

Electron. J. Probab. 28 (2023), article no. 23, 1-2. ISSN: 1083-6489 https://doi.org/10.1214/23-EJP915

Corrigendum to: The sum of powers of subtree sizes for conditioned Galton-Watson trees*

James Allen Fill ${ }^{\dagger} \quad$ Svante Janson ${ }^{\ddagger}$

Abstract

A serious typographical error in [1] is corrected.

Keywords: conditioned Galton-Watson tree; simply generated random tree; additive functional; tree recurrence; subtree sizes; Brownian excursion; random analytic function; generating function; singularity analysis; Hadamard product of sequences; method of moments; polylogarithm. MSC2020 subject classifications: Primary 05C05, Secondary 60F05; 60C05; 30 E99. Submitted to EJP on December 19, 2022, final version accepted on February 3, 2023.

1 Corrigendum

There is a typographical error in [1, Theorem D.1]; the variance given in (D.2) there is incorrect and should be

$$
\begin{equation*}
\mathbb{E}|\zeta|^{2}=\frac{1}{2 \sqrt{\pi}} \operatorname{Re} \frac{\Gamma\left(\mathrm{i} t-\frac{1}{2}\right)}{\Gamma(\mathrm{i} t)} . \tag{1.1}
\end{equation*}
$$

The formula (D.2) in [1] has, incorrectly, $\Gamma(\mathrm{it}-1)$ in the denominator, which comes from (D.5) which has the same error. Formula (D.8) in the proof is correct, with denominator Γ (it), and yields (D.5) and (D.2) with the same denominator, i.e., (1.1).

Theorem D. 1 in [1] also claims that $\mathbb{E}|\zeta|^{2}>0$. The proof is based on the incorrect formula given there, but luckily the same proof applies also to the correct formula. In (D.14) we obtain $\Gamma(1-\mathrm{i} t)$ instead of $\Gamma(2-\mathrm{i} t)$ (and an immaterial change of sign); hence we have to show that $\Gamma(1-\mathrm{i} t) / \Gamma\left(\frac{3}{2}-\mathrm{i} t\right)$ is not real for $t \neq 0$. Thus, in (D.15), we should have $-\operatorname{Im} \int_{1}^{3 / 2} \psi(s-\mathrm{i} t) \mathrm{d} s$. We use (D.18) as before, and now see that if $t<0$, then $0>\arg \left(\Gamma(1-\mathrm{i} t) / \Gamma\left(\frac{3}{2}-\mathrm{i} t\right)\right)>-\pi / 4$, which completes the proof that the variance in (1.1) is nonzero.

[^0]
Corrigendum

1.1 Other typographical errors

We take the opportunity to point out a few other typographical errors in [1]:

- (12.75): the lower summation limit should be $m=0$.
- Three lines after (12.75): "every i " should be "every " $i \geqslant 1$ ".
- Appendix C, two lines before the statement of Theorem C.1: $\alpha^{-1} Y(\alpha)$ there should be $\alpha^{-1 / 2} Y(\alpha)$.

References

[1] James Allen Fill \& Svante Janson. The sum of powers of subtree sizes for conditioned GaltonWatson trees. Electron. J. Probab. 27 (2022), Paper No. 114, 77 pp. MR4475879

[^0]: *Corrected article: https://doi.org/10.1214/22-EJP831.
 ${ }^{\dagger}$ Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, USA.
 E-mail: jimfill@jhu.edu
 ${ }^{\ddagger}$ Department of Mathematics, Uppsala University, Uppsala, Sweden. E-mail: svante.janson@math.uu.se

