

Electron. J. Probab. 28 (2023), article no. 20, 1-12. ISSN: 1083-6489 https://doi.org/10.1214/23-EJP916

The rate of escape of the most visited site of Brownian motion

Richard F. Bass*

Abstract

Let $\left\{L_{t}^{z}\right\}$ be the jointly continuous local times of a one-dimensional Brownian motion and let $L_{t}^{*}=\sup _{z \in \mathbb{R}} L_{t}^{z}$. Let V_{t} be any point z such that $L_{t}^{z}=L_{t}^{*}$, a most visited site of Brownian motion. We prove that if $\gamma>1$, then $$
\liminf _{t \rightarrow \infty} \frac{\left|V_{t}\right|}{\sqrt{t} /(\log t)^{\gamma}}=\infty, \quad \text { a.s. }
$$ with an analogous result for simple random walk. This proves a conjecture of Lifshits and Shi.

Keywords: most visited site; favorite point; Brownian motion; rate of escape. MSC2020 subject classifications: 60 J 55 . Submitted to EJP on November 19, 2021, final version accepted on February 3, 2023. Supersedes arXiv:1303.2040v5.

1 Introduction

Let S_{n} be a simple random walk, let $N_{n}^{k}=\sum_{j=0}^{n} 1_{\left(S_{j}=k\right)}$ be the number of visits by the random walk to the point k by time n, and let $N_{n}^{*}=\sup _{k \in \mathbb{Z}} N_{n}^{k}$. Let $\mathcal{U}_{n}=\{k \in \mathbb{Z}$: $\left.N_{n}^{k}=N_{n}^{*}\right\}$, the set of values k where N_{n}^{k} takes its maximum, and let U_{n} be any element of \mathcal{U}_{n}. We call \mathcal{U}_{n} the set of most visited sites of the random walk at time n. This concept was introduced in [4], and was simultaneously and independently defined by [13], who called U_{n} a favorite point of the random walk. In [4] it was proved that U_{n} is transient, and in fact

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{\sqrt{n} /(\log n)^{\gamma}}=\infty \tag{1.1}
\end{equation*}
$$

if $\gamma>11$ and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{\sqrt{n} /(\log n)^{\gamma}}=0 \tag{1.2}
\end{equation*}
$$

if $\gamma<1$. It has been of considerable interest since that time to prove that there exists γ_{0} such that (1.1) holds if $\gamma>\gamma_{0}$ and (1.2) holds if $\gamma<\gamma_{0}$ and to find the value of γ_{0}.

[^0]One can state the analogous problem for Brownian motion, and [4] used Brownian motion techniques and an invariance principle for local times to derive the results for random walk from those of Brownian motion. Let $\left\{L_{t}^{z}\right\}$ be the jointly continuous local times of a Brownian motion and let $\mathcal{V}_{t}(\omega)$ be the set of values of z where the function $z \rightarrow L_{t}^{z}(\omega)$ takes its maximum. We call \mathcal{V}_{t} the set of most visited points or the set of favorite points of Brownian motion at time t. In [4] it was proved that if V_{t} is any element of \mathcal{V}_{t}, then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{\left|V_{t}\right|}{\sqrt{t} /(\log t)^{\gamma}}=\infty \tag{1.3}
\end{equation*}
$$

if $\gamma>11$ and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{\left|V_{t}\right|}{\sqrt{t} /(\log t)^{\gamma}}=0 \tag{1.4}
\end{equation*}
$$

if $\gamma<1$.
The bounds in (1.2) and (1.4) have been improved somewhat. Lifshits and Shi [20] proved that the lim inf is 0 when $\gamma=1$ as well as when $\gamma<1$.

In [3] the most visited sites of symmetric stable processes of order α for $\alpha>1$ were studied. As a by-product of the results there, the value of γ in (1.3) was improved from 11 to 9.

In Lifshits and Shi [20] it was asserted that the value of γ in (1.1) and (1.3) could be any value larger than 1, or equivalently, that γ_{0} exists and is equal to 1 . However, as Prof. Shi kindly informed us, there is a subtle but serious error in the proof; see Remark 2.5 for details.

Marcus and Rosen [22] subsequently showed that γ in (1.3) could be any value larger than 3.

In this paper we prove that the assertion of Lifshits and Shi is correct, that (1.1) and (1.3) hold whenever $\gamma>1$. See Theorems 2.1 and 2.2. Our method relies mainly on the Ray-Knight theorems and a moving boundary estimate due to Novikov [23].

A few words about when \mathcal{U}_{n} and \mathcal{V}_{t} consist of more than one point are in order. Eisenbaum [10] and Leuridan [18] have shown that at any time t there are at most two values where L_{t}^{z} takes its maximum. Toth [27] has shown that for n sufficiently large, depending on ω, there are at most 3 values of k which are most visited sites for S_{n}, and more recently Ding and Shen [9] have shown that almost surely \mathcal{U}_{n} consists of 3 distinct points infinitely often. It turns out that the values of the lim inf in (1.1)-(1.4) do not depend on which value of the most visited site is chosen.

There are many results on the most visited sites of Brownian motion and of various other processes. See [5], [8], [11], [12], [14], [16], [19], [21], [24], and [26] for some of these.

In Section 2 we state our main theorems precisely and give some preliminaries. Section 3 contains some estimates on local times and squared Bessel processes of dimension 0. These are used in Section 4 to establish a lower bound on the supremum of local time at certain random times, and in Section 5 we move from random times to fixed times to obtain our result for Brownian motion. Finally in Section 6 we prove the result for random walks.

2 Preliminaries

Let W_{t} be a one-dimensional Brownian motion and let $\left\{L_{t}^{z}\right\}$ be a jointly continuous version of its local times. Let

$$
L_{t}^{*}=\sup _{z \in \mathbb{R}} L_{t}^{z}
$$

Most visited site

We define the collection of most visited sites of W by

$$
\mathcal{V}_{t}=\left\{x \in \mathbb{R}: L_{t}^{x}=L_{t}^{*}\right\} .
$$

Let $V_{t}^{s}=\inf \left\{|x|: x \in \mathcal{V}_{t}\right\}$ and $V_{t}^{\ell}=\sup \left\{|x|: x \in \mathcal{V}_{t}\right\}$.
Our main theorem can be stated as follows.
Theorem 2.1. (1) If $\gamma>1$, then

$$
\liminf _{t \rightarrow \infty} \frac{V_{t}^{s}}{\sqrt{t} /(\log t)^{\gamma}}=\infty, \quad \text { a.s. }
$$

(2) If $\gamma \leq 1$,

$$
\liminf _{t \rightarrow \infty} \frac{V_{t}^{\ell}}{\sqrt{t} /(\log t)^{\gamma}}=0, \quad \text { a.s. }
$$

We have the corresponding theorem for a simple random walk S_{n}. Let

$$
N_{n}^{k}=\sum_{j=0}^{n} 1_{\left(S_{j}=k\right)},
$$

the number of times S_{j} is equal to k up to time n. Let $N_{n}^{*}=\max _{k \in \mathbb{Z}} N_{n}^{k}$ and let

$$
\mathcal{U}_{t}=\left\{k \in \mathbb{Z}: N_{n}^{k}=N_{n}^{*}\right\} .
$$

Let $U_{t}^{s}=\inf \left\{|x|: x \in \mathcal{N}_{t}\right\}$ and $U_{t}^{\ell}=\sup \left\{|x|: x \in \mathcal{N}_{t}\right\}$.
Our second theorem is the following.
Theorem 2.2. (1) If $\gamma>1$, then

$$
\liminf _{n \rightarrow \infty} \frac{U_{n}^{s}}{\sqrt{n} /(\log n)^{\gamma}}=\infty, \quad \text { a.s. }
$$

(2) If $\gamma \leq 1$,

$$
\liminf _{n \rightarrow \infty} \frac{U_{n}^{\ell}}{\sqrt{n} /(\log n)^{\gamma}}=0, \quad \text { a.s. }
$$

A process X_{t} is called the square of a Bessel process of dimension 0 started at $x \geq 0$, denoted $\operatorname{BES}(0)^{2}$, if it is the unique solution to the stochastic differential equation

$$
X_{t}=x+2 \sqrt{X_{t}} d W_{t}
$$

where $X_{t} \geq 0$ a.s. for each t and W is a one-dimensional Brownian motion with filtration $\left\{\mathcal{F}_{t}\right\}$. When X_{t} hits 0 , which it does almost surely, it then stays there forever. X has a scaling property: for $r>0$ and X is started at x, the process $\frac{1}{r} X_{t}$ has the same law as the process $X_{t / r}$ started at x / r. If Y_{t} is the nonnegative square root of X_{t} and $x>0$, then Y is the unique solution to the stochastic differential equation

$$
Y_{t}=\sqrt{x}+W_{t}-\frac{1}{2 Y_{t}} d t
$$

See [25] for details.
For any process ξ_{t} let

$$
\begin{equation*}
\tau_{a}=\tau_{a}^{\xi}=\inf \left\{t>0: \xi_{t}=a\right\} \tag{2.1}
\end{equation*}
$$

the hitting time of a by the process ξ_{t}.
Let

$$
\begin{equation*}
T_{r}=T(r)=\inf \left\{t>0: L_{t}^{0} \geq r\right\} \tag{2.2}
\end{equation*}
$$

the inverse local time at 0 .
The main preliminary result we need is the following version of a special case of the Ray-Knight theorems. See [17], [22], and [25].

Theorem 2.3. Suppose $r>0$. The processes $\left\{L_{T_{r}}^{z}, z \geq 0\right\}$ and $\left\{L_{T_{r}}^{-z}, z \geq 0\right\}$ are each $B E S(0)^{2}$ processes with time parameter z started at r and are independent of each other.

We also need
Proposition 2.4. Let $0<r<s$. The processes $\left\{L_{T_{s}}^{z}-L_{T_{r}}^{z}, z \geq 0\right\}$ and $\left\{L_{T_{s}}^{-z}-L_{T_{r}}^{-z}, z \geq 0\right\}$ are each $B E S(0)^{2}$ processes started at $s-r$, are independent of each other, and are independent of the processes $\left\{L_{T_{r}}^{z}, z \geq 0\right\}$ and $\left\{L_{T_{r}}^{-z}, z \geq 0\right\}$.

Proof. Since the local time at 0 of a Brownian motion increases only when the Brownian motion is at 0 , then $W_{T_{r}}=0$ for all $r>0$. Proposition 2.4 follows easily from this, the strong Markov property applied at time T_{r}, and Theorem 2.3.

We use the letter c with or without subscripts to denote finite positive constants whose exact value is unimportant and whose value may change from line to line.
Remark 2.5. The error in [20] is that inequality (2.12) of that paper need not hold. Let $a>0$. Note that $\sup _{y>a \sqrt{t}} L_{t}^{y}$ can be decreasing in t at some times because the supremum is over decreasing sets. This can happen even when $W_{t}>a \sqrt{t}$. Similarly, $\sup _{x<a \sqrt{t}} L_{t}^{x}$ can be increasing in t at some times even when $W_{t}>a \sqrt{t}$ because the supremum is over increasing sets.

3 Some estimates

Define

$$
I^{+}(t, h)=\sup _{0 \leq z \leq h} L_{t}^{z}
$$

Proposition 3.1. Let $\theta>0$. There exists a positive real number M depending on θ such that

$$
\limsup _{t \rightarrow \infty} \frac{\sup _{s \leq t}\left[I^{+}\left(s, \sqrt{t} /(\log t)^{\theta}\right)-L_{s}^{0}\right]}{\sqrt{t} \log \log t /(\log t)^{\theta / 2}} \leq M, \quad \text { a.s. }
$$

Proof. Let A_{n} be the event

$$
A_{n}=\left\{\sup _{s \leq 2^{n+1}}\left[I^{+}\left(s, 2^{(n+1) / 2} /\left(\log 2^{n}\right)^{\theta}\right)-L_{s}^{0}\right] \geq M \frac{2^{n / 2} \log \log 2^{n}}{\left(\log 2^{n+1}\right)^{\theta / 2}}\right\}
$$

where M is a positive real to be chosen in a moment. By scaling, the probability of A_{n} is the same as the probability of

$$
B_{n}=\left\{\sup _{s \leq 1}\left[I^{+}\left(s, 1 /\left(\log 2^{n}\right)^{\theta}\right)-L_{s}^{0}\right] \geq M \frac{2^{-1 / 2} \log \log 2^{n}}{\left(\log 2^{n+1}\right)^{\theta / 2}}\right\}
$$

Lemma 5.2 of [4] says that if $\delta \leq 1$ and $t \geq 1$, then

$$
\mathbb{P}\left(\sup _{s \leq t} \sup _{0 \leq x, y \leq 1,|x-y| \leq \delta}\left|L_{s}^{y}-L_{s}^{x}\right| \geq \lambda\right) \leq \frac{c_{1}}{\delta} e^{-\lambda / c_{2} \delta^{1 / 2} t^{1 / 4}}
$$

Applying this with $t=1, \delta=1 /\left(\log 2^{n}\right)^{\theta}, x=0$, and

$$
\lambda=2^{-1 / 2} M \log \log 2^{n} /\left(\log 2^{n+1}\right)^{\theta / 2}
$$

and recalling $\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(B_{n}\right)$, we see that $\mathbb{P}\left(A_{n}\right)$ is summable provided we choose M large enough. By the Borel-Cantelli lemma, $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$. If $2^{n} \leq t \leq 2^{n+1}$ and t is large

Most visited site

enough (depending on ω), then

$$
\begin{aligned}
\sup _{s \leq t}\left[I^{+}\left(s, \sqrt{t} /(\log t)^{\theta}\right)-L_{s}^{0}\right] & \leq \sup _{s \leq 2^{n+1}}\left[I^{+}\left(s, 2^{(n+1) / 2} /\left(\log 2^{n}\right)^{\theta}\right)-L_{s}^{0}\right] \\
& \leq M \frac{2^{n / 2} \log \log 2^{n}}{\left(\log 2^{n+1}\right)^{\theta / 2}} \\
& \leq M \sqrt{t} \log \log t /(\log t)^{\theta / 2}
\end{aligned}
$$

The proposition follows.
Proposition 3.2. Let X_{t} be a $B E S(0)^{2}$ and let \mathbb{P}^{x} denote the law of X started at x. Then

$$
\mathbb{P}^{1}\left(\tau_{0}<\tau_{1+a}\right)=\frac{a}{1+a}
$$

Proof. We know $\tau_{0}<\infty$ a.s. Now X is a continuous martingale, hence a time change of a Brownian motion, and thus the hitting probabilities are the same as those for a Brownian motion.

The next two propositions show that in many respects a $B E S(0)^{2}$ is similar to a Brownian motion as long as it is not too close to 0 .
Proposition 3.3. For X a $B E S(0)^{2}$ and $x>0$,

$$
\mathbb{P}^{x}\left(\inf _{s \leq t} X_{s}<x-\lambda\right) \leq c_{1} e^{-c_{2} \lambda^{2} / x t}
$$

Proof. Since $X \geq 0$, there is nothing to prove unless $\lambda \leq x$. By a scaling argument, it suffices to suppose $x=1$.

We start by writing

$$
\begin{equation*}
\mathbb{P}^{1}\left(\tau_{1-\lambda}^{X} \leq t\right) \leq \mathbb{P}^{1}\left(\tau_{2}^{X} \leq t\right)+\mathbb{P}^{1}\left(\tau_{1-\lambda}^{X} \leq t, \tau_{2}^{X}>t\right) \tag{3.1}
\end{equation*}
$$

To estimate the terms on the right hand side of (3.1) we use Doob's inequality. Recalling that $d X_{t}=2 \sqrt{X_{t}} d W_{t}$, we have $d\langle X\rangle_{t}=4 X_{t} d t$.

Suppose $a>0$. Then

$$
\begin{aligned}
\mathbb{P}^{1}\left(\tau_{2}^{X} \leq t\right) & =\mathbb{P}^{1}\left(\sup _{s \leq t \wedge \tau_{2}^{X}} X_{s} \geq 2\right)=\mathbb{P}^{1}\left(\sup _{s \leq t \wedge \tau_{2}^{X}} a\left(X_{s}-1\right) \geq a\right) \\
& \leq e^{-a} \mathbb{E}^{1} \exp \left(a\left(X_{t \wedge \tau_{2}^{X}}-1\right)\right) .
\end{aligned}
$$

To bound the expectation,

$$
\begin{aligned}
\mathbb{E}^{1} \exp (a & \left.\left(X_{t \wedge \tau_{2}^{X}}-1\right)\right) \\
\quad & =\mathbb{E}^{1}\left[\exp \left(a\left(X_{t \wedge \tau_{2}^{X}}-1\right)-\frac{1}{2} a^{2}\langle X\rangle_{t \wedge \tau_{2}^{X}}\right) \exp \left(\frac{1}{2} a^{2}\langle X\rangle_{t \wedge \tau_{2}^{X}}\right)\right] \\
\quad \leq & \mathbb{E}^{1} \exp \left(a\left(X_{t \wedge \tau_{2}^{X}}-1\right)-\frac{1}{2} a^{2}\langle X\rangle_{t \wedge \tau_{2}^{X}}\right) e^{4 a^{2} t}
\end{aligned}
$$

Setting $a=1 / 8 t$ yields

$$
\mathbb{P}^{1}\left(\tau_{2}^{X} \leq t\right) \leq e^{-1 / 16 t}
$$

The second term of (3.1) is slightly more complicated, but quite similar. Let \widetilde{X}_{t} be X_{t} stopped at time τ_{2}^{X} and use (2.1) to define $\tau_{1-\lambda}^{\widetilde{X}}$. Suppose $a>0$ and write

$$
\begin{aligned}
\mathbb{P}^{1}\left(\tau_{1-\lambda}^{X} \leq t, \tau_{2}^{X}>t\right) & \leq \mathbb{P}^{1}\left(\inf _{s \leq t \wedge \tau_{1-\lambda}^{\widetilde{X}}}\left(\widetilde{X}_{s}-1\right) \leq-\lambda\right) \\
& =\mathbb{P}^{1}\left(\sup _{s \leq t \wedge \tau_{1-\lambda}^{\widetilde{X}}}\left(-a\left(\widetilde{X}_{s}-1\right)\right) \geq a \lambda\right) \\
& \leq e^{-a \lambda} \mathbb{E}^{1} \exp \left(a\left(-\left(\widetilde{X}_{t \wedge \tau_{1-\lambda}}-1\right)\right)\right)
\end{aligned}
$$

Most visited site

and the expectation on the last line is equal to

$$
\mathbb{E}^{1}\left[\exp \left(-a\left(\widetilde{X}_{t \wedge \tau_{1-\lambda}^{\widetilde{X}}}-1\right)-\frac{1}{2} a^{2}\langle\widetilde{X}\rangle_{t \wedge \tau_{1-\lambda}}^{\widetilde{X}}\right) \exp \left(\frac{1}{2} a^{2}\langle\widetilde{X}\rangle_{t \wedge \tau_{1-\lambda}}^{\widetilde{X}}\right)\right],
$$

which is bounded by $e^{4 a^{2} t}$. Setting $a=\lambda / 8 t$ we see the second term on the right of (3.1) is bounded by $e^{-\lambda^{2} / 16 t}$.

Combining the two estimates for the terms on the right hand side of (3.1) and recalling that we are supposing $\lambda \leq 1$ yields the proposition.

Another approach to the preceding proposition is to use the results of [6].
Proposition 3.4. Let $R>0$, let X_{t} be a $B E S(0)^{2}$, and let g be a non-negative absolutely continuous function on $[0, R]$ with $g(0)>0$. Let $p>1$. Then

$$
\begin{align*}
& \mathbb{P}^{1}\left(X_{t} \leq 1+g(t), 0 \leq t \leq R\right) \tag{3.2}\\
& \qquad \leq c_{1} e^{c_{2}(p) R}\left(\frac{g(0)}{\sqrt{R}}\right)^{1 / p^{2}} \exp \left(\frac{1}{2(p-1) p} \int_{0}^{R} g^{\prime}(s)^{2} d s\right)+c_{3} e^{-c_{4} / R}
\end{align*}
$$

Proof. By Novikov [23], Theorem 6,

$$
\begin{align*}
\mathbb{P}^{0}\left(W_{t} \leq g(t), 0\right. & \leq t \leq R) \tag{3.3}\\
& \leq c_{1}\left(\Phi_{0}\left(\frac{g(0)}{\sqrt{R}}\right)\right)^{1 / p} \exp \left(\frac{1}{2(p-1)} \int_{0}^{R} g^{\prime}(s)^{2} d s\right),
\end{align*}
$$

where W is a Brownian motion, $\Phi_{0}(x)=2 \Phi(x)-1$, and $\Phi(x)$ is the distribution function of a standard normal random variable. Note $\Phi_{0}(x) \leq c x$ for $x \geq 0$.

Let Z be the unique solution to

$$
d Z_{t}=d W_{t}-a\left(Z_{t}\right) d t
$$

where $a(x)=1 / 2 x$ for $x \geq 1 / 2$ and $a(x)=1$ for $x<1 / 2$. Let $Y_{t}=X_{t}^{1 / 2}$.
We start by writing

$$
\begin{align*}
& \mathbb{P}^{1}\left(X_{t} \leq 1+g(t), 0 \leq t \leq R\right) \tag{3.4}\\
& \leq \mathbb{P}^{1}\left(X_{t} \leq 1+g(t), 0 \leq t \leq R, \tau_{1 / 4}^{X}>R\right)+\mathbb{P}^{1}\left(\tau_{1 / 4}^{X} \leq R\right) .
\end{align*}
$$

The second term on the right is bounded by $c_{1} e^{-c_{2} / R}$ by Proposition 3.3. The first term on the right is equal to

$$
\begin{aligned}
\mathbb{P}^{1}\left(Y_{t} \leq(1+g(t))^{1 / 2},\right. & \left.0 \leq t \leq R, \tau_{1 / 2}^{Y}>R\right) \\
& \leq \mathbb{P}^{1}\left(Y_{t} \leq 1+\frac{1}{2} g(t), 0 \leq t \leq R, \tau_{1 / 2}^{Y}>R\right) \\
& =\mathbb{P}^{1}\left(Z_{t} \leq 1+\frac{1}{2} g(t), 0 \leq t \leq R, \tau_{1 / 2}^{Z}>R\right) \\
& \leq \mathbb{P}^{1}(B)
\end{aligned}
$$

where

$$
B=\left\{Z_{t} \leq 1+\frac{1}{2} g(t), 0 \leq t \leq R\right\}
$$

and $\tau_{1 / 2}^{Z}$ is defined by (2.1); we use the fact that $Z_{t}=Y_{t}$ for $t<\tau_{1 / 2}^{Y}$.
Let

$$
M_{t}=\exp \left(\int_{0}^{t} a\left(Z_{s}\right) d W_{s}-\frac{1}{2} \int_{0}^{t} a\left(Z_{s}\right)^{2} d s\right)
$$

Let \mathbb{Q} be defined by $d \mathbb{Q} / d \mathbb{P}^{1}=M_{t}$ on \mathcal{F}_{t}. By the Girsanov theorem, $Z_{t}=W_{t}-\int_{0}^{t} a\left(Z_{s}\right) d s$ is a Brownian motion under \mathbb{Q}.

Most visited site

By Hölder's inequality,

$$
\mathbb{P}^{1}(B)=\mathbb{E}_{\mathbb{Q}}\left[M_{R}^{-1} ; B\right] \leq\left(\mathbb{E}_{\mathbb{Q}} M_{R}^{-r}\right)^{1 / r}(\mathbb{Q}(B))^{1 / p}
$$

where $r=p /(p-1)$. We bound the second factor by (3.3).
It remains to bound

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left[M_{R}^{-r}\right]= & \mathbb{E}_{\mathbb{P}}^{1}\left[M_{R}^{1-r}\right] \\
= & \mathbb{E}_{\mathbb{P}}^{1}\left[\exp \left((1-r) \int_{0}^{R} a\left(Z_{s}\right) d W_{s}-\frac{1-r}{2} \int_{0}^{R} a\left(Z_{s}\right)^{2} d s\right)\right] \\
= & \mathbb{E}_{\mathbb{P}}^{1}\left[\exp \left((1-r) \int_{0}^{R} a\left(Z_{s}\right) d W_{s}-\frac{(1-r)^{2}}{2} \int_{0}^{R} a\left(Z_{s}\right)^{2} d s\right)\right. \\
& \left.\quad \times \exp \left(\frac{(1-r)^{2}-(1-r)}{2} \int_{0}^{R} a\left(Z_{s}\right)^{2} d s\right)\right] \\
\leq & \exp \left(\frac{r^{2}-r}{2} R\right) .
\end{aligned}
$$

Combining our estimates yields the proposition.

4 Growth of local times

Suppose $\varepsilon \in\left(0, \frac{1}{2}\right)$ and $0<\delta \leq \frac{1}{2}$. Choose $p>1$ close to 1 so that $1 / p^{2} \geq 1-\varepsilon$. Choose $\beta \in\left(0, \frac{1}{2}\right)$ small so that $\beta^{2} / 4 p(p-1)<\varepsilon / 2$. Let

$$
\begin{equation*}
U_{t}=L_{T_{1}}^{t}-1 \tag{4.1}
\end{equation*}
$$

Recall that here t is actually the space variable for local time. Set

$$
g(t)= \begin{cases}4 \delta, & t \leq 16 \delta^{2} / \beta^{2} \\ \beta \sqrt{t}, & t>16 \delta^{2} / \beta^{2}\end{cases}
$$

Let

$$
\begin{equation*}
A=\left\{\exists t \in\left[0, \delta^{\varepsilon}\right]: U_{t} \geq g(t)\right\} \tag{4.2}
\end{equation*}
$$

Proposition 4.1.

$$
\mathbb{P}\left(A^{c}\right) \leq c_{1} \delta^{1-2 \varepsilon}
$$

Proof. We estimate the right hand side of (3.2) with $R=\delta^{\varepsilon}$ and $g(0)=4 \delta$. Observe that $g^{\prime}(t)$ is zero unless $t>16 \delta^{2} / \beta^{2}$, in which case $g^{\prime}(t)=\beta / 2 \sqrt{t}$. Hence

$$
\begin{aligned}
\frac{1}{2 p(p-1)} \int_{0}^{\delta^{\varepsilon}} g^{\prime}(t)^{2} d t & \leq \frac{\beta^{2}}{8 p(p-1)} \int_{16 \delta^{2} / \beta^{2}}^{1} \frac{1}{t} d t \\
& =\frac{\beta^{2}}{4 p(p-1)} \log (1 / \delta)+c(p, \beta)
\end{aligned}
$$

where $c(p, \beta)$ depends on p and β, but not δ.
Therefore

$$
\mathbb{P}\left(A^{c}\right) \leq c_{1}\left(\delta^{1-\varepsilon / 2}\right)^{1 / p^{2}}(1 / \delta)^{\beta^{2} / 4 p(p-1)}+c_{2} e^{-c_{3} \delta^{-\varepsilon}} \leq c_{4} \delta^{1-2 \varepsilon}
$$

For $s \in[0,1]$ let

$$
\begin{equation*}
X_{t}^{s}=L_{T(1+s)}^{t}-L_{T(1)}^{t}-s \tag{4.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
B_{s}=\left\{\exists t \in\left[0, \delta^{\varepsilon}\right]: X_{t}^{s} \leq-\frac{1}{4} g(t)\right\} . \tag{4.4}
\end{equation*}
$$

For U, an estimate involving a power of δ close to 1 is the best we can expect. However the exponential estimate we obtain in the next proposition allows us to take the supremum over a large number of values of s.

Most visited site

Proposition 4.2. For $s \in\left[0, \delta^{\varepsilon}\right]$

$$
\mathbb{P}\left(B_{s}\right) \leq c_{1} \log (1 / \delta) e^{-c_{2} / \delta^{\varepsilon}}
$$

Proof. Let $I_{0}=\left[0,16 \delta^{2} / \beta^{2}\right]$. Let M be the smallest positive integer such that $2^{M}\left(16 \delta^{2} / \beta^{2}\right)$ is larger than δ^{ε}. For $1 \leq m \leq M$ let

$$
I_{m}=\left[2^{m-1}\left(16 \delta^{2} / \beta^{2}\right), 2^{m}\left(16 \delta^{2} / \beta^{2}\right)\right] .
$$

For $0 \leq m \leq M$ let

$$
C_{m}=\left\{\exists t \in I_{m}: X_{t}^{s} \leq-\frac{1}{4} g(t)\right\}
$$

By Proposition 3.3, for $1 \leq m \leq M$,

$$
\mathbb{P}\left(C_{m}\right) \leq c_{1} \exp \left(-c_{2} \frac{2^{m-1} \delta^{2}}{s 2^{m} \delta^{2}}\right)
$$

Because $s \leq \delta^{\varepsilon}$, this is bounded by $c_{1} e^{-c_{2} \delta^{-\varepsilon}}$. Similarly

$$
\mathbb{P}\left(C_{0}\right) \leq c_{1} \exp \left(-c_{2} \frac{\delta^{2}}{s \delta^{2}}\right) \leq c_{3} e^{-c_{4} \delta^{-\varepsilon}}
$$

Since $M \leq c \log \left(\delta^{\varepsilon-2}\right)$,

$$
\mathbb{P}\left(\cup_{m=0}^{M} C_{m}\right) \leq c_{1} \log (1 / \delta) e^{-c_{2} \delta^{-\varepsilon}}
$$

Observing that $B_{s} \subset \cup_{m=0}^{M} C_{m}$ completes the proof.
Proposition 4.3. There exists c such that

$$
\mathbb{P}\left(\exists u \in\left[1,1+\delta^{\varepsilon}\right]:\left(L_{T_{u}}^{*}-u\right) \leq \delta\right) \leq c \delta^{2-4 \varepsilon}
$$

c depends on ε but not δ.
Proof. Let $J=\left[\delta^{\varepsilon-1}\right]+1$ and let $0=s_{0}<s_{1}<\cdots<s_{J}=\delta^{\varepsilon}$ be points of the interval $\left[0, \delta^{\varepsilon}\right]$ such that $s_{j+1}-s_{j} \leq \delta$ for all j. Let

$$
D_{j}=\left\{\sup _{t \geq 0}\left(U_{t}+X_{t}^{s_{j}}\right) \leq 2 \delta\right\}
$$

We know $\mathbb{P}\left(D_{0}\right) \leq 2 \delta$ by Proposition 3.2.
Suppose $1 \leq j \leq J$. If $\omega \in A \cap B_{s_{j}}^{c}$, then there exists $t \in\left[0, \delta^{\varepsilon}\right]$ such that $U_{t}(\omega) \geq g(t)$ but $X_{t}^{S_{j}}(\omega) \geq-\frac{1}{4} g(t)$. But then

$$
U_{t}(\omega)+X_{t}^{s_{j}}(\omega) \geq g(t)-\frac{1}{4} g(t) \geq 3 \delta
$$

which implies $\omega \notin D_{j}$. Therefore $D_{j} \subset A^{c} \cup B_{s_{j}}$. It follows that

$$
\cup_{j=1}^{J} D_{j} \subset A^{c} \cup\left(\cup_{j=1}^{J} B_{s_{j}}\right) .
$$

Using Propositions 4.1 and 4.2 and the fact that $J \leq c \delta^{\varepsilon-1}$, we then have

$$
\begin{aligned}
\mathbb{P}\left(\exists j \leq J: \sup _{t \geq 0}\left(U_{t}+X_{t}^{s_{j}}\right)\right. & \leq 2 \delta) \leq 2 \delta+c_{1} \delta^{1-2 \varepsilon}+c_{2} \delta^{\varepsilon-1} \log (1 / \delta) e^{-c_{3} \delta^{-\varepsilon}} \\
& \leq c_{4} \delta^{1-2 \varepsilon} .
\end{aligned}
$$

If $\sup _{x \geq 0} L_{T\left(1+s_{j}\right)}^{x}-\left(1+s_{j}\right) \leq 2 \delta$, then $\sup _{t \geq 0}\left(U_{t}+X_{t}^{s_{j}}\right) \leq 2 \delta$, and so

$$
\begin{equation*}
\mathbb{P}\left(\exists j \leq J: \sup _{x \geq 0} L_{T\left(1+s_{j}\right)}^{x}-\left(1+s_{j}\right) \leq 2 \delta\right) \leq c_{4} \delta^{1-2 \varepsilon} \tag{4.5}
\end{equation*}
$$

Most visited site

Let $L_{t}^{+}=\sup _{x>0} L_{t}^{x}$ and $L_{t}^{-}=\sup _{x<0} L_{t}^{x}$. If $L_{T\left(1+s_{j}\right)}^{*}-\left(1+s_{j}\right) \leq 2 \delta$, then

$$
L_{T\left(1+s_{j}\right)}^{+}-\left(1+s_{j}\right) \leq 2 \delta \quad \text { and } \quad L_{T\left(1+s_{j}\right)}^{-}-\left(1+s_{j}\right) \leq 2 \delta
$$

By independence, symmetry, and (4.5),

$$
\mathbb{P}(E) \leq\left(c_{1} \delta^{1-2 \varepsilon}\right)^{2}=c_{2} \delta^{2-4 \varepsilon}
$$

where

$$
E=\left\{\exists j \leq J: L_{T\left(1+s_{j}\right)}^{*}-\left(1+s_{j}\right) \leq 2 \delta\right\}
$$

If $u \leq \delta^{\varepsilon}$ and $u \in\left[s_{j}, s_{j+1}\right]$, then

$$
\begin{aligned}
L_{T(1+u)}^{*}-(1+u) & \geq L_{T\left(1+s_{j}\right)}^{*}-\left(1+s_{j}\right)+\left(s_{j}-u\right) \\
& \geq L_{T\left(1+s_{j}\right)}^{*}-\left(1+s_{j}\right)-\delta
\end{aligned}
$$

We conclude that on the event E^{c}

$$
L_{T(1+u)}^{*}-(1+u)>2 \delta-\delta=\delta
$$

Therefore

$$
\mathbb{P}\left(\exists u \in\left[0, \delta^{\varepsilon}\right]: L_{T(1+u)}^{*}-(1+u) \leq \delta\right) \leq c \delta^{2-4 \varepsilon}
$$

Theorem 4.4. If $\gamma>1 / 2$, then

$$
\liminf _{t \rightarrow \infty} \frac{L_{T_{t}}^{*}-t}{t /(\log t)^{\gamma}}=\infty, \quad \text { a.s. }
$$

Proof. Let $r_{K}=2^{K}, a>0$, and

$$
\delta_{K}=\frac{a}{\left(\log r_{K}\right)^{\gamma}}
$$

Divide $\left[r_{K}, r_{K+1}\right]$ into $\left[\delta_{K}^{-\varepsilon}\right]+1$ equal subintervals. Each subinterval will have length less than or equal to $\delta_{K}^{\varepsilon} r_{K}$. Let

$$
F_{K}=\left\{\exists t \in\left[r_{K}, r_{K+1}\right]:\left(L_{T_{t}}^{*}-t\right) \leq \delta_{K} r_{K}\right\}
$$

Then by scaling, Proposition 4.3, and our bound on the number of subintervals,

$$
\mathbb{P}\left(F_{K}\right) \leq c_{1} \delta_{K}^{-\varepsilon} \delta_{K}^{2-4 \varepsilon}=c_{1} \delta_{K}^{2-5 \varepsilon}
$$

If $\gamma>\frac{1}{2}$, choose ε small enough so that $(2-5 \varepsilon) \gamma>1$. By the Borel-Cantelli lemma, $\mathbb{P}\left(F_{K}\right.$ i.o. $)=0$. This implies

$$
\mathbb{P}\left(L_{T_{t}}^{*}-t \leq \frac{a t}{(\log t)^{\gamma}} \text { i.o. }\right)=0
$$

Since a is arbitrary, the theorem follows.

5 From random times to fixed times

Now we derive our results for fixed times from Theorem 4.4. For values r where T_{r} is approximately r^{2}, the argument is straightforward, but for other values of r a different argument is necessary to avoid an extraneous power of logarithm.

Let

$$
I(t, h)=\sup _{|z| \leq h} L_{t}^{z}
$$

Most visited site

Theorem 5.1. Let $\gamma>1$. There exists $\rho>0$ such that with probability one,

$$
L_{t}^{*}>I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)+\frac{c \sqrt{t}}{(\log t)^{\rho}}
$$

for all t sufficiently large.
Proof. Without loss of generality assume $\gamma \leq 2$. Choose $1 / 2<b<\gamma / 2$ and then choose $a<\gamma$ such that $\gamma / 2-a / 2>b$. Suppose

$$
T_{r-} \leq t \leq T_{r}
$$

where $T_{r-}=\lim _{s \rightarrow r-} T_{s}$. Then $L_{t}^{0}=r$.
Case 1. $t \leq r^{2}(\log r)^{a}$. By [15], for t sufficiently large (depending on ω),

$$
r=L_{t}^{0} \leq c \sqrt{t \log \log t}
$$

so $\log r \leq c \log t$. By Proposition 3.1 and symmetry, for sufficiently large t (also depending on ω),

$$
\begin{aligned}
I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)-L_{t}^{0} & \leq c \frac{\sqrt{t} \log \log t}{(\log t)^{\gamma / 2}} \\
& \leq c \frac{r(\log r)^{a / 2} \log \log r}{(\log r)^{\gamma / 2}} \\
& =c \frac{r \log \log r}{(\log r)^{\gamma / 2-a / 2}} .
\end{aligned}
$$

For r sufficiently large, for all $s \in[r / 2, r)$, by Theorem 4.4 we have

$$
L_{T_{s}}^{*}-s \geq \frac{s}{2(\log s)^{b}}
$$

Letting s increase up to r,

$$
\begin{aligned}
L_{t}^{*}-r & \geq L_{T_{r-}}^{*}-r \geq \frac{r}{2(\log r)^{b}} \\
& \geq I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)-r+c \frac{r}{(\log r)^{b}} \\
& \geq I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)-r+c \frac{\sqrt{t}}{(\log t)^{b+a / 2}}
\end{aligned}
$$

for t sufficiently large.
Case 2. $t>r^{2}(\log r)^{a}$. Then

$$
L_{t}^{0}=r \leq c_{1} \frac{\sqrt{t}}{(\log t)^{a / 2}}
$$

By this, Proposition 3.1, and symmetry, there exists $K>c_{1}$ such that

$$
I\left(t, \sqrt{t} /(\log t)^{\gamma}\right) \leq L_{t}^{0}+K \frac{\sqrt{t} \log \log t}{(\log t)^{\gamma / 2}} \leq 2 K \frac{\sqrt{t}}{(\log t)^{a / 2}}
$$

for t large. By Kesten's law of the iterated logarithm (see [15] and also [7]), there exists $\kappa>0$ such that for t sufficiently large,

$$
\begin{aligned}
L_{t}^{*} & \geq \kappa \sqrt{t} /(\log \log t)^{1 / 2} \\
& \geq 3 K \frac{\sqrt{t}}{(\log t)^{a / 2}} \geq I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)+K \frac{\sqrt{t}}{(\log t)^{a / 2}}
\end{aligned}
$$

In either case,

$$
\begin{equation*}
L_{t}^{*} \geq I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)+c \frac{\sqrt{t}}{(\log t)^{b+a / 2}} \tag{5.1}
\end{equation*}
$$

and we may take $\rho=b+a / 2$.
Proof of Theorem 2.1. Theorem 2.1(2) is already known; see [20]. For (1), let $\gamma>1$. For large enough t,

$$
L_{t}^{*}>I\left(t, \sqrt{t} /(\log t)^{\gamma}\right)
$$

which means that L_{t}^{z} takes its maximum for z outside the interval

$$
\left[-\sqrt{t} /(\log t)^{\gamma}, \sqrt{t} /(\log t)^{\gamma}\right]
$$

Theorem 2.1(1) now follows.

6 Random walks

Proof of Theorem 2.2. (2) follows from [20], so we only consider (1). By the invariance principle of [24] we can find a simple random walk S_{n} and a Brownian motion W_{t} such that for each $\varepsilon>0$,

$$
\begin{equation*}
\sup _{k \in \mathbb{Z}}\left|L_{n}^{k}-N_{n}^{k}\right|=o\left(n^{1 / 4+\varepsilon}\right), \quad \text { a.s. } \tag{6.1}
\end{equation*}
$$

If $\gamma>1$ and $K_{n}=\max _{k \in \mathbb{Z},|k| \leq \sqrt{n} /(\log n)^{\gamma}} N_{n}^{k}$, by (6.1), Lemma 5.3 of [4], and Theorem 5.1, there exists $\rho>0$ such that

$$
\begin{aligned}
N_{n}^{*} & \geq L_{n}^{*}-c n^{1 / 4+\varepsilon} \\
& \geq I\left(n, \sqrt{n} /(\log n)^{\gamma}\right)+c_{1} \frac{\sqrt{n}}{(\log n)^{\rho}}-c_{2} n^{1 / 4+\varepsilon} \\
& \geq K_{n}+c_{1} \frac{\sqrt{n}}{(\log n)^{\rho}}-2 c_{2} n^{1 / 4+\varepsilon} \\
& >K_{n}
\end{aligned}
$$

for n sufficiently large. We conclude the most visited site of S_{n} must be larger in absolute value than $\sqrt{n} /(\log n)^{\gamma}$ for n large.

References

[1] R.F. Bass. Probabilistic Techniques in Analysis. Springer, New York, 1995. MR1329542
[2] R.F. Bass. Stochastic Processes. Cambridge University Press, Cambridge, 2011. MR2856623
[3] R.F. Bass, N. Eisenbaum, and Z. Shi. The most visited sites of symmetric stable processes. Probab. Theory rel. Fields 116 (2000) 391-404. MR1749281
[4] R.F. Bass and P.S. Griffin. The most visited site of Brownian motion and simple random walk. Z. Wahrsch. Verw. Gebiete 70 (1985) 417-436. MR0803682
[5] J. Bertoin and L. Marsalle. Point le plus visité par un mouvement brownien avec dérive. Séminaire de Probabilités XXXII, 397-411. Springer, Berlin, 1998. MR1655306
[6] T. Byczkowski, J. Małecki, and M. Ryznar. Hitting times of Bessel processes. Potential Analysis 38 (2013) 753-768. MR3034599
[7] E. Csáki and A. Földes. How small are the increments of the local time of a Wiener process? Ann. Probab. 14 (1986) 533-546. MR0832022
[8] E. Csáki, P. Révész, and Z. Shi. Favourite sites, favourite values and jump sizes for random walk and Brownian motion. Bernoulli 6 (2000) 951-975. MR1809729
[9] J. Ding and J. Shen. Three favorite sites occurs infinitely often for one-dimensional simple random walk. Ann. Probab. 46 (2018) 2545-2561. MR3846833

Most visited site

[10] N. Eisenbaum. Temps locaux, excursions et lieu le plus visité par un mouvement brownien lineaire. Thèse de doctorat, Université de Paris 7, 1989.
[11] N. Eisenbaum. On the most visited sites by a symmetric stable process. Probab. Theory rel. Fields 107 (1997) 527-535. MR1440145
[12] N. Eisenbaum and D. Khoshnevisan. On the most visited sites of symmetric Markov processes. Stochastic Process. Appl. 101 (2002) 241-256. MR1931268
[13] P. Erdős and P. Révész. On the favourite points of a random walk. Mathematical StructureComputational Mathematics-Mathematical Modelling 2, 152-157. Bulgarian Academy of Sciences, Sofia, 1984. MR790875
[14] Y. Hu and Z. Shi. The problem of the most visited site in random environment. Probability Theory rel. Fields 116 (2000) 273-302. MR1743773
[15] H. Kesten. An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447-456. MR0178494
[16] D. Khoshnevisan and T.M. Lewis. The favorite point of a Poisson process. Stochastic Processes Applic. 57 (1995) 19-38. MR1327951
[17] F.B. Knight. Essentials of Brownian Motion and Diffusion. American Mathematical Society, Providence, R.I., 1981. MR0613983
[18] C. Leuridan. Problèmes lié aux temps locaux du mouvement brownien: estimations de normes H^{p}, théorèmes de Ray-Knight sur le tore, point le plus visité. Thése de doctorat, Université Joseph Fourier, Grenoble, 1994.
[19] C. Leuridan. Le point d'un fermé le plus visité par le mouvement brownien. Ann. Probab. 25 (1997) 953-996. MR1434133
[20] M.A. Lifshits and Z. Shi. The escape rate of favourite sites of simple random walk and Brownian motion. Ann. Probab. 32 (2004) 129-152. MR2040778
[21] M.B. Marcus. The most visited sites of certain Lévy processes. J. Theoret. Probab. 14 (2001) 867-885. MR1860527
[22] M.B. Marcus and J. Rosen. Markov Processes, Gaussian Processes, and Local Times. Cambridge Univ. Press, Cambridge, 2006. MR2250510
[23] A.A. Novikov. On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary. Math USSR Sbornik 38 (1981) 495-505. MR0562208
[24] P. Révész. Local time and invariance. Analytical Methods in Probability Theory. Lecture Notes in Math. 861, 128-145. Springer, Berlin, 1981. MR0655268
[25] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin, 1999. MR1725357
[26] Z. Shi and B. Tóth. Favourite sites of simple random walk. Period. Math. Hungar. 41 (2000) 237-249. MR1812809
[27] B. Tóth. No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001) 484-503. MR1825161

[^0]: *Department of Mathematics, University of Connecticut, USA. E-mail: r.bass@uconn.edu

