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Abstract

In this paper, the scaling limit of random connected cubic planar graphs (respectively
multigraphs) is shown to be the Brownian sphere.

The proof consists in essentially two main steps. First, thanks to the known
decomposition of cubic planar graphs into their 3-connected components, the metric
structure of a random cubic planar graph is shown to be well approximated by its
unique 3-connected component of linear size, with modified distances.

Then, Whitney’s theorem ensures that a 3-connected cubic planar graph is the
dual of a simple triangulation, for which it is known that the scaling limit is the
Brownian sphere. Curien and Le Gall have recently developed a framework to study
the modification of distances in general triangulations and in their dual. By extending
this framework to simple triangulations, it is shown that 3-connected cubic planar
graphs with modified distances converge jointly with their dual triangulation to the
Brownian sphere.
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1 Introduction

In recent years, a lot of progress has been achieved in the understanding of the scaling
limit of random planar maps (planar graphs embedded in the sphere). Miermont [28]
and Le Gall [24] established the first results of convergence of random planar maps
towards the Brownian sphere. Since these major results, many other families of maps
have also been proved to admit the Brownian sphere as their scaling limit. Moreover, the
properties of the Brownian sphere have been thoroughly investigated, we refer to the
following surveys and references therein [25, 29, 30] for nice entry points to this field.
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Convergence of random cubic planar graphs

However, much less is known about the scaling limit of random planar graphs, which
are graphs that can be embedded in the sphere but for which the embedding is not
fixed. In this article, we obtain the first result of convergence of a family of random
planar graphs towards the Brownian sphere. Our main result is the following (a graph
or multigraph is called cubic if all its vertices have degree 3):

Theorem 1.1. Let Cn (resp. Mn) be a uniformly random connected cubic labeled planar
graph (resp. multigraph) with 2n vertices. Let µCn and µMn

denote respectively the
uniform distribution on V (Cn) and V (Mn). Let dgr denote the graph distance. Then,
there exist constants c, cm ∈ (0,∞) such that the following convergence holds:(

V (Cn),
1

c · n1/4
dgr, µCn

)
−−−−→
n→∞

m∞, (1.1)

and (
V (Mn),

1

cm · n1/4
dgr, µMn

)
−−−−→
n→∞

m∞, (1.2)

where the convergence holds in distribution for the Gromov–Hausdorff–Prokhorov topol-
ogy for measured metric spaces, and m∞ denotes the Brownian sphere.

While finishing this project, we became aware that Benedikt Stufler obtained si-
multaneously and independently the scaling limit of random connected cubic planar
graphs [38, 39], using the same general strategy but with different techniques to resolve
the main difficulties.

Our motivation to consider not only cubic planar graphs but also cubic planar multi-
graphs comes from the fact that they appear naturally as the kernel of random connected
planar graphs in the sparse regime (i.e. when the excess of the graph is o(n)). The
scaling limit of random planar maps in the sparse regime has recently been investigated
in [12], via the study of the scaling limit of their cubic kernel. To extend this result to
the case of random sparse planar graphs, the scaling limit of random connected cubic
planar multigraphs is thus a decisive step1.

Before giving the main ideas behind the proof of this result, let us place it in the
context of the existing literature on the enumeration of planar graphs and on the study
of their random properties. Unlike planar maps, for which closed enumerative formulas
are often available [41], the enumeration of planar graphs is more involved. Building on
a canonical decomposition of graphs into their 3-connected components [42], a (differen-
tial) system of equations for their generating series can be obtained. Major achievements
have consisted in deriving precise asymptotic estimates from these equations. A non-
exhaustive list of contributions includes the case of 2-connected planar graphs [6], the
case of cubic planar graphs [7] and cubic planar multigraphs [22] and the case of planar
graphs [18]. We also refer to the survey [32] and references therein.

These enumerative results have made possible the study of random properties of
planar graphs, and to establish limit laws for various parameters, such as the maximum
degree [14]. They have also been a key ingredient in the recent proofs of the convergence
of random cubic planar graphs [40] and random planar graphs [37] for the local topology.

However, only few results are available about the metric properties of random planar
graphs. It has only been shown that the order of magnitude of the diameter of random
planar graphs with n vertices is concentrated around n1/4 [11]. Let us also mention that
the scaling limit of some families of planar graphs have been previously established.
However, such results only hold for so-called subcritical families of graphs (which include
in particular outerplanar graphs and series-parallel graphs) and their scaling limit is
Aldous’ Brownian Continuum Tree [34, 36].

1A simpler problem involving kernel extraction would be to obtain the scaling limit of random connected
planar multigraphs that are precubic, i.e., with vertex-degrees in {1, 3}.
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Convergence of random cubic planar graphs

General strategy of the proof and organization of the paper

Decomposition of cubic planar graphs along their 3-connected components
The first ingredient in the proof of Theorem 1.1 is the known decomposition of cu-
bic planar graphs into 3-connected components. This decomposition allows us to use
techniques similar to the ones developed in [5, 17] and to prove that a random cubic
planar graph (resp. cubic planar multigraph) admits a unique giant 3-connected compo-
nent called its 3-connected core. This is presented in Section 3. A key feature is that the
metric properties of the original graph can be very precisely approximated by the metric
properties of its 3-connected core with random edge-lengths. More precisely, the length
of a given edge follows asymptotically a distribution denoted ν?. To study this model, a
first step is to introduce and study the distribution ν?, this is undertaken in Section 4.

Dealing with a 3-connected planar graph allows us to enter the world of planar
maps. Indeed, by Whitney’s theorem [43], a 3-connected planar graph is known to
admit a unique embedding (up to mirror). Hence, 3-connected planar graphs and 3-
connected planar maps are the same objects. By duality, 3-connected cubic planar
graphs correspond to simple triangulations (i.e. triangulations with no loops nor multiple
edges).

Modification of distances in simple triangulations In [13], Curien and Le Gall
studied modifications of distances in triangulations. Their techniques have also been
adapted to quadrangulations and general maps by the third author [26], and to Eulerian
triangulations [10]. To establish the scaling limit of random 3-connected cubic planar
maps with random i.i.d edge-lengths, we extend their framework in two directions. We
deal with simple triangulations rather than general triangulations, and we consider the
general first-passage percolation distance on the edges of the dual map rather than the
dual graph distance or the Eden model (corresponding to exponential random variables
on the edges of the dual map). To be able to state our result precisely, we first introduce
a couple of definitions and notations.

Fix m a planar map, and write m† for its dual. Let ν be a probability distribution
on R>0. We define a (random) metric on m† as follows. Let (we)e∈E(m†) be a collection
of random weights indexed by the set of edges of m†, such that (we) are i.i.d random
variables sampled from ν. We define the first-passage percolation distance d?ν on m† by
setting, for any u, v ∈ V (m†):

d?ν(u, v) = inf
γ:u→v

∑
e∈γ

we, (1.3)

where the infimum runs over all paths γ going from u to v in m†.
A key ingredient in the proof of Theorem 1.1 is the following result, which is of

independent interest:

Theorem 1.2. Let tn be a uniformly random simple triangulation with n+ 2 vertices. Let
µtn and µt†n

denote respectively the uniform distribution on V (tn) and on V (t†n). Assume
that the support of ν is included in [η0,∞) for η0 > 0, and that ν has exponential tails.

Then, there exists a constant cν > 0 such that the following convergence holds jointly
in distribution for the Gromov–Hausdorff–Prokhorov topology:((

V (tn),
( 3

4n

)1/4

dgr, µtn

)
,

(
V (t†n),

( 3

4n

)1/4 1

cν
· d?ν , µt†n

))
(d)−−−−→
n→∞

(m∞,m∞), (1.4)

where m∞ is the Brownian sphere.

Note that the convergence of the first component was established by Addario-Berry
and the first author in [1]. By applying this theorem to the case where ν = δ1 is the
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Dirac measure on {1}, and by applying Whitney’s theorem, we obtain as an immediate
corollary:

Theorem 1.3. Let Kn be a uniformly random 3-connected cubic planar graphs with
2n vertices. Denote by µKn the uniform distribution on V (Kn). Then, there exists
a constant c3 > 0 such that the following convergence holds in distribution for the
Gromov–Hausdorff–Prokhorov topology:(

V (Kn),
1

c3n1/4
dgr, µKn

)
(d)−−−−→
n→∞

m∞, (1.5)

where m∞ is the Brownian sphere.

When adapting the framework of Curien and Le Gall to our setting, the main difficulty
comes from the fact that we consider simple triangulations rather than (unconstrained)
triangulations. The article [13] relies extensively on the so-called skeleton decomposition
of triangulations, introduced by Krikun in [23]. However, the skeleton decomposition
does not behave as nicely on simple triangulations as on general triangulations. To
circumvent this issue, we apply the skeleton decomposition to the model of quasi-
simple triangulations (defined in Section 5). The very nice property of quasi-simple
triangulations is that their skeleton decomposition can be encoded via exactly the same
branching process as general triangulations. Therefore, many results of [13] extend
to our setting effortlessly. This comes at the price that quasi-simple triangulations
are not invariant under re-rooting (its root plays indeed a special role), so that some
arguments need to be adapted. This is the purpose of Section 6. On the other hand, in his
independent preprint [38], Benedikt Stufler deals directly with a skeleton decomposition
for simple triangulations, where some forbidden configurations have to be handled.

From i.i.d edge weights to the scaling limit of random cubic planar graphs
Given Theorem 1.2, there remain two last steps to prove Theorem 1.1. The first one deals
with the metric property: indeed, we need to relax the hypothesis that the edge lengths
are independent. The second one deals with the measure on the vertices. Roughly
speaking, we have to prove that the uniform measure on the vertices of a random
connected cubic planar graph on one hand, and on the vertices of its 3-connected core
on the other hand, do not differ asymptotically.

More precisely, to prove Theorem 1.1, we establish in fact the following joint conver-
gence result:

Theorem 1.4. Let Cn be a uniformly random connected cubic labeled planar graph
(resp. multigraph) with 2n vertices. Write K(Cn) for its 3-connected core and ∆(Cn) for
the (unlabeled, rooted) dual of K(Cn). We denote respectively by µCn , µK(Cn) and µ∆(Cn)

the uniform measures on V (Cn), V (K(Cn)) and V (∆(Cn)). Moreover, we write distCn for
the distance on K(Cn) induced by the graph distance on Cn.

Then, there exist two positive constants c1 and c2 (with c2 explicit) such that:((
Cn,

1

c1n1/4
dgr, µCn

)
,

(
K(Cn),

1

c1n1/4
distCn , µK(Cn)

)
,

(
∆(Cn),

1

c2n1/4
dgr, µ∆(Cn)

))
(d)−−−−→
n→∞

(m∞,m∞,m∞), (1.6)

where m∞ is the Brownian sphere. Moreover, a similar result holds when replacing Cn
by a random connected cubic planar multigraph Mn.

Given Theorem 1.2, to establish the joint convergence of the last two coordinates,
we construct in Section 7 an explicit coupling between the models with independent
edge-lengths (sampled from ν?) and (K(Cn),distCn). With this coupling, we prove in
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Theorem 7.1 that the Gromov–Hausdorff distance between both models tends to 0 in
probability.

Finally, in Section 8, to establish the joint convergence of the first two coordinates,
we rely on the methodology developed by Addario-Berry and Wen in [2]. It involves an
explicit projection from the vertices of Cn to the vertices of its 3-connected core K(Cn).
The key points are the property that each vertex is projected to a vertex at distance
o(n1/4) with high probability, and the property that the projection of µCn is asymptotically
close to µK(Cn) (in the sense of the Lévy-Prokhorov distance).

Let us finish by mentioning that an extensive index of notations concludes the paper.

2 Preliminaries

2.1 Definitions on graphs and maps

In this article, we consider both multigraphs, and graphs (i.e., multigraphs with no
loop nor multiple edges). A multigraph is called vertex-labeled if its n vertices carry
distinct labels in [1..n], and is called half-edge-labeled if its 2m half-edges carry distinct
labels in [1..2m]. When dealing with random cubic planar multigraphs (resp. graphs) we
will usually consider that they are half-edge-labeled (resp. vertex-labeled). A connected
multigraph is rooted if it comes with a distinguished oriented edge called its root edge.
The tail vertex of the root edge is called the root vertex.

Note that a connected graph or multigraph can be seen as a discrete metric space,
where the distance between two vertices is the minimal length over the paths connecting
them. More generally, we will consider so-called metric graphs, i.e., graphs where every
edge e carries a length `(e) ∈ R∗+. In such a graph seen as a metric space, the length of
a path γ = (e1, . . . , em) is defined as L(γ) = `(e1) + · · ·+ `(em), and the distance between
two vertices is the length of a shortest path connecting them (on the other hand, in the
context of metric graphs, we will use the notation |γ| for the number of edges in γ).

A planar map (shortly, a map) m is a connected multigraph properly embedded on
the sphere, up to orientation-preserving homeomorphism. A face of m is a connected
component of the sphere cut by the embedding, a corner of m is a sector between two
consecutive edges around a vertex (a corner thus lies in a unique face of m). The degree
of a vertex (resp. face) of m is the number of corners that are incident to it. We write
E(m), V (m) and F (m) for the set of edges, vertices and faces of m respectively.

A rooted map is a map that comes with a distinguished oriented edge called its
root edge, i.e., the underlying multigraph is rooted. The face on the right of the root
edge is called the root face (also called the outer face, since it is usually taken as the
unbounded face when the embedding of the map is represented on the plane), and the
corner incident to the root vertex just after the root edge in clockwise order is called the
root corner. Similarly, vertices incident to the root face are called outer vertices, and
inner vertices otherwise.

In general, maps are considered as unlabeled (whether on vertices or on half-edges).
Indeed, in contrast to the situation for multigraphs, the rooting operation is sufficient
to suppress the possibility of having non-trivial automorphisms. A map is simple if the
underlying multigraph is a graph, i.e. if there is no double edge and no loop.

For m a map, the dual map m† is constructed as follows (see Figure 1): we add a
“type F” vertex in every face of m. Then for every edge e of m, we draw an edge e† (the
dual edge of e) between the type F vertices of the two faces that are incident to e, in
such a way that e† crosses e and no other edge (including the new ones) — if both sides
of e are incident to the same face, then e† is a loop. Then m† has vertex set the set of
type F vertices, and edge set the set of dual edges. If m is rooted, the root edge of m† is
taken as the dual of the root edge e of m, oriented in such a way that it crosses e in the
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Figure 1: Two examples of triangulations superimposed with their dual. The one on the
left is non-simple while the one on the right is simple. The dual cubic map is 3-connected
only for the example on the right.

counterclockwise direction around the root vertex.

One can see from the definition that (m†)† is the map obtained from m by reversing
the direction of its root edge. Furthermore, the one-to-one correspondence between
the faces of m and the vertices of m† preserves the degree: if f is a face of m, and f† is
the associated vertex of m†, then degm(f) = degm†(f

†). The same holds for vertices of
m: every face of m† contains a unique vertex of m, and if v is a vertex of m and v† is the
face of m† that contains it, then degm(v) = degm†(v

†).

A multigraph or map is called cubic if every vertex has degree 3. The size of such a
multigraph or map is the integer n > 1 such that the number of vertices is 2n and the
number of edges is 3n. By Euler’s formula, a cubic map of size n has n+ 2 faces. On the
other hand, a triangulation is a map where all faces have degree 3. Since taking the dual
of a map sends vertices of the primal to faces of the dual and vice-versa, it follows that
the dual of triangulations are cubic maps; and conversely, the dual of cubic maps are
triangulations. A triangulation with n+ 2 vertices thus has 2n faces and 3n edges.

A multigraph is called 3-connected it is simple, has at least 4 vertices, and at least 3

vertices need to be deleted to disconnect it. By Whitney’s theorem [43], such a graph
has exactly two embeddings on the sphere, which differ by a mirror. A 3-connected map
is a map whose underlying graph is 3-connected. It is known that duality preserves
3-connectivity [31], and that a triangulation is 3-connected if and only if it is simple.

Remark 2.1. For a 3-connected graph k that is vertex-labeled and rooted, we can
canonically choose one of the two embeddings R,R′ (which differ by a mirror) as follows.
In R we let f1, f2 be the two faces incident to the root edge e. Let v0 be the root-vertex,
and let v1 (resp. v2) be the unique vertex of f1 (resp. f2) adjacent to v0 and not incident
to the root edge. By 3-connectivity, we have v1 6= v2. If the label of v1 is smaller than the
label of v2, then we take R as the embedding associated to k, otherwise we take R′. The
outer edges of k are those incident to the outer face in the canonical embedding. Note
that each 3-connected (unlabeled) rooted map with n vertices has n!/2 preimages under
this correspondence.

2.2 Gromov–Hausdorff–Prokhorov topology

We now define the Gromov–Hausdorff–Prokhorov distance. For details and proofs,
we refer to [9] and [27, Section 6].

Let (X ,d) be a metric space. For every K ⊂ X and every ε > 0 let Kε = {x ∈ X :

EJP 28 (2023), paper 28.
Page 7/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP912
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Convergence of random cubic planar graphs

d(x,K) < ε}. The Hausdorff distance between two compact sets K1 and K2 of X is

dXH (K1,K2)
def
= inf{ε > 0 : K1 ⊂ Kε

2 and K2 ⊂ Kε
1}.

The Gromov–Hausdorff distance allows us to compare two compact metric spaces by
isometrically embedding them in a common, larger metric space, and comparing the
Hausdorff distance of their embedding. More formally for every pair of compact metric
spaces (X ,dX ) and (Y,dY), we define their Gromov–Hausdorff distance as:

dGH((X ,dX ), (Y,dY))
def
= inf{dZH(ΦX (X ),ΦY(Y))},

where the infimum is over every metric space Z and isometries ΦX : X → Z and
ΦY : Y → Z. Since isometric spaces are at Gromov–Hausdorff “distance” zero, dGH only
defines a pseudo-distance on compact metric spaces, but it becomes a true distance when
considered on M the set of compact metric spaces seen up to isometry. Furthermore,
(M,dGH) is a Polish space.

If (Z,d) is a metric space with Borel σ-algebra B(Z), we define the Lévy–Prokhorov
distance between two Borel probability measures µ, µ′ on Z as follows:

dZLP(µ, µ′)
def
= inf{ε > 0 : ∀A ∈ B(Z), µ(A) 6 ν(Aε) + ε and ν(A) 6 µ(Aε) + ε}.

If Z is a Polish space then the Lévy–Prokhorov distance makes the set of probability
measures on Z a Polish space, and dLP metrizes the weak convergence of measures.
There is also a characterization of dZLP(µ, µ′) in terms of coupling, see for instance [20].
A coupling between µ and µ′ is a probability measure ν on Z × Z such that π1

∗ν = µ

and π2
∗ν = µ′ (where π1 and π2 denote the canonical projections with respect to the

first and second coordinate respectively). We denote byM(µ, µ′) the set of couplings
between µ and µ′. Then, if (Z × Z)ε denotes the set {(z, z′) ∈ Z × Z , d(z, z′) 6 ε},
we have dZLP(µ, µ′) 6 ε if and only if there exists a coupling ν ∈ M(µ, µ′) such that
ν((Z × Z)ε) > 1− ε.

A weighted metric space is a metric space equipped with a probability Borel measure.
The Gromov–Hausdorff–Prokhorov distance dGHP is a metric on isometry classes of
compact weighted metric spaces, defined as follows. For any measured spaces X ,Z,
measurable function Φ : X → Z and measure µ on X , write Φ∗µ = µ(Φ−1(·)) for the
pushforward of µ under Φ. Let (X ,dX ) and (Y,dY) be two compact metric spaces
equipped respectively with the probability measures µX and µY ; define

dGHP((X ,dX , µX ) , (Y,dY , µY))
def
= inf

{
dZH(ΦX (X ),ΦY(Y)) + dZLP(ΦX∗ µ

X ,ΦY∗ µ
Y)
}
,

where (as in the definition of dGH) the infimum is over every metric space (Z,dZ) and
isometries ΦX : X → Z and ΦY : Y → Z. Because isometric weighted metric spaces
are at Gromov–Hausdorff–Prokhorov “distance” zero, the function dGHP only defines a
pseudo-metric; to make it a true metric, we consider K the set of isometry classes of
compact weighted metric spaces. Then dGHP defines a true metric on K, and (K,dGHP)

is a Polish space.
There exists also an equivalent description of dGHP based on couplings which is

better suited for our purposes. Let us introduce the concept of correspondence. A
correspondence between two sets X ,X ′ is a subset R ⊂ X × X ′ such that πX (R) = X
and πX

′
(R) = X ′, where πX , resp. πX

′
is the canonical projection on X , resp. X ′. We

write C(X ,X ′) for the set of correspondences between X and X ′. Given a correspondence,
define its distortion

dis(R)
def
= sup

{∣∣∣dX (x, y)− dX
′
(x′, y′)

∣∣∣ : (x, y), (x′, y′) ∈ R
}
.
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The Gromov–Hausdorff distance can be expressed in terms of distortion:

dGH((X ,dX ), (Y,dY)) =
1

2
inf{dis(R) : R ∈ C(X ,Y)},

and this infimum is attained.
Let X = (X ,dX , µX ) and Y = (Y,dY , µY) be two compact weighted metric spaces.

Recall the notationM(µX , µY) for the set of couplings between µX and µY , then we have
the following alternate characterization of the Gromov–Hausdorff–Prokhorov distance:

dGHP(X,Y) = inf{ε > 0 : ∃R ∈ C(X ,Y),∃ν ∈M(µX , µY),dis(R) 6 2ε, ν(R) > 1− ε}.

3 The 3-connected core of cubic planar graphs

3.1 Decomposition into 3-connected components

We recall here a decomposition [7, 22, 33] of so-called cubic networks (closely related
to rooted cubic planar graphs) and of cubic planar (multi-)graphs into 3-connected
components.

A cubic network is a connected planar multigraph N with two marked vertices v−, v+

called the poles, such that the poles have degree 1 and the other vertices have degree
3. Note that the number of non-pole vertices has to be a positive even number 2n, then
n > 0 is called the size of N. The two edges adjacent to the poles are called the legs
of N, and the other edges are called plain. The trivial network is the one of size 0,
with a single edge connecting the two poles. Note that a cubic network N of positive
size identifies to a rooted cubic planar multigraph N, which is obtained by merging the
two poles, smoothing out the merged vertex, and orienting the resulting edge from the
neighbor of v− to the neighbor of v+. Then N is called polyhedral if N is 3-connected, in
which case the outer edges of N are the (plain) edges of N corresponding to the outer
edges (without including the root edge) of N. We also define the double-edge network as
the cubic network of size 1 where the neighbors of the poles are connected by a double
edge.

Given two non-trivial cubic networks N1,N2, we let N := N1 +N2 be the cubic network
obtained by merging the plus-pole of N1 with the minus-pole of N2 and smoothing out
the merged vertex, so that the plus-pole of N is the plus-pole of N2, and the minus-pole
of N is the minus-pole of N1. A cubic network N that can be obtained as N = N1 + N2 is
called an S-network, in which case N has a unique decomposition as N = N1 + N2 where
N1 is a (non-trivial) non-S-network, and by unfolding it also has a unique decomposition
as N = N1 + · · ·+ Nk where each component Ni is a non-trivial non-S-network.

In this article, edge-substitution in a graph G is the operation consisting, for each
edge e = (u−, u+) of G (canonically endowed with a minus-extremity and a plus-
extremity), of substituting it by a cubic network Ne, so that the plus-pole and minus-pole
of Ne are identified respectively with u− and u+ (note that substitution by the trivial
network leaves the edge unchanged). If G is itself a cubic network, only the plain edges
are substituted. A cubic network obtained by edge-substitution from the double-edge
network (resp. from a polyhedral network) is called an P -network (resp. a H-network ).

Note that S-networks, P -networks and H-networks are such that the two poles are at
distance greater than 2. An L-network is a cubic network N whose poles are at distance
2. In an L-network, let u be the common neighbor of the poles, and let v be its other
neighbor (note that the edge {u, v} is an isthmus). Let l1 be the L-network of size 1 where
v carries a loop. And let l2 be the L-network of size 2 where v has two neighbors (apart
from u) each carrying a loop. As shown in [7, 22], an L-network N is either obtained
from l1 where only the loop-edge is allowed to be substituted, or is obtained from l2
where only the two loop-edges are allowed to be substituted (the first and second case
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Figure 2: Left: a connected (simple) cubic graph g, realized as a cubic network upon
rooting at a (non-isthmus) edge. Right: the associated decomposition-tree.
The tree is considered as unrooted: it is intrinsic to g (i.e., it does not depend on
the root-choice), which is also reflected by the difference in the choice of letters (a
series-decomposition in the rooted setting corresponds to a “ring” of components in the
unrooted setting, giving a node of type R). The left part also shows the partition of the
vertices of g by components (tree-nodes) of type in {L,M, T}.

correspond respectively to N\v having two or three connected components). The two
cases are called type 1 and type 2, respectively.

We have the following decomposition result for cubic networks, shown in [22, Lem.1]
(the version for graphs appeared previously in [7, Lem.1]):

Lemma 3.1. Any non-trivial cubic network is in exactly one of the following classes:
{L-network, S-network, P -network, H-network }.

As detailed in [33] and illustrated in Figure 2, Lemma 3.1 yields a tree-decomposition
of cubic networks, i.e., a rooted (unembedded) tree τ(N) can be associated to a non-
trivial cubic network N, whose inner nodes have labels in {L,R,M, T}. Precisely, if N is
an S-network, of the form N1 + · · ·+ Nk, then the root node of τ(N) is labeled R and the
hanging subtrees are τ(N1), . . . , τ(Nk) (these are not S-network hence do not have root
label R). If N is an P -network or H-network, then the root node is labeled M (resp. T )
and the hanging subtrees are the trees associated to the substituted networks. Finally,
for L-networks, the root node has label L. In type 1, it has one child also labeled L and
of arity in {0, 1}, depending on whether the loop-edge of l1 is unchanged or substituted
by a non-trivial network N′ (in which case the hanging subtree at the child corresponds
to τ(N′)). In type 2, it has two children labeled L, each corresponding to one of the two
loops of l2. Each child again has arity in {0, 1}, depending on whether the corresponding
loop is left unchanged or substituted by a non-trivial network.

Each T -node of the tree τ(N) corresponds to a certain rooted 3-connected planar
graph k whose vertex-set is a subset of the vertex-set of N. Then k is called a 3-connected
component of N. The hanging subtrees of the node correspond to the (non-trivial)
cubic networks substituted at its edges. As detailed in [33], the tree-decomposition
and 3-connected components are intrinsic to the underlying unrooted cubic planar
graph (essentially it means that rerooting the cubic multigraph at another non-isthmus
edge amounts to rerooting the same underlying unrooted tree, a fact established by
Tutte [42] for the decomposition of graphs into 3-connected components, which can then
be specialized to the cubic case). Accordingly, to any connected cubic planar graph g,
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one can associate an unrooted decomposition tree, denoted τ(g). Let us mention the
following subtlety: when building the tree in the rooted case, every R-node has arity at
least 2, hence degree at least 3 if not at the root and degree at least 2 if at the root. In
case the root node is of type R of arity 2, then when unrooting the tree the corresponding
node of degree 2 is smoothed out, so that all R-nodes in the unrooted tree are of degree
at least 3. The (unrooted) decomposition-tree satisfies the following properties, which
can be visualized in Figure 2:

Claim 3.2. For g a connected cubic planar multigraph and τ(g) the associated de-
composition-tree, the vertices of g are partitioned among the L-components, the M -
components, and the T -components (3-connected components) of τ(g) (theR-components
have no contribution).

The L-components are in one-to-one correspondence with the separating vertices
of g, the M -components are in one-to-one correspondence with vertex-pairs {u, v} such
that g is obtained by edge-substitution in the triple-bond connecting u and v.

The other vertices belong to the 3-connected components. Precisely, for V ′ a vertex-
subset of g with |V ′| > 4, and k a 3-connected planar graph (unrooted) with vertex-set
V ′, k is a 3-connected component of g if and only if g is k with networks substituted at
the edges.

We focus our study first on simple cubic planar graphs; accordingly the cubic net-
works are also simple (extension of the arguments to multigraphs will be given in
Section 3.4). In the network-decomposition, this yields the constraint that loops (when
dealing with an L-network at the current node) are to be substituted by non-trivial
non-L-networks, whereas when substituting in the double-edge network (when dealing
with a P -network at the current node), at least one of the two edges is to be substituted
by a non-trivial network. On the decomposition-tree for unrooted graphs, being simple is
equivalent to the fact that every leaf has label T , every L-node of degree 2 has exactly
one neighbor of type L, and every M -node has degree in {2, 3}; for networks the same
constraints hold at non-root nodes, while the root node is allowed to be a leaf (i.e., to
have arity 1) of type L or type M .

We define families F = ∪nFn of cubic simple networks (with n the size-parameter),
where F is replaced by L,S,P,H according to the type; we also define D as the family
of all simple cubic networks and K as the family of polyhedral networks. Each of
these families is vertex-labeled, in the sense that the 2n non-pole vertices have distinct
labels in [1..2n] (on the other hand the two poles are unlabeled). We denote by F (z) =∑
n

1
(2n)! |Fn|z

n the associated generating function, replacing F by the corresponding
letter for each family.

We can express K in the following way. Let Tn be the set of rooted simple planar
triangulations with n+ 2 (unlabeled) vertices (and 2n faces), and T (x) =

∑
n>2 |Tn|xn the

corresponding ordinary generating function, which is known [41] to have the following
exact expression:

T (x) =
∑
n>2

2

n(n− 1)

(
4n− 3

n− 2

)
xn = ξ2(1− 3ξ + ξ2), (3.1)

where ξ is the unique formal power series in x with constant term equal to 0 and defined
by x = ξ(1− ξ)3.

By duality, simple planar triangulations correspond to 3-connected cubic planar
maps. Thus, applying Whitney’s theorem and taking vertex-labeling into account, we
have (2n)!|Tn| = 2|Kn|, hence K(x) = T (x)/2.

Then a decomposition at the root of the decomposition tree of cubic networks yields
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the following system (from which the coefficients can be extracted):

D(z) = 1 + L(z) + S(z) + P (z) +H(z),

L(z) = 1
2L(z)2 + 1

2z(D(z)− 1− L(z)),

S(z) = (D(z)− 1− S(z))(D(z)− 1),

P (z) = 1
2z(D(z)2 − 1),

H(z) = 1
D(z)K

(
zD(z)3

)
= 1

2D(z)T
(
zD(z)3

)
.

(3.2)

In the second line the two terms correspond respectively to the root L-node having arity
2 or 1. The last line (with T (x) given in (3.1)) relies on the fact that a cubic network of
size n has 3n− 1 plain edges.

Let C = ∪nCn be the family of vertex-labeled connected cubic planar graphs of size
n, i.e., the 2n vertices carry distinct labels in [1..2n]. Let C(z) =

∑
n>1

1
(2n)! |Cn|z

n be the
associated exponential generating function. Using Claim 3.2, one obtains the following
expression for the exponential generating function C•(z) = 2zC ′(z) of pointed (i.e., with
a marked vertex) cubic planar graphs [33]:

C•(z) =
(1

2

(
D(z)− 1− L(z)

)
L(z) +

1

6z
L(z)3

)
+
z

6
(D(z)3 − 3D(z) + 2) +

1

3
G(z), (3.3)

where we define G(z) := K(zD(z)3). The three groups correspond to the marked vertex
being involved in an L-component (with the two terms corresponding to the marked
vertex yielding two or three connected components upon its removal), an M -component,
and a T -component respectively (the factor 1/3 in front of G(z) is due to having a marked
vertex instead of a marked directed edge).

3.2 Largest 3-connected component

We now use singularity analysis of the involved generating functions, in order to show
(in this subsection and the next one) that a random cubic connected planar graph almost
surely has a unique giant 3-connected component (of linear size), and to establish related
properties. This analysis follows from a well-established methodology [5, 17]. Similar
results appear in the recent preprint [40] (in particular Theorem 1.2). We provide here
our own analysis (thereby explaining the mild differences with the statements and proof
of [40]) for the sake of completeness, and since we will extend these results to cubic
planar multigraphs in Section 3.4.

It follows from [33, Sec.3.1] that the generating functions F (z) with F ∈ {L,D,G,C•}
have the same radius of convergence ρ ≈ 0.101905 and these series have singular
expansion (in a slit neighborhood) of the form2:

F (z) = F0 − F2Z
2 + F3Z

3 +O(Z4), where Z =
√

1− z/ρ. (3.4)

Moreover, these series are analytically continuable to a domain {|z| 6 ρ+ η, z− ρ /∈ R+}
for some η > 0. By transfer theorems of analytic combinatorics [16, VI.3], we have
[zn]F (z) ∼ κρ−nn−5/2, where κ = 3F3

4
√
π

.
We say that a pointed connected cubic planar graph is of type T if the marked vertex

is incident to a T -component. According to (3.3), this occurs with probability

[zn]
1

3
G(z)/[zn]C•(z) ∼ 1

3
G3/C

•
3 . (3.5)

2In [33], the size-parameter is the number of vertices, whereas it is half the number of vertices here. The
analysis is completely similar under this modification, they have dominant singularities at ±√ρ whereas we
have a single dominant singularity at ρ.
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Let E(z) = zD(z)3 (note that E(z) also has a singular expansion of the form E(z) =

E0 − E2Z
2 + E3Z

3 +O(Z4)), so that the generating function of cubic connected planar
graphs of type T is

1

3
G(z) =

1

3
K(E(z)).

As shown in [33, Sec.3.1], this composition scheme is critical, in the sense that the radius
of convergence of y → K(y) is y0 = ρD3

0, and K(y) has a singular expansion of the form
K(y) = K0 −K2Y

2 +K3Y
3 + O(Y 4), with Y =

√
1− y/y0. We can now use the results

from [5]. Let A(x) be the density function defined by

A(x) =
1

π

∑
k>1

(−1)k−1xk
Γ(1 + 2k/3)

Γ(1 + k)
sin(2πk/3).

For c > 0, the probability distribution of density cA(cx) is called Airy-map distribution of
parameter c.

Proposition 3.3 (Apply Theorem 5 in [5]). Define the constants

p′` = 1− E3G2

E2G3
, α =

E(ρ)

ρE′(ρ)
=
E0

E2
, c =

1

α

(
E2

3E3

)2/3

.

For C•n the random pointed cubic 3-connected planar graph of type T , let Xn be the size
of the 3-connected component incident to the marked vertex. Then, for any x ∈ R (and
uniformly in any compact set of R)

P (Xn = bαn+ xn2/3c) = p′`n
−2/3 cA(cx) · (1 + o(1)).

Remark 3.4. The quantities α, c are explicitly computable, α ≈ 0.8509 is root of the
polynomial

13026164315213824x6 − 10328139725010432x4 − 1810655504690048x3

+1409382842895504x2 + 591702923494104x+ 62103840598801,

and c ≈ 1.5190 is root of the polynomial

225719792049828011973129x18 − 25997088298647780811521072x15

+ 1072598816640412427380432704x12

− 29427138982726419066720150528x9 + 347939923194525847286624477184x6

− 1656815421544715458705316511744x3 + 2651264949483594255344169385984.

Compared to [40, Theo 1.2] the constant c differs by a factor 21/3; this is due to the size
n being the number of vertices in [40] whereas it is half the number of vertices here.

The 3-connected core of a cubic connected planar multigraph is its largest 3-
connected component (if there is a tie, we break the tie by choosing the one whose
minimal label is smaller). We now obtain:

Theorem 3.5. For Cn the random connected cubic planar graph with 2n vertices, let
X∗n be the size of the 3-connected core of Cn. Then, for any x ∈ R (and uniformly in any
compact set of R), we have, with the constants α, c defined in Proposition 3.3:

P (X∗n = bαn+ xn2/3c) = n−2/3 cA(cx) · (1 + o(1)). (3.6)

Note that Theorem 3.5 ensures that X∗n is concentrated around αn with fluctuations
of order n2/3, and that (X∗n − αn)/n2/3 converges in law to the Airy-map distribution of
parameter c.
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Proof. Let C•n be the set of pointed connected cubic planar graphs with 2n vertices, and
let C•n be uniformly random in C•n. In view of (3.5), if we define

p` :=
G3

3C•3
p′` =

1

3C•3

(
G3 −

E3G2

E2

)
, (3.7)

and define Xn to be 0 if C•n is not of type T , and Xn to be the size of the 3-connected
core otherwise, then by (3.5) and Proposition 3.3, we have for any x ∈ R (and uniformly
in any compact set of R),

P (Xn = bαn+ xn2/3c) = n−2/3 p` cA(cx) · (1 + o(1)).

To show (3.6) we rely on a re-rooting argument given in [5, Appendix D]. The graphs
with a giant 3-connected component of size ≈ αn incident to the marked vertex are in
proportion ∼ p` among C•n, and they admit ∼ 1/α re-rootings at an arbitrary vertex. In
addition, they produce different objects in C•n, because, as observed in [40], the fact that
α > 1/2 ensures that there is at most one such component within the graph, for n large
enough.

Thus p`/α 6 1, and to conclude that almost all graphs in C•n are of that form it
remains to show that p` = α. Here we proceed a bit differently from [40]. Rather than
computing the precise evaluations of α and p`, we will show that each of α, p` has a
rational expression in terms of ρ, L0, L2 and that these expressions are the same. Thereby
our calculations do not require any evaluations of the involved quantities, treated as
formal symbols, nor the exact expression of K(x) = T (x)/2 given in (3.1); we just use the
fact that the series in z have a singular expansion of the form (3.4). (Thus the coincidence
of p` and α can be seen as a “generic” property of the decomposition grammar.)

The second line of (3.2) yields for each i ∈ {0, 2, 3} a rational expression for Di in
terms of {ρ, L0, Li}, precisely

D0 = 1 +
L0(2 + ρ− L0)

ρ
, D2 =

L2
0 − 2L0L2 + L2ρ− 2L0 + 2L2

ρ
, D3 =

L3(2 + ρ− 2L0)

ρ
.

Since E(z) = zD(z)3, this directly yields for each i ∈ {0, 2, 3} a rational expression for Ei
in terms of {ρ, L0, Li}, e.g. E3 = 3L3(2 + ρ− 2L0)(L2

0 − L0ρ− 2L0 − ρ)2/ρ2. We can then
inject the expressions of E0 and E2 into α = E0

E2
, and find

α =
ρ+ L0ρ+ 2L0 − L2

0

2L2
0 − 6L0L2 + L0ρ+ 3L2ρ− 4L0 + 6L2 + ρ

.

It remains to find a similar rational expression for p` = 1
3C•3

(
G3 − E3G2

E2

)
. From (3.2) we

extract the equation (noting that the 3rd line yields S(z) = (D(z)− 1)2/D(z))

D(z) = 1 + L(z) +
(D(z)− 1)2

D(z)
+

1

2
z(D(z)2 − 1) +

1

D(z)
G(z),

from which we extract for each i ∈ {0, 2, 3} a (quite larger) rational expression for Gi in
terms of {ρ, L0, Li}. From (3.3) we can then extract a rational expression for C•3 in terms
of {L0, L3, ρ}. From the expressions of E2, E3, G2, G3, we obtain a rational expression of
p` that exactly matches the one of α given above. Thus p` = α.

3.3 Cubic planar graphs with a marked 3-connected component

For two integers n, q, let C(q)
n be the set of connected cubic planar graphs of size

n having a marked 3-connected component of size q, and denote by C
(q)
n a uniformly
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random element in C(q)
n . It will also prove convenient for us to see C

(q)
n as closely related

to a model with more independence. The critical Boltzmann distribution on D is the
probability distribution µ(D) defined as

µ(D)(d) =
ρ|d|

(2|d|)!D(ρ)
∀ d ∈ D, (3.8)

where we recall that ρ is the radius of convergence of D(z).
Let C(q) be a random connected cubic planar graph with a marked 3-connected

component of size q constructed in the following way. Letting K be a uniformly random
3-connected graph of size q, we replace (independently) each edge of K by a cubic
network sampled from µ(D). The resulting graph is C(q). Note that, for any n, q > 1, C(q)

n

is distributed as C(q) conditioned to have size n.
As stated next, the conditioning probability is polynomial when q = αn+O(n2/3):

Lemma 3.6. For every C > 0, we can find 0 < c− < c+ <∞ such that for every q with
|q − αn| 6 Cn2/3, we have n2/3P(|C(q)| = n) ∈ (c−, c+).

Informally, this local limit theorem-type result ensures that when q, n are related by
q = αn + O(n2/3), then P(|C(q)| = n) = Θ(n−2/3). We will often use such an informal
notation thereafter.

Proof. Let n(q) be the size of C(q). With E(z) = zD(z)3, we have

P(n(q) = n) = [un]p(u)q, where p(u) :=
E(ρu)

E(ρ)
.

With the notation (3.4), we have

p(u) = 1 +
1

α
(u− 1) +

E3

E0
(1− u)3/2 +O((u− 1)2).

A local limit theorem (for a stable law of parameter 3/2) holds [5, Theo.11(ii)]: for
n = 1

αq − xq
2/3, uniformly in x on any compact interval, we have

P(n(q) = n) ∼ c̃A(c̃x)

q2/3
,

with c̃ = (E0/E3)2/3, and c̃A(c̃x) the Airy-map distribution of parameter c̃.

Let C be a connected cubic planar graph with a marked 3-connected component K.
Note that C is obtained from K by substituting every edge of K by a cubic network; such
a network is called an attached network of C.

Lemma 3.7. Let ε > 0. When q, n are related by q = αn+O(n2/3), then a.a.s. all attached

networks of C(q)
n have size at most n2/3+ε.

Proof. Let ε′ = ε/2. We argue via C(q) and conditioning on the size. The 3q edges of
the marked 3-connected component can be canonically ordered (e.g. lexicographic
ordering on the pair of labels of the incident vertices), which yields a canonical ordering
M1, . . . ,M3q of the 3q attached networks. In C(q) these are independently drawn under
µ(D), and the size of C(q) is |C(q)| = |M1|+ · · ·+ |M3q|. Using [17, Theo.1(iii)-(b)], it follows
that

P

(
|C(q)| < 1

α
q − q2/3+ε′

)
= O(exp(−qε

′
)).

(a large deviation result, obtained by a saddle-point estimate).
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Similarly, for any i ∈ [1..3q], we have P(|C(q)| − |Mi| < 1
αq − q

2/3+ε′) = O(exp(−qε′))
(we apply the same argument to (3q − 1) attached networks instead of 3q). By the union
bound, the probability that |C(q)|−|Mi| < 1

αq−q
2/3+ε′ for some i ∈ [1..3q] is O(q exp(−qε′)).

When conditioning on C(q) to have size n, the event that |C(q)| − |Mi| < 1
αq − q

2/3+ε′ for

some i ∈ [1..3q] is the same as |Mi| > n − 1
αq + q2/3+ε′ for some i ∈ [1..3q]. Hence,

when q, n are related by q = αn+O(n2/3), Lemma 3.6 ensures that the probability that
|Mi| > n− 1

αq + q2/3+ε′ for some i ∈ [1..3q] is O(n2/3q exp(−qε′)) = o(1). Moreover, for n
large enough, this event is implied by the event that |Mi| > n2/3+ε for some i ∈ [1..3q].

Remark 3.8. For q = αn + O(n2/3), as already observed in [40] the fact that α > 1/2

ensures that for n large enough C
(q)
n coincides with the random connected cubic planar

graph Cn conditioned to have its 3-connected core of size q.

3.4 Extension of the results to cubic planar multigraphs

In the context of multigraphs, it is somehow more natural (e.g. for kernel extraction
relations) to consider that the half-edges are labeled instead of the vertices3. Thus, let
Mn denote the set of half-edge-labeled connected cubic planar multigraphs of size n
(i.e., with 2n vertices), and Mn denotes an element ofMn taken uniformly at random.
Regarding cubic networks (allowing for loops and multiedges), we consider that, in size
n (i.e., with 2n non-pole vertices), the 6n − 2 half-edges on plain edges carry distinct
labels in [1..6n− 2]. For each family F of cubic networks, with F ∈ {D,L,S,P,H}, we
let F (z) =

∑
n

1
(6n−2)! |Fn|z

n be the associated generating function. In this context, the
equation-system (3.2) (again obtained from a decomposition at the root of the associated
tree) becomes 

D(z) = 1 + L(z) + S(z) + P (z) +H(z),

L(z) = 1
2L(z)2 + 1

2z D(z),

S(z) = (D(z)− 1− S(z))(D(z)− 1),

P (z) = 1
2z D(z)2,

H(z) = 1
D(z)K

(
zD(z)3

)
= 1

2D(z)T
(
zD(z)3

)
.

(3.9)

We warn the reader of our abuse of notations, as D,L, S, P and H all denote different
objects in the context of graphs and multigraphs; we do so because of the extreme
similarity of the proofs and results. Which object we consider should be clear from
context. Now, with M(z) =

∑
n>1

1
(6n)! |Mn|zn and M•(z) = 2z d

dzM(z), the analogue
of (3.3) is

M•(z) =
1

2
D(z)L(z) +

1

6z
L(z)3 +

z

6
D(z)3 +

1

3
G(z), (3.10)

where G(z) = K(E(z)), with E(z) = zD(z)3 (the series K(x) is the same as before, since
3-connected graphs are simple).

We can now rely on the singularity analysis performed in [15, 22] to obtain the
analogue of Theorem 3.5. The generating functions F (z) with F ∈ {L,D,E,G,M•} have
the same radius of convergence ρ = 54/(79)3/2 (we still use the letter ρ even if the radius
of convergence for multigraphs is different than for simple graphs), and these series
have singular expansion (in a slit neighborhood) of the form

F (z) = F0 − F2Z
2 + F3Z

3 +O(Z4), where Z =
√

1− z/ρ. (3.11)

3This is equivalent to considering vertex-labeled multigraphs with a certain compensation-factor [21], which
for cubic graphs with more than 2 vertices is 2−#loops−#double edges.
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As in the case of graphs, the composition scheme in (3.9) is critical, so that we can apply
Theorem 5 from [5], exactly in the same way as in Proposition 3.3. Defining the constants

p′` = 1− E3G2

E2G3
, α =

E(ρ)

ρE′(ρ)
=
E0

E2
, c =

1

α

(
E2

E3

)2/3

,

we obtain that, for M•n the random pointed connected cubic planar multigraph of size n,
conditioned to have the marked vertex on a 3-connected component, the size Xn of the
3-connected component at the marked vertex satisfies for any x ∈ R (and uniformly in
any compact set of R)

P (Xn = bαn+ xn2/3c) = p′`n
−2/3 cA(cx) · (1 + o(1)).

The constants α, c are again explicitly computable, and we find the following values,
much simpler than in the case of graphs:

α =
199

316
≈ 0.6297, c =

2

3

(
79

17

)2/3

≈ 1.8565. (3.12)

We can now obtain the analogue of Theorem 3.5.

Theorem 3.9. For Mn a uniformly random connected cubic planar multigraph of size
n, let X∗n be the size of its 3-connected core. Then, for any x ∈ R, and uniformly in any
compact set of R,

P (X∗n = bαn+ xn2/3c) = n−2/3 cA(cx) · (1 + o(1)), (3.13)

where α, c are given in (3.12).

Again, this implies that X∗n is concentrated around αn, and (X∗n−αn)/n2/3 converges
to the Airy-map distribution of parameter c.

Proof. Similarly as in Theorem 3.5, we have to check that the constant p` := G3

3M•3
p′` is

equal to α (again we do not need the precise algebraic equations of the involved series,
the proof is “generic” and does not require the expression of K(x)). The second line
of (3.9) yields, for each i ∈ {0, 2, 3}, a rational expression of Di in terms of {ρ, L0, Li}:

D0 =
L0(2− L0)

ρ
, D2 =

L2
0 − 2L0L2 − 2L0 + 2L2

ρ
, D3 =

2L3(1− L0)

ρ
.

Using E(z) = zD(z)3, this yields, for each i ∈ {0, 2, 3}, a rational expression for Ei in
terms of {ρ, L0, Li}, which gives a rational expression for α = E0

E2
. We find

α =
L0(2− L0)

2(L2
0 − 3L0L2 − 2L0 + 3L2)

.

It remains to find a similar rational expression for p` = 1
3M•3

(
G3 − E3G2

E2

)
. From (3.9)

(note that the third line yields S(z) = (D(z)− 1)2/D(z)), we extract the equation

D(z) = 1 + L(z) +
(D(z)− 1)2

D(z)
+

1

2
zD(z)2 +

1

D(z)
G(z),

which yields, for i ∈ {0, 2, 3}, a rational expression for Gi in terms of {ρ, L0, Li}. Finally,
we can extract from (3.10) a rational expression for M•3 in terms of {ρ, L0, L3}. Injecting
the expressions of M•3 , G2, G3, E2, E3 into p`, we obtain a rational expression for p` that
exactly matches the one of α given above. Hence p` = α.
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Similarly as for cubic graphs, for two integers n, q, we letM(q)
n be the set of connected

cubic planar multigraphs of size n having a marked 3-connected component of size q,
and let M(q)

n be a uniformly random element inM(q)
n . And we denote by M(q) the random

connected cubic planar multigraph with a marked 3-connected component K of size
q, each edge of K being independently replaced by a cubic network drawn under the
critical Boltzmann distribution on D, i.e., the probability distribution µ(D) (D denoting
here the family of cubic networks allowing for double edges and loops) defined as

µ(D)(d) =
ρ|d|

(2|d|)!D(ρ)
∀ d ∈ D, (3.14)

where ρ is the radius of convergence of D(z). As before, M
(q)
n is M(q) conditioned

to have size n. By a very similar analysis as in Section 3.3, when n, q are related by
q = αn + O(n2/3), the probability that M(q) has size n is Θ(n−2/3); and for ε > 0, a.a.s.
every cubic network attached at the marked 3-connected component has size smaller
than n2/3+ε. Moreover, since α > 1/2, for q = αn + O(n2/3) and n large enough, M(q)

n

coincides with the random cubic connected planar multigraph of size n conditioned to
have its 3-connected core of size q.

4 First results about the metric properties of random cubic pla-
nar graphs

4.1 Pole-distance in cubic networks under the critical Boltzmann distribution

For N a cubic network, the pole-distance of N is the distance between its two poles,
it is denoted δ(N). We use the notation D for the class of networks in both contexts
(simple cubic networks, labeled at non-pole vertices, or cubic networks allowing for
loops and multiedges, labeled at half-edges on plain edges). Let ν? be the distribution of
δ(N), where N is drawn under µ(D) (critical Boltzmann distribution on D). Our aim here
is to show that ν? has an exponential tail, both in the case of graphs and multigraphs
(the reason to show this is that ν? will be the law of edge-lengths to be considered on
the 3-connected core, and our subsequent analysis of modified distances in 3-connected
cores assumes the law of edge-lengths to have exponential tails).

Lemma 4.1. There exist constants a?, b? > 0 such that, for X drawn under ν?,

P(X > k) 6 a? exp(−b? k) for all k > 0.

Proof. Similarly as in [11, Lem.5.6], the approach is to define another parameter χ on
cubic networks that dominates δ and is easier to track along the network decomposition,
and to show via generating functions that χ has an exponential tail. For N ∈ D, χ(N) is
defined as follows:

• if N is the trivial network then χ(N) = 1,
• if N is of type L then χ(N) = 2,
• if N is of type R, of the form N1 + N2 (with N1 a not-R network), then χ(N) =

χ(N1) + χ(N2),
• if N is of type M , with N1 and N2 the two networks substituted at each edge, then
χ(N) = χ(N1) + χ(N2) + 2,

• if N has a 3-connected core K, and if N1, . . . ,Nk are the cubic networks substituted
at the outer edges of K, then χ(N) = 2 + χ(N1) + · · ·+ χ(Nk).

It is easy to check recursively along the decomposition that χ(N) > δ(N) for any N ∈ D.
For each family F of networks, we let F (z, u) be the bivariate generating function

(with z for the size and u for the parameter χ). We also write T (z, v) for the bivariate
generating function of rooted simple triangulations, with v for the root degree minus 1.
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By Remark 2.1, T (z, v)/2 is the bivariate (exponential) generating function of 3-connected
edge-rooted cubic planar graphs, with v conjugate to the number of outer edges minus 1.
For the case of graphs, the network decomposition gives

D(z, u) = u+ L(z, u) + S(z, u) + P (z, u) +H(z, u),

L(z, u) = u2L(z),

S(z, u) = (D(z, u)− u− S(z, u))(D(z, u)− u),

P (z, u) = 1
2u

2(D(z, u)2 − 1),

H(z, u) = u2 1
2D(z)T (zD(z)3, D(z, u)/D(z)),

(4.1)

Hence, noting that S(z, u) = (D(z,u)−u)2

D(z,u)−u+1 , the series D(z, u) is solution of the equation in y

A(z, u, y) = 0, (4.2)

where

A(z, u, y) = −y + u+ u2L(z) +
(y − u)2

y − u+ 1
+

1

2
u2(y2 − 1) +

u2

2D(z)
T (zD(z)3,

y

D(z)
).

We are now going to prove the property that there exists u0 > 1 such that D(ρ, u0)

converges; this will prove the lemma, since for N drawn under µ(D) one has

P(δ(N) > k) 6 P(χ(N) > k) =
∑
r>k

[ur]D(ρ, u)

D(ρ)
6
D(ρ, u0)

D(ρ)
u−k0 .

What we will obtain more precisely is that, in a complex neighborhood of (ρ, 1) (with ρ
the radius of convergence of D(z)), we have a singular expansion for D(z, u) of the form

D(z, u) = D̃(Z,U), with Z =
√

1− z/ρ and U = u− 1,

where D̃(Z,U) is analytic around (0, 0) and satisfies [Z1]D̃(Z,U) = 0, and [Z2]D̃(Z, 0) 6= 0;
and moreover we will check that ρ is the radius of convergence of z → D(z, u) for u ∈ R
around 1.

To prove that, we first obtain a similar singular expansion for T (x, v). An explicit
expression is given in [8]:

T (x, v) =
1

2vx

(
− 2v2x2 + vxη(1 + 2(1− η))− (1− η)η3 − (ηvx− (1− η)η3)

√
1− 4vx/η2

)
,

where η ≡ η(x) is the algebraic series given by x = η3(1− η), which has an expansion
of the form η(x) = ã(x) + b̃(x) · (1− x/xc)3/2, where xc = 27/256, and ã(x) and b̃(x) are
analytic around xc, and η(xc) = Ã(xc) = 3/4. Plugging this expansion into the expression
of T (x, v), one obtains an expansion of T (x, v) around (xc, 1) of the form

T (x, v) = T̃ (X,V ), with X =
√

1− x/xc and V = v − 1,

where T̃ (X,V ) is analytic around (0, 0) and satisfies [X1]T̃ (X,V ) = 0, and [X2]T̃ (X, 0) 6=
0. Next, we have (from [7, 33]) that L(z) and D(z) are of the form f(z) = f̃(Z) with f̃(Z)

analytic around 0 and satisfying f̃ ′(0) = 0 and f̃ ′′(0) 6= 0; and moreover ρD(ρ)3 = xc.
Plugging these expansions into (4.2) (see [14, Sec.2.6] for a similar extraction) we can
extract an expansion for D(z, u) of the form D(z, u) = D̃(Z,U), where D̃(Z,U) is analytic
around (0, 0) and satisfies [Z1]D̃(Z,U) = 0, and [Z2]D̃(Z, 0) 6= 0.

Taking Z = 0, this ensures that the univariate function u 7→ D(ρ, u) is analytic at 1.
Letting an,m := [znum]D(z, u), we have D(ρ, u) =

∑
n,m an,mρ

num for u 6 1 (because∑
n,m an,mρ

n = D(ρ) <∞). The analyticity of u 7→ D(ρ, u) at u = 1 then ensures that the
convergence of the above sum extends for u 6 u0 for some u0 > 1. Hence, there exists
u0 > 1 such that D(ρ, u0) converges.

The proof for the case of multigraphs is completely similar (the equation-system is
the same, except for P (z, u) = 1

2u
2D(z, u)2).
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4.2 A first bound on the diameter

For later purpose, we need to establish a first bound on the diameter of random
connected cubic planar graphs (resp. multigraphs), which is the analogue of the one
for random planar graphs obtained in [11]. We say that a property An,ε related to a
random object of size n, and also formulated in terms of a real parameter ε > 0, holds
a.a.s. with exponential rate if there are positive constants a, b, c such that P (not An,ε) 6
a exp(−b ncε) for all n > 0 and ε > 0 small enough. The diameter of a graph g, denoted
Diam(g), is the maximum of the pairwise distances between vertices in g.

The purpose of this section is to prove the following result:

Proposition 4.2. Let Cn (resp. Mn) be the random connected cubic planar graph (resp.
multigraph) on 2n vertices. Then Diam(Cn) 6 n1/4+ε (resp. Diam(Mn) 6 n1/4+ε) a.a.s.
with exponential rate.

As a first step, we establish the bound in the 3-connected case (starting in the dual
setting of random simple triangulations).

Lemma 4.3. Let tn be the random rooted simple triangulation with n+ 2 vertices. Then
Diam(tn) 6 n1/4+ε a.a.s. with exponential rate.

Proof. Let T ′n be the set of rooted triangulations with a marked vertex (distinct from
the root vertex), having n + 2 vertices. We use the fact (to be detailed in Section 5.2,
and illustrated in Figure 4) that T ′n−1 injects into the set Qn,1 of so-called quasi-simple
triangulations of the 1-gon having n inner vertices, in such a way that the underlying
metric space is preserved; and that both |Qn,1| and |T ′n| are Θ((256/27)nn−3/2). Let G(x)

be the counting series of quasi-simple triangulations of the 1-gon with respect to the
number of vertices minus 2. For i > 1, let G(i)(x) be the counting series of quasi-simple
triangulations of the 1-gon where the root vertex and the marked vertex are at distance i,
counted with respect to the number of vertices minus 2. Let q(1)

n be a uniformly random
map in Qn,1. Denoting by Ln the distance between the root vertex and the marked vertex

in q
(1)
n−1, we have

P(Ln = i) =
[xn]G(i)(x)

[xn]G(x)
.

An explicit expression4 for G(i)(x) is given in [3, Prop.5.3]. Precisely, there exists an
(algebraic) counting series Y (x), with a quartic dominant singularity at 27/256,

Y (x) ∼ 1− 241/4(1− 256x/27)1/4,

such that G(i)(x) is expressed as

G(i)(x) = Y i(x) ·R(Y i(x), Y (x), S(x)),

where S(x) =
√
Y (x)2 + 10Y (x) + 1, and where R(z1, z2, z3) is an explicit rational ex-

pression that is continuous and positive at (z1 = 0, z2 = 1, z3 =
√

12). Let xn =

27/256 · (1−1/n). Then Y (xn) = 1− (24/n)1/4 + o(n−1/4). Hence, for ε > 0 and i > n1/4+ε,
we have Y i(xn) = O(exp(−b nε)), where b is any positive constant smaller than 241/4 (e.g.
b = 241/4/2). Given the expression of G(i)(x), we also have G(i)(xn) = O(exp(−b nε)).
Hence, for i > n1/4+ε, we have

[xn]G(i)(x) 6 G(i)(xn)x−nn = O
(

exp(−b nε)(256/27)n
)
.

4The expression is given for symmetric simple triangular k-dissections of order k > 3 such that the central
vertex is at distance i from the outer boundary; the quotient of these dissections by the rotation of order k is
precisely a quasi-simple triangulation whose root-vertex is at distance i from the marked vertex.
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Since [xn]G(x) = |Qn,1| = Θ((256/27)nn−3/2), we conclude that P(Ln = i) = O(n3/2

exp(−b nε)) uniformly over i > n1/4+ε, and thus

P(Ln > n
1/4+ε) = O

(
n5/2 exp(−b nε)

)
= O

(
exp(−nε/2)

)
,

so that Ln 6 n1/4+ε a.a.s. with exponential rate. Let tn be the uniform random rooted
simple triangulation with n+ 2 vertices. Let L̃n be the distance between the root vertex
and a random vertex (distinct from the root vertex) in tn. Note that L̃n is distributed as
Ln conditioned on the event that the triangulation associated with qn−1 is simple (via the
mapping described in Section 5.2). Since that event has probability Θ(1), we conclude
that L̃n 6 n1/4+ε a.a.s. with exponential rate. Since the number of choices for a root and
a marked vertex is O(n2), the union-bound ensures that Diam(tn) 6 n1/4+ε a.a.s. with
exponential rate.

Lemma 4.4. Let Kn be the random 3-connected cubic planar graph on 2n vertices. Then
Diam(Kn) 6 n1/4+ε a.a.s. with exponential rate.

Proof. Up to choosing one of the two embeddings, and choosing a root edge, Diam(Kn)

is distributed as the diameter of the random rooted 3-connected cubic planar map with
2n vertices. Let m be a planar map, and let m† be its dual. Let v, v′ be vertices in
m, let f (resp. f ′) be a face incident to v (resp. to v′), and let vf (resp. vf ′) be the
vertex of m† corresponding to f (resp. to v′). From any path γ = (v0 = v, . . . , vr = v′)

connecting v to v′, it is easy to derive a path γ† on m† between vf and vf ′ of length at
most deg(v0) + · · ·+ deg(vr). Hence, if maxDeg(m) denotes the maximal vertex-degree
in m, then we have

Diam(m†) 6 (1 + Diam(m)) ·maxDeg(m).

Hence, Diam(Kn) is stochastically dominated by (1 + Diam(tn)) · maxDeg(tn). Given
Lemma 4.3, it remains to prove that maxDeg(tn) 6 nε a.a.s. with exponential rate.
Letting rootDeg(tn) be the root degree in tn, we have (with T (x, v) defined in Section 4.1)

P(rootDeg(tn) = k) =
[xnvk]T (x, v)

[xn]T (x, 1)
.

The explicit expression [8] of T (x, v) (recalled in Section 4.1) guarantees, that there
exists v0 > 1 such that C := T (27/256, v0) converges as a sum (any v0 ∈ (1, 4/3) fits). We
thus have [xnvk]T (x, v) 6 C (256/27)nv−k0 , so that

P(rootDeg(tn) = k) = O(n5/2v−k0 ),

On the other hand, a standard re-rooting argument ensures that

P(maxDeg(tn) = k) 6 6n · P(rootDeg(tn) = k) = O(n7/2v−k0 ),

which is O(v
−nε/2
0 ) for k > nε. Hence, maxDeg(tn) 6 nε a.a.s. with exponential rate.

Let g be a (non-rooted) cubic connected planar multigraph, and let τ(g) be the
associated decomposition-tree. We call R-attached network within g one of the cubic
networks assembled around an R-cycle of components (node of label R in τ(g)). Note
that such a component must be a non-trivial non-S-network. It corresponds to an edge e
with a R extremity in τ(g), precisely it is the network associated to the subtree hanging
from the non-R side of e. We let δR(g) be the maximal value of δ(N) over all R-attached
networks within g. And we let ξR(g) be the maximal degree over all R-nodes of τ(g).
Similarly, we define a T -attached network as a network substituted at one of the edges
of a T -component of g. It corresponds to an edge e with a T extremity in τ(g), precisely
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it is the network associated to the subtree hanging from the other side of e. We let δT (g)

be the maximal value of δ(N) over all T -attached networks within g. And we let ξT (g) be
the maximal diameter over all 3-connected components of g.

Similarly as in [11, Eq.(6)], the following bound on the diameter of g holds:

Claim 4.5. We have

Diam(g) 6 (1 + Diam(τ(g))) · (2 + ξR(g)δR(g) + ξT (g)δT (g)).

Proof. A diametral path γ in g induces a path γ′ in τ(g). Some edges on γ correspond
to edges of γ′ (where γ leaves a component and enters another component). The
other edges of γ are “consumed” within the nodes on γ′. For a T -node w visited by γ,
corresponding to a 3-connected component K, the length of γ consumed within w is
bounded by Diam(K) ·maxN∈attwδ(N), where attw is the set of T -attached networks at
K. Similarly, for an R-node w, of degree k, visited by γ, the length of γ consumed within
w is bounded by k ·maxN∈attwδ(N), where attw is the set of R-attached networks at w.
Finally, for an M -node w, at most one edge of γ is consumed by w (this happens if one of
the three edges of the M -component for w is not substituted, and this edge is traversed
by γ).

In view of Claim 4.5, in order to conclude the proof of Proposition 4.2, it just remains
to show the following.

Lemma 4.6. For Cn the random connected cubic planar graph with 2n vertices, we have

Diam(τ(Cn)) 6 nε, δR(Cn) 6 nε, δT (Cn) 6 nε, ξR(Cn) 6 nε, ξT (Cn) 6 n1/4+ε

a.a.s. with exponential rate.
The same holds when replacing Cn by Mn.

Proof. We give the proof details for graphs (the arguments for multigraphs are com-
pletely similar). We start with ξT (Cn). Consider a 3-connected component K in Cn, and let
n′ 6 n be its size. Then K is uniformly distributed over cubic 3-connected planar graphs
with 2n′ vertices. If n′ 6 n1/4/2, then obviously Diam(K) 6 n1/4+ε. If n′ ∈ [n1/4/2, n],
then by Lemma 4.4 there are positive constants a, b, c such that, for ε > 0 small enough,
we have (where Lemma 4.4 yields the middle inequality):

P(Diam(K) > n1/4+ε) 6 P(Diam(K) > n′ 1/4+ε) 6 a exp
(
− b n′ cε) 6 a exp

(
− b ncε/4/2cε

)
.

Hence, uniformly over n′ ∈ [0, n], the diameter of a random 3-connected cubic
planar graph of size n′ is smaller than n1/4+ε a.a.s. with exponential rate. Since the
number of 3-connected components in Cn is O(n), by the union-bound we conclude that
ξT (Cn) 6 n1/4+ε a.a.s. with exponential rate.

We now deal with ξR(Cn). Let S̄(z) := L(z)+P (z)+H(z) be the generating function for
cubic networks that are eligible to be R-attached (i.e., non-trivial non-R cubic networks).
From the 1st and 3rd line in (3.2) (or directly, from the decomposition of S-networks),
we get S(z) = S̄2

1−S̄(z))
. Since S(z) converges at ρ, we must have S̄(ρ) ∈ (0, 1). For k > 3,

the generating function of connected cubic planar graphs with a marked R-component
of degree k is equal to S̄(z)k/k. Hence, for k > 3, the number of connected cubic planar
graphs of size n having a marked R-component of degree k is bounded by (2n)![zn]S̄(z)k,
which itself is bounded by (2n)!βkρ−n, where β = S̄(ρ) ∈ (0, 1). The number of connected
cubic planar graphs of size n having a marked R-component of degree larger than k is

thus bounded by (2n)! β
k

1−β ρ
−n. Since the number of R-component is O(n), the number

of connected cubic planar graphs of size n having at least one R-component of degree

larger than k is O((2n)!n βk

1−β ρ
−n) On the other hand, the number of connected cubic
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planar graphs of size n is Θ((2n)!ρ−nn−7/2). Hence, the probability that Cn has an R-
component of degree larger than k is O(n9/2βk), which is O(βn

ε/2) for k > nε, ensuring
that ξR(Cn) 6 nε a.a.s. with exponential rate.

We now consider the parameter δT (Cn). Again, we use the fact that a T -attached
network of size n′ in Cn is uniformly distributed over cubic networks of size n′. This
distribution is also µ(D) conditioned to have size n′, an event that occurs with probability
Θ(n′ −5/2) (as follows from the asymptotic form of the counting coefficients for cubic
networks). Hence, letting Dn′ be the random cubic network of size n′, Lemma 4.1
ensures that there are positive constants a?, b? such that

P(δ(Dn) > k) 6 an5/2 exp(−b k).

Hence, δ(Dn′) 6 nε a.a.s. with exponential rate, uniformly over n′ 6 n. Since the
number of T -attached networks in Cn is O(n), the union bound ensures that δT (Cn) 6 nε

a.a.s. with exponential rate. The same argument is easily adapted to δR(Cn) as well (an
R-attached network of size n′ is a network drawn under µ(D) conditioned to have size n′

and to be a non-trival non-S-network, an event that holds with probability Θ(n′ −5/2)).
We now consider Diam(τ(Cn)). We first rewrite the system (3.2) in a positive form,

where tn is the number of rooted simple triangulations with 2n faces.
L(z) = 1

2L(z)2 + 1
2z(S(z) + P (z) +H(z)),

S(z) = (L(z)+P (z)+H(z))2

1−(L(z)+P (z)+H(z))

P (z) = 1
2z
(
(L(z) + S(z) + P (z) +H(z)) · (2 + L(z) + S(z) + P (z) +H(z))

)
H(z) = 1

2

∑
n>2 tnz

n
(
1 + L(z) + S(z) + P (z) +H(z)

)3n−1
.

This system, of the form y = F(z,y), is irreducible. It is also critical in the sense of [11,
Sec.5], as the quantities L′(z), S′(z), P ′(z), H ′(z) converge when z ∈ (0, ρ) tend to ρ. For
h > 0, let Lh(z), Sh(z), Ph(z), Hh(z) be the counting series gathering the contributions
of L(z), S(z), P (z), H(z) where the associated decomposition-tree has height at most
h, and let yh = (Lh(z), Sh(z), Ph(z), Hh(z)). We clearly have yh+1 = F(z,yh) for h > 0.
Thus, the height of the decomposition-tree is a height-parameter for the system, with the
terminology of [11, Sec.5]. We can then rely on [11, Lem.5.3.], which ensures that for a
random cubic network in each type ∈ {L, S, P,H}, the height of the decomposition-tree
is bounded by nε a.a.s. with exponential rate. Since the diameter of a rooted tree is at
most twice its height, we easily conclude (via the decomposition (3.3) for pointed cubic
connected planar graphs in terms of cubic networks) that Diam(τ(Cn)) 6 nε a.a.s. with
exponential rate.

5 Skeleton decomposition for quasi-simple triangulations

We introduce in this section a modification of simple triangulations, which will prove
to be more convenient to deal with, when studying Krikun’s skeleton decomposition. We
will indeed prove in Sections 5.4 and 5.5 that the skeleton of these so-called quasi-simple
triangulations admit exactly the same encoding by a branching process as general
triangulations.

5.1 Simple triangulations

For every n > 1, we write Tn be the set of rooted simple triangulations with n +

2 vertices. Then, for every p > 3 and n > 0, let Tn,p be the set of rooted simple
triangulations of the p-gon with n inner vertices (that is, simple triangulations whose
root face is a simple cycle of degree p, with n vertices that are not incident to the root
face). Observe in particular that Tn = Tn−1,3. Enumerative formulas for Tn,p have been
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Figure 3: A quasi-simple triangulation
of the 4-gon. Separating 1- and 2-cycles
are represented in dashed blue edges.
The pointed vertex is encircled.

Figure 4: Mapping Ψ that turns a
quasi-simple triangulation of the 1-gon
into a quasi-simple triangulation of the
sphere.
The pointed vertex is encircled.

obtained by Brown in [8] and read:

|Tn,p| =
2(2p− 3)!

(p− 1)!(p− 3)!

(4n+ 2p− 5)!

n!(3n+ 2p− 3)!
for n > 0, p > 3. (5.1)

We deduce from this expression and from Stirling’s formula that:

|Tn,p| ∼
n→∞

C?(p)

(
256

27

)n
n−5/2, (5.2)

with

C?(p) =

√
3

64
√

2π
(p− 2)

(
2(p− 1)

p− 1

)(
16

9

)p−1

∼
p→∞

√
6

64π

√
p

(
64

9

)p−1

=
9
√

6

4096π

√
p

(
64

9

)p
.

(5.3)
Because of the polynomial correction in n−5/2 (usual for planar maps), the generating
series Tp(x) :=

∑
n>0 |Tn,p|xn evaluated at x = 27/256 converge for every value of p.

Following [8, (4.5)], we get:

Z(p) := Tp

(
27

256

)
=

1

p(2p− 3)

(
16

9

)p−2(
2(p− 1)

p− 1

)
. (5.4)

From which we deduce:

Z(p) ∼
p→∞

2√
π

(
64

9

)p−2

p−5/2 =
18

64
√
π

(
64

9

)p−1

p−5/2. (5.5)

The critical Boltzmann distribution on simple triangulations of the p-gon is the one
assigning probability (27/256)n/Z(p) to the elements in Tn,p, for n > 0.

5.2 Quasi-simple triangulations: definition and enumeration

Definition 5.1. For p > 1, let q be a triangulation of the p-gon with a marked inner
vertex v?. We call (q, v?) a quasi-simple triangulation if all its 1-cycles and 2-cycles
separate the p-gon and the pointed vertex, see Figure 3.

Remark 5.2. Observe that in a quasi-simple triangulation, each vertex can carry at most
one loop, otherwise the two loops would form a 2-cycle that does not contain the pointed
vertex.

Therefore, we can turn a quasi-simple triangulation of the 1-gon into a triangulation
of the sphere by merging the two edges that form a triangular face with the root edge,
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rooting the modified map at the merged edge so that the tail vertex is the one incident
to the deleted loop, see Figure 4. This mapping is denoted Ψ. Note that Ψ preserves the
underlying metric space.

Reciprocally, the set of pointed and rooted simple triangulations of the sphere can be
seen as a (strict) subset of quasi-simple triangulations of the 1-gon by opening the root
edge and inserting a loop incident to the root vertex inside the 2-gon created.

For every p > 1 and n > 0, let Qn,p be the set of quasi-simple triangulations of the
p-gon with n inner vertices. Enumerative formulas for Qn,p have been obtained by Brown
in [8] and we list them here for future reference. Precisely (up to a change of variable),
Brown gives in [8, (8.12)] a formula for the number of simple triangulations of a pr-gon
with a rotational symmetry of order r > 3 and rs+ 1 inner vertices, which are in bijection
with quasi-simple triangulations of the p-gon with s+ 1 inner vertices, up to marking the
center of rotation and quotienting. For p > 1 and n > 1, this formula rewrites as:

|Qn,p| =
(2p)!(4n+ 2p− 5)!

(p− 1)!p!(n− 1)!(3n+ 2p− 3)!
. (5.6)

The asymptotic behavior of |Qn,p| as n goes to infinity can be deduced directly from this
expression. It is given in [8, (9.1)] and reads:

|Qn,p| ∼
n→∞

C(p)

(
256

27

)n
n−3/2, (5.7)

with

C(p) =

√
3

32
√

2π
p

(
2p

p

)(
16

9

)p−1

∼
p→∞

√
3

8
√

2π

√
p

(
64

9

)p−1

=
9
√

3

512
√

2π

√
p

(
64

9

)p
. (5.8)

Note the unusual polynomial correction in n−3/2, which comes from the fact that quasi-
simple triangulations are inherently rooted and pointed. We hence retrieve the classical
behavior of (non-pointed) planar maps with a polynomial correction in n−5/2.

Following the same approach as in the proof of [13, Lemma 1], we obtain from (5.6)
the following bounds for |Qn,p|:
Lemma 5.3. There exists a constant c > 0 (independent of p and n) such that, for every
n > 1 and p > 1, we have:

|Qn,p| 6 c · C(p)n−3/2

(
256

27

)n
.

5.3 Decomposition of quasi-simple triangulations of the 1-gon into simple
components

Let Q(1) be the family of quasi-simple triangulations of the 1-gon, where the size-
parameter is the number of inner vertices. Let T �, T −, T •−, T ◦−◦ be the families of
rooted simple triangulations with respectively a marked inner vertex, a marked inner
edge, and a marked inner edge incident (resp. not incident) to the root vertex, where
the size-parameter is the number of vertices minus 2 (which is also half the number of
faces). We use a decomposition of Q(1) described in [3, Sec.3.2] (decomposition along
the nested sequence of 1-cycles and 2-cycles) that yields Q(1) = X · U , where the families
U ,V admit the following decomposition-grammar5:{

U = T � + X · (1 + U) + T •− · U + T ◦−◦ · V,
V = T � + 2 · X · (1 + U) + T − · V,

5We use extensively decomposition grammars in this section, and recall that they automatically give
corresponding equations for the associated generating series, see [16, ch.1]. Disjoint union (denoted by
+), cartesian product (denoted by ·) and sequence operators (denoted by Seq) for decompositions grammar
correspond respectively to addition, multiplication and x 7→ 1

1−x
for generating series.
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with X an atom that accounts for 1 in the size.
This system can easily be turned into a regular expression for U = Q(1) involving only

the “terminal families” T �, T −, T •−, T ◦−◦ (as well as the atom-family X ). Note that the
second line gives

V =
(
T � + 2 · X + 2 · X · U

)
· Seq(T −).

Injecting it into the first line, we obtain

U = F + G · U , equivalently U = F · Seq(G), (5.9)

where F = T � +X +T ◦−◦ · (T � + 2 · X ) ·Seq(T −) and G = X +T •−+ 2 · X · T ◦−◦ ·Seq(T −).

Lemma 5.4. Let q
(1)
n be a uniformly random element of size n in Q(1). Let T (q

(1)
n ) be

the largest simple component of q(1)
n along the decomposition (5.9), and let Xn be its

half number of faces. Then a.a.s. T (q
(1)
n ) is in T �, T −, or T ◦−◦ (not T •−) and follows the

uniform distribution for that family, conditioned on its size. In addition, the random
variable n−Xn converges in law, hence is O(1) in probability.

Proof. We rely on classical results of analytic combinatorics regarding the size of the
largest component in combinatorial decompositions [19]. For α ∈ R\N, a combinatorial
class C is said to be of singularity-type α if the radius of convergence ρ of the counting
series C(z) =

∑
n |Cn|zn is positive, and C(z) can be analytically continued to a domain

{|z| 6 ρ+ η, z − ρ /∈ R+} (for some η > 0), where it admits a singular expansion around ρ
of the form

C(z) = P (z) + d (1− z/ρ)α (1 + o(1)),

for some polynomial P (z) of degree smaller than α, and some non-zero constant d.
Transfer theorems of analytic combinatorics [16, VI.3] then guarantee that |Cn| ∼

d
Γ(−α)ρ

−nn−α−1. The following dictionary can then be obtained regarding the size of the
greatest component (we also include a sum-rule to track which families along the decom-
position have asymptotically non-zero probability of having the largest component):

Sum rule. Let C = A+ B, where A,B have the same radius of convergence ρ, and
have respective singularity types α, α′ /∈ N, both positive. Let Cn be the random structure
in Cn. Then Cn is almost surely in A (resp. B) if α < α′ (resp. α′ < α).

Product rule. Let C = A · B, where A,B have the same radius of convergence ρ,
and have respective singularity types α, α′ /∈ N, both positive. Let Cn be the random
structure in Cn. Let Xn be the size of its largest component (either in A or in B, in A if
there is a tie). Then n−Xn converges in law. In addition, the largest component is a.a.s.
in A (resp. in B) if α < α′ (resp. α′ < α).

Sequence rule. Let C = Seq(A) (with no object of size 0 in A), where C,A have
same radius of convergence and same positive singularity type α /∈ N (non-critical case
in [19]). Let Cn be the random structure in Cn, and let Xn be the size of the largest
component (in A, if there is a tie the leftmost component of largest size is chosen). Then
n−Xn converges in law.

We can then use these rules repeatedly in the regular expression (5.9) to prove the
statement, using also the fact [3] that the counting series of T �, T −, T •−, T ◦−◦ all have
radius of convergence 27/256, with singularity type 1/2 for T �, T −, T ◦−◦, and singularity
type 3/2 for T •− (the fact that the largest component is a.a.s. not in T •− is due to the
larger singularity type for this family).

We will also need the following statement, ensuring that, for the decomposition (5.9),
the largest simple component of q(1)

n is asymptotically distributed as a uniform random
rooted simple triangulation (conditioned on its size):
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Lemma 5.5. Recall the definition of Tn. Then, the distribution induced (upon unmarking)
by the uniform distribution on T �

n (resp. T −n ) is the uniform distribution on Tn. And
the distribution induced (upon unmarking) by the uniform distribution on T ◦−◦n is at
total-variation distance o(1) from the uniform distribution on Tn.

Proof. The statement for T �

n (resp. T −n ) is obvious, since the number of allowed markings
on an object in Tn is n − 1 (resp. 3n − 3). For T ◦−◦n , the number of allowed markings
of an object in Tn, with root degree d, is 3n − 1 − d. As we have seen in the proof of
Lemma 4.4, the root degree of the random triangulation in Tn is a.a.s. at most nε for any
ε > 0 (even more is true, it converges in law), hence the number of allowed markings
is concentrated around 3n, ensuring that the distribution induced by T ◦−◦n on Tn is at
total-variation distance o(1) from the uniform distribution on Tn.

5.4 Quasi-simple triangulations of the cylinder and their skeleton decomposi-
tion

In this section, we describe the structure of the neighborhood of the root in a quasi-
simple triangulation, and how it can be encoded via the so-called skeleton decomposition
introduced by Krikun in [23]. We follow here the presentation given by Curien and Le
Gall in [13, Section 2.2] for general triangulations, and we emphasize the necessary
adjustments to deal with quasi-simple triangulations. We first introduce quasi-simple
triangulations of the cylinder, which will appear naturally as the hulls of quasi-simple
triangulations.

Definition 5.6. Fix r ∈ Z>0. A quasi-simple triangulation of the cylinder of height r is a
rooted planar map such that:

1. All its faces are triangles except for two distinguished faces: its root face (also
called the bottom face) and the top face.

2. The boundaries of the bottom and of the top face are disjoint simple cycles.
3. Every vertex incident to the top face is at graph distance exactly r from the

boundary of the bottom face, and every edge incident to the top face is also
incident to a triangle whose third vertex is at distance r − 1 from the bottom face.

4. Cycles of length 1 and 2 necessarily separate the bottom face and the top face.
If ∆ is a quasi-simple triangulation of the cylinder of height r, the boundary of its root
face (bottom cycle) is denoted by ∂∆ and its top cycle (boundary of the top face) is
denoted by ∂∗∆. We call ∆ a quasi-simple triangulation of the (|∂∆|, |∂∗∆|)-cylinder.

Moreover, we denote by Zp,r the set of quasi-simple triangulations of the cylinder of
height r with a root face of degree p.

Note that this is the same definition as [13, Definition 1], except for item 4. To
describe the encoding of a triangulation of the cylinder via the skeleton decomposition,
we need additional definitions.

Definition 5.7. Let ∆ be a fixed quasi-simple triangulation of the cylinder of height r.
For 1 6 j 6 r, the ball of radius j of ∆ – denoted Bj(∆) – is the submap of ∆, which is
spanned by its faces which are incident to at least one vertex at distance strictly smaller
than j from ∂∆.

Moreover, the hull of radius j of ∆ – denoted B•j (∆) – is defined as the reunion of
Bj(∆) with the connected components of ∆\Bj(∆) that do not contain ∂∗∆.

Note that for any j ∈ {1, . . . , r}, B•j (∆) is itself a quasi-triangulation of the cylinder
(of height j), and we set ∂j(∆) := ∂∗(B•j (∆)). We extend this notation to j = 0 and set
∂0(∆) := ∂∆. Every edge of ∂j(∆) is incident to exactly one triangle whose third vertex
belongs to ∂j−1(∆). Such triangles are called the downward triangles at height j, and we
write Fj(∆) for the set of all downward triangles at height j. Let Ē(∆) be the collection
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τ1

τ2τ3

τ4

τ5 τ6

Figure 5: Illustration of the skeleton decomposition of a quasi-simple triangulation of the
(4, 6)-cylinder of height 2. Downward triangles are represented by blue shaded triangles.
Trees of the forest are represented by fat red edges and are labeled from τ1 to τ6.

of all edges that belong to one of the cycles ∂j(∆), for 0 6 j 6 r. The planar embedding
of ∆ enables to encode the edges of Ē(∆) as the vertices of a forest f, with q trees where
q := |∂?|. This encoding is depicted in Figure 5 and we refer to [13, page 9] for its formal
definition.

Given the forest f := (τ1, . . . , τq), to reconstruct the full quasi-triangulation ∆, we
need to fill the “slots” that lie between successive downward triangles. More precisely,
for e ∈ ∂j(∆) with 1 6 j 6 r, we associate to e a (possibly empty) slot in the following
way: the slot is included in B•j (∆)\B•j−1(∆), and is bounded by the edges of ∂j−1(∆) that
correspond to children of e and by the two “vertical” edges that connect the initial vertex
of e (when ∂j(∆) is oriented so that B•j (∆) lies on its left) with vertices of ∂j−1(∆). The
definition should be clear from Figure 5.

Writing kf(e) for the number of children of e in the forest f, the slot associated to e has
to be filled with a simple triangulation of the kf(e)+2-gon. Note that, when kf(e) = 0, the
slot is filled by the edge-triangulation, or in other words the two vertical edges defining
the slot are identified (whereas in the setting of [13] of general triangulations, non-trivial
slots with a boundary of length 2 may occur).

To characterize the forests that can appear via the encoding, we need the following
definition:

Definition 5.8. A forest f with a marked vertex is said to be (p, q, r)-admissible if:

1. The forest f := (τ1, . . . , τq) is made of q rooted plane trees,
2. The maximal height of these trees is r.
3. The total number of vertices of the forest at generation r is p,
4. The distinguished vertex has height r,
5. The distinguished vertex is in τ1.

We write f? for the set of vertices of f with height strictly smaller than r.

Moreover, the set of (p, q, r)-admissible forests is denoted Fp,q,r and we define Fp,r :=

∪q>1Fp,q,r.

Proposition 5.9. The skeleton decomposition described above is a bijection between,
quasi-simple triangulations ∆ of the (p, q)-cylinder of height r, and pairs (f, (tv)v∈f?),
where f is a (p, q, r)-admissible forest and for any v ∈ f?, with e ∈ Ē(∆) the corresponding
edge, tv is a simple triangulation of the (kf(e) + 2)-gon.

We write (F(∆), (tv)v∈F(∆)?) for the image of ∆ via this bijection.
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(a) A separating loop. (b) A separating pair of edges.

Figure 6: (Top) Two examples of how a loop or a pair of multiple edges can appear when
grafting simple triangulations in the slots of a skeleton. Both the loop and the multiple
edges separate the root face (in grey) from the pointed vertex (not represented in the
figures). (Bottom) The same maps, represented on the universal cover, are now simple
triangulations.

Proof. This proposition is very similar to the skeleton decomposition introduced orig-
inally by Krikun in [23]. However, in this paper, he dealt with loopless triangulations
rather than quasi-simple triangulations. In other words, loops were always forbidden
(whereas they are allowed in our setting if they separate ∂∆ and ∂∆?) and multiple
edges were always authorized (whereas we allow them only if they separate ∂∆ and
∂∆?). This is the only differences between his decomposition and ours. Hence, we only
need to prove that we indeed obtain a quasi-simple triangulation. In other words, we
only need to check that 1-cycle and 2-cycle separate ∂∆ and ∂∆?.

One can argue via the universal cover of the cylinder, which is the periodic plane
(R/Z) × R. Indeed, the constraint of being quasi-simple on the cylinder is equivalent
to being simple in the universal cover representation. Thus, one just has to check that,
on (R/Z) × R, the obtained (periodic) triangulation is simple. Since, in the universal
cover representation, each boundary ∂j(∆) can conveniently be drawn as the horizontal
line {y = j}, with the next added layer in the horizontal band {j 6 y 6 j + 1}, the result
follows directly.

For sake of illustration, some configurations in which a loop or a pair of multiple
edges can appear are represented on Figure 6 (note that it is only possible to have a
loop or a pair of edges if F(∆) has only one or two vertices at some generation j with
0 < j < r).

5.5 Hulls and encoding via a branching process

In this section, we show how the probability to have a fixed neighborhood of the root
can be expressed in terms of a branching process via the skeleton decomposition.

Definition 5.10. Let (q, v∗) be a quasi-simple triangulation of the p-gon. For R > 1, the
ball of radius R of q – denoted BR(q) – is the submap of q, which is spanned by its faces
which are incident to at least one vertex at distance strictly smaller than R from its root
face, see Figure 7.

Moreover, the hull of radius R of (q, v∗) – denoted B•R(q, v?) – is defined from BR(q)

in the following way. If dist(vρ, v
?) 6 R, then B•R(q, v?) = q. Otherwise, B•R(q, v?) is the

submap of q, that consists of the reunion of BR(q) with the connected components of
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(a) Balls of radius 1 and 2. (b) Hulls of radius 1 and 2.

Figure 7: The balls and the hulls in a quasi simple triangulation of the 1-gon are
represented in various shades of blue. The pointed vertex is the encircled vertex.

q\BR(q) that do not contain v?.

It follows directly from the definition of the hull, that B•R(q, v?) is either a quasi-simple
triangulation (with a marked vertex) if B•R(q, v?) = (q, v?), or a quasi-simple triangulation
of the cylinder ∆, with |∂∆| = p, otherwise.

Proposition 5.11. Let p, q, r be positive integers. Let ∆ be a quasi-simple triangulation
of the (p, q)-cylinder with height r. Then, for q

(p)
n a uniformly random element of Qn,p,

we have:

P
(
B•r (q(p)

n ) = ∆
)
−−−−→
n→∞

κ(q)

κ(p)

∏
v∈F(∆)?

θ(kv)
ρInn(sv)

Z(kv + 2)
, (5.10)

where κ and θ are defined by:

κ(p) =
p

4p

(
2p

p

)
for p > 1, and θ(k) =

3

2

1

4k
(2k)!

k!(k + 2)!
for k > 0. (5.11)

Remark 5.12. It follows from the definition of θ that:

∑
k>0

θ(k)xk = 1−
(

1 +
1√

1− x

)−2

.

Hence our definition of θ matches the definition given in [23, (22)] and in [13, (15)].
This is not surprising and can be explained via classical substitution relations between
general, loopless and simple triangulations.

Note that Proposition 5.11 is fully analogous to [13, Lemma 2], except that here Z
and ρ denote respectively the generating series and the radius of convergence associated
to simple triangulations, whereas in [13], they correspond to general (a.k.a allowing
loops and multiple edges) triangulations.

Proof. We set ρ = 27/256 to be the radius of convergence of the generating series of
quasi-simple triangulations and β = 9/64 to be inverse of the growth rate of Z(p) defined
in (5.4). We denote by |∆| the total number of vertices of ∆. Recall that Qn,p is the set of
quasi-simple triangulations of the p-gon with n inner vertices. Then:

P
(
B•r (q(p)

n ) = ∆
)

=
|Qn−|∆|+p,q|
|Qn,p|

∼
n→∞

C(q)

C(p)
ρ|∆|−p, (5.12)

where the asymptotic equivalent is obtained from (5.7).
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To lighten notation, in this proof we set f := F(∆), and recall that f∗ is the set of its
vertices with height strictly smaller than r. According to the skeleton decomposition,
the vertices of ∆ can be partitioned into two sets. They either belong to one of the
cycles δj∆, for 0 6 j 6 r, or they are inner vertices of the simple triangulations that are
inserted in the slots. Hence |∆| = |f?|+

∑
v∈f? Inn(Sv). Since |f?| = q +

∑
v∈f? kv, we get

from (5.12) that:

P
(
B•r (q(p)

n ) = ∆
)
∼

n→∞

C(q)

C(p)
ρq−p

∏
v∈f?

ρInn(Sv)+kv .

Following similar computations performed in [23] and [13], and in order to interpret
this quantity in terms of a branching process, we perform a change of variables. Since∑
v∈f?(kv − 1) = p− q, we can multiply the former expression by (ρ/β)p−q−

∑
v∈f? (kv−1) to

get:

P
(
B•r (q(p)

n ) = ∆
)
∼

n→∞

βqC(q)

βpC(p)

∏
v∈f?

ρInn(Sv)+1βkv−1.

Now, informally, we would like to decompose each term of the product into two contribu-
tions. On the one hand, a term representing the probability for a vertex to have k children
in the skeleton decomposition and, on the other hand, a term for the probability (under
the critical Boltzmann distribution) that a given simple triangulation of the (k + 2)-gon
appears in the corresponding slot. To do so, we set θ(k) := ρβk−1Z(k + 2), which yields:

P
(
B•r (q(p)

n ) = ∆
)
∼

n→∞

βqC(q)

βpC(p)

∏
v∈f?

θ(kv)
ρInn(Sv)

Z(kv + 2)
.

In view of the definition of β and ρ and the expression of Z(k) given in (5.4), this
concludes the proof.

5.6 Local limits: quasi-simple UIPT and half-plane models

5.6.1 Quasi-simple UIPT

In exactly the same manner as in Section 2.4 of [13], we can define a probability measure
Pp,r on Fp,r by setting for every forest f ∈ Fp,q,r:

Pp,r(f) :=
κ(q)

κ(p)

∏
v∈f?

θ(kv). (5.13)

We then define a probability measure Pp,r on the set Zp,r, by saying that under Pp,r
the law of the skeleton on the triangulation is given by Pp,r and, conditionally given the
skeleton, the triangulations filling the slots are independent critical Boltzmann simple
triangulations with a simple boundary (whose boundary lengths are determined by the
skeleton). Proposition 5.11 can then be restated as:

P
(
B•r (q(p)

n ) = ∆
)
−−−−→
n→∞

Pp,r(∆), (5.14)

for any ∆ ∈ Zp,r.
It follows from the preceding convergence, that we can define a random infinite

quasi-simple triangulation of the plane with a simple boundary of length p – denoted q
(p)
∞

– such that the distribution of B•r (q
(p)
∞ ) is given by Pp,r, for every integer r > 1. The map

q
(p)
∞ is called the uniform infinite quasi simple triangulation of the p-gon and it follows

directly from (5.14) that q(p)
∞ is the local limit of q(p)

n as n→∞.
By the correspondence Ψ (illustrated in Figure 4) between quasi-simple triangulations

of the 1-gon and quasi-simple triangulations of the sphere, from q
(1)
∞ we can define the

so-called quasi-simple triangulation of the sphere, denoted q∞.
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5.6.2 Half-plane simple models

Recall from Remark 5.12 that the branching process encoding the skeleton decomposition
of quasi-simple triangulations has exactly the same offspring distribution as the one
obtained in [13] for general triangulations.

In this work, two half-plane models of random geometry are introduced, the upper half-
plane triangulation and the lower half-plane triangulation and we refer to [13, Section 3]
for their construction. This allows us to define readily the upper half-plane simple
triangulation Us and the lower half-plane simple triangulation Ls, by only requiring that
in their construction, the slots are filled with simple triangulations rather than general
triangulations.

All results stated in Sections 3 and 4 of [13] can be extended verbatim to our setting.
Indeed, in most of the proofs they do not need to know how the slots are filled in, and
only study the distribution of the skeleton, which is the same in our setting and in [13];
the only part that we need to change is in [13, Lemma 10], where (to reflect the different
constants in the enumeration of simple triangulations) ρ = 12

√
3 should be replaced by

ρ = 256/27 and α = 12 by α = 64/9. Notice that triangulations of the half-plane that we
obtain are simple triangulations and not quasi-simple triangulations, as can be directly
observed from the construction of Us and Ls.

5.6.3 Coupling between simple and general models

It follows from the preceding section that q(1)
∞ and Ls can be constructed via exactly the

same branching process as the (general) UIPT of the 1-gon and L respectively. The only
modification between these pairs of models is that the slots are filled in the first case by
simple critical Boltzmann triangulations with a simple boundary and in the second case
by general critical Boltzmann triangulations with a simple boundary.

The simple core of a critical Boltzmann general triangulation with a simple boundary
of length > 3 (obtained by collapsing all 2-cycles into edges) is itself a critical Boltzmann
simple triangulation with a boundary. So that, by taking the simple core of each trian-
gulation grafted in the slots, this induces a coupling between the (general) UIPT of the
1-gon and q

(1)
∞ on one hand and between L and Ls on the other hand. This remark will be

useful to derive bounds in our model directly from the bounds obtained in [13].

6 Modification of distances in simple triangulations

The goal of this section is to give the proof of Theorem 1.2. To do that, we follow
closely the work of Curien and Le Gall [13] and rely heavily on the skeleton decomposition
of quasi-simple triangulations presented in the previous section.

Throughout this section, we assume that ν is a probability distribution with support
included in [η0,∞) for a given η0 > 0, and that there exist constants A, λ > 0 such that,
for X a random variable with law ν:

P (X > K) 6 A exp(−λK), for any K ∈ R+.

Moreover, we assume that any planar map m (random or not) considered in this section
is equipped with a collection (we)e∈E(m†) of random weights, such that (we) are i.i.d
random variables sampled from ν. Recall from the introduction that we defined the
first-passage percolation distance d? on m† by setting:

d?ν(u, v) = d?(u, v) := inf
γ:u→v

∑
e∈γ

we, for u, v ∈ V (m†) (6.1)
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Ls
0

Ls
−1

Ls
−2

Ls
−3

Ls
−4

f0,0

Figure 8: Representation of the first 4 layers of Ls. The downward path started from f0,0

is represented in fat red edges.

where the infimum runs over all paths γ going from u to v in m†. For the sake of simplicity,
we write d? without emphasizing its dependency in ν, it should not bear any confusion.

Since the skeleton decomposition of quasi-simple triangulations gives the exact same
branching process as the skeleton decomposition of general triangulations, many results
of [13] can be applied verbatim to our setting. When this is the case, we do not duplicate
the proofs. Rather, we only state the results for which the proofs need to be adapted.
Note also that in [13], the authors focus first on the case of modifications of distances in
triangulations (and not on their dual). They then treat the dual case without giving as
many details as for the primal case.

Remark 6.1. Theorem 1.2 and its proof could be extended verbatim to deal with modi-
fication of distances on simple triangulations rather than on their dual as was initially
done in [13]. However, for sake of conciseness, we only give the proof of this result in
the dual setting.

6.1 Upper bounds in the infinite models

The purpose of this section is to derive statements similar to Lemma 24 and Proposi-
tion 25 of [13] for the lower half-plane simple triangulation Ls. For every j 6 0, let Lsj
for the vertices of Ls that are the vertices of depth −j of its skeleton; or rather, Lsj is the
set (forming an infinite simple path) of all edges of Ls that connect these vertices — it is
the analogue of ∂r+j(∆) when ∆ is a quasi-simple triangulation of the cylinder of height
r. We also denote by Ls,†j the set of all downward triangles incident to an edge of Lsj , and

by f0,0 the face in Ls,†0 that is incident to the root edge of Ls.
For every downward triangle f in Ls,†j , the downward path from f is an infinite path in

the dual map, defined as follows (see [13, Section 7.2] for a precise definition): starting
from f , and if v is the vertex of f that is not an endpoint of an edge of Lsj , turn around v
in counterclockwise order until crossing an edge of Lsj−1. The face we reach is itself in

Ls,†j−1: we continue inductively with the downward path starting from this latter face.

Lemma 6.2. For r > 1, let γr be the downward path in Ls connecting f0,0 to a downward
triangle incident to Ls−r, and write |γr| for the length of γr. There exist two constants
µ > 0 and K <∞ such that for every integer r > 1:

E[exp(µ |γr|)] 6 Kr.
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Proof. The result follows from Lemma 24 of [13], and from the coupling described in
Section 5.6.3, under which the length of the downward path can only decrease.

For every j 6 0, let Ls,†j be the set of downward triangles incident to an edge of Lsj in
the lower half-plane model. We assume that Ls is equipped with the f.p.p distance d?

defined above (the dual map is infinite here, its vertices corresponding to the triangular
faces of Ls, and its edges corresponding to the edges in Ls with a triangular face on
each side). Then, Proposition 25 of [13] can be readily adapted into the following result:

Proposition 6.3. Recall that the support of ν is included in [η0,∞). There exists a
constant cν > 2η0 such that:

r−1d?(f0,0,L
s,†
−r)

a.s.−−−→
r→∞

cν .

As in the original article, the result follows directly from a subadditive argument
together with the fact that E[d?(f0,0,L

s,†
−r)] <∞ by Lemma 6.2 and d?(f0,0,L

s,†
−r) > 2η0r

by construction.
Thanks to Lemma 6.2, the proof of Lemma 26 and Corollary 27 of [13] can directly

be extended to our setting. We obtain:

Lemma 6.4. Consider the quasi-simple UIPT of the 1-gon q
(1)
∞ , with i.i.d weights on its

edges sampled from ν. There exist positive constants K ′, α0, β0 such that, for any integer
0 6 r < s:

P
(

d?(fs, B
•
r (q(1)
∞ )) > α0(s− r)

)
6 K ′ exp(−β0(s− r)), (6.2)

where fs is a downward triangle at height s chosen uniformly at random, and where
B•0(q

(1)
∞ ) should be interpreted as the bottom face.

Moreover, for any fixed δ > 0, define AR(δ) to be the event where the bound

d?(f,B•r (q(1)
∞ )) 6 α0(s− r) (6.3)

holds for every 0 6 r < s 6 R with s − r > δR, and for every downward triangle f at
height s. Then, there exists another positive constant β̃ such that for any sufficiently
large R,

P(AR(δ)) > 1− e−β̃R. (6.4)

6.2 Upper bound in finite simple triangulations

We finally turn our attention to finite triangulations. The purpose of this section is
to obtain a result equivalent to [13, Lemma 28] but for uniform simple triangulations
rather than uniform general triangulations and for the d? distance rather than the graph
distance or the Eden model.

For x ∈ V (tn) and f ∈ F (tn), write x / f to mean that the vertex x is incident to the
face f . Then we have:

Proposition 6.5. Let α0 be as in Lemma 6.4. Let tn be a uniform rooted simple tri-
angulation with n + 2 vertices. For ε ∈ (0, 1/4), define En as the event where the
bound

d?(f, g) 6 α0dgr(x, y) + nε (6.5)

holds for every x, y ∈ V (tn) and f, g ∈ F (tn) such that x / f and y / g. Then:

P(En) −−−−→
n→∞

1. (6.6)

The same result holds when replacing tn by q
(1)
n , where q

(1)
n is a uniform quasi-simple

triangulation of the 1-gon with n inner vertices.
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Proof. The main difficulty that arises in our setting and does not exist in [13] is that we
have to derive results for simple triangulations, whereas we established (in particular
in the previous section) results about the local limit of quasi-simple triangulations.
Fortunately, these two models are similar enough to obtain the results we need.

In this proof, we always consider that the random planar maps are endowed with
random weights on their edges, sampled independently under a law ν with support
included in [η0,∞) for some η0 > 0, and with exponential tails. Let q

(1)
n be a uniform

quasi-simple triangulation of the 1-gon with n inner vertices. Following the proof
of [13, Lemma 28], we write ρn for its root vertex, on for its pointed vertex and set
dn := dgr(ρn, on). Then, we write Θ for the set of quasi-simple triangulations t that
belong to Z1,r for some r > 1 and are such that there exists a face f incident to ∂∗t

whose d? from the bottom face is greater than αr. By the exact same chain of arguments
as in the proof of [13, Lemma 28] that leads to their equation (73), we obtain that there
exist two constants c > 0 and a > 0, such that:

P
(
dn > nε ; B•dn−1(q(1)

n ) ∈ Θ
)
6 c exp(−anε). (6.7)

By, again, the same line of arguments as in [13] and given the definition of Θ, it is
then easy to see that on the event {dn > nε;B•dn−1(q

(1)
n ) /∈ Θ}, we have d?(f, g) 6

αdn + 3w∗ ·maxDeg(q
(1)
n ), for any f, g ∈ q

(1)
n , with ρn / f and on / g (where we denote by

maxDeg the maximum vertex degree of a map, and by w∗ the maximal dual weight of an
edge of tn).

The original proof continues with a rerooting argument, which cannot apply here since
quasi-simple triangulation are not invariant under rerooting. However, we can transfer
the bound obtained in (6.7) from quasi-simple triangulations to simple triangulations
(up to changing the value of the constant c) in the following way. The asymptotic
enumerative results for simple triangulations and quasi-simple triangulations of the
1-gon given respectively in (5.2) and (5.7) imply that there exists κ > 0, such that:

P
(

Ψ(q(1)
n ) ∈ T �

n−1

)
> κ, for any n > 1, (6.8)

where we recall that T �

n denotes the set of rooted simple triangulations with n+2 vertices
and a marked inner vertex.

Moreover, conditionally on the fact that Ψ(q
(1)
n ) ∈ T �

n−1, it is clear from the construc-

tion that q
(1)
n has the same distribution as a uniformly random element of T �

n−1 (as a
random measured metric space) 6.

Let tn be uniformly random in T �

n . Write ρ̃n for its root vertex, õn for its pointed vertex
and d̃n for dgr(ρ̃n, õn). It follows from the discussion above and from the discussion
following (6.7) that there exist two constants c̃ > 0 and ã > 0 such that:

P
(
d̃n > nε ; d†gr(f, g)>α0d̃n+3w? ·maxDeg(tn) whenever ρ̃n / f and õn/g

)
6 c̃exp(−ãnε).

(6.9)
Now, by rerooting tn at another oriented edge en chosen uniformly and independently
from on, we obtain a pointed and rooted simple triangulation with the same distribution.
Hence, the bound obtained above remains valid upon replacing ρ̃n by ρ′n, where ρ′n is the
initial vertex of en and d̃n by dgr(õn, ρ

′
n).

6Note that their dual are not exactly isometric due to the root-edge being doubled, but distances in the dual
of both models differ at most by 1.
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We can then proceed as in the original proof to establish that:

E

 ∑
u,v∈V (tn)

1{dgr(u,v)>nε}1{d†gr(f,g)>α0dgr(u,v)+3w?·maxDeg(tn) whenever u/f and v/g}


6 6(n+ 2)2c̃ exp(−ãnε). (6.10)

Hence, asymptotically almost surely, the following bound holds:

d?(f, g) 6 α0dgr(u, v) + 3w? ·maxDeg(tn), (6.11)

whenever u, v ∈ V (tn), dgr(u, v) > nε and u / f and v / g.
Since ν is assumed to have exponential tails, w? can be bounded by nε outside a set

of probability tending to 0 as n → ∞. Besides, the geometric bound obtained for the
degree of the root vertex in [4, Lemma 4.1] gives the existence of a constant A > 0

for which maxDeg(tn) 6 A log n with probability tending to 1 as n→∞. This gives the
desired result, except for the requirement that dgr(u, v) > nε. This case can be dealt with
by hand using the fact that d?(f, g) 6 w? ·maxDeg(tn)(dgr(u, v) + 1), which concludes the
proof for simple triangulations.

To finish the proof for quasi-simple triangulations, we rely on Lemmas 5.4 and 5.5.
Fix ε > 0 and recall that we write T (q) for the largest simple component of a quasi-simple
triangulation q. By Lemma 5.4, there exists K ∈ N such that:

P
(
|T (q(1)

n )| > n−K
)
> 1− ε. (6.12)

We fix k ∈ [0,K] and |T (q
(1)
n )| = n− k. Then by Lemma 5.5, we can couple T (q

(1)
n ) with

a uniform simple triangulation tn−k of size n − k such that P(T (q
(1)
n ) 6= tn−k) < ε. We

extend this coupling to the model with weights on the edges and make sure that the
weights also coincide when the triangulations are equal.

By applying the result of the proposition for tn−k, we know that outside a set of

probability smaller than ε, the bound (6.5) holds. This gives the result when u, v ∈ T (q
(1)
n ).

For w /∈ T (q
(1)
n ), we can use the easy fact that there exists u ∈ T (q

(1)
n ) with dgr(u,w) 6 k,

which concludes the proof of the proposition.

6.3 Two-point function

Thanks to the bounds we obtained in the two previous sections, we are now ready to
prove the equivalent of Proposition 21 of [13], stated below as Proposition 6.8. Roughly
speaking, this proposition establishes that the difference between the 2-point function
for the graph distance and the d? 2-point function is o(n1/4).

The proof of Proposition 6.8 relies on the following similar result obtained for the
infinite quasi-simple triangulation. Given the upper bounds established in Lemma 6.4,
we can apply verbatim the proof presented in Proposition 19 (in the primal case) and in
Proposition 29 (in the dual case) of [13] (see the remark at the end of Section 5.6.2) to
readily obtain:

Proposition 6.6. Let ε > 0 and δ > 0. We can find η ∈ (0, 1/2) such that, for every
sufficiently large n, we have:

P
(

(1− ε)cνbηnc 6 d?
(
f,Bn−bηnc(q

(1)
∞ )
)
6 (1 + ε)cνbηnc, ∀f ∈ Fn(q(1)

∞ )
)
> 1− δ, (6.13)

where we recall that Fn(q
(1)
∞ ) is the set of downward triangles incident to ∂n(q

(1)
∞ ).

Moreover

P
(

(cν − ε)n 6 d?
(
f,B0(q(1)

∞ )
)
6 (cν + ε)n, ∀f ∈ Fn(q(1)

∞ )
)
−−−−→
n→∞

1. (6.14)
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To transfer this result to finite simple triangulations, we rely on the following absolute
continuity relation between finite and infinite quasi-simple triangulations (analogous
to [13, Lemma 22]). Recall that Z1,r denotes the set of quasi-simple triangulation of the
cylinder of height r and rooted on a loop. For ∆ ∈ Z1,r, we denote by |∆| the number of

inner vertices of ∆. Recall that q(1)
n denotes the random quasi-simple triangulation of the

1-gon with n inner vertices. Then, we have:

Lemma 6.7. There exists a constant c̄, such that for every n > 1, for every r > 1 and
every ∆ ∈ Z1,r such that n > |∆|,

P
(
B•r (q(1)

n ) = ∆
)
6 c̄

(
n

n− |∆|

)3/2

P
(
B•r (q(1)

∞ ) = ∆
)
. (6.15)

Proof. The result follows directly from the uniform upper bound obtained in Lemma 5.3,
from a similar lower bound on |Qn,1| that we deduce from (5.6), and from the limit

of (5.12) together with the fact that q(1)
∞ is the local limit of q(1)

n as n→∞.

We can now state the main result of this section:

Proposition 6.8. Denote by f∗ the bottom face of q(1)
n . Let on be a uniformly distributed

inner vertex of q(1)
n and let fn be a face incident to on (fixed in some deterministic manner

given on). Then, for any ε > 0,

P
(
|d?(fn, f∗)− cνdgr(on, ρn)| > εn1/4

)
−−−−→
n→∞

0. (6.16)

The same result holds also if we replace q
(1)
n by a random rooted simple triangulation

having n+ 2 vertices and a random marked vertex on, and f∗ by its root face.

Proof. Again, we follow closely the proof of [13, Proposition 21]. Only two modifications
must be made. First, if we follow verbatim their proof, then at the very end, we need
to adapt the upper bound they obtain. Indeed, at this point they use the fact that the
first-passage distance on the primal graph (i.e on the triangulation) is upper-bounded by
the graph distance on the primal. In particular, they fix three close values αj < βj < γj
and restrict their attention to the event {βjn1/4 6 dgr(ρn, on) 6 γjn1/4}. Then, they can
give a deterministic upper bound for the first-passage percolation distance between on
and the hull of radius bαjn1/4c. This last step does not apply directly anymore when
working on the dual graph, but can be made valid if we replace the deterministic bound
by the probabilistic bound obtained in Proposition 6.5.

Secondly, write Br(q
(1)
n , on) for the ball of radius r centered at on in q

(1)
n . We have to

establish the following analogous statement of [13, (62)], and prove that for any y < 1,
there exists b ∈ (0, 1) such that:

lim inf
n→∞

P
(
|Bb(β−α)n1/4c(q

(1)
n , on)| > bn

)
> y. (6.17)

Given the convergence of simple triangulations to the Brownian sphere in the Gromov–
Hausdorff-Prokhorov topology [1], this statement is known to be true for uniform simple
triangulations. It can then be extended to quasi-simple triangulations, upon extracting
their largest simple component and by applying Lemmas 5.4 and 5.5. This concludes the
proof for quasi-simple triangulations.

To extend the result to simple triangulations, we rely on the same line of arguments
as in the proof of Proposition 6.5, and particularly on (6.8). It states that a positive
proportion of quasi-simple triangulations are in fact simple triangulations (after applying
the mapping Ψ, as depicted in Figure 4) Moreover, when Ψ(q

(1)
n ) is a simple triangulation,

it yields a direct coupling between a random inner vertex of q(1)
n and of Ψ(q

(1)
n ). Since we

have just shown that (6.16) holds for quasi-simple triangulations, and since Ψ preserves
the underlying metric space, it has to hold for simple triangulations as well.
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6.4 Coupling between µn and µ†n and proof of Theorem 1.2

Theorem 6.9. Let tn be uniformly random in Tn. Consider the two following weighted
metric spaces Tn = (tn,dgr, µn) and Kn = (t†n,d

?, µ†n), where µn and µ†n denote respec-
tively the uniform measures on V (tn) and on V (t†n).

Then, there exists an explicit correspondence Cn between (tn,dgr) and (t†n,d
?) and an

explicit coupling πn between µn and µ†n, such that:

πn(Cn) > 1− 2

n+ 2
and dis(Cn) 6 εn1/4.

Before giving the proof of this theorem, notice that in view of the known convergence
of simple triangulations towards the Brownian sphere established in [1], it concludes the
proof of Theorem 1.2.

Proof. The correspondence Cn is defined as the set of pairs:

Cn := {(v, f), with v ∈ V (tn), f ∈ F (tn) and v / f}.

Next, the coupling we construct between µn and µ†n is based on the theory of Schnyder
woods for simple triangulations [35], that we now briefly recall. A simple triangulation t

can be canonically endowed by an orientation of its edges, such that for each v ∈ V (t),
writing out(v) for the outdegree of v, we have:

out(v) =

{
3 if v is not incident to the root face of t

1 otherwise.
(6.18)

Note that to ensure that this orientation is canonical, it is enough to require that
directed counterclockwise cycles are not allowed, but this is not relevant for our purpose.
However, this canonical orientation enables to construct an explicit coupling between
µn and µ†n.

Letting on be a random vertex of tn, we associate to on a uniform face of tn in the
following way. If on is not incident to the root face of tn, then let en be an edge chosen
uniformly among one of the three outgoing edges from on. With probability 1/2, we pick
fn to be the edge on the left of en, and otherwise fn is the edge on the right of en.

Now, assume on is incident to the root face of tn. Then, with probability 1/3, we let
en to be the unique outgoing edge from on, and with probability 2/3, we let en to be a
uniform edge of tn. In both cases, we proceed as above.

It is clear from the construction, that en is a uniform edge of tn. Since each face has
degree 3, fn is then a uniform face of tn. Moreover, apart on an event of probability at
most 2/(n+ 2) (corresponding to the case where on is incident to the root face and en is
sampled uniformly in E(tn)), we have on / fn.

To conclude the proof of the theorem, it is then enough to prove that dis(Cn) 6 εn1/4,
or in other words that:

P

 sup
x,y∈V (tn),f,g∈F (tn)

x/f,y/g

|d?(f, g)− cνdgr(x, y)| > εn1/4

 −−−−→
n→∞

0. (6.19)

To prove this last statement, we only need to adapt slightly the framework of [13,
Theorem 1, p.680], and thus we only sketch the proof.

We start by presenting the general strategy of the proof. First, thanks to a rerooting
argument, we can extend the result for the 2-point function stated in Proposition 6.8 to
control the pairwise distance between any finite number of random points. Next, we
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rely on the known convergence of simple triangulations to the Brownian sphere in the
Gromov–Hausdorff–Prokhorov sense (established in [1]) to transfer the compactness of
the Brownian sphere from the continuum world to the discrete world. This allows us to
approximate the metric structure of a large simple random triangulation by restricting
our attention to a (large) fixed number of uniform points. Lastly (and this is the only
difference with the proof of [13, Theorem 1]), Proposition 6.5 extends this approximation
result from a simple triangulation to its dual.

Let us now state more formally those main steps. Let tn be a uniform element of Tn.
Let Φn : V (tn)→ F (tn) be a deterministic function (given tn) which associates to each
vertex v of tn a face f with v / Φn(v). Let o′n and o′′n be two independent uniform vertices
of tn. By the same chain of arguments as in [13, p.680], it follows from Proposition 6.8
that for any ε > 0:

P
(
|d?(Φn(o′n),Φn(o′′n))− cνdgr(o

′
n, o
′′
n)| > εn1/4

)
−−−−→
n→∞

0. (6.20)

Now let (oin)i>1 be a sequence of independent uniform vertices of tn. For any δ > 0,
there exists N > 1 such that for every n ∈ N:

P

(
sup

x∈V (tn)

(
inf

16j6N
dgr(x, o

j
n)

)
< εn1/4

)
> 1− δ. (6.21)

By the triangle inequality, we can then write:

sup
x,y∈V (tn),f,g∈F (tn)

x/f,y/g

|d?(f, g)− cνdgr(x, y)|

6 sup
16i6j6N

{∣∣∣d?(Φn(oin),Φn(ojn))− cνdgr(o
i
n, o

j
n)
∣∣∣}+ 2 sup

x∈V (tn)

(
inf

16j6N
dgr(x, o

j
n)

)
+ 2 sup

f∈F (tn)

(
inf

16j6N
d?(f,Φn(ojn))

)
We take N large enough so that (6.21) holds. By Proposition 6.5, outside a set of
probability at most δ and provided that n is large enough, the last term in the upper
bound can be bounded by 2 supx∈V (tn)

(
inf16j6N dgr(x, o

j
n)
)

+ n1/8. In view of (6.21)
and (6.20) (applied simultaneously to all pairs (oin, o

j
n)), this concludes the proof.

7 Scaling limit of the 3-connected core with distances induced by
the connected graph

Informally, the purpose of this section is to establish a result analogous to Proposi-
tion 6.8 (and then a result analogous to (6.19)), but where we relax the independent
hypothesis for the weights on the edges. Recall from Section 3.3 that C(q)

n is the set
of cubic connected planar graphs of size n having a marked 3-connected component
of size q, that C(q)

n is a uniformly random element of C(q)
n (for q > n/2 it coincides with

the random connected cubic planar graph of size n conditioned to have its 3-connected
core of size q). Similarly,M(q)

n is the set of cubic connected planar multigraphs of size
n having a marked 3-connected component of size q, and M

(q)
n denotes a uniformly

random element of M(q)
n (for q > n/2 it coincides with the random connected cubic

planar multigraph of size n conditioned to have its 3-connected core of size q). Recall
also that for g ∈ Cn, we write K(g) for the 3-connected core of g.

We aim at proving the following result (analogous to (6.19), with a dependence on
the edge-lengths):
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Theorem 7.1. Let (q(n), n > 1) be such that q(n) = αn + O(n2/3) (where α ≈ 0.85 is
defined in Proposition 3.3 and with the informal notation introduced below Lemma 3.6).
Write respectively dist

C
(q(n))
n

and dgr for the distance on K(C
(q(n))
n ) induced by the graph

distance on C
(q(n))
n and for the graph distance on K(C

(q(n))
n ).

Then, there exists a constant c > 0 such that, for any ε > 0:

P

(
sup

x,y∈V (K(C
(q(n))
n ))

|dist
K(C

(q(n))
n )

(x, y)− cdgr(x, y)| > ε q1/4

)
−−−−→
n→∞

0 (7.1)

A similar result holds for the random multigraph M
(q(n))
n , when q(n) = 199

316n+O(n2/3).

We note that, given Theorem 1.3, this result ensures that the scaling limit of K(C
(q(n))
n )

with distances (rescaled by c1q
1/4 for some c1 ∈ (0,∞)) induced by the distances in

C
(q(n))
n is the Brownian sphere. Moreover, combined with Theorem 1.2, it gives the joint

convergence of the two last coordinates in Theorem 1.4.
To prove this theorem, we first establish the following similar result for the 2-point

function (analogous to Proposition 6.8, with a dependence on the edge-lengths).

Proposition 7.2. Consider the same setting as in the previous theorem. Let o, o′ be
two random vertices of K(C

(q(n))
n ). Then, there exists a constant c > 0 (the same as in

Theorem 7.1) such that, for any ε > 0:

P
(
|dist

C
(q(n))
n

(o, o′)− cdgr(o, o
′)| > ε q1/4

)
−−−→
q→∞

0 (7.2)

A similar result holds for the random multigraph M
(q(n))
n , when q(n) = 199

316n+O(n2/3).

Sections 7.1 to 7.5 will be devoted to the proof of this proposition. The proof of
Theorem 7.1 will then follow along the same lines as the part proving (6.19) in the proof
of Theorem 6.9 and is given in Section 7.6.

In the rest of Section 7, we always assume that n and q(n) are related as in Proposi-
tion 7.2. To simplify notations, we drop the index n and simply write q for q(n). Since
q(n) = αn+O(n2/3), it makes sense to write q →∞ in place of n→∞. Similarly, with a

slight abuse of notation, in all this section, we write Kq for K(C
(q(n))
n ) and K̃q := (Kq, d̃)

for the metric space (K(C
(q(n))
n ),dist

C
(q(n))
n

).
On the other hand, recall that ν? is the law of the pole-distance of a critical Boltzmann

cubic network as defined in Section 4.1. We define K̂q := (Kq, d̂) to be the random

metric graph K(C
(q(n))
n ), equipped with the first-passage percolation distance obtained

from (`(e))e) where (`e) is a collection of i.i.d random variables sampled from ν?. It
follows from Lemma 4.1 that ν? has exponential tails. Since the support of ν? is by
definition included in [1,∞), all the results obtained in the previous section apply to
K̂q. In particular, by applying Proposition 6.8 twice (once with ν equals to the Dirac
measure on {1} and once with ν := ν?), there exists a constant c > 0 such that, for o, o′

two random vertices in Kq and for every ε > 0, we have

P
(
|d̂(o, o′)− cdgr(o, o

′)| > ε q1/4
)
−−−→
q→∞

0 (7.3)

We emphasize that in fact this statement serves at the very definition of the constant
c > 0 that appears both in Theorem 7.1 and in Proposition 7.2.

To prove Proposition 7.2, we are going to construct a coupling between K̂q and K̃q,
so as to minimize the the number of edges whose edge-lengths differ. We will then
show that, under this coupling, the weighted distance between two random vertices o, o′

differs by o(q1/4) in probability.

EJP 28 (2023), paper 28.
Page 40/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP912
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Convergence of random cubic planar graphs

1 2 3 4 5

1 2 4 5

N̂1

Ñ1
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Figure 9: The canonical rearrangement of two increasing sequences δ̂, δ̃, with Mult(δ̂) =

n̂ and Mult(δ̃) = ñ.

7.1 Definition of the coupling between K̂q and K̃q

To define the coupling between K̂q and K̃q, we first introduce a handful of notations.
For s ∈ Z>0, let Σs to be the set of sequences (n1, n2, . . .) of nonnegative integers,

such that
∑
i ni = s. For δ = (δ1, . . . , δm) a sequence of positive integers, we write

Ni(δ) = #{j ∈ [1..m], δj = i} and N>i(δ) = #{j ∈ [1..m], δj > i} for any i > 1. Next, we
define Mult(δ) as the mapping from Nm∗ to Σm, defined by:

Mult(δ) := (N1(δ), N2(δ), . . .)

i.e., Mult(δ) gives at each position i > 1 the multiplicity of i in δ.
Moreover, for i > 1, we denote δ(i) := {j ∈ [1..m], δj = i} the set of indices at which

the sequence is equal to i. Fix q ∈ Z>0, and let ñ := (ñ1, ñ2, . . .) and n̂ := (n̂1, n̂2, . . .) be
two sequences of Σ3q. As illustrated in Figure 9, it is easy to build canonically from n̂

and ñ, two sequences δ̂ = (δ̂1, . . . , δ̂3q) and δ̃ = (δ̃1, . . . , δ̃3q) such that, for each i > 1, we
have

|δ̂
(i)
| = n̂i, |δ̃

(i)
| = ñi, |δ̂

(i)
∩ δ̃

(i)
| = min(n̂i, ñi). (7.4)

For q > 1, let us now define two probability distributions on Σ3q. Let (δ̂1, . . . , δ̂3q) be a

sequence of i.i.d random variables sampled from ν?. We denote by V̂q the push-forward

distribution on Σ3q via the mapping Mult(.), of the distribution of (δ̂1, . . . , δ̂3q).

Similarly, let (δ̃1, . . . , δ̃3q) be the random vector giving the edge-lengths in K̃q inherited

from Cqn. Then, we denote by Ṽq the push-forward distribution on Σ3q via the mapping

Mult(.) of the distribution of (δ̃1, . . . , δ̃3q).

We can now describe the coupling between K̂q and K̃q:

1. Let N̂ = (N̂1, N̂2, . . .) and Ñ = (Ñ1, Ñ2, . . .) be independently sampled according to
V̂q and Ṽq respectively.

2. Construct (in the canonical way depicted in Figure 9) two sequences δ̂=(δ̂1, . . . , δ̂3q)

and δ̃ = (δ̃1, . . . , δ̃3q), which satisfy (7.4).
3. Draw a uniformly random 3-connected cubic planar graph Kq with 2q vertices, and

sample uniformly at random a permutation of its edges. List as (e1, . . . , e3q) its
edges in this random ordering.

4. Define K̂q = (Kq, (̂̀(ej))) and K̃q = (Kq, (˜̀(ej))) as the metric graphs built from Kq,

where for each j ∈ [1..3q], ̂̀(ej) = δ̂j and ˜̀(ej) = δ̃j .

It is clear from the construction that K̂q and K̃q defined in this manner follow the required
distribution. In the rest of this section, they are always assumed to be sampled jointly in
this manner.

Remark 7.3. In the following, it will be useful to be able to “choose an edge in Kq using

some information about K̂q but no information from K̃q”, or symmetrically. To make
rigorous sense of this, we can slightly adapt the sampling procedure as follows to better
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differentiate that K̂q is first drawn, and K̃q subsequently (we use the notation E=i for the
set of edges of length i in a metric graph with integer edge-lengths):

1. Sample Kq, N̂ and Ñ.
2. Consider a random permutation of E(Kq), and list its edges as (e1, . . . , e3q) in this

random ordering.
3. For each i ∈ Z>1, define E=i(K̂q) as {eN̂>i+1+1, . . . , eN̂>i

}.
4. For each i ∈ Z>1, reorder uniformly at random the edges of E=i(K̂q) and apply the

canonical construction of Figure 9 to construct K̃q following Ñ.

In this way, for every i > 1 we have |E=i(K̂q) ∩ E=i(K̃q)| = min(N̂i, Ñi), and for every

m ∈ [N̂>i+1 + 1..N̂>i] we have P(em ∈ E=i(K̃q)) = min(N̂i,Ñi)

N̂i
.

Of course, the roles played by K̂q and K̃q are perfectly symmetric, and we can proceed

by first sampling K̃q and then K̂q if needs be.

7.2 First properties of the coupling

To quantify the number of edges which do not have the same length in both models,
we start by proving the following estimate:

Lemma 7.4. Let N̂ = (N̂1, N̂2, . . .) and Ñ = (Ñ1, Ñ2, . . .) be independently sampled from
V̂q and from Ṽq respectively. Then there exist positive constants a and A such that a.a.s.
as q →∞, the following event Eq holds:

• for every positive integer i 6 a log(q), we have min(N̂i, Ñi) > q3/4 and |N̂i − Ñi| 6
q2/3.

• for all i > A log(q), we have N̂i = Ñi = 0.

Proof. Let pi := ν?(i). We can obtain a lower bound for pi by noticing that any cubic
network that is a series of i L-networks has pole-distance i+ 1. Hence:

pi >
L(ρ)i−1

D(ρ)
>

1

D(ρ)
e−κi, where κ = ln(1/L(ρ)) > 0,

and L(ρ) is the generating series of L-networks evaluated at its radius of convergence.
Let a = 1

5κ . Then, for i 6 a log(q), we have pi > 1
D(ρ)q

−1/5. On the other hand, by

definition, N̂i follows a Binomial(3q, pi) distribution, so that E(N̂i) = 3q pi > 3
D(ρ)q

4/5. By
Hoeffding’s inequality, we have that, for any x > 0:

P(|N̂i − 3q pi| > xq1/2) 6 2 exp(−2x2/3),

so that P(|N̂i − 3q pi| > q2/3/2) 6 2 exp(−q1/3/6). By Lemma 3.6, Ñi has the same law as
N̂i conditioned on an event of probability Θ(q−2/3), which implies that

P(|Ñi − 3q pi| > q2/3/2) = O(q2/3 exp(−q1/3/6)).

Hence,

P
(
∀i 6 a log(q), |N̂i − 3q pi| 6 q2/3/2 and |Ñi − 3q pi| 6 q2/3/2

)
−−−→
q→∞

1,

which gives the first property (using the lower bound on 3q pi).
Regarding the second property, we proved in Lemma 4.1 that ν? has exponential tail.

Hence, if (δ̂1, . . . , δ̂3q) is a sequence of i.i.d. random variables sampled from ν?, then

there exists b > 0, such that P(max(δ̂1, . . . , δ̂3q) > i) = O(q exp(−bi)). This is equivalent

to the fact that P(N̂j 6= 0 for some j > i) = O(q exp(−bi)). Using again Lemma 3.6, we

can derive from this property, the fact that P(Ñj 6= 0 for some j > i) = O(q5/2 exp(−bi)).
Hence, setting A = 3/b, this gives the desired result.
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Corollary 7.5. Conditionally on the event Eq defined in the previous lemma, for any

e ∈ E(Kq) such that ̂̀(e) 6 a log(q), and chosen without using any information on K̃q, we
have:

P(̂̀(e) 6= ˜̀(e)) 6 q−1/12.

Similarly, for any edge e ∈ E(Kq), such that ˜̀(e) 6 a log(q), and chosen without using any

information on K̂q, we have P(̂̀(e) 6= ˜̀(e)) 6 q−1/12.

Proof. By construction of the coupling (or rather of its variant described in Remark 7.3),
in the first case, we have that:

P(˜̀(e) 6= ̂̀(e)|̂̀(e) = i) =
max(Ñi − N̂i, 0)

Ñi
, for any i ∈ Z>0. (7.5)

Summing over the values of i in {1, .., ba log(q)c}, and using the bound for Ñi and N̂i, this
proves the result.

The other case is treated in exactly the same manner.

7.3 Truncation of edge-lengths

Another important ingredient of our proof is the truncation of the edge-lengths. Fix
k > 1, then for any metric graph G = (V,E, (`(e)e∈E), we write `(k)(e) := min(`(e), k). For
a path γ = (e1, . . . , em) in G, the truncated edge-length of γ is defined as `(k)(e1) + · · ·+
`(k)(em).

Let us apply this notion to K̂q and K̃q. For an edge e of Kq, we denote by ̂̀(k)(e) (resp.˜̀(k)(e)) its truncated edge-length in K̂q (resp. K̃q). For γ a path in Kq, its truncated

edge-length is denoted by L̂(k)(γ) (resp. L̃(k)(γ)) in K̂q (resp. K̃q). Furthermore, for two

vertices o, o′ ∈ Kq, we denote by d̂(k)(o, o′) (resp. d̃(k)(o, o′)) the minimum of L̂(k)(γ) (resp.

of L̃(k)(γ)) over all paths connecting o and o′.

Finally, we denote by K̂
(k)
q (resp. K̃(k)

q ) the metric graphs (Kq, d̂
(k)) (resp. (Kq, d̃

(k))).

Applying the results of Section 6 to K̂
(k)
q instead of K̂q, we obtain that there exists a

constant c(k) such that, for every ε > 0, we have:

P
(
|d̂(k)(o, o′)− c(k) dgr(o, o

′)| > ε q1/4
)
−−−→
q→∞

0, (7.6)

where o and o′ are two random vertices of Kq (picked independently from anything else).
Note that c(k) is increasing with k and is bounded by c.

The purpose of this section is now to prove the analogous statement on K̃
(k)
q :

Lemma 7.6. Let k > 1. Then, with the same constant c(k) as in (7.6), we have for every
ε > 0

P
(
|d̃(k)(o, o′)− c(k) dgr(o, o

′)| > ε q1/4
)
−−−→
q→∞

0, (7.7)

where o and o′ are two random vertices of Kq (picked independently from anything else).

Proof. Set N̂>k :=
∑
i>k N̂i and Ñ>k :=

∑
i>k Ñi, and define E(k)

q as the event under
which:

min(N̂i, Ñi) > q
3/4 and |N̂i−Ñi| 6 q2/3 for i < k, and min(N̂>k, Ñ>k) > q3/4. (7.8)

This event holds a.a.s. by Lemma 7.4.
Let e ∈ E(Kq), chosen without using any information on K̃

(k)
q . Conditionally on E(k)

q ,
by the same reasoning as in Corollary 7.5, we have:

P(˜̀(k)(e) 6= ̂̀(k)(e)|̂̀(k)(e) < k) 6 max
16i<k

max(Ñi − N̂i, 0)

Ñi
6 q−1/12. (7.9)
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On the other hand, let N ′k be the number of edges having length at least k in K̂q
and smaller than k in K̃q. By construction of the coupling between K̂q and K̃q, N ′k 6∑k−1
i=1 max(Ñi − N̂i, 0). Hence, if E(k)

q holds, N ′k 6 k q
2/3. Therefore, conditionally on E(k)

q ,
we have:

P(˜̀(k)(e) 6= ̂̀(k)(e)|̂̀(k)(e) = k) =
N ′k

N̂>k

6 kq−1/12. (7.10)

Now, we define γ̂(k) as a canonically chosen path among the paths γ connecting o to o′

such that L̂(k)(γ) = d̂(k)(o, o′) (e.g. γ̂(k) is the lexicographically smallest, for the sequence
of labels of the visited vertices). For any edge of γ̂(k), we can apply (7.9) or (7.10).
Moreover, by definition of truncation, for any edge e, we clearly have |̂̀(k)(e)− ˜̀(k)(e)| 6 k.

Hence, conditionally on E(k)
q , and in view of (7.9) and (7.10), we have

E
(
|L̂(k)(γ̂(k))− L̃(k)(γ̂(k))|

∣∣∣ |γ̂(k)| = s
)
6 k2q−1/12s.

Therefore, conditionally on E(k)
q , and by Markov’s inequality,

P
(
|L̂(k)(γ̂(k))− L̃(k)(γ̂(k))| > εq1/4

∣∣∣ |γ̂(k)| 6 s
)
6
k2

ε
q−1/3s.

It follows directly from Theorem 1.3 that a.a.s. dgr(o, o
′) 6 q1/4 log(q). Since k dgr(o, o

′) >
d̂(k)(o, o′) > |γ̂(k)|, we also have a.a.s. |γ̂(k)| 6 k q1/4 log(q), so that:

P
(
|L̂(k)(γ̂(k))− L̃(k)(γ̂(k))| > εq1/4

)
−−−→
q→∞

0.

For any ε > 0, the event d̂(k)(o, o′) 6 c(k)dgr(o, o
′) + εq1/4 holds a.a.s. according to (7.6).

Since L̂(k)(γ̂(k)) = d̂(k)(o, o′) and d̃(k)(o, o′) 6 L̃(k)(γ̂(k)), we conclude that, for any ε > 0,

P
(

d̃(k)(o, o′) 6 c(k)dgr(o, o
′) + εq1/4

)
−−−→
q→∞

1. (7.11)

Symmetrically, applying the argument to γ̃(k), we obtain that, for every ε > 0, we
have a.a.s. |L̂(k)(γ̃(k)) − L̃(k)(γ̃(k))| 6 εq1/4. For any ε > 0, the event d̂(k)(o, o′) >
c(k)dgr(o, o

′) − εq1/4 holds a.a.s. according to (7.6). Since L̃(k)(γ̃(k)) = d̃(k)(o, o′) and

d̂(k)(o, o′) 6 L̂(k)(γ̃(k)), we get that, for any ε > 0,

P
(

d̃(k)(o, o′) > c(k)dgr(o, o
′)− εq1/4

)
−−−→
q→∞

1, (7.12)

which concludes the proof.

7.4 Lengths of truncated geodesic paths in both models

We now state and prove additional estimates in view of completing the proof of
Proposition 7.2.

Lemma 7.7. Let k > 1. Then, for every ε > 0, we have

P
(
|L̃(γ̂(k))− L̂(γ̂(k))| > εdgr(o, o

′)
)
−−−→
q→∞

0,

where o and o′ are two random vertices for Kq (picked independently from anything else),

and where we recall that γ̂(k) is a canonical geodesic path in K̂
(k)
q between them.

Proof. In all this proof, we work conditionally on the a.a.s. event Eq of Lemma 7.4,
and consider q large enough such that a log(q) > k. For e an edge chosen using solely

information given by K̂
(k)
q and for i > k, we have:

P(̂̀(e) > i | ̂̀(k)(e) = k) = ν?([i,∞))/ν?([k,∞)).
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Hence, by Lemma 4.1, letting κ = a?/ν?([k,∞)), we have P(̂̀(e) > a log(q)) 6 κ q−ab? .
Since

E
(
|̂̀(e)− ˜̀(e)|) 6 A log(q)

(
P
(˜̀(e) 6= ̂̀(e)|̂̀(e) < a log q

)
+ P

(̂̀(e) > a log q
))

,

by Corollary 7.5, we get that:

E
(
|̂̀(e)− ˜̀(e)|) 6 (q−1/12 + κ q−ab?)A log(q).

We further work conditionally on the a.a.s. event E ′q under which q1/4/ log(q) 6 dgr(o, o
′) 6

q1/4 log(q). Since |γ̂(k)| 6 k · dgr(o, o
′), we have

E
(
|L̃(γ̂(k))− L̂(γ̂(k))|

)
6 k(q−1/12 + κ q−ab?)Aq1/4 log(q)2 = O(q1/4−ξ),

where ξ = min(1/12, ab?)/2. Hence, by Markov’s inequality we have

P
(
|L̃(γ̂(k))− L̂(γ̂(k))| > ε dgr(o, o

′)
)
6P

(
|L̃(γ̂(k))−L̂(γ̂(k))|>ε q1/4/ log(q)

)
+ P(c(Eq ∩ E ′q))

= O
(
ε−1 log(q) q−ξ

)
+ o(1) = o(1).

Lemma 7.8. Let X be a random variable drawn under ν?. There exist positive constants
a′, b′, and an infinite subset N′ ⊂ N such that, for every k ∈ N′ and every i > 0, we have

P(X > k + i | X > k) 6 a′ exp(−b′ i).

Proof. Let pi = P(X = i). We have seen in the proof of Lemma 7.4 that pi > 0 for any
i > 0 and that pi = O(exp(−bi)) for some b > 0. Set p′i := pi exp(bi/2). Then p′i → 0

as i → ∞. Hence, we can define a subset N′ of integers such that, for every k ∈ N′,
p′k = max(p′i, i > k) holds. Hence, for k ∈ N′ and i > k, we have pi 6 pk exp(−b(i− k)/2).
This gives

P(X > k + i | X > k) 6

∑
j>i pk e

−bj/2

P(ν? > k)
6
∑
j>i

e−bj/2 =
1

1− e−b/2
e−bi/2.

Lemma 7.9. There exists a positive constant â such that, for every k ∈ N′,

P
(
L̂(γ̂(k)) 6 d̂(k)(o, o′) +

â

k
dgr(o, o

′)
)
−−−→
q→∞

1,

where o and o′ are two random vertices for Kq (picked independently from anything else),

and where we recall that γ̂(k) is a canonical geodesic path in K̂
(k)
q between them.

Moreover, we have limk→∞ c(k) = c.

Proof. Let ∆ = L̂(γ̂(k)) − L̂(k)(γ̂(k)). Then ∆ =
∑
e∈Ek(`(e) − k), where Ek is the set of

edges e ∈ γ̂(k) with `(k)(e) = k. Since γ̂(k) is selected based solely on K̂
(k)
q , ∆ is the sum

of |Ek| i.i.d. copies of the random variable X(k), whose distribution is given by:

P(X(k) > i) =
ν?([k + i,∞))

ν?([k,∞))
.

Lemma 7.8 gives E(X(k)) 6 a′

1−e−b′ . For m > 1, let Sm be the sum of m i.i.d. copies of

X(k). Given the universal exponential bound on X(k) in Lemma 7.8, Chernoff’s bound
ensures that there exist positive constants a′′, b′′ (not depending on k) such that

P
(
Sm >

2a′

1− e−b′
m
)
6 a′′ e−b

′′m,
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and thus P
(
Sm′ > 2a′

1−e−b′m
)
6 a′′ e−b

′′m whenever m′ 6 m.

Next, let us define the event Hq as:

Hq :=
{
L̂(k)(γ̂(k)) 6 2cdgr(o, o

′)
}
∩
{

dgr(o, o
′) >

q1/6k

2c

}
.

By (7.6) and Theorem 1.3, we know that P(Hq) → 1 as q → ∞. If Hq holds, we have
|Ek| 6 2c

k dgr(o, o
′), so that:

P

({
∆ >

2a′

1− e−b′
2c

k
dgr(o, o

′)
}
∩Hq

)
6 a′′ e−b

′′ q1/6 = o(1),

so that the first statement is proved (with â = 2a′

1−e−b′ 2c).

It ensures that we have a.a.s. d̂(o, o′) 6 d̂(k)(o, o′) + â
kdgr(o, o

′). Hence, using (7.6), for

any ε > 0 we have a.a.s. d̂(o, o′) 6 (c(k) + â
k + ε) dgr(o, o

′). This implies that c(k) + â
k > c.

Since c(k) 6 c, this gives limk→∞ c(k) = c.

7.5 Proof of Proposition 7.2

We start by establishing the lower bound for d̃(o, o′) given in (7.2) of Proposition 7.2.
Fix ε > 0 and η > 0. By Theorem 1.3, we know that there exists b > 0 such that for q
large enough:

P(dgr(o, o
′) 6 b q1/4) > 1− η/2.

On the other hand, by Lemma 7.6, we have for q large enough:

P
(
d̃(k)(o, o′) > c(k)dgr(o, o

′)− ε

2
q1/4

)
> 1− η/2.

Then, Lemma 7.9 grants the existence of k such that c(k) > c− ε/(2b). Combined with
the two preceding inequalities and since d̃(k)(o, o′) 6 d̃(o, o′)) it yields for q large enough:

P
(
d̃(o, o′) > cdgr(o, o

′)− εq1/4
)
> 1− η.

Regarding the upper bound, let k ∈ N′ be large enough such that â
k 6

ε
4b . By

Lemma 7.9, there exists q1 such that, for q > q1, we have

P
(
L̂(γ̂(k)) 6 d̂(o, o′) +

ε

4b
dgr(o, o

′)
)
> 1− η/8.

By Lemma 7.7, there exists q2 such that, for q > q2,

P
(
L̃(γ̂(k)) 6 L̂(γ̂(k)) +

ε

4b
dgr(o, o

′)
)
> 1− η/8.

Hence, for q > max(q1, q2), we have

P
(
L̃(γ̂(k)) 6 d̂(o, o′) +

ε

2b
dgr(o, o

′)
)
> 1− η/4.

Since d̃(o, o′) 6 L̃(γ̂(k)), we have P
(

d̃(o, o′) 6 d̂(o, o′) + ε
2bdgr(o, o

′)
)
> 1 − η/4. Hence,

P
(

d̃(o, o′) 6 d̂(o, o′) + ε
2q

1/4
)
> 1− 3η/4.

Finally, by (7.3), there exists q3 such that, for q > q3, we have

P
(

d̂(o, o′) 6 cdgr(o, o
′) +

ε

2
q1/4

)
> 1− η/4.

Hence, for q > max(q1, q2, q3), we have P
(
d̃(o, o′) 6 cdgr(o, o

′) + εq1/4
)
> 1 − η. This

concludes the proof.
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7.6 Proof of Theorem 7.1

Given Proposition 7.2, the proof of Theorem 7.1 follows the exact same lines as in the
proof of (6.19). The only missing point is a result analogous to Proposition 6.5, which we
now state and prove:

Lemma 7.10. Let K be any constant larger than E(ν?). For ε ∈ (0, 1/4), define Ẽq as the
event where the bound

d̃(x, y) 6 K dgr(x, y) + qε

holds for every pair of vertices x, y in Kq. Then P(Ẽq)→ 1 as q →∞.

Proof. We start by proving a similar result but for K̂q rather than K̃q. Let Êq be the event
where the bound

d̂(x, y) 6 K dgr(x, y) + qε

holds for every pair of vertices x, y in Kq. Let x, y be two fixed vertices in Kq. Since ν?
has exponential tail, the Chernoff bound ensures that there exist positive constants a′, b′

(not depending on x, y) such that

P(d̂(x, y) > K dgr(x, y)) 6 a′ exp(−b′ dgr(x, y)).

In particular, if dgr(x, y)>qε/2, this implies that P
(

d̂(x, y)>K dgr(x, y)
)
6a′ exp(−b′ qε/2).

We now deal with the case where dgr(x, y) 6 qε/2. Let w? be the maximal weight over

the edges in K̂q. The union bound and the fact that ν? has exponential tail ensure that
(with a?, b? the constants in Lemma 4.1)

P(w? > qε/2) 6 3q · a? · exp(−b? qε/2).

Hence, if dgr(x, y) 6 qε/2, we have

P(d̂(x, y) > qε) 6 3q · a? · exp(−b? qε/2)

Letting b′′ be a positive constant smaller than b? and b′, this guarantees the existence of
a constant a′′ such that, for every given pair x, y of vertices in Kq,

P(d̂(x, y) > K dgr(x, y) + qε) 6 a′′ exp(−b′′ qε/2).

By the union bound, this gives P(¬Êq) 6 q2 a′′ exp(−b′′ qε/2). Finally, by Lemma 3.6, we
obtain that: P(¬Ẽq) = O(q2/3P(¬Êq)) = O(q8/3 a′′ exp(−b′′ qε/2)) = o(1).

Given the preceding discussion, this concludes the proof of Theorem 7.1.

8 Gromov–Hausdorff–Prokhorov distance between a random con-
nected cubic planar graph and its 3-connected core

The aim of this section is to establish the following result:

Proposition 8.1. Let (q(n), n > 1) be such that q(n) = αn + O(n2/3) (where α ≈ 0.85

is defined in Proposition 3.3). Let C
(q(n))
n be a uniformly random element of C(q(n))

n .
Write respectively dist

C
(q(n))
n

and dgr for the distance on K(C
(q(n))
n ) induced by the graph

distance on C
(q(n))
n and for the graph distance on K(C

(q(n))
n ). Then

dGHP

((
C(q(n))
n ,

1

n1/4
dgr, µC

(q(n))
n

)
,
(
K(C(q(n))

n ),
1

n1/4
dist

C
(q(n))
n

, µ
K(C

(q(n))
n )

))
(p)−−−−→
n→∞

0,

where, as usual, µ
C

(q(n))
n

and µ
K(C

(q(n))
n )

denote respectively the uniform distribution on

V (C
(q(n))
n ) and on V (K(C

(q(n))
n )).

A similar results holds for M
(q(n))
n , with q(n) = 199

316n+O(n2/3).
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By Theorem 3.5 of Section 3.2, the size of the 3-connected core of a random cu-
bic planar graph is αn + O(n2/3) with high probability. We established in Section 7

(see the discussion below Theorem 7.1) that (K(C
(q)
n ), 1

q1/4
dist

C
(q)
n
, µ
K(C

(q)
n )

) converges
to the Brownian sphere. Hence Proposition 8.1 directly implies the joint convergence
of (K(Cn), 1

n1/4 distCn , µK(Cn)) and of (Cn,
1

n1/4 dgr, µCn), which corresponds to the joint
convergence of the first and second coordinates stated in Theorem 1.4.

As in the previous section, in all this section q, n are related by q = αn+O(n2/3). To
lighten notation, we drop the explicit dependency of q in n and write q instead of q(n).

Roughly speaking, this result relies on two main steps. First, we have to prove that
the Gromov–Hausdorff distance between these two measured metric spaces is small,
or in other terms, that any vertex of C(q)

n is at distance o(n1/4) from a vertex of K(C
(q)
n ).

Then, we need to prove that the Levy–Prokhorov distance between both spaces is small.
Roughly speaking, it means that the uniform measure on K(C

(q)
n ) and the projection of

the masses of the uniform measure on C
(q)
n into its 3-connected core are close for the

dLP distance.
Our approach follows closely the strategy developed in an article by Addario–Berry

and Wen [2], dealing with the joint convergence of a quadrangulation and its simple core.
We give the arguments only for graphs, but the exact same approach can be developed
for multigraphs.

Following [2], we first define a measure on V (K(C
(q)
n )) that reflects a “projection

of masses”. Let v1, . . . , v2q be the vertices of K(C
(q)
n ), ordered by increasing label. For

i ∈ [1..2q], let si be the total number of vertices of (non-pole) vertices in the attached
networks at the 3 edges incident to vi, and let ni = 1 + si/2. Then the measure µ′

K(C
(q)
n )

on V (C
(q)
n ) is defined by:

µ′
K(C

(q)
n )

(vi) =
ni
2n
, for any i ∈ [1..2q].

For a vector x = (x1, . . . , x2q) ∈ [0,∞)2q, we write |x|p =
(∑2q

i=1 x
p
i

)1/p
, for p > 1. Note

that, with the notations from above and setting n = (n1, . . . , n2q), we have |n|1 = 2n.

Lemma 8.2. Let C(q)
n be as in Proposition 8.1. Write dLP for the Lévy-Prokhorov distance

on the metric space (K(C
(q)
n ), 1

n1/4 dgr). Then we have

dLP

(
µ
K(C

(q)
n )
, µ′
K(C

(q)
n )

)
(p)−−−→
q→∞

0.

Proof. Let n = (n1, . . . , n2q) be defined from C
(q)
n as above. Lemma 5.3 in [2]7 implies

that for any vertex-subset W ⊂ V (K(C
(q)
n )), and for any t > 0, we have

P

(
|µ
K(C

(q)
n )

(W )− µ′
K(C

(q)
n )

(W )| > 2t|n|2
|n|1

+
1

2q + 1

)
6 4 exp(−2t2). (8.1)

Here, |n|1 = 2n, and by Lemma 3.7 we know that max(n1, . . . , n2q) 6 n3/4 a.a.s., which
implies |n|2 6 2n7/8 (since

∑2q
i=1 n

2
i 6 max(n1, . . . , n2q) · |n|1).

Taking t = n1/16 and letting εq = 2n−1/16+ 1
2q+1 = o(1), we thus have a.a.s. |µ

K(C
(q)
n )

(W )

− µ′
K(C

(q)
n )

(W )| 6 εq for all W ⊆ V (K(C
(q)
n )).

We can then proceed with the exact same arguments as in Corollary 6.2 in [2]
(compactness of the Brownian sphere m∞, and the fact that (K(C

(q)
n ), 1

q1/4
dgr, µK(C

(q)
n )

)

converges toward m∞ for the GHP topology, as we have already established in Theo-
rem 1.3).

7In [2], it is assumed that |n|2 is deterministic, which is not the case here. However, we can apply their
lemma to the normalized vector ñ = n/|n|2, which gives the desired result.
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Lemma 8.3. Write d̃LP for the Lévy-Prokhorov distance on the metric space (K(C
(q)
n ),

1
n1/4 dist

C
(q)
n

). Then, we have:

d̃LP(µ
K(C

(q)
n )
, µ′
K(C

(q)
n )

)
(p)−−−→
q→∞

0.

Proof. We use the characterization of the Lévy-Prokhorov distance in terms of couplings.
Let Vq = V (K(C

(q)
n )). Let ε > 0 and η > 0. Our aim is to show that, for q large enough,

with probability at least 1 − η there exists a coupling ν between µ
K(C

(q)
n )

and µ′
K(C

(q)
n )

such that, for the distance 1
n1/4 dist

C
(q)
n

, we have, with the notation of Section 2.2,

ν
(

(Vq × Vq)ε
)
> 1− ε.

Let β = 2E(ν?), and let ε̄ = ε/(β + 1). By Lemma 8.2 there exists q1 such that, for
q > q1, with probability at least 1 − η/2, there holds the event Fq that there exists a
coupling ν between µ

K(C
(q)
n )

and µ′
K(C

(q)
n )

such that, for the distance 1
n1/4 dgr, we have

ν
(

(Vq × Vq)ε̄
)
> 1− ε̄.

Let Eq be the event that dist
C

(q)
n

(x, y) 6 βdgr(x, y)+q1/6 for x, y ∈ Vq. Then Lemma 7.10
guarantees that there exists q0 such that P(Eq) > 1 − η/2 for q > q0. Let q2 be large
enough so that n−1/4q1/6 6 ε

β+1 for q > q2. If q > q2 and Eq holds, then for every x, y ∈ Vq,
we have that n−1/4dgr(x, y) 6 ε̄ implies n−1/4 dist

C
(q)
n

(x, y) 6 ε. Hence, if q > q2 and
if Eq and Fq hold, then with the same coupling ν as above, but now for the distance

1
n1/4 dist

C
(q)
n

, we have

ν
(

(Vq × Vq)ε
)
> 1− ε.

This concludes the proof, since the event Eq ∩ Fq occurs with probability at least 1− η
for q > max(q0, q1, q2).

Lemma 8.4. The GHP distance between (K(C
(q)
n ), 1

n1/4 dist
C

(q)
n
, µ′
K(C

(q)
n )

) and (C
(q)
n , 1

n1/4 dgr,

µ
C

(q)
n

) is o(1) in probability.

Proof. We follow the argument of projection of masses given in [2]. Let R be the
correspondence on V (K(C

(q)
n )), V (C

(q)
n ) where uRv if u = v or if v is a non-pole vertex in

one of the 3 networks substituted at the edges incident to u. Let ν be the distribution
on pairs in R corresponding to drawing a vertex v ∈ C

(q)
n uniformly, then letting u = v if

v ∈ K(C
(q)
n ), and otherwise letting u be a random extremity of the edge e ∈ K(C

(q)
n ) in

which the network containing v is substituted. Clearly, ν gives a coupling between µ
C

(q)
n

and µ′
K(C

(q)
n )

.

For any ε > 0, by Lemma 3.7 and Proposition 4.2, and the union bound, we have a.a.s.
the property that all networks attached to the edges of K(C

(q)
n ) have diameter at most

n(2/3+ε)(1/4+ε). Taking ε small enough (e.g. ε = 1/30) so that (2/3 + ε)(1/4 + ε) 6 1/5,

we thus have the a.a.s. property Eq that all networks attached to the edges of K(C
(q)
n )

have diameter at most n1/5. When Eq holds, the distorsion dis(R) with respect to
1

n1/4 dgr thus satisfies dis(R) 6 2n1/5n−1/4 = 2n−1/20. Since the coupling gives zero
probability to pairs that are not in R, we conclude that, when Eq holds, the GHP distance

between (K(C
(q)
n ), 1

n1/4 dist
C

(q)
n
, µ′
K(C

(q)
n )

) and (C
(q)
n , 1

n1/4 dgr, µC
(q)
n

) is at most 2n−1/20 =

o(1). Since Eq holds a.a.s., the GHP distance between (K(C
(q)
n ), 1

n1/4 dist
C

(q)
n
, µ′
K(C

(q)
n )

) and

(C
(q)
n , 1

n1/4 dgr, µC
(q)
n

) is o(1) in probability.

Proposition 8.1 then directly follows from Lemma 8.3 and Lemma 8.4 (and the fact
that the GHP distance satisfies the triangle inequality).

EJP 28 (2023), paper 28.
Page 49/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP912
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Convergence of random cubic planar graphs

Index

convergence a.a.s. with exponential rate, 20

µ(D) critical Boltzmann distribution on the combinatorial family D, 15

constants
α ≈ 0.8509 (simple) or = 199/316 (multigraph), 13, 17
ρ ≈ 0.101905 (simple) or = 54/793/2 (multigraph), 12, 16

distances
dGHP Gromov–Hausdorff–Prokhorov, 8
M(µ, µ′) couplings, 8
dis(R) distortion, 8
dGH Gromov–Hausdorff, 8
dLP(µ, µ′) Lévy–Prokhorov, 8

maps and graphs
maxDeg(m) maximal vertex-degree of m, 21
degm(v),degm(f) degree, 6
rootDeg(m) degree of the root vertex of m, 21
dgr graph distance, 3
Diam(g) diameter of g, 20
m† dual map, 6
v / f vertex v and face f are incident, 34
length
`(e) of an edge , 6
L(γ) of a path, 6

#E/3 = #V/2 = #F − 2 size of a planar cubic (multi)graph or map, 7

vertex-labeled cubic planar graphs (replace C by M for multigraphs)
Cn with 2n vertices, 12, 17
C•n of Cn with one marked vertex, 12

C(q)
n of Cn with a marked 3-connected component with q vertices, 14, 18

C
(q)
n uniform in C(q)

n , 14, 18
C(q) generated by substituting the edges of a uniform 3-connected graph of size q,

15, 18
Cn uniform in Cn, 3, 13, 17
C•n uniform in the subset of c ∈ C•n of type T , 13

3-connected cubic planar graphs
Kn with 2n vertices, 21
Kn uniform in Kn, 5, 21, 38

equipped with d? and the uniform measure µ†n on V (Kn), 38
K(g) 3-connected core of g, 5
distg distance on K(g) induced by the graph distance on g, 5, 39

Kq = K(C
(q)
n ) (abuse of notation in Section 7), 40

K̃q = (Kq, d̃) := (Kq,dist
C

(q)
n

), 40, 41

K̂q = (Kq, d̂) Kq equipped with d?ν∗ (see cubic networks for ν∗), 40, 41

coupling between K̃q and K̂q
Mult maps from Nm∗ to the sequences (n1, n2, . . . ) in N with

∑
i ni = m, 41

V̂q distribution of Mult(δ̂1, . . . , δ̂3q) with (δ̂k) ∼ ν∗ i.i.d., 41
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Ṽq distribution of Mult(δ̃1, . . . , δ̃3q) with (δ̃k) the d̃-edge lengths in K̃q, 41

(N̂, Ñ) ∼ V̂q ⊗ Ṽq, 41

δ̂, δ̃ obtained from N̂, Ñ resp., 41̂̀(e), ˜̀(e) length of edge e in K̂q, K̃q resp., 41
`(k)(e) := min(`(e), k), 43
L(k)(γ) `(k)-length of a path γ, 43
d̂(k), d̃(k) first-passage percolation distance from (̂̀(k)(e)), resp. (˜̀(k)(e)), 43

K̂
(k)
q = (Kq, d̂

(k)), K̃
(k)
q = (Kq, d̃

(k)), 43
γ(k) “canonical” d(k)-shortest path between o and o′, 44

cubic networks, 9–12
L-network, 9
N1 +N2 S-network, 9
P -network (substitution from double-edge), 9
H-network (substitution from polyhedral), 9
δ(N) pole distance, 18
ν? its distribution under the critical Boltzmann distribution, 18

v−, v+ poles, 9
families of cubic networks (g.f. in straight capital), either simple or multigraph
D all, 11
K polyhedral, obtained from 3-connected cubic planar graphs, 11, 16
L,S,P,H per type, 11, 16

τ(N) (rooted) decomposition-tree, 10
L label L-network, 10
M label P -network, 10
R label S-network, 10
T label H-network, 10

quasi-simple triangulations of the p-gon
Qn,p with n inner vertices, 20, 24
Ψ maps quasi-simple triangulations of the 1-gon to (not necessarily simple) vertex-

pointed triangulations of the sphere, 24
C(p), 25
BR(q) ball of radius R of q, 29
B•R(q, v∗) hull of radius R of (q, v∗), 29
κ(p), p > 1, 30
θ(k), k > 0, 30
of the 1-gon
Q(1) = ∪nQn,1, 25
G g.f. with respect to #V − 2, 20
G(i) g.f. with respect to #V − 2 when the root and marked vertex are at distance
i, 20

q
(1)
n uniform in Qn,1, 20, 26

T (q
(1)
n ) the largest simple component of q(1)

n , 26

Ln distance between root vertex and marked vertex in q
(1)
n−1, 20

q
(p)
n uniform in Qn,p, 30

q
(p)
∞ the quasi-simple triangulation of the plane with boundary of length p, 31
q∞ = “Ψ(q

(1)
∞ )′′ the quasi-simple triangulation of the sphere, 31

quasi-simple triangulations of the cylinder
Zp,r of height r with root face of degree p, 27
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∂∆ bottom cycle, the boundary of the root face, 27
∂∗∆ top cycle, the boundary of the top face, 27
Bj(∆) ball of radius j, 27
B•j (∆) hull of radius j, 27
∂j(∆) = ∂∗(B•j (∆)), ∂0(∆) = ∂∆, 27
Fj(∆) downwards triangles incident to edges of ∂j(∆), 27
Ē(∆) = ∪jE(∂j(∆)), 27
Pp,r distribution on Zp,r induced by Pp,r, 31
(F(∆), (tv)v∈F(∆)?) skeleton decomposition of ∆, 28
Inn(t) number of inner vertices of the slot-filling triangulation t, 30
(p, q, r)-admissible forest f, 28
Fp,q,r set of all, 28
Fp,r = ∪q>1Fp,q,r, 28
kf(e) number of children of e in f, 28
f∗ vertices of f at height < r, 28
Pp,r distribution on Fp,r, 31

half-plane models
L of the lower half-plane, 32
Ls simple, of the lower half-plane, 32
Us simple, of the upper half-plane, 32
Lsj the path connecting the vertices of Ls at depth −j, 33
Fj(L

s) the downward triangles incident to an edge of Lsj , 33
f0,0 the downward triangle of Lsj incident to its root edge, 33

modification of distances
ν weight distribution on [η0,∞) for (we)e∈E(m†), 4, 32
d?ν = d? first-passage percolation distance on m†, 4, 32
Cn correspondence between (tn,dgr) and (t†n,d

?), 38
πn coupling between µn and µ†, 38

rooted simple planar triangulations
Tn with n+ 2 vertices and 2n faces, 11
T ′n of Tn with a marked vertex distinct from the root vertex, 20
T − with a marked inner edge, 25
T � with a marked inner vertex, 25
tn uniform on Tn, 20
Tn = (tn,dgr, µn) where µn is the uniform measure on V (tn), 38

rooted simple planar triangulations of the p-gon
Tn,p with n inner vertices, 23
Tp generating series, radius of convergence = 27/256, 24
Z(p) = Tp

(
27
256

)
, 24
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