .

From here we get the bound

‖E X̃‖ ≤ CA−3(Np)−
1
2−κ . (2.1)

We consider now the centered and truncated random variables X̂ij = X̃ij − E X̃ij for

i = 1, . . . N, j = 1, . . . n, and the matrix X̂ = (ξijX̂ij). Let ŝ1 ≥ ŝ2 . . . ≥ ŝn denote the

singular values of the matrix X̂ and resp. let s̃1 ≥ s̃2 . . . ≥ s̃n denote the singular values
of the matrix X̃. Note that

Pr{s1 6= s̃1} ≤ Pr{X 6= X̃} ≤
N∑
i=1

n∑
j=1

pPr{X̃ij 6= Xij}

= nNpPr{|X11| > A(Np)
1
2−κ lnN}.

Furthermore, we have
s̃1 ≤ ŝ1 + ‖E X̃‖.

According to (2.1) we may assume that

‖E X̃‖ ≤ γ
√
Np

for sufficiently small γ > 0. We may write now

Pr{s1 > K
√
Np} ≤ Pr{ŝ1 >

1

2
K
√
Np}+N2pPr{|X11| > A(Np)

1
2−κ lnN}.

Note that

σ̂2
n = E X̂2

11 = E(X̃11)2 − (E X̃11)2

= 1− EX2
11I{|X11| > A(Np)

1
2−κ lnN} − (EX11I{|X11| > A(Np)

1
2−κ lnN})2.

It is easy that

|1− σn| ≤ |1− σ2
n| ≤

2µ4+δ

A2+δ(Np)(2+δ)(
1
2−κ)

.

Without loss of generality we may assume that σn ≥ 1
2 . Consider now the matrix

X̆ = 1
σn

X̂. Let s̆1 denote the largest singular value of the matrix X̆. Then

Pr{ŝ1 > K
√
Np} ≤ Pr{s̆1 > 2K

√
Np}.

During the rest of the proof of Theorem 1.1 we shall consider the matrix X with
entries ξijXij , i = 1, . . . , N j = 1, . . . , n satisfying the following conditions (CI):
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Extremal singular value of sparse rectangular random matrices

• ξij are independent Bernoulli r.v.’s with E ξij = p (= pN );

• Xij are i.i.d. r.v.’s for 1 ≤ i ≤ N, 1 ≤ j ≤ n, such that EX11 = 0, E |X11|4+δ ≤ µ4+δ

and
|X11| ≤ A(Np)

1
2−κ lnN a.s.

We use the following result of Seginer (see [13, Corollary 2.2]).

Proposition 2.1. There exists a constant A such that for any N,n ≥ 1, any q ≤
2 log max{n,N}, and any N × n random matrix X = (Xij) where Xij are i.i.d. zero
mean random variables, the following inequality holds:

max
{
E max

1≤i≤N
‖Xi·‖q2,E max

1≤j≤n
‖X·j‖q2

}
≤ E ‖X‖q

≤ (2A)q
(
E max

1≤i≤N
E ‖Xi·‖q2 + max

1≤j≤n
‖X·j‖q2

)
.

Here Xi·, resp. X·j , denote the i-th row, resp. the j-th column of X.

Proof of Theorem 1.1. Note that s1 = ‖X‖. Using the notations introduced above, we
now estimate E ‖Xi·‖q. By the definition of X we have

E ‖Xi·‖q2 = E
( n∑
k=1

X2
ikξik

) q
2 ≤ 2q−1

( n∑
k=1

EX2
ikξik

) q
2

+ 2q−1E
∣∣∣ n∑
k=1

(X2
ik − 1)ξik

∣∣∣ q2 . (2.2)

Note that
EX2

ikξik = p. (2.3)

Now, applying Rosenthal’s inequality we get

E

∣∣∣ n∑
k=1

(X2
ik − 1)ξik

∣∣∣ q2 ≤ Cq(q q4( n∑
k=1

E(X2
ik − 1)2ξik

) q
4

+ q
q
2 p

n∑
k=1

E |X2
ik − 1|

q
2

)
, (2.4)

which implies

E

∣∣∣ n∑
k=1

(X2
ik − 1)ξik

∣∣∣ q2 ≤ Cq(q q4 (Np)
q
4 + q

q
2NpE |X11|q

)
. (2.5)

By assumptions (CI), we have

E |X11|q ≤ Cq(Np)
q
2−qκ−2 lnq−4−δ N. (2.6)

Note that for q ∼ lnN inequality (2.6) coincide with condition (1.6). Combining inequali-
ties (2.2)–(2.6), we now get

E ‖Xi·‖q2 ≤ Cq(Np)
q
2

(
1 +

(
q

Np

) q
4

+N−1p−1 ln−(4+δ)N

(
q ln2N

(Np)2κ

) q
2 )
.

Taking into account (1.4), as well as q ≤ C log n, we obtain, for q ≤ 2 log max{n,N},

E ‖Xi·‖q2 ≤ Cq(Np)
q
2 .

A similar bound holds for E ‖X·j‖q. We may now write

E ‖X‖q ≤ CqN(Np)
q
2 .

Taking K � C and applying Markov’s inequality, the claim follows. Thus Theorem 1.1 is
proved.
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3 Smallest singular values

We shall now prove Theorem 1.2 using an approach developed by Litvak, Pajor,
Rudelson [8], Rudelson and Vershynin in [10] for rectangular matrices for the case p = 1

and Götze and Tikhomirov in [5] for the sparse dilute Wigner matrices. Denote by S(n−1)
the unit sphere in Rn. Let x = (x1, . . . , xn) ∈ S(n−1) be a fixed unit vector and X be a
matrix defined in (1.2).

We divide the vectors on the sphere into two parts: compressible and incompressible
vectors recalling the definition.

Definition 3.1. Let δ, ρ ∈ (0, 1). A vector x ∈ Rn is called sparse if |supp(x)| ≤ δn. A
vector x ∈ S(n−1) is called compressible if x is within Euclidean distance ρ from the set of
all sparse vectors. A vector x ∈ S(n−1) is called incompressible if it is not compressible.
The sets of compressible and incompressible vectors will be denoted by Comp(δ, ρ) and
Incomp(δ, ρ).

Note that
sn = inf

x∈S(n−1)
‖Xx‖2

and

Pr{sn ≤ τ
√
Np} ≤ Pr{ inf

x∈Comp(δ,ρ)
‖Xx‖2 ≤ τ

√
Np}+ Pr{ inf

x∈Incomp(δ,ρ)
‖Xx‖2 ≤ τ

√
Np},

(3.1)
for some δ, ρ ∈ (0, 1) and τ > 0, not depending on n.

For sparse matrices with p = pN → 0 as N →∞ we cannot directly estimate the first
term on the right hand side of (3.1) using the well-known two step approach of estimating
Pr{‖Xx‖2 ≤ τ

√
Np} for a fixed vector x ∈ S(n−1) followed by a union bound for the some

ε-net of Comp(δ, ρ) and arriving at a bound for the infimum of x ∈ Comp(δn, ρ) with
δn ∼ p going to zero. The Rudelson-Vershynin methods for incompressible vectors won’t
work in this case. In order to estimate Pr{infx∈Comp(δ,ρ) ‖Xx‖2 ≤ τ

√
Np} with some δ > 0

which does not not depend on n, we shall use a method developed in Götze-Tikhomirov
[5]. This is based on a recurrence approach which allows us to increase δN step by step
Np times arriving in logN steps at an estimate of δ > δ0 which does not depend on N .
The details of this approach will be described in Section 3.1.

In Section 3.3 we shall derive bounds for Pr{infx∈Incomp(δ,ρ) ‖Xx‖2 ≤ τ
√
Np}.

3.1 Compressible vectors

Let L be an integer such that(
δ0Np

| log p|+ 1

)L−1
≤ p−1 ≤

(
δ0Np

| log p|+ 1

)L
, (3.2)

where δ0 ∈ (0, 1) denotes some constant independent on N . Note that under the
conditions of Theorem 1.2

L ≤ c logN/ log logN

with a constant c = c(δ0). We introduce a set of numbers pνN and δνN , for ν = 1, . . . , L,
as follows

pνN = (Np)δν−1N and δνN = δ0pνN/(1 + | log pνN |).
Here

p0N = p and δ0N = δ0p/(1 + | log p|).
Furthermore, introduce as well

p̂νN =

(
Npδ0

| log p|+ 1

)ν
p and δ̂νN :=

(
δ0Np

| log p|+ 1

)ν−1
δ0p

| log p|+ 1
.
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Lemma 3.2. The following inequalities hold

pν,N ≥ p̂ν

and
δν,N ≥ δ̂ν,N ,

for ν = 1, . . . , N

Proof. By condition of Theorem 1.2,

Np

1 + | ln p|
≥ B lnN.

Without loss of generality we may assume that

Npδ0
1 + | ln p|

> 1.

It is straightforward to check now that pν,N ≥ p, for ν = 1, . . . , N . In fact, for ν = 1 it is
easy. Assume that for some ν = 1, . . . , N − 1 the inequality pν−1,N ≥ p holds. Then

pν,N =
Npδ0pν−1,N

1 + | ln pn−1,N |
≥ Npδ0

1 + | ln p|
pν−1,N ≥

Npδ0
1 + | ln p|

p ≥ p.

We may write now the following inequalities

δν,N ≥
δ0

1 + | ln p|
pν,N

and

pν,N ≥
Npδ0

1 + | ln p|
pν−1,N ,

for ν = 1, . . . , N . Applying induction for the last inequality, we get, for ν = 1, . . . , N ,

pν,N ≥ p̂ν,N .

The last inequality implies that, for ν = 1, . . . , N ,

δν,N ≥
δ0

1 + | ln p|
p̂ν−1,N =

(
Npδ0

1 + | ln p|

)ν−1
pδ0

1 + | ln p|
= δ̂nu,N .

Thus, lemma is proved.

Corollary 3.3. There exist constants γ0 > 0, γ1 > 0 such that

δL,N ≥ γ0 and pLN ≥ γ1. (3.3)

Introduce the sets

Cν := Comp(δν,N , ρ), ICν := Incomp(δν,N , ρ), ν = 0, . . . , L.

Note that L ≥ 1 for Np2/(| log p|+ 1) ≤ D with some constant D. The case Np2/(| log p|+
1) ≥ D will we treated separately. In what follows we shall assume that L ≥ 1.

Definition 3.4. The Lévy concentration function of a random variable ξ is defined for
ε > 0 as

L(ξ, ε) = sup
v∈R

Pr{|ξ − v| ≤ ε}.
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Extremal singular value of sparse rectangular random matrices

By PE we denote the orthogonal projection in Rn onto a subspace E. Similarly, by PJ
we denote the orthogonal projection onto RJ, where J ⊂ {1, 2, . . . , n}.

We reformulate and prove some auxiliary results from [10] below for our sparsity
model.

First we prove an analog of [10, Lemma 3.2].

Lemma 3.5. Let x ∈ ICν , ν = 1, . . . , L. Let

ζj =

n∑
k=1

xkξjkXjk, j = 1, . . . , N.

Then there exists some absolute constant A such that

L(
1
√
p
ζj ,

ρ

2
) ≤ 1−Aρ4pνN .

Remark 3.6. For ν = L there exists some constant 0 < b < 1 such that

L(
1
√
p
ζj ,

ρ

2
) ≤ 1− b < 1.

Proof. By Lemma 3.11, there exists a set σ(x) such that for k ∈ σ(x)

1

2
√
n
≤ |xk| ≤

1√
2nδν−1,N

, and ‖Pσ(x)x‖22 ≥ ρ2.

Let
η =

∑
k∈σ(x)

xkξjkXjk/
√
p.

Note that

E η2 ≥ ρ2, E |η|4 ≤ A0(1 +
1

Nδν−1,Np
).

Without loss of generality we may assume that Nδν−1,Np ≤ 1. This implies that

E |η|4 ≤ 2A0

Nδν−1,Np
. (3.4)

Let Z = η − v. Note that
EZ2 = E η2 + v2 ≥ v2 + ρ2,

and
E η4 ≥ (E η2)2 ≥ ρ4.

Using Minkowski’s inequality, we get

E
1
4 |Z|4 ≤ E

1
4 |η|4 + v ≤ E

1
4 |η|4(1 +

v

ρ
) ≤ ρ−1

√
2E

1
4 |η|4(ρ2 + v2)

1
2 .

Using the Paley-Zygmund inequality, we get

Pr{|η − v| > ε} ≥ ρ4(E |Z|2 − ε2)2

4E |η|4(ρ2 + v2)2
≥ 1

4E |η|4
ρ4(ρ2 + v2 − ε2)2

(ρ2 + v2)2
.

The last inequality and inequality (3.4) together imply

Pr{|η − v| ≥ ε} ≥ A1ρ
4Nδν−1,Np(1−

2ε2

ρ2 + v2
).

Finally, we may write

Pr{|η − v| ≥ 1

2
ρ} ≥ 1

2
A1ρ

4pν,N .

Thus Lemma 3.5 is proved.
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For the set of sparse vectors the following lemma holds.

Lemma 3.7. The following inequality holds.

L(ξX/
√
p,

1

2
) ≤ 1− p

8µ4
.

Proof. For the proof it is enough to note that by the Paley-Zygmund inequality we have

Pr{|ξX − v| ≥ 1

2
} ≥ p 1 + v2 − ε2

4E |X|4(1 + v2)2
≥ p

8µ4
.

Lemma 3.8. Let ζ1, . . . , ζN denote independent identically distributed random variables
such that

Pr{|ζj | ≤ λn} ≤ 1− qN ,

for some λN > 0 and qN ∈ (0, 1). Then there exist constants c, C such that

Pr{
N∑
j=1

ζ2j ≤ CNqNλ2N} ≤ exp{−cNqN}.

For the proof of this lemma see [5, Lemma 4.5].
We start with the estimation of ‖Xx‖2 for a fixed x ∈ S(n−1).

Lemma 3.9. There exist positive absolute constants τ0 and c0 such that

Pr{‖Xx‖2 ≤ τ0
√
Np} ≤ exp{−c0Np}.

Proof of Lemma 3.9. The proof of this lemma may be found in [5, Lemma 4.1], but for
readers convenience we repeat it here. Let

ζj =

n∑
k=1

Xjkξjkxk, j = 1, . . . , N.

Then

‖Xx‖22 =

N∑
j=1

ζ2j .

Furthermore, we may write for τ > 0 and any t

Pr{
N∑
j=1

ζ2j ≤ τ2Np} = Pr{τ
2Np

2
− 1

2

N∑
j=1

ζ2j ≥ 0} ≤ exp{Npτ2t2/2}
N∏
j=1

E exp{−t2ζ2j /2}.

Using e−t
2/2 = E eitη, where η is a standard Gaussian random variable, we obtain

Pr{
N∑
j=1

ζ2j < τ2np} ≤ exp{Npτ2t2/2}
N∏
j=1

Eηj

n∏
k=1

EξjkXjk exp{itξjkXjkxkηj}, (3.5)

where ηj , j = 1, . . . , N denote i.i.d. Gaussian standard r.v.s and EZ denotes expectation
with respect to Z conditional on all other r.v.s.

Take α = Pr{|η1| ≤ C1} for some absolute positive constant C1 which will be chosen
later. Then it follows from (3.5) that

Pr{
N∑
j=1

ζ2j < τ2Np} ≤ exp{t2τ2Np/2}

×
N∏
j=1

(
α
∣∣∣Eηj { n∏

k=1

EξjkXjk exp{itηjxkXjkξjk}
∣∣∣|ηj | ≤ C1

}∣∣∣+ 1− α
)
.

EJP 28 (2023), paper 27.
Page 9/18

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP919
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Note that for any α, x ∈ [0, 1], and β ≤ α

1− α+ αx ≤ max{xβ ,
(β
α

) β
1−β }.

Furthermore, we have

|EξjkXjk exp{itξjkXjkxkηj}| ≤ exp{−p
2

(1− |fjk(txkηj)|2)}, (3.6)

where fjk(u) = E exp{iuXjk}. Choose a constant M > 0 such that

sup
j,k≥1

E |Xjk|2I{|Xjk| > M} ≤ 1

2
.

Since 1 − cosx ≥ 11
24x

2 for |x| ≤ 1, conditioning on the event |ηj | ≤ C1, we get for
|t| ≤ 1

MC1
,

1− |fjk(txkηj)|2 = EXkj (1− cos(txkX̃kjηj) ≥
11

24
x2kt

2η2j E |X̃kj |2I{|Xkj | ≤M}. (3.7)

Here we denote by X̃kj the symmetrization of the r.v. Xkj . It follows from (3.6) for
|t| ≤ 1/(MC1), that for |ηj | ≤ C1,

|EξjkXjk exp{itξjkXjkxkηj}| ≤ exp{−cpt2x2kη2j }. (3.8)

This implies that

|
n∏
k=1

EξkjXkj exp{itηjxkξjkXjk}| ≤ exp{−cpt2η2j }. (3.9)

We may choose C1 large enough such that following inequalities hold for |t| ≤ 1/MC1:

|Eηj{exp{−cpt2η2j }
∣∣|ηj | ≤ C1}| ≤ exp{−ct2p/24}. (3.10)

Then we obtain

Pr{
N∑
j=1

ζ2j ≤ τ2Np} ≤ exp{Npτ2t2/2}
(

exp{−cβt2Np/24}+
(β
α

)N β
1−β
)
. (3.11)

Furthermore, we may take C1 sufficiently large such that α ≥ 4
5 and choose β = 2

5 . We
get

Pr{
N∑
j=1

ζ2j ≤ τ2Np} ≤ exp{Npτ2t2/2}
(

exp{−ct2Np/60}+ 2−2N/3
)
. (3.12)

For τ < min{
√
c√
60
,
√
ln 2√
3
MC1}, we have for |t| ≤ 1/(MC1),

Pr{
N∑
j=1

ζ2j ≤ τ2Np} ≤ exp{−ct2Np/120}. (3.13)

This implies the claim. Thus the lemma is proved.
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3.2 Compressible and incompressible vectors

First we prove an analog of Lemma 2.6 from [10].

Lemma 3.10. There exist positive absolute constants δ0, τ0, c1 such that

Pr{ inf
x∈Comp(δ0N ,ρ0)

‖Xx‖2 ≤ τ0
√
Np, ‖X‖ ≤ K

√
Np} ≤ exp{−c1Np},

where

δ0N = δ0p/(| log p|+ 1), ρ0 = τ0/2K. (3.14)

Proof. Let k = [nδ0N ]. Denote by Nη an η-net on the S(k−1) ∩ Rk. Choose η = τ0/2K.
First we consider the set of all sparse vectors Sparse(k) with support(x) ≤ k. Using
Lemma 3.9 and a union bound, we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2ρ0
√
np} ≤

(
n

k

)
|Nη| exp{−c0Np}.

Using Stirling’s formula and Proposition 2.1 from [10], we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np}

≤ 4nδ0N√
2πnδ0N (1− δ0N )

(1 + K
ρ0

)nδ0N−1

δnδ0N0N (1− δ0N )n(1−δ0N )
exp{−c0Np}.

Simple calculations show

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np} ≤

√
2nδ0N

(1− δ0N )π

× exp{nδ0N
(

(1− 1

nδ0N
)
K

ρ0
− log δ0N − (1− δ0N )

1

δ0N
log(1− δ0N )

)
− c0Np}.

If we choose
δ0N := δ0p/(1 + | log p|)

for a sufficiently small absolute constant δ0, we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np} ≤ exp{−c1Np}.

Thus the Lemma is proved.

In what follows, we shall use a technique developed in Götze and Tikhomirov [5]
which is based on the following lemmas.

Lemma 3.11. Let ρ, δ ∈ (0, 1). Assume that x ∈ Incomp(δ, ρ). Then there exists a set
σ0(x) such that |σ0(x)| ≥ Cnδρ2 and 1

2
√
n
≤ |xk| ≤ 1√

nδ/2
for k ∈ σ0(x), and

∑
k∈σ0(x)

|xk|2 ≥ ρ2.

For a proof of this Lemma see for instance [11, Lemma 3.4].

Lemma 3.12. Let x ∈ ICν for some ν = 0, . . . , L− 1. Then there exist constants c1 and
c2 such that for any 0 < τ ≤ τ0

Pr{‖Xx‖2 ≤ τ
√
Np} ≤ exp{−c1Npν+1N}.
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Proof. We repeat the proof of Lemma 3.9 till (3.7).
Furthermore, by Lemma 3.11 there exists a set σ0(x) such that 1

2
√
n
≤ |xk| ≤ 1√

nδνN/2

for k ∈ σ0(x), and ∑
k∈σ0(x)

|xk|2 ≥ ρ2. (3.15)

We may write now

n∑
k=1

(1− |f(txkXjkηj)|2) ≥
∑

k∈σ0(x)

(1− |f(txkXjkηj)|2).

Note that for k ∈ σ0, and for |Xjk| ≤M , and for |ηj | ≤ C, we have

|txkXjkηj | ≤
|t|CM

√
2√

NδνN
.

Taking t = κ
√
NδνN for κ = 1

CM
√
2
, we get

|txkXjkηj | ≤ 1,

and

1− |fηj (txkXjkηj)|2 ≥
11

24
t2x2kη

2
j E |Xjk|2I{|Xjk| ≤M} ≥

11

48
t2x2kη

2
j .

Repeating now the last part of the proof of Lemma 3.9 and taking into account inequal-

ity (3.15), we obtain for τ < ρmin{
√
c√
60
,
√
ln 2√
3
MC1}, and for |t| = κ

√
NδνN ,

|
n∏
k=1

EξjkXjk exp{itηjxkξjkXjk}| ≤ exp{−cρ2pt2η2j }, (3.16)

where c is an absolute constant as in (3.9). We may choose C1 large enough such that
the following inequalities hold for |t| = κ

√
NδνN :

|Eηj{exp{−cpt2η2j }
∣∣|ηj | ≤ C1}| ≤ exp{−ct2p/24}. (3.17)

We use here that |t|p ≤ δ0 by (3.2). Then we obtain

Pr{
n∑
j=1

ζ2j ≤ τ2Np} ≤ exp{Npτ2t2/2}
(

exp{−cβt2Np/24}+
(β
α

)N β
1−β

)}. (3.18)

Furthermore, we may take C1 large enough such that α ≥ 4
5 and choose β = 2

5 . We get

Pr{
n∑
j=1

ζ2j ≤ τ2Np} ≤ exp{Npτ2t2/2}
(

exp{−ct2Np/60}+ 2−2N/3
)
. (3.19)

For τ < min{
√
c√
60
,
√
ln 2√
3
MC1}, we have for |t| = κ

√
NδνN ,

Pr{
n∑
j=1

ζ2j ≤ τ2Np} ≤ exp{−ct2Np/120}. (3.20)

This inequality implies that

Pr{
N∑
j=1

ζ2j ≤ τ2Np} ≤ exp{−c(ρ2N2κ2pδνN ∧N)/120}. (3.21)

Thus the lemma is proved.
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Furthermore, we consider the sets defined as

Ĉν := ICν−1 ∩ Cν , ν = 1, . . . , L. (3.22)

Lemma 3.13. Under conditions of Theorem 1.2 we have, for ν = 1, . . . , L,

Pr{ inf
x∈Ĉν

‖Xx‖2 ≤ τ
√
Np} ≤ exp{−cNpνN}.

Proof. According to Lemma 3.12 we have for any fixed x ∈ Ĉν

Pr{‖Xx‖2 ≤ 2τ
√
Np} ≤ exp{−c1Npν,N}.

Consider η = τ
K -net N of Ĉν . Then the event {infx∈Ĉν ‖Xx‖2 ≤ τ

√
Np} implies

{ inf
x∈N
‖Xx‖2 ≤ 2τ

√
Np}. (3.23)

Without loss of generality we may assume that δLN < 1. Using a union bound, we get

Pr{ inf
x∈Ĉν

‖Xx‖2 ≤ τ
√
Np} ≤

(
n

nδνN

)
|N | exp{−c1Npν,N}.

Using Stirling’s formula and a simple bound for the cardinality of an η-net, for some
sufficiently small absolute constant α0 > 0 (does not depend on ν) and

δνN = α0pνN/(| log pν,N |+ 1), pνN := Npδν−1,N

we get

Pr{ inf
x∈Ĉν

‖Xx‖2 ≤ τ
√
Np} ≤ exp{−ĉ1NpνN}.

Thus Lemma 3.13 is proved.

Now we consider the case Np2/(| log p|+ 1) > D for some sufficiently large constant
D. Let x ∈ Incomp(δ0N , ρ) and σ(x) denote the set described in Lemma 3.11. Let

ζj =
n∑
k=1

xkξjkXjk, j = 1, . . . , N.

We have
L(ζj , τ

√
p) ≤ L(

∑
k∈σ(x)

xkξjkXjk, τ
√
p).

Using a Berry-Esseen bound we get

L(ζj , τ
√
p) ≤ Cτ + C

∑
k∈σ(x) x

3
kpE |Xjk|3

(
∑
k∈σ(x) x

2
kp)

3
2

≤ Cτ +
Cµ3

ρ
√
nδ0Np

.

Note that npδ0N = yδ0Np
2/(1 + | ln p|). Choosing D sufficiently large, we have

L(ζj , τ
√
p) ≤ 1− b,

for some constant b ∈ (0, 1). By Lemma 3.8, we get

Pr{‖Xx‖2 ≤ 2τ
√
Np} ≤ exp{−cN},

for τ ≤ τ0 and c > 0.
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Inequality (3.2) implies that there exists γ0 > 0 such that

Pr{ inf
x∈C1∩Incomp(δ0,ρ)

‖Xx‖2 ≤ τ
√
Np} ≤ exp{−cN}.

Note that
Comp(δLN , ρ) ⊂ C0 ∪

(
∪Lν=1Ĉν

)
.

Using a union bound, we get

Pr{ inf
x∈Comp(δLN ,ρ)

‖Xx‖2 ≤ τ
√
np} ≤ exp{−cNp}+

L−1∑
ν=1

exp{−c(Np)νNδ0,N} ≤ exp{−cNp}.

(3.24)
By Corollary 3.3,

Comp(γ0, ρ) ⊂ CL.

This implies that
inf

x∈Incomp(γ0,ρ)
‖Xx‖2 ≤ inf

x∈Incomp(δLN ,ρ)
‖Xx‖2. (3.25)

In what follows we shall estimate the probability Pr{infx∈Incomp(γ0,ρ) ‖Xx‖2 ≤ τ
√
Np}.

3.3 Incompressible vectors

Using a decomposition of the unit sphere S(n−1) = Comp ∪ Incomp, we decompose
the invertibility problem onto two sub problems for compressible and incompressible
vectors:

Pr{sn(X) ≤ ε√p
√
N}

≤ Pr{ inf
x∈Comp

‖Xx‖2 ≤ ε
√
p
√
N}+ Pr{ inf

x∈Incomp
‖Xx‖2 ≤ ε

√
p
√
N}. (3.26)

A bound for the compressible vectors follows from inequality (3.24). It remains to find
a lower bound for ‖Xx‖2 for incompressible vectors. Let η, η1, . . . , ηN denote standard
Gaussian random variables independent of Xjk, ξjk for 1 ≤ j ≤ N, 1 ≤ k ≤ n. We shall
prove the following lemma.

Lemma 3.14. Let x ∈ IC(δ, ρ). Then there exist absolute constants c1 such that for any
C > 0, the following inequality

Pr{‖Xx‖2 ≤ t
√
Np} ≤ (

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N , (3.27)

holds for t ≥ c1µ4/
√
Npδ.

Proof. We may write

Pr{‖Xx‖2 ≤ t
√
Np} = Pr{

N∑
j=1

ζ2j < t2Np},

where ζj =
∑n
k=1Xjkξjkxk. Applying Markov’s inequality, we get

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN E exp{− 1

t2p

N∑
j=1

ζ2j } = eN
N∏
j=1

E exp{− 1

t2p
ζ2j }. (3.28)

We may rewrite the r.h.s. of (3.28) as follows

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN
N∏
j=1

E exp{i 1

t
√
p
ζjηj}. (3.29)
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Conditioning by ηj , we get

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN
N∏
j=1

Eηj

n∏
k=1

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|.

By Lemma 3.11, there exists a set σ(x) such that for k ∈ σ(x) we have 1
2
√
n
≤ |xk| ≤

√
2√
nδ

and |σ(x)| ≥ 1
2y δρ

2N . We may write the following inequality

Eηj

∏
k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

≤ Eηj
∏

k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|.

For any constant C we have

Eηj

∏
k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

≤ Eηj

 ∏
k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

 I{|ηj | ≤ C}+ Pr{|ηj | > C}.

Consider k ∈ σ(x) now. Taking expectation with respect to ξjk conditioning on Xjk and
ηj), we obtain

|EXjkξjk
(

exp{i 1

t
√
p
ηjxkXjkξjk}

)
|

= |1 + p(EXjk exp{i 1

t
√
p
ηjxkXjk} − 1)|.

Applying Taylor’s formula for the characteristic function EXjk exp{i 1
t
√
pηjxkXjk}, we may

write

|1 + p(EXjk exp{i 1

t
√
p
ηjxkXjk||ηj | ≤ C} − 1)|

≤ |1 + p(− 1

2t2p
η2jx

2
k +

E |X11|3

6t3p
3
2

|xk|3|ηj |3)|.

Since E |X11|3 ≤ E
3
4 |X11|4 ≤ µ

3
4
4 ≤ µ4, for |ηj | ≤ C, and

t ≥ Cµ4√
yNpδ

,

we have
|xk||ηj |E |X11|3

3t
√
p

≤ Cµ4

√
2

3t
√
yNδp

≤ 1

2
.

Taking into account this inequality, we get for |ηj | ≤ C,

|1 + p(EXjkξjk exp{i 1

t
√
p
ηjxkXjk} − 1)| ≤ exp{− 1

4t2
x2kη

2
j }.

Since
∑
k∈σ(x) x

2
k ≥ ρ2, this inequality implies that

n∏
k=1

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|I{|ηj | ≤ C} ≤ exp{− ρ2

4t2
η2j }.
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From here it follows for any C > 0

Pr{
N∑
j=1

ζ2j < t2Np} ≤
N∏
j=1

(
E exp{− ρ2

4t2
η2j }+ Pr{|ηj | > C}

)
.

There exists an absolute constant c0 > 0 such that

Pr{|ηj | > C} ≤ c0
C

exp{−C
2

2
}.

This inequality implies that

Pr{
N∑
j=1

ζ2j < t2Np} ≤ (
t√

t2 + ρ2/2
+
c0
C

exp{−C
2

2
})N

≤ (
2t√

t2 + ρ2/2
)N + (

2c0
C

exp{−C
2

2
})N .

Thus, Lemma 3.14 is proved.

Proof of Theorem 1.2. First we note that

Pr{ inf
x∈S(n−1)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈Com(δL,N ,ρ)
‖Xx‖2 ≤ t

√
Np}

+ Pr{ inf
x∈Incomp(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np}. (3.30)

By inequality (3.24), for some constant c > 0,

Pr{ inf
x∈Com(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ exp{−cNp}. (3.31)

By Relation (3.25), we have

Pr{ inf
x∈Incomp(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈Incomp(γ0,ρ)
‖Xx‖2 ≤ t

√
Np}.

We consider an ε-net N on the set of incompressible vectors IC(γ0, ρ) with ε = t
2K , where

K > 0 is fixed. It is straightforward to check that

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ τ
√
Np, ‖X‖ ≤ K

√
Np} ≤ Pr{ inf

x∈N
‖Xx‖2 ≤ 2τ

√
Np}.

Applying a union-bound, we get

Pr{ inf
x∈N
‖Xx‖2 ≤ 2τ

√
Np} ≤ |N | sup

x∈IC(γ0,ρ)
Pr{‖Xx‖2 ≤ 2τ

√
Np}.

By [10, Proposition2.1], we have

|N | ≤ n
(

1 +
2

ε

)n−1
.

Then, applying the result of Lemma 3.14, we get (for t ≥ c1µ4√
Nγ0p

)

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ |N |

(
(

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N

)

≤ yN
(

1 +
4K

t

)n−1(
(

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N

)
. (3.32)
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It is easy to see that, for any 0 < t ≤ τ0,

Pr{ inf
x∈IC(δ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈IC(δ,ρ)
‖Xx‖2 ≤ τ0

√
Np}.

Without loss of generality we may assume that τ0 ≤ 4K. Taking into account both that
N ≤ eN and y < 1 rewrite the inequality (3.32) in the form

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ τ0
√
Np} ≤

(
5K

2τ0

)yN (
(

4eτ0√
4τ20 + ρ2/2

)N + (
2c0e

C
exp{−C

2

2
})N

)

≤

( (5K)y4e
√

2

ρ
τ
(1−y)
0

)N
+ (

2c0e(5K)y

Cτy0
exp{−C

2

2
})N

 .

(3.33)

Put

τ0 =

(
ρ

4
√

2 · 5ye2Ky

) 1
1−y

.

For N ≥ 2, we have
(5K)y4e

√
2

ρ
τ
(1−y)
0 ≤ 1

2
e−

1
2N .

Note that, by condition (1.4), for N such that

lnN ≥ µ4

τ0
√
Bγ0

,

we have
τ0 ≥

µ4√
Npγ0

.

Moreover, choosing C such that

Ce
C2

2 ≥ 2c0e5yKy

2yρ
y

1−y τy0

we obtain that

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ t
√
Np, ‖X‖ ≤ K

√
Np} ≤ e−N/2, (3.34)

for any 0 ≤ t ≤ τ0. The result of Theorem 1.2 follows now from inequalities (3.30), (3.31)
and (3.34). (Since γ0 is an absolute constant defined in Corollary 3.3.) Theorem 1.2 is
proved.
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