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Abstract

We consider a Feller branching diffusion process X with drift c having 0 as a slowly
reflecting (sticky) boundary point with a stickiness parameter 1/µ ∈ (0,∞). We show
that (i) the process X can be characterised as a unique weak solution to the SDE
system

dXt = (bXt+c)I(Xt>0) dt+
√
2aXt dBt

I(Xt=0) dt = 1
µ
d`0t (X)

where b ∈ R and 0 < c < a are given and fixed, B is a standard Brownian motion,
and `0(X) is a diffusion local time process of X at 0, and (ii) the transition density
function of X can be expressed in the closed form by means of a convolution integral
involving a new special function and a modified Bessel function of the second kind.
The new special function embodies the stickiness of X entirely and reduces to the
Mittag-Leffler function when b = 0. We determine a (sticky) boundary condition
at zero that characterises the transition density function of X as a unique solution
to the Kolmogorov forward/backward equation of X. Letting µ ↓ 0 (absorption)
and µ ↑ ∞ (instantaneous reflection) the closed-form expression for the transition
density function of X reduces to the ones found by Feller [6] and Molchanov [14]
respectively. The results derived for sticky Feller diffusions translate over to yield
closed-form expressions for the transition density functions of (a) sticky Cox-Ingersoll-
Ross processes and (b) sticky reflecting Vasicek processes that can be used to model
slowly reflecting interest rates.
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1 Introduction

This paper is motivated by the question as to whether it is possible to find a closed-
form expression for the transition density function of the Feller branching diffusion
process X in [0,∞) with drift c and diffusion coefficient a satisfying 0 < c < a when 0 is a
slowly reflecting (sticky) boundary point for X with a stickiness parameter 1/µ ∈ (0,∞).
The purpose of the paper is to provide an answer to this question.

Recall that the infinitesimal generator LX of X acts in (0,∞) by the rule

LX = (bx+c)∂x + ax∂xx (1.1)

where a > 0 and b, c ∈ R are constants. We assume throughout that 0 < c < a in
which case 0 is a regular (i.e. non-singular) boundary point. Other cases are well
analysed/understood (if c ≤ 0 then 0 is an exit boundary point, and if c ≥ a then 0

is an entrance boundary point) see e.g. [1, p. 134] combined with [10, p. 357] to
obtain closed-form expressions for the transition density functions in these cases. The
boundary classification in the present paper refers to the one due to Feller [7] (see
e.g. [1, pp. 14–17] for a modern exposition).

In his original paper [6, p. 180] Feller found a closed-form expression for the transition
density function of X when 0 is an absorbing/killing boundary point (i.e. when the motion
of X terminates upon reaching 0). Feller’s expression includes a modified Bessel function
of the first kind having a positive index. Subsequently Molchanov [14, p. 312] found a
closed-form expression for the transition density function of X (upon recalling its one-to-
one connection to a Bessel process) when 0 is an instantaneously reflecting boundary
point (i.e. when X spends no time at 0 with a strictly positive Lebesgue measure).
Molchanov’s expression includes a modified Bessel function of the first kind having a
negative index. The same negative index expression appears in the paper by Cox et al.
[3, p. 391] where Feller’s branching diffusion is used to model the motion of interest
rates extending an earlier paper [21] by Vasicek where the Ornstein-Uhlenbeck process
is used to this end.

The question of addressing a sticky boundary behaviour of X at zero (as another
possible regular boundary behaviour) was raised by Longstaff [13]. Kabanov et al. [11]
present an answer in which an interest rate process gets ‘stuck’ at zero over a random
interval of time. This boundary behaviour is different from a ‘sticky’ (slowly reflecting)
boundary behaviour of X at zero (in the sense of Feller’s boundary classification [7])
where the amount of time that X spends at zero has a strictly positive Lebesgue measure
but contains no interval (thus being nowhere dense like a fat Cantor set). Renewed
interest in the sticky boundary behaviour of stochastic interest rates in finance is
documented in [12, Ch. 1] and [15] (see also [4] and the references therein) where the
transition density function of the sticky reflecting Ornstein-Uhlenbeck process (Vasicek
model) is expressed as an infinite series (spectral/eigenfunction expansion) involving
confluent-hypergeometric/parabolic-cylinder functions, their derivatives, and related
zeros. We will see below that this transition density function can be expressed in the
closed form by means of a convolution integral involving a new special function which
can be calculated using roots of an algebraic equation for the gamma function. This
representation of the transition density function extends to all sticky Feller diffusions
and to our knowledge has not been established before.
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The paper is organised as follows. In Section 2 we use the Itô-McKean construction of
sticky diffusions (cf. [8, Section 10]) and show that X can be characterised as a unique
weak solution to the SDE system

dXt = (bXt+c)I(Xt>0) dt+
√

2aXt dBt (1.2)

I(Xt=0) dt = 1
µ d`

0
t (X) (1.3)

where B is a standard Brownian motion and `0(X) is a diffusion local time process of
X at 0. In Section 3 we use the Green function of X (i.e. the Laplace transform of
its transition density function in the time domain) to determine a (sticky) boundary
condition at zero that characterises the transition density function of X as a unique
solution to the Kolmogorov backward/forward equation of X. In Section 4 we calculate
the limit at zero of the ratio between the first derivative of an increasing fundamental
solution (eigenfunction) to the killed generator equation of X with respect to its scale
function and the increasing fundamental solution itself. This limit coincides with the
speed measure of X evaluated at the singleton consisting of zero. Making use of this
expression in Section 5 we determine the Laplace transform of the transition density
function of X in the time domain (i.e. the Green function of X). The latter expression
reveals a new convolution identity for sticky laws showing that the stickiness is entirely
embodied in a single multiplication factor of the Laplace transform. In Section 6 we
introduce a new special function (which reduces to the Mittag-Leffler function when
b = 0) as the inverse Laplace transform of the multiplication factor. The function can be
expressed by means of the complex inversion formula (Bromwich’s integral) which in
turn can be calculated by the residue theorem using roots of an algebraic equation for
the gamma function. In Section 7 we apply Laplace inversion to the Green function of X
from Section 5 and show that the transition density function of X can be expressed in
the closed form by means of a convolution integral involving the special function from
Section 6 and a modified Bessel function of the second kind. Letting µ ↓ 0 (absorption)
and µ ↑ ∞ (instantaneous reflection) the closed-form expression for the transition density
function of X reduces to the ones found by Feller [6] and Molchanov [14] respectively.
In Section 8 we show that the results derived for sticky Feller diffusions translate over
to yield closed-form expressions for the transition density functions of (a) sticky Cox-
Ingersoll-Ross processes and (b) sticky reflecting Vasicek processes that can be used to
model slowly reflecting interest rates.

2 Stochastic differential equations

In this section we use the Itô-McKean construction of sticky diffusions (cf. [8, Section
10]) and show that the Feller branching diffusion process X in [0,∞) with drift c having
0 as a slowly reflecting (sticky) boundary point with a stickiness parameter 1/µ ∈ (0,∞)

can be characterised as a unique weak solution to the SDE system

dXt = (bXt+c)I(Xt>0) dt+
√

2aXt dBt (2.1)

I(Xt=0) dt = 1
µ d`

0
t (X) (2.2)

where b ∈ R and 0 < c < a are given and fixed, B is a standard Brownian motion and
`0(X) is a diffusion local time process of X at 0 defined in (2.11) below. We assume
in (2.1)+(2.2) that X starts at some x in [0,∞). The stochastic integral with respect to
B in (2.1) is understood in Itô’s sense. We refer to [5] for standard definitions of the
weak/strong solutions to SDEs including their uniqueness that we will use throughout.

1. Recall that the infinitesimal generator LX of X acts in (0,∞) by the rule

LX = (bx+c)∂x + ax∂xx (2.3)
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and the stickiness of X at 0 is characterised by the fact that the domain D(LX) of LX
consists of functions f ∈ C2((0,∞)) ∩ Cb([0,∞)) such that LXf ∈ Cb([0,∞)) and the
following (sticky) boundary condition at 0 holds

df

ds
(0+) = m({0})LXf(0) (2.4)

(cf. [19, p. 310]) where s is the scale function of X given by

s(x) =

∫ x

0

y−ν−1 e−
b
ay dy = Γ(−ν)x−νγ∗

(
−ν, ba x

)
(2.5)

for x ∈ [0,∞), and m is the speed measure of X given by

m(dx) = xν

a e
b
ax dx (2.6)

on (0,∞). The incomplete gamma function γ∗ in (2.5) is defined by

γ∗(α, z) =
1

Γ(α)

∫ 1

0

tα−1e−zt dt (2.7)

for α > 0 and z ∈ R. The number ν := c/a−1 in (2.5) and (2.6) is referred to as the index
of X. Note that ν ∈ (−1, 0) due to 0 < c < a. The stickiness of X at 0 is measured by

m({0}) = 1/µ (2.8)

where µ ∈ (0,∞) is a given and fixed number. Letting µ ↓ 0 and µ ↑ ∞ we obtain the
boundary behaviour of infinite stickiness (absorption) and zero stickiness (instantaneous
reflection) of X at 0 respectively. Recall further that the diffusion local time process
`x(X) of X at x in [0,∞) is defined by

`xt (X) = lim
ε↓0

1

m([x−ε, x+ε])

∫ t

0

I(x−ε≤Xs≤x+ε) ds (2.9)

for t ≥ 0. It is well known that the limit in (2.9) exists almost surely and that we have∫ t

0

f(Xs) ds =

∫
[0,∞)

f(x)`xt (X)m(dx) (2.10)

for all (bounded) measurable functions f : [0,∞)→ R and all t ≥ 0 (cf. [9, pp. 174–175]).
Moreover, the mapping (t, x) 7→ `xt (X) is continuous on R+×[0,∞) almost surely (this
can be derived by noting that Xt = s−1(s(Xt)) = s−1(Mt) = s−1(BTt) where Tt = A−1

t for

At = (1/2)
∫∞

0
`xt (B)mM (dx) so that `xt (X) = `

s(x)
Tt

(B) for t ≥ 0 and x ∈ [0,∞) showing
that the continuity claim reduces to the case of standard Brownian motion resolved in
[20]). Hence from (2.10) we see that

`0t (X) = lim
ε↓0

1

m((0, ε])

∫ t

0

I(0<Xs≤ε) ds (2.11)

and the identity (2.2) is satisfied due to (2.8) above.

2. The problem as to whether a sticky Feller branching diffusion process X arising
from (2.3)+(2.4) above can be obtained from an SDE system driven by a standard
Brownian motion to our knowledge has not been considered in the literature. The main
result of this section can now be stated as follows.

Theorem 1. The system (2.1)+(2.2) has a unique weak solution.
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Proof. 1. We show that the system (2.1)+(2.2) has a weak solution. For this, let B1 be a
standard Brownian motion defined on a probability space (Ω1,F1,P1) and let F1 be the
natural filtration of B1. Consider the stochastic differential equation

dZt = (bZt+c) dt+
√

2aZt dB
1
t (2.12)

with Z0 = z in [0,∞). Then it is well known (see e.g. [10, p. 357]) that the stochastic
differential equation (2.12) has a unique strong (non-negative) solution Z which moreover
has 0 as an instantaneously reflecting boundary point due to 0 < c < a. These facts can
be verified by exploiting the well-known (and easily verified) identity

Zt = ebtY a
2b (1−e−bt) (2.13)

for t ≥ 0 where Y is a squared Bessel process of dimension δ := 2c/a solving

dYt = δ dt+ 2
√
Yt dB

2
t (2.14)

with Y0 = y in [0,∞) (taken equal to z above) and B2 is a standard Brownian motion
(with B1

t =
√

2/a
∫ t

0
ebs/2 dB2

(a/2b)(1−e−bs) for t ≥ 0) upon recalling that the stochastic
differential equation (2.14) has a unique strong (non-negative) solution Y (see e.g. [19,
p. 439]) which moreover has 0 as an instantaneously reflecting boundary point due to
δ ∈ (0, 2) (see e.g. [19, p. 442]). This means that sZ = s on [0,∞) and mZ = m on (0,∞)

with mZ({0}) = 0 in the notation of (2.5) and (2.6) above (recall (2.8) as well).
Following [8, p. 186 & pp. 200–201] consider the additive functional

At = t+ 1
µ `

0
t (Z) (2.15)

where `0t (Z) = lim ε↓0 (1/mZ((0, ε]))
∫ t

0
I(0<Zs ≤ ε) ds is the diffusion local time of Z at 0

for t ≥ 0. Note that t 7→ At is continuous and strictly increasing with At ↑ ∞ as t ↑ ∞ so
that its (proper) inverse t 7→ Tt obtained by

Tt = A−1
t (2.16)

is well defined (finite) for all t ≥ 0 and satisfies the same properties itself. Moreover,
since A = (At)t≥0 is adapted to F1 it follows that each Tt is a stopping time with respect
to F1, so that T = (Tt)t≥0 defines a time change with respect to F1. The fact that t 7→ Tt
is continuous and strictly increasing with Tt < ∞ for t ≥ 0 (or equivalently At ↑ ∞ as
t ↑ ∞) ensures that standard time change transformations are applicable to continuous
semimartingales and their stochastic integrals without extra conditions on their sample
paths (see e.g. [19, pp. 7–9 & pp. 179–181]) and they will be used in the sequel with no
explicit mention.

Consider the time-changed process

Xt = ZTt (2.17)

for t ≥ 0. From (2.12) we see that

Xt = z +

∫ t

0

(bZTs+c) dTs +

∫ t

0

√
2aZTs dB

1
Ts (2.18)

for t ≥ 0. Since B1 is a continuous martingale with respect to F1 it follows that
B1
T = (B1

Tt
)t≥0 is a continuous martingale with respect to F1

T = (F1
Tt

)t≥0. Moreover, we
have

〈B1
T , B

1
T 〉t = Tt =

∫ Tt

0

I(Zs>0)
(
ds+ 1

µd`
0
s(Z)

)
=

∫ Tt

0

I(Zs>0)dAs (2.19)

=

∫ t

0

I(ZTs>0)dATs =

∫ t

0

I(Xs>0)ds
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for t ≥ 0. Note similarly that

B1
Tt =

∫ Tt

0

I(Zs>0) dB1
s =

∫ t

0

I(ZTs>0) dB1
Ts =

∫ t

0

I(Xs>0) dB1
Ts (2.20)

for t ≥ 0. The identities (2.18)–(2.20) motivate the use of a variant of Doob’s martingale
representation theorem in order to achieve (2.1). For this, take another Brownian motion
B0 defined on a probability space (Ω0,F0,P0) and let F0 denote the natural filtration of
B0. Set Ω = Ω1×Ω0, F = F1×F0, F = F1

T ×F0 and P = P1×P0. Then (Ω,F ,F,P) is a
filtered probability space. Extend all random variables X1 and X0 defined on Ω1 and Ω0

respectively to Ω by setting X1(ω) := X1(ω1) and X0(ω) := X0(ω0) for ω = (ω1, ω0) ∈ Ω.
Then it is easily seen that B1

T and B0 remain (continuous) martingales with respect to F
and B0 remains a standard Brownian motion on (Ω,F ,P) as well (note that B1

T and B0

are independent). It follows therefore that the process B defined by

Bt =

∫ t

0

I(Xs>0) dB1
Ts +

∫ t

0

I(Xs=0) dB0
s (2.21)

for t ≥ 0 is a continuous martingale with respect to F. From (2.19) and (2.20) we see
that

〈B,B〉t =

∫ t

0

I(Xs>0)ds+

∫ t

0

I(Xs=0)ds = t (2.22)

for all t ≥ 0 and hence by Lévy’s characterisation theorem it follows that B is a standard
Brownian motion on (Ω,F ,P).

Making use of (2.19)–(2.21) in (2.18) we see that

Xt = z +

∫ t

0

(bXs+c)I(Xs>0) ds+

∫ t

0

√
2aXs dBs (2.23)

for t ≥ 0 which shows that X and B solve (2.1) with X0 = x in [0,∞) if z is taken equal
to x. Moreover, we have∫ t

0

I(Xs=0) ds =

∫ t

0

I(ZTs =0) dATs =

∫ Tt

0

I(Zs=0) dAs (2.24)

=

∫ Tt

0

I(Zs=0)
(
ds+ 1

µd`
0
s(Z)

)
= 1

µ `
0
Tt(Z)

=
1

µ
lim
ε↓0

1

mZ((0, ε])

∫ Tt

0

I(0<Zs≤ε) ds

=
1

µ
lim
ε↓0

1

mZ((0, ε])

∫ t

0

I(0<ZTs≤ε) dTs

=
1

µ
lim
ε↓0

1

m((0, ε])

∫ t

0

I(0<Xs≤ε) ds = 1
µ `

0
t (X)

for t ≥ 0 where in the second-to-last equality we use (2.19) above. From (2.24) we see
that X satisfies (2.2) and this completes the proof of weak existence.

2. We show that uniqueness in law holds for the system (2.1)+(2.2). For this, we will
undo the time change from the previous part of the proof starting with the notation
afresh. Suppose that X and B solve (2.1) subject to (2.2). As part of this hypothesis, we
know that X and B are defined on a filtered probability space (Ω,F ,F,P), both X and B
are F-adapted, and B is not only a standard Brownian motion with respect to P but also
a martingale with respect to F. Consider the additive functional

Tt =

∫ t

0

I(Xs>0) ds (2.25)
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for t ≥ 0 and note that Tt ↑ T∞ as t ↑ ∞ where T∞ ∈ (0,∞]. Since t 7→ Tt is increasing
and continuous it follows that its (right) inverse t 7→ At defined by

At = inf { s ≥ 0 | Ts > t } (2.26)

is finite for all t ∈ [0, T∞). Note that t 7→ At is increasing and right-continuous on [0, T∞).
Moreover, since T = (Tt)t≥0 is adapted to F it follows that each At is a stopping time
with respect to F, so that At defines a time change with respect to F for t ∈ [0, T∞).

Consider the time-changed process

Zt = XAt (2.27)

for t ≥ 0. From (2.1) we see that

Xt = x+

∫ t

0

(bXs+c)dTs +

∫ t

0

√
2aXs dMs (2.28)

where M = (Mt)t≥0 is a continuous martingale with respect to F given by

Mt =

∫ t

0

I(Xs>0) dBs (2.29)

for t ≥ 0. Note that t 7→ 〈M,M〉t =
∫ t

0
I(Xs > 0) ds = Tt is constant on each [As−, As]

and therefore the same is true for t 7→Mt whenever s > 0 is given and fixed. It follows
therefore that MAt is a continuous martingale with respect to FAt and we have

〈MA,MA〉t = 〈M,M〉At = TAt = t (2.30)

for t ∈ [0, T∞). Using Lévy’s characterisation theorem we can therefore conclude that
Wt := MAt is a standard Brownian motion for t ∈ [0, T∞). Moreover, using that t 7→Mt is
constant on each [As−, As] for s > 0, we conclude from (2.28) that

Zt = x+

∫ t

0

(bXAs+c) dTAs +

∫ t

0

√
2aXAs dMAs (2.31)

= x+

∫ t

0

(bZs+c) ds+

∫ t

0

√
2aZs dWs

for t ∈ [0, T∞). Recalling that the stochastic differential equation (2.12) has a unique
strong solution, this shows that Zt for t ∈ [0, T∞) is a Feller branching diffusion pro-
cess with drift c having 0 as an instantaneously reflecting boundary point. Moreover,
using (2.2) we see that

t = Tt +

∫ t

0

I(Xs=0) ds = Tt + 1
µ `

0
t (X) (2.32)

from which we find that

At = TAt + 1
µ `

0
At(X) = t+ 1

µ `
0
At(X) (2.33)

for t ∈ [0, T∞). Since t 7→ Tt is constant on each [As−, As] for s > 0 we see from (2.11)
that

`0At(X) = lim
ε↓0

1

m((0, ε])

∫ At

0

I(0<Xs≤ε) ds = lim
ε↓0

1

m((0, ε])

∫ At

0

I(0<Xs≤ε) dTs (2.34)

= lim
ε↓0

1

m((0, ε])

∫ t

0

I(0<XAs≤ε) dTAs = lim
ε↓0

1

mZ((0, ε])

∫ t

0

I(0<Zs≤ε) ds

= `0t (Z)
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for t ∈ [0, T∞). Inserting (2.34) back into (2.33) we obtain

At = t+ 1
µ `

0
t (Z) (2.35)

for t ∈ [0, T∞). Letting t ↑ T∞ and using that the diffusion local time process `0(Z) of the
Feller branching diffusion process Z solving (2.31) is finite at every finite time, we see
that AT∞ < ∞ while by (2.25)+(2.26) we see that AT∞ = ∞ whenever T∞ < ∞. This
shows that T∞ =∞ almost surely and consequently the process Z solves (2.31) for all
t ≥ 0. From (2.35) we see that t 7→ At is strictly increasing (and continuous) and hence

Tt = A−1
t (2.36)

is the proper inverse for t ≥ 0 (implying also that t 7→ Tt is strictly increasing and
continuous). It follows in particular that ATt = t so that

Xt = XATt
= ZTt (2.37)

for t ≥ 0. Since Z is a unique strong solution to the stochastic differential equation (2.31),
we see from (2.35)–(2.37) that X is a well-determined measurable functional of the
standard Brownian motion W . This shows that the law of X solving (2.1)+(2.2) is
uniquely determined and the proof of weak uniqueness is complete.

Remark 2. From (2.15)–(2.17) in the proof above we know that the process X from
Theorem 1 is Markov (cf. [22]). Moreover, recalling that the process Z solving (2.12)
is Feller (see e.g. [19, p. 440] and use (2.13) above) we know that X is strong Markov
(cf. [22]). This fact combined with continuity of X, and the fact established in the proof
above that X coincides with Z when away from 0 while t 7→ Tt =

∫ t
0
I(Xs>0) ds is strictly

increasing on R+, show that X is a regular diffusion process (in the sense of Itô and
McKean [9]).

Remark 3. In relation to definition (2.15) in the proof of Theorem 1 it is instructive to
observe that the semimartingale local time L0(Z) of the process Z is identically equal to
zero. Indeed, noting from (2.12) that d〈Z,Z〉t = 2aZtdt we see that

0 ≤ L0
t (Z) = lim

ε↓0

1

ε

∫ t

0

I(0≤Zs≤ε) d〈Z,Z〉s = lim
ε↓0

2a

ε

∫ t

0

I(0≤Zs≤ε)Zs ds (2.38)

≤ 2a lim
ε↓0

∫ t

0

I(0≤Zs≤ε) ds = 2a

∫ t

0

I(Zs=0) ds = 0

for all t ≥ 0, where in the last equality we use the fact that 0 is an instantaneously
reflecting boundary point for Z, implying the claim.

3 Sticky boundary condition

In this section we use the Green function of X (i.e. the Laplace transform of its
transition density function in the time domain) to determine a (sticky) boundary condition
at zero that characterises the transition density function of X as a unique solution to the
Kolmogorov backward/forward equation of X.

1. Recall that a transition density function p of X with respect to the speed measure
m of X is characterised by

Px(Xt∈A) =

∫
A

p(t;x, y)m(dy) (3.1)
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being valid for all measurable A ⊆ [0,∞) whenever t > 0 and x ∈ [0,∞) are given and
fixed. It is well known that p can be chosen to be positive, jointly continuous in all the
three variables, and symmetric in the two spatial variables (cf. [9, p. 149]).

2. In view of (2.6) we set m(x) = (xν/a)e
b
ax for x > 0 and define

f(t;x, y) = p(t;x, y)m(y) (3.2)

for t > 0 and x, y ∈ (0,∞). From (3.1) we see that f is a transition density function of X
with respect to Lebesque measure on (0,∞) in the sense that

Px(Xt∈A) =

∫
A

f(t;x, y) dy (3.3)

for all measurable A ⊆ (0,∞) whenever t > 0 and x ∈ (0,∞) are given and fixed.
Recalling (2.3) we know that f solves the Kolmogorov backward equation

ft(t;x, y) = b(x)fx(t;x, y) + σ2(x)
2 fxx(t;x, y) (3.4)

f(0+;x, y) = δy(x) (weakly) (3.5)

for t > 0 and x ∈ (0,∞) where b(x) = bx+c and σ(x) =
√

2ax with y ∈ (0,∞) given and
fixed, and the Kolmogorov forward equation

ft(t;x, y) = −(bf)y(t;x, y) + 1
2 (σ2f)yy(t;x, y) (3.6)

f(0+;x, y) = δx(y) (weakly) (3.7)

for t > 0 and y ∈ (0,∞) where b(y) = by+c and σ(y) =
√

2ay with x ∈ (0,∞) given and
fixed. In (3.5) and (3.7) above δz denotes a (formal) density function of the Dirac measure
at z in (0,∞) and the weak convergence is understood to hold for the corresponding
probability distribution functions.

The initial conditions (3.5) and (3.7) are insufficient to determine unique solutions
to (3.4) and (3.6) respectively. In the reminder of this section we thus look for a slowly
reflecting (sticky) boundary condition at zero (in the space domain) which when combined
with a natural boundary condition at infinity (in the space domain) will accomplish this
aim.

3. To exploit its symmetry in the two spatial variables we will perform our analysis in
terms of the transition density function p satisfying (3.1) above. For this, recall that the
Green function G of X is defined by

G(x, y) =

∫ ∞
0

e−λt p(t;x, y) dt (3.8)

for x, y ∈ [0,∞) where λ > 0 is given and fixed. It is well known that

G(x, y) =
ϕ(x)ψ(y)

w
if x ≤ y in [0,∞) (3.9)

=
ϕ(y)ψ(x)

w
if y ≤ x in [0,∞)

where the functions ϕ : [0,∞)→ R and ψ : [0,∞)→ R are uniquely determined (up to
positive multiplicative constants) by

LXϕ = λϕ on (0,∞) (3.10)

x 7→ ϕ(x) is increasing on [0,∞) (3.11)
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dϕ

ds
(0+) = m({0})LXϕ(0) (3.12)

LXψ = λψ on (0,∞) (3.13)

x 7→ ψ(x) is decreasing on [0,∞) (3.14)

ψ(∞−) =
dψ

ds
(∞−) = 0 (3.15)

and the Wronskian w is a constant (not dependent on x) defined by

w =
dϕ

ds
(x)ψ(x)− ϕ(x)

dψ

ds
(x) (3.16)

for x ∈ [0,∞). Note that each of G, ϕ, ψ, w depends on λ but we will omit this dependence
from the notation for simplicity. The condition (3.12) reflects the fact that 0 is a slowly
reflecting (sticky) boundary point for X, and the condition (3.15) reflects the fact that∞
is a natural boundary point for X. Setting τc = inf { t ≥ 0 | Xt = c } it is well known that
the following probabilistic representation of the functions ϕ and ψ is valid

Ex
(
e−λτc

)
=
ϕ(x)

ϕ(c)
if x ≤ c in [0,∞) (3.17)

=
ψ(x)

ψ(c)
if c ≤ x in [0,∞)

where λ > 0 is given and fixed. From this representation it is easily seen that ϕ and ψ
belong to the domain D(LX) of the infinitesimal generator LX of X as used in (3.12)
and (3.15) above respectively. We will see below that the solutions ϕ and ψ to (3.10)–
(3.12) and (3.13)–(3.15) can be expressed in terms of modified Bessel functions (when
b = 0) or confluent hypergeometric functions (when b 6= 0).

4. From (3.8) and (3.9) we see that∫ ∞
0

e−λt p(t;x, y)dt =
ϕ(x)ψ(y)

w
(3.18)

for x ≤ y in [0,∞) where λ > 0 is given and fixed. Differentiating with respect to s

in (3.18), letting x ↓ 0 and making use of (3.12) (with (2.8) above) and (3.10), we find
that∫ ∞

0

e−λt
∂2p

∂s
(t; 0+, y)dt =

dϕ

ds
(0+)

ψ(y)

w
= m({0})LXϕ(0)

ψ(y)

w
=
λ

µ

ϕ(0)ψ(y)

w
(3.19)

=
λ

µ

∫ ∞
0

e−λt p(t; 0+, y)dt

for all y ∈ (0,∞). We point out that ∂2 in (3.19) refers to a change of the second argument
of p, i.e. we have (∂2p/∂s)(t;x, y) = limh→0(p(t;x+h, y)−p(t;x, y))/(s(x+h)−s(x)) with
(∂2p/∂s)(t; 0+, y) = limx↓0(∂2p/∂s)(t;x, y) for t > 0 and x, y ∈ (0,∞). Similarly, we
point out that ∂3 refers to a change of the third argument of p, and (∂3p/∂s)(t;x, y)

with (∂3p/∂s)(t;x, 0+) are defined analogously for t > 0 and x, y ∈ (0,∞). Note that
(∂2p/∂s)(t;x, y) = ∂xp(t;x, y)/s′(x) and (∂3p/∂s)(t;x, y) = ∂yp(t;x, y)/s′(y) for t > 0 and
x, y ∈ (0,∞). These identities can be used to calculate the limits when either x or y from
(0,∞) tends to either 0 or∞ as needed throughout.

Integrating by parts we find that

λ

∫ ∞
0

e−λt p(t; 0+, y)dt =

∫ ∞
0

e−λt pt(t; 0+, y)dt (3.20)
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for y ∈ (0,∞). Inserting this expression back into (3.19) we obtain∫ ∞
0

e−λt
[
∂2p

∂s
(t; 0+, y)− 1

µ
pt(t; 0+, y)

]
dt = 0 (3.21)

for all λ > 0. By the uniqueness theorem for the Laplace transform we can conclude that
the following sticky boundary condition is satisfied

∂2p

∂s
(t; 0+, y) =

1

µ
pt(t; 0+, y) (3.22)

for all t > 0 and all y ∈ (0,∞). Using exactly the same arguments, or exploiting the
symmetry of p in the two spatial variables directly, we can conclude that the following
sticky boundary condition is also satisfied

∂3p

∂s
(t;x, 0+) =

1

µ
pt(t;x, 0+) (3.23)

for all t > 0 and all x ∈ (0,∞).

5. From (3.8) and (3.9) we see that∫ ∞
0

e−λt p(t;x, y)dt =
ϕ(y)ψ(x)

w
(3.24)

for y ≤ x in [0,∞) where λ > 0 is given and fixed. Letting x → ∞ in (3.24) and using
that the first limit value in (3.15) equals zero, we see that∫ ∞

0

e−λt p(t;∞−, y)dt = 0 (3.25)

for all λ > 0 and y ∈ (0,∞). Similarly, differentiating with respect to s in (3.24), letting
x→∞ and using that the second limit value in (3.15) equals zero, we see that∫ ∞

0

e−λt
∂2p

∂s
(t;∞−, y)dt = 0 (3.26)

for all λ > 0 and y ∈ (0,∞). By the uniqueness theorem for the Laplace transform we
can conclude from (3.25) and (3.26) that the following natural boundary condition is
satisfied

p(t;∞−, y) =
∂2p

∂s
(t;∞−, y) = 0 (3.27)

for all t > 0 and all y ∈ (0,∞). Using exactly the same arguments, or exploiting the
symmetry of p in the two spatial variables directly, we can conclude that the following
natural boundary condition is also satisfied

p(t;x,∞−) =
∂3p

∂s
(t;x,∞−) = 0 (3.28)

for all t > 0 and all x ∈ (0,∞).

6. Recalling from (3.2) that

p(t;x, y) =
f(t;x, y)

m(y)
(3.29)

for t > 0 and x, y ∈ (0,∞) we see that the boundary conditions (3.22)+(3.23) and
(3.27)+(3.28) expressed in terms of p translate to the corresponding boundary condi-
tions expressed in terms of f . There exist a variety of sufficient conditions for justifying
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differentiation under the integral sign in (3.19) and integration by parts in (3.20) respec-
tively. Reversing the order of the arguments above under these sufficient conditions then
yields uniqueness of the solution to the initial value problems (3.4)+(3.5) and (3.6)+(3.7)
under the boundary conditions (3.22)+(3.27) and (3.23)+(3.28) respectively. We will
omit fuller details on the sufficient conditions and the uniqueness results in the present
paper. Instead we will focus on finding a closed-form expression for the transition density
function f of X and then verifying that this function solves the initial-boundary value
problems (3.4)+(3.5) with (3.22)+(3.27) and (3.6)+(3.7) with (3.23)+(3.28) respectively.

4 Limit at zero

In this section we calculate the limit at zero of the ratio between the first derivative
of an increasing fundamental solution (eigenfunction) to the killed generator equation
of X with respect to its scale function and the increasing fundamental solution itself.
This limit coincides with the speed measure of X evaluated at the singleton consisting of
zero. It will enable us to calculate the Green function of X in the next section.

1. Consider the differential equation (3.10)+(3.13) rewritten as

axy′′(x) + (bx+c)y′(x)− λy(x) = 0 (4.1)

for x > 0 where b ∈ R and 0 < c < a are given and fixed. The case b = 0 is special
and can be reduced to the case of Bessel processes studied in [17]. This is seen by
letting b→ 0 in (2.13) which yields Zt = Yat/2 for t ≥ 0 upon recalling (2.12) and (2.14)
above. A quick analytic way to verify this connection is to observe that if z = z(x)

solves (1/2)z′′(x)+(δ−1)/(2x)z′(x)−λz(x) = 0 where δ = 2c/a ∈ (0, 2), then y defined
by y(x) := z(

√
2x/a) for x > 0 solves (4.1). Using the general facts exposed following

(4.2) in [17] we can therefore conclude that two linearly independent solutions to (4.1)
are given by x 7→ (2x/a)−ν/2Iν(2

√
xλ/a) and x 7→ (2x/a)−ν/2Kν(2

√
xλ/a) where the first

function is increasing and the second function is decreasing on (0,∞). Recall in these
expressions that Iν and Kν denote the modified Bessel functions of the first and second
kind that are respectively given by

Iν(x) =

∞∑
n=0

(x/2)2n+ν

n! Γ(n+ν+1)
(4.2)

Kν(x) = π
2 sin(νπ)

(
I−ν(x)−Iν(x)

)
(4.3)

for x ∈ [0,∞). Recall also in all these expressions that ν = c/a−1 ∈ (−1, 0). The
two linearly independent solutions can then be used to find the solutions ϕ and ψ

solving (3.10)–(3.12) and (3.13)–(3.15) respectively which in turn yield the Green function
G of X given in (3.9) above. Since these calculations are very similar to those exposed in
Sections 4 and 5 of [17] we will omit fuller details and instead derive the Green function
G of X by first deriving it for b 6= 0 and then passing to the limit when b→ 0.

2. The case b 6= 0 is different because no reduction to Bessel processes is possible
(notice that the space-time change (2.13) is no longer a simple constant multiple of time).
Two linearly independent solutions to (4.1) are given by

F1(x) := M
(
− λ
b , ν+1,− b

a x
)

(4.4)

F2(x) :=
( |b|
a x
)−ν

M
(
− λ
b −ν, 1−ν,−

b
a x
)

(4.5)

for x > 0 where M is Kummer’s (confluent hypergeometric) function given by

M(a, b, x) = 1 +

∞∑
n=1

a(a+1) · · · (a+n−1)

b(b+1) · · · (b+n−1)

xn

n!
(4.6)
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for a ∈ R, b ∈ R \ {0} and x ∈ R. This can be derived using the equation (108)
combined with the table 15 on page 225 and the equation (70) on page 220 in [18]. The
functions F1 and F2 are increasing on (0,∞) with F1(0) = 1 and F2(0) = 0 as well as
F1(∞−) = F2(∞−) = ∞. The former two identities are evident while the latter two
follow from the well-known asymptotic relation M(a, b, x) ∼ (Γ(b)/Γ(a))exxa−b as x→∞
combined with Kummer’s transformation M(a, b, x) = exM(b−a, b,−x) (see (13.2.23) and
(13.2.39) in [16]) to tackle (4.4) and (4.5) when b > 0. The four identities, combined with
the local convexity/concavity of each solution to (4.1) around any point at which its first
derivative vanishes, then imply the increase of F1 and F2 as claimed. Note also that F1

and F2 are non-negative on (0,∞). Having F1 and F2 at hand we can then distinguish
two distinct cases as follows.

3. Consider first the case when b < 0. Motivated by (4.4) and (4.5) we set

ϕ(x) = αF1(x) + βF2(x) (4.7)

ψ(x) = Γ(−ν)

Γ(−λb−ν)
F1(x) + Γ(ν)

Γ(−λb )
F2(x) = U

(
− λ
b , ν+1,− b

a x
)

(4.8)

for x > 0 and seek (positive) constants α and β such that ϕ satisfies (3.12) in addition
to (3.10) and (3.11) above. Such constants have already be determined in (4.8) so that ψ
satisfies (3.15) in addition to (3.13) and (3.14) above (note that ψ(0) > 0 and ψ(∞−) = 0

imply (3.14) by a similar local convexity/concavity argument as above) and the resulting
function U is Tricomi’s (confluent hypergeometric) function that is defined by

U(a, b, x) = Γ(1−b)
Γ(a−b+1) M(a, b, x) + Γ(b−1)

Γ(a) x1−bM(a−b+1, 2−b, x) (4.9)

for a > 0, b ∈ R\Z and x > 0. Note that (3.15) can be verified using the well-known
asymptotic relation for M stated following (4.6) above combined with (2.5) above.

4. Consider next the case when b > 0. Motivated by (4.4) and (4.5) we set

ϕ(x) = αF1(x) + βF2(x) (4.10)

ψ(x) = Γ(−ν)

Γ(λb+1)
F1(x) + Γ(ν)

Γ(λb+ν+1)
F2(x) = Ũ

(
− λ
b , ν+1,− b

a x
)

(4.11)

for x > 0 and seek (positive) constants α and β such that ϕ satisfies (3.12) in addition
to (3.10) and (3.11) above. Such constants have already be determined in (4.11) so
that ψ satisfies (3.15) in addition to (3.13) and (3.14) above (note that ψ(0) > 0 and
ψ(∞−) = 0 imply (3.14) by a similar local convexity/concavity argument as above) and
the resulting function Ũ is no longer Tricomi’s function (4.9) but a function defined by

Ũ(a, b, x) = Γ(1−b)
Γ(1−a) M(a, b, x) + Γ(b−1)

Γ(b−a) (−x)1−bM(a−b+1, 2−b, x) (4.12)

for a < 0, b ∈ R\Z and x < 0. Note that (3.15) can be verified using Kummer’s transfor-
mation combined with the well-known asymptotic relation for M stated following (4.6)
above and (2.5) above. The reason for departure from Tricomi’s function U to the modi-
fied Tricomi’s function Ũ is that the latter asymptotic relation for M fails when x→ −∞
(see (13.2.23) in [16] for details).

5. The arguments above imply that once the (positive) constants α and β from (4.7)
and (4.10) are found, we will know that ϕ and ψ from (4.7)–(4.8) and (4.10)–(4.11)
solve (3.10)–(3.12) and (3.13)–(3.15) respectively. From (3.12) with (3.10) and (2.8) we
see that

dϕ

ds
(0+) = m({0})LXϕ(0) =

λ

µ
ϕ(0+) (4.13)

EJP 28 (2023), paper 29.
Page 13/28

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP909
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sticky Feller diffusions

which forms an equation for the constants α and β to be found. To determine the equation
we calculate the limit appearing in (4.13) as follows.

Lemma 4. For b ∈ R\{0} we have

(dϕ/ds)(0+)

ϕ(0+)
= −ν

( |b|
a

)−ν β
α
. (4.14)

Proof. We will make use of the well-known and easily verified fact that (d/dx)M(a, b, x) =

(a/b)M(a+1, b+1, x) for x ∈ R (see (13.3.15) in [16]). First note from (4.7) and (4.10)
that

dϕ

ds
(0+) = α

F ′1
s′

(0+) + β
F ′2
s′

(0+) = β
F ′2
s′

(0+) (4.15)

since (F ′1/s
′)(0+) = 0 as is easily seen from (4.4) and (2.5) above. Next note that

F ′2(x) = −ν
( |b|
a

)−ν
x−ν−1M

(
− λ
b −ν, 1−ν,−

b
a x
)

(4.16)

+ sign(b)
( |b|
a

)−ν+1( λ
b+ν

1−ν
)
x−νM

(
− λ
b −ν+1, 2−ν,− b

a x
)

for x > 0. From (2.5) we see that x−ν−1/s′(x)→ 1 and x−ν/s′(x)→ 0 as x ↓ 0. Combining
these facts with the fact that M(a, b, 0) = 1, we see from (4.16) that

F ′2
s′

(0+) = −ν
( |b|
a

)−ν
. (4.17)

Inserting this back into (4.15) and noting that ϕ(0+) = α we obtain (4.14) as claimed.

6. From (4.13) and (4.14) we see that

β =
1

−ν

(
a

|b|

)−ν
λ

µ
α (4.18)

for α > 0. Inserting β from (4.18) into (4.7) and (4.10) above, we obtain all solutions
to (3.10)–(3.12) and (3.13)–(3.15) indexed by α > 0 when b < 0 and b > 0 respectively.

5 Laplace transform

In this section we make use of the limit at zero from the previous section and
explicitly determine the Laplace transform of the transition density function of X in
the time domain (i.e. the Green function of X). The latter expression reveals a new
convolution identity for sticky laws showing that the stickiness is entirely embodied in a
single multiplication factor of the Laplace transform. We will focus on the multiplication
factor itself in the next section.

1. Recall that the Green function of X defined by (3.8) above can be expressed
by (3.9), where ϕ and ψ are given by (4.7)+(4.8) when b < 0 and (4.10)+(4.11) when
b > 0 with (4.18) in both cases respectively, and w is defined in (3.16) above.

Proposition 5 (Laplace transform in the sticky case). The Green function G of X
from (3.8) can be explicitly expressed when 0 < m({0}) <∞ as follows.

(a) If b < 0 then G is given by

G(x, y) =
Γ(−λb−ν)

Γ(1−ν) x−νM
(
− λ
b −ν, 1−ν,−

b
a x
)
U
(
− λ
b , ν+1,− b

a y
)

(5.1)

+

Γ(−λb−ν)

Γ(−ν)

( |b|a )−ν Γ(ν+1)

Γ(−λb )
+ λ

µ
Γ(−ν)

Γ(−λb−ν)

U
(
− λ
b , ν+1,− b

a x
)
U
(
− λ
b , ν+1,− b

a y
)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
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(b) If b = 0 then G is given by

G(x, y) = 2(xy)−ν/2
[
I−ν(2

√
xλ/a)Kν(2

√
yλ/a) (5.2)

− κ 2 sin(νπ)
π

(Kν(2
√
xλ/a)Kν(2

√
yλ/a)

κ+λν+1

)]
for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞) where we set

κ = aν Γ(ν+1)
Γ(−ν) µ . (5.3)

(c) If b > 0 then G is given by

G(x, y) =
Γ(λb+1)

Γ(1−ν) x
−νM

(
− λ
b −ν, 1−ν,−

b
a x
)
Ũ
(
− λ
b , ν+1,− b

a y
)

(5.4)

+

Γ(λb+1)

Γ(−ν)

( ba )−ν Γ(ν+1)

Γ(λb+ν+1)
+ λ

µ
Γ(−ν)

Γ(λb+1)

Ũ
(
− λ
b , ν+1,− b

a x
)
Ũ
(
− λ
b , ν+1,− b

a y
)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).

Proof. 1. Consider first the case when b < 0. Then ϕ and ψ are given by (4.7) and (4.8)
above. Using (13.2.34) in [16] we find that

w1 := w(F1, ψ) =
( |b|
a

)−ν Γ(ν+1)

Γ(−λb )
. (5.5)

Using (13.2.36) in [16] we find that

w2 := w(F2, ψ) =
( |b|
a

)−ν Γ(1−ν)

Γ(−λb−ν)
. (5.6)

By (5.5) and (5.6) combined with (4.18) we find that

w = w(ϕ,ψ) = w(αF1+βF2, ψ) = αw1+βw2 = α
[( |b|

a

)−ν Γ(ν+1)

Γ(−λb )
+ λ

µ
Γ(−ν)

Γ(−λb−ν)

]
. (5.7)

Inserting (5.7) back into (3.9) and making use of (4.7)+(4.8) combined with (4.18) we
obtain

G(x, y) =
ϕ(x)ψ(y)

w
=

(αF1(x)+βF2(x))ψ(y)

w
(5.8)

=

(
αF1(x)+ λ

µ

( a|b| )
−ν

(−ν) αF2(x)
)
U(y)

w
=

(
F1(x)+ λ

µ

( a|b| )
−ν

(−ν) F2(x)
)
U(y)( |b|

a

)−ν Γ(ν+1)

Γ(−λb )
+ λ

µ
Γ(−ν)

Γ(−λb−ν)

.

Adding and subtracting
(
Γ(−λb−ν)/Γ(−λb )

)
(Γ(ν)/Γ(−ν))F2(x) following F1(x) above and

tiding up the resulting expression we end up with (5.1) above as claimed.

2. Consider next the case when b = 0. We can then either pass to the limit by letting
b → 0 in (5.1) or recall from (2.13) that Zt = Yat/2 for t ≥ 0 and use the closed-form

expression for the Green function of the Bessel process X :=
√
Y given in (5.2) of [17]

when 0 is a slowly reflecting (sticky) boundary point. Both methods yield (5.2) with (5.3)
above as claimed. As this verification is somewhat lengthy and still straightforward we
will omit fuller details. It needs to be noted in the second method that the stickiness
parameter changes due to the space-time change applied. More specifically, if XF

denotes the sticky Feller diffusion solving (2.1)+(2.2) with b = 0 in the present paper and
XB denotes the sticky Bessel process whose square solves (2.1)+(2.2) in [17], and if µF
and µB denote the (reciprocal of the) stickiness parameter of XF and XB respectively,
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then it is readily verified using the general identities (2.2) and (2.11) that µF = aµB.
This identity explains why the constant c in (5.2) of [17] is (seemingly) different from the
constant κ given in (5.3) above when a = 2.

3. Consider finally the case when b > 0. Then ϕ and ψ are given by (4.10) and (4.11)
above. Using (5.5) we find that

w1 := w(F1, ψ) =
(
b
a

)−ν Γ(ν+1)

Γ(λb+ν+1)
. (5.9)

Using (5.6) we find that

w2 := w(F2, ψ) =
(
b
a

)−ν Γ(1−ν)

Γ(λb+1)
. (5.10)

By (5.9) and (5.10) combined with (4.18) we find that

w = w(ϕ,ψ) = w(αF1+βF2, ψ) = αw1+βw2 = α
[(

b
a

)−ν Γ(ν+1)

Γ(λb+ν+1)
+ λ

µ
Γ(−ν)

Γ(λb+1)

]
. (5.11)

Inserting (5.11) back into (3.9) and making use of (4.10)+(4.11) combined with (4.18)
we obtain

G(x, y) =
ϕ(x)ψ(y)

w
=

(αF1(x)+βF2(x))ψ(y)

w
(5.12)

=

(
αF1(x)+ λ

µ

( ab )−ν

(−ν) αF2(x)
)
Ũ(y)

w
=

(
F1(x)+ λ

µ

( ab )−ν

(−ν) F2(x)
)
Ũ(y)(

b
a

)−ν Γ(ν+1)

Γ(λb+ν+1)
+ λ

µ
Γ(−ν)

Γ(λb+1)

.

Adding and subtracting
(
Γ(λb +1)/Γ(λb +ν+1)

)
(Γ(ν)/Γ(−ν))F2(x) following F1(x) above

and tiding up the resulting expression we end up with (5.4) above as claimed.

2. Looking at the Laplace transforms (5.1) and (5.4) we see that Laplace inversion
needs to be applied to products of Kummer’s functions and (modified) Tricomi’s functions.
Although Laplace inversions of such products do not appear to be tabled it turns out
that one can calculate them by reduction to absorbing and instantaneously reflecting
boundary behaviour as will be shown below. For this reason, and reversing the historical
arrow, we now turn to deriving the Green functions of X when its boundary behaviour at
0 is described by m({0}) = 0 (instantaneous reflection) and m({0}) =∞ (absorption).

Proposition 6 (Laplace transform in the instantaneously reflecting case). The Green
function G of X from (3.8) can be explicitly expressed when m({0}) = 0 as follows.

(a) If b < 0 then G is given by

G(x, y) =
(
a
|b|
)−ν Γ(−λb )

Γ(ν+1) M
(
− λ
b , ν+1,− b

a x
)
U
(
− λ
b , ν+1,− b

a y
)

(5.13)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
(b) If b = 0 then G is given by

G(x, y) = 2(xy)−ν/2Iν(2
√
xλ/a)Kν(2

√
yλ/a) (5.14)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
(c) If b > 0 then G is given by

G(x, y) =
(
a
b

)−ν Γ(λb+ν+1)

Γ(ν+1) M
(
− λ
b , ν+1,− b

a x
)
Ũ
(
− λ
b , ν+1,− b

a y
)

(5.15)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
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Proof. If b 6= 0 then ϕ and ψ are given by (4.7)+(4.8) when b < 0 and (4.10)+(4.11) when
b > 0 with β = 0 in both cases. This is formally seen from (4.18) since µ = ∞ implies
that γ =∞ so that β = 0 as claimed. The same arguments as in the first part of the proof
of Proposition 5 above then show that (5.13) and (5.15) hold as claimed. If b = 0 then
passing to the limit as µ→∞ we see that (5.14) reduces to (5.2) with κ ↑ ∞ as claimed.
This completes the proof.

Proposition 7 (Laplace transform in the absorbing case). The Green function G of X
from (3.8) can be explicitly expressed when m({0}) =∞ as follows.

(a) If b < 0 then G is given by

G(x, y) =
Γ(−λb−ν)

Γ(1−ν) x−νM
(
− λ
b −ν, 1−ν,−

b
a x
)
U
(
− λ
b , ν+1,− b

a y
)

(5.16)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
(b) If b = 0 then G is given by

G(x, y) = 2(xy)−ν/2I−ν(2
√
xλ/a)Kν(2

√
yλ/a) (5.17)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).
(c) If b > 0 then G is given by

G(x, y) =
Γ(λb+1)

Γ(1−ν) x
−νM

(
− λ
b −ν, 1−ν,−

b
a x
)
Ũ
(
− λ
b , ν+1,− b

a y
)

(5.18)

for x ≤ y ∈ [0,∞) with G(x, y) = G(y, x) if y ≤ x ∈ [0,∞).

Proof. If b 6= 0 then ϕ and ψ are given by (4.7)+(4.8) when b < 0 and (4.10)+(4.11) when
b > 0 with α = 0 in both cases. This is formally seen from (4.18) since µ = 0 implies that
γ = 0 so that α = 0 as claimed. The same arguments as in the first part of the proof
of Proposition 5 above then show that (5.16) and (5.18) hold as claimed. If b = 0 then
passing to the limit as µ→ 0 we see that (5.17) reduces to (5.2) with κ = 0 as claimed.
This completes the proof.

3. We now disclose a revealing underlying structure of the sticky boundary behaviour
in relation to the building blocks of absorbing and instantaneously reflecting boundary
behaviour. For this, let Gs denote the Green function of X when 0 is a slowly reflecting
(sticky) boundary point, let Gr denote the Green function of X when 0 is an instanta-
neously reflecting boundary point, and let Ga denote the Green function ofX when 0 is an
absorbing boundary point. Note that Propositions 5–7 provide closed-form expressions
for Gs, Gr and Ga respectively. The following reshuffle shows how these closed-form
expressions are interrelated (i.e. how Ga and Gr contribute to building Gs).

Corollary 8 (Convolution identity for sticky laws). In the notation specified above the
following identity holds

Gs = Ga + L · (Gr−Ga) (5.19)

where the function L = L(λ) is defined by

L(λ) =
κ

κ+
Γ(−λb+1)

Γ(−λb−ν)

if b < 0 (5.20)

=
κ

κ+ λν+1
if b = 0

=
κ

κ+
Γ(λb+ν+1)

Γ(λb )

if b > 0
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for λ > 0 and the constant κ is given by

κ = aν

|b|ν+1

Γ(ν+1)
Γ(−ν) µ if b 6= 0 (5.21)

= aν Γ(ν+1)
Γ(−ν) µ if b = 0

for b ∈ R and 0 < c < a given and fixed with ν = c/a−1 ∈ (−1, 0).

Proof. The representation (5.19) follows by recognising (5.13)–(5.15) and (5.16)–(5.18)
as building blocks in (5.1), (5.2)+(5.3) and (5.4) respectively. Since this verification is
somewhat lengthy but still straightforward, we will omit fuller details and this completes
the proof.

Recalling that Γ(x+a)/Γ(x+b) ∼ xa−b as x → ∞ (see (5.11.12) in [16]) it is easily
verified by letting b→ 0 that the expressions for L(λ) in (5.20) when b 6= 0 converge to
the expression for L(λ) in (5.20) when b = 0 (note that κ is dependent on b 6= 0).

6 Special function

In this section we focus on the multiplication factor L from (5.20) that appears in
the convolution identity (5.19) above. Applying Laplace inversion to L we obtain a new
special function F when b 6= 0 that reduces to the Mittag-Leffler function when b = 0.
The function F can be expressed by means of the complex inversion formula (Bromwich’s
integral) which in turn can be calculated by the residue theorem using roots of an
algebraic equation for the gamma function. Having F we will be able to apply Laplace
inversion to the convolution identity (5.19) and disclose the transition density function
of X in the next section.

1. Consider first the case when b 6= 0. From (5.20) we see that there is no restriction
to assume that |b| = 1 (see (6.9)–(6.11) below for the general case). Motivated by (5.20)
consider the Laplace transform equation∫ ∞

0

e−λtF (t) dt =
α

α+ Γ(λ+β)
Γ(λ+γ)

(6.1)

for λ > 0 where the parameters α > 0 and β > γ ≥ 0 are given and fixed. Note that the
right-hand side of (6.1) as a function of λ coincides with the function L in (5.20) where
β = 1 & γ = −ν ∈ (0, 1) when b = −1, and β = ν+1 ∈ (0, 1) & γ = 0 when b = 1, with
α = κ > 0 in both cases. To remain connected to the convolution identity (5.19) we will
only focus on these particular values of β & γ in what follows.

Define a function L by setting

L(λ) =
α

α+ Γ(λ+β)
Γ(λ+γ)

=
αΓ(λ+γ)

αΓ(λ+γ) + Γ(λ+β)
(6.2)

for λ > 0 and α, β, γ as above. The function L can be extended analytically to the entire
complex plane apart from simple poles λn ∈ (−n,−n+1) solving the equation

αΓ(λn+γ) + Γ(λn+β) = 0 (6.3)

for n ≥ 1 (see Figure 1). Using that Γ(z+β)/Γ(z+γ) ∼ zβ−γ as |z| → ∞ in the sector
|arg(z)| ≤ π−δ for δ > 0 (see (5.11.12) in [16]) one can verify that the sufficient conditions
of Theorem 1 in [2, p. 569] are satisfied so that

F (t) =
1

2πi

∫ i∞

−i∞
etzL(z) dz =

1

π

∫ ∞
0

Re
(
eityL(iy)

)
dy (6.4)
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Figure 1: The function (x, y) 7→ |L(x+iy)| for (x, y) ∈ [−5, 1]×[−2, 2] when κ = 1, b = −1

and ν = −1/2.

for t > 0 defines the inverse Laplace transform of L (meaning that (6.1) is satisfied for
all λ > 0 as needed). Note that the integrals in (6.4) are defined as the Cauchy principal
values (see [2] for details).

To evaluate the first integral in (6.4) we consider the contour integral∮
C

etzL(z) dz =

∫
CR

etzL(z) dz +

∫ iR

−iR
etzL(z) dz (6.5)

where the contour C consists of the semicircle CR = {Reiϕ | π/2 ≤ ϕ ≤ 3π/2 } and the
straight vertical line { iy | −R ≤ y ≤ R } where −R ∈ (λN+1, λN ) for some N ≥ 1. By the
residue theorem we know that∮

C

etzL(z) dz = 2πi

N∑
n=1

etλnRes(L, λn) . (6.6)

Since λn is a simple pole of L we see from (6.2) that

Res(L, λn) = lim
λ→λn

(λ−λn)L(λ) =
αΓ(λn+γ)

αΓ′(λn+γ) + Γ′(λn+β)
(6.7)

for 1 ≤ n ≤ N . Moreover, in addition to simple poles λn solving (6.3) for n ≥ 1, the
function L has zeros ζN which are placed between the simple poles λN+1 and λN on the
negative real axis for N ≥ 1 (see Figure 2). Combining this fact with the asymptotic
relationship stated following (6.3) above, this implies that |L| restricted to CR vanishes
when R is chosen so that −R = ζN with N → ∞ i.e. R → ∞. It follows therefore by
Jordan’s lemma (for the complex inversion formula) that the second integral in (6.5)
vanishes as R→∞. Combining then (6.4)–(6.7) we obtain the series representation

F (t) =

∞∑
n=1

αΓ(λn+γ)

αΓ′(λn+γ) + Γ′(λn+β)
etλn (6.8)

for t > 0 where λn ∈ (−n,−n+1) solves (6.3) for n ≥ 1 (see Figure 3).
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Figure 2: The function (x, y) 7→ |L(x+iy)| for (x, y) ∈ [−5, 1]×[−2, 2] when κ = 1, b = −1

and ν = −1/2.

2. We conclude the case b 6= 0 with two remarks. Firstly, if |b| 6= 1 then considering
the Laplace transform equation∫ ∞

0

e−λtF|b|(t) dt =
α

α+
Γ( λ|b|+β)

Γ( λ|b|+γ)

(6.9)

in place of (6.1) above, substituting firstly λ′ = λ/|b| and then t′ = |b|t, we find that

F|b|(t) =
1

|b|
F
( t

|b|

)
(6.10)

for t > 0 where F solves (6.1) above (note that F = F1 in the notation of (6.9) above). It
follows therefore by (6.8) above that

F|b|(t) =
1

|b|

∞∑
n=1

αΓ(λn+γ)

αΓ′(λn+γ) + Γ′(λn+β)
e
t
|b|λn (6.11)

for t > 0 where λn ∈ (−n,−n+1) solves (6.3) for n ≥ 1.
Secondly, recall that β = 1 & γ = −ν ∈ (0, 1) when b = −1, and β = ν+1 ∈ (0, 1) &

γ = 0 when b = 1, with α = κ > 0 in both cases. Thus, the equation (6.3) reads

κΓ(λ−n −ν) + Γ(λ−n +1) = 0 (6.12)

when b = −1, and the equation (6.3) reads

κΓ(λ+
n ) + Γ(λ+

n +ν+1) = 0 (6.13)

when b = 1. From (6.12) and (6.13) we see that

λ+
n = λ−n − ν (6.14)

for n ≥ 1 where we recall that −ν ∈ (0, 1).

3. Consider next the case when b = 0. From (5.20) we see that the analogue of the
Laplace transform equation (6.1) reads∫ ∞

0

e−λtF0(t) dt =
κ

κ+λν+1
(6.15)
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Figure 3: The function t 7→ F (t) for t ∈ [0, 1] when κ = 1, b = −1 and ν = −1/2.

for λ > 0. Recall that the Mittag-Leffler function is defined by

Eα,β(x) =

∞∑
n=0

xn

Γ(αn+β)
(6.16)

for x ∈ R where α > 0 and β > 0 are given and fixed. Integrating term by term in (6.16),
and summing up the resulting Laplace transforms of the power functions, one finds that∫ ∞

0

e−λt tβ−1Eα,β(−ctα) dt =
λα−β

c+λα
(6.17)

for λ > 0 and c > 0 (see [17, Section 6]). Setting α = β = ν+1 and c = κ in (6.17) we see
from (6.15) that F0 is given explicitly by

F0(t) = κtνEν+1,ν+1(−κtν+1) (6.18)

for t > 0. This function is sometimes refereed to as the generalised Mittag-Leffler
function (see [17, Remark 10] for further details).

7 Inverse Laplace transform

In this section we apply Laplace inversion to the Green function of X from Section 5
and show that the transition density function of X can be expressed in the closed form
by means of a convolution integral involving the special function F from the previous
section and a modified Bessel function of the second kind.

1. Motivated by the convolution identity (5.19) and following the historical arrow, we
first turn to deriving the transition density function of X when its boundary behaviour
at 0 is described by m({0}) =∞ (absorption) and m({0}) = 0 (instantaneous reflection)
respectively. The result of Corollary 9 below was originally derived by Feller in his
equation (6.2) of [6, p. 180] (where the constant 4b2 is erroneously included) and the
result of Corollary 10 below was originally derived by Molchanov in his Remark 1 (with
r = 1 & q = 0) of [14, p. 312] (up to the space-time change (2.13) above) both using
different arguments.

Corollary 9 (Inverse Laplace transform in the absorbing case). The transition density
function p of X when m({0}) =∞ can be expressed as follows.
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(a) If b 6= 0 then p is given by

p(t;x, y) =
b(xy)−ν/2 e−(1+ν/2)bt

1−e−bt
exp

(
− b(x+y)

a(1−e−bt)

)
I−ν

(
2b
√
xy e−bt/2

a(1−e−bt)

)
(7.1)

for t > 0 and x, y ∈ [0,∞) where ν := c/a−1.
(b) If b = 0 then p is given by

p(t;x, y) =
(xy)−ν/2

t
exp

(
− x+y

at

)
I−ν

(
2
√
xy

at

)
(7.2)

for t > 0 and x, y ∈ [0,∞) where ν := c/a−1.

Proof. From (2.13) we see that

Xt = ebtR2
a
2b (1−e−bt) (7.3)

for t ≥ 0 where R is a Bessel process of dimension δ = 2c/a ∈ (0, 2). The Green function
of R is given by the first term on the right-hand side of (5.2) in [17]. The transition
density function pR of R (with respect to its speed measure) is given by the first term
on the right-hand side of (6.3) in [17]. This expression is derived by applying the tabled
expression for the inverse Laplace transform (6.4) in [17]. From (7.3) we find by a direct
calculation that

fX(t;x, y) = e−bt/2

2
√
y fR

(
a
2b (1−e

−bt);
√
x,
√
y e−bt/2

)
(7.4)

for t > 0 and x, y ∈ [0,∞) where fX and fR are transition density functions (with respect
to Lebesgue measure) of X and R respectively. Recalling (3.2) we know that fX = pXmX

and fR = pRmR. Inserting the known expressions for pR and mR to form fR in (7.4), we
obtain a closed-form expression for fX which in turn yields a closed-form expression
for pX upon recalling the known expression for mX (for mR and mX see (2.6) in [17]
and (2.6) above respectively). It is a matter of routine to verify that the closed-form
expression for pX obtained in this way coincides with the expression given in (7.1) when
b 6= 0. Letting b→ 0 in (7.1) we get (7.2) and this completes the proof.

Corollary 10 (Inverse Laplace transform in the instantaneously reflecting case). The
transition density function p of X when m({0}) = 0 can be expressed as follows.

(a) If b 6= 0 then p is given by

p(t;x, y) =
b(xy)−ν/2 e−(1+ν/2)bt

1−e−bt
exp

(
− b(x+y)

a(1−e−bt)

)
Iν

(
2b
√
xy e−bt/2

a(1−e−bt)

)
(7.5)

for t > 0 and x, y ∈ [0,∞) where ν := c/a−1.
(b) If b = 0 then p is given by

p(t;x, y) =
(xy)−ν/2

t
exp

(
− x+y

at

)
Iν

(
2
√
xy

at

)
(7.6)

for t > 0 and x, y ∈ [0,∞) where ν := c/a−1.

Proof. This can be derived using exactly the same arguments as in the proof of Corol-
lary 9 above if we replace −ν by ν throughout. Note that the tabled expression for the
inverse Laplace transform (6.4) in [17] remains valid in this case and this completes the
proof.

2. We next turn to deriving the transition density function of X when its boundary
behaviour at 0 is described by 0 < m({0}) < ∞ (slow reflection). For this we let pa
denote the transition density function of X from Corollary 9 and we let pr denote the
transition density function of X from Corollary 10.

EJP 28 (2023), paper 29.
Page 22/28

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP909
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Sticky Feller diffusions

Figure 4: The transition density function (t, y) 7→ p(t; 1, y) of the Feller branching
diffusion process X with parameters a = 1, b = −1, c = 3/4 (so that ν = c/a−1 = −1/4)
having 0 as a slowly reflecting (sticky) boundary point with a stickiness parameter
1/µ = 5. Defined by (3.1) the function p can be expressed in a closed form by means of
(7.7). Note that X starts at 1 so that p(0; 1, 1+) =∞. Note also that 0 < p(t; 1, 0+) <∞
for each t > 0 given and fixed (cf. Figure 5).

Theorem 11 (Inverse Laplace transform in the sticky case). The transition density
function p of X when 0 < m({0}) <∞ can be expressed as follows.

(a) If b 6= 0 then p is given by

p(t;x, y) = pa(t;x, y) +

∫ t

0

F|b|(t−s;α, β, γ)
(
pr(s;x, y)−pa(s;x, y)

)
ds (7.7)

=
b(xy)−ν/2 e−(1+ν/2)bt

1−e−bt
exp

(
− b(x+y)

a(1−e−bt)

)
I−ν

(
2b
√
xy e−bt/2

a(1−e−bt)

)
+ 2 sin(−νπ)

π

∫ t

0

F|b|(t−s;α, β, γ)
b(xy)−ν/2 e−(1+ν/2)bs

1−e−bs

× exp

(
− b(x+y)

a(1−e−bs)

)
Kν

(
2b
√
xy e−bs/2

a(1−e−bs)

)
ds

for t > 0 and x, y ∈ [0,∞) where ν = c/a−1 and t 7→ F|b|(t;α, β, γ) is given by (6.11)
above with α = (aνΓ(ν+1))/(|b|ν+1Γ(−ν))µ alongside β = 1, γ = −ν if b < 0 and β = ν+1,
γ = 0 if b > 0 (see Figure 4).

(b) If b = 0 then p is given by

p(t;x, y) = pa(t;x, y) +

∫ t

0

F0(t−s;κ, ν)
(
pr(s;x, y)−pa(s;x, y)

)
ds (7.8)

=
(xy)−ν/2

t
exp

(
− x+y

at

)
I−ν

(
2
√
xy

at

)
+ 2 sin(−νπ)

π

∫ t

0

F0(t−s;κ, ν)
(xy)−ν/2

s
exp

(
− x+y

as

)
Kν

(
2
√
xy

as

)
ds
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Figure 5: The transition density function (t, y) 7→ f(t; 1, y) of the Feller branching
diffusion process X with parameters a = 1, b = −1, c = 3/4 (so that ν = c/a−1 = −1/4)
having 0 as a slowly reflecting (sticky) boundary point with a stickiness parameter
1/µ = 5. Defined by (3.3) the function f can be expressed in a closed form by means of
(7.7) combined with (3.2) and (2.6). Note that X starts at 1 so that f(0; 1, 1+) =∞. Note
also that f(t; 1, 0+) =∞ for each t > 0 given and fixed (cf. Figure 4).

for t > 0 and x, y ∈ [0,∞) where ν = c/a−1 and t 7→ F0(t;κ, ν) is given by (6.18) above
with κ = aν(Γ(ν+1)/Γ(−ν))µ.

Proof. Both identities (7.7) and (7.8) are a direct consequence of the convolution iden-
tity (5.19) combined with the results of Corollaries 9 & 10 above and the results estab-
lished in Section 6 above. This completes the proof.

Remark 12 (Atoms at zero). Note that if either x or y in (7.7) or (7.8) equals 0 then
the identity (7.7) or (7.8) is understood in the limiting sense respectively. For example,
fixing x ∈ (0,∞) and letting y ↓ 0 in (7.7) when b 6= 0, it is easily seen using Iν(x) ∼
(x/2)ν/Γ(ν+1) and Kν(x) ∼ (Γ(−ν)/2ν+1) xν as x ↓ 0 when ν < 0 (see e.g. [1, p. 638])
that the following limiting identity holds

p(t;x, 0) = sin(−νπ)
π Γ(−ν)

∫ t

0

F|b|(t−s;α, β, γ)
|b|ν+1

aν |ebs−1|ν+1
exp

(
−bx

a(1−e−bs)

)
ds (7.9)

for t > 0 and x ∈ [0,∞) where ν = c/a−1 and α, β, γ are the same as in (7.7) above. In
particular, using (3.1) with A = {0} and (2.8) this yields

Px(Xt=0) = p(t;x, 0)m({0}) = 1
µ p(t;x, 0) (7.10)

= sin(−νπ)
π

Γ(−ν)
µ

∫ t

0

F|b|(t−s;α, β, γ)
|b|ν+1

aν |ebs−1|ν+1
exp

(
−bx

a(1−e−bs)

)
ds

for t > 0 and x ∈ [0,∞) where ν = c/a−1 and α, β, γ are the same as in (7.7) above (see
Figure 6). Moreover, from (3.1) and (3.2) we see that∫ ∞

0

f(t;x, y) dy + 1
µ p(t;x, 0) = 1 (7.11)
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Figure 6: A zero section t 7→ p(t; 1, 0) of the transition density function p of the Feller
branching diffusion process X with parameters a = 1, b = −1, c = 3/4 (so that ν =

c/a−1 = −1/4) having 0 as a slowly reflecting (sticky) boundary point with a stickiness
parameter 1/µ = 5. Recall from (7.10) that P1(Xt = 0) = (1/µ) p(t; 1, 0) = 5 p(t; 1, 0) for
t > 0 in this case.

for t > 0 and x ∈ [0,∞). Since 1
µ p(t;x, 0) > 0 this shows that y 7→ f(t;x, y) does not

integrate to 1 over (0,∞) for t > 0 and x ∈ [0,∞) given and fixed. The fact that Xt

takes value 0 with a strictly positive probability expressed by (7.10) above for t > 0 and
x ∈ [0,∞) given and fixed is a consequence of the slowly reflecting (sticky) boundary
behaviour of X at 0. Similarly, fixing x ∈ (0,∞) and letting y ↓ 0 in (7.8) when b = 0, we
obtain the following analogue of (7.9)+(7.10) combined into a single identity

Px(Xt=0) = p(t;x, 0)m({0}) = 1
µ p(t;x, 0) = sin(−νπ)

π
Γ(−ν)
µ

∫ t

0

F0(t−s;κ, ν)
e−

x
as

sν+1
ds (7.12)

for t > 0 and x ∈ [0,∞) where κ and ν are the same as in (7.8) above. Plots of the
transition density function p of X (with respect to its speed measure) and the transition
density function f of X (with respect to Lebesque measure) are given in Figures 4
and 5 respectively. Note that unlike the limiting value of f(t;x, 0+) which equals ∞,
the limiting values of p(t;x, 0+) are both strictly positive and finite, whenever t > 0 and
x ∈ [0,∞) are given and fixed (see Figure 6).

8 Applications

In this section we show that the results derived for sticky Feller diffusions in the
previous sections translate over to yield closed-form expressions for the transition density
functions of (a) sticky Cox-Ingersoll-Ross processes and (b) sticky reflecting Vasicek
processes that can be used to model slowly reflecting interest rates.

1. In the Cox-Ingersoll-Ross model (see [3, p. 390]) one assumes that the stochastic
interest rate X is a Feller branching diffusion process with the infinitesimal generator
given by (1.1) above. Focusing on the case when 0 < c < a and 0 is a slowly reflecting
(sticky) boundary point for X with a stickiness parameter 1/µ ∈ (0,∞), we see by the
result of Theorem 1 above that X can be characterised as a unique weak solution to the
SDE system (2.1)+(2.2) above. Moreover, we see by the result of Theorem 11 above that
the transition density function p of X with respect to its speed measure can be expressed
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in the closed form by (7.7) and (7.8) above depending on whether b in (1.1) is non-zero
or zero respectively. Letting µ ↓ 0 (absorption) and µ ↑ ∞ (instantaneous reflection)
the closed-form expression for the transition density function p of X reduces to the
ones found by Feller [6] and Molchanov [14] as stated in Corollary 9 and Corollary 10
respectively. The remaining cases c ≤ 0 (exit) and c ≥ a (entrance) are addressed
following (1.1) above.

2. In the Vasicek model (see [21, Section 5]) one assumes that the stochastic interest
rate V is an Ornstein-Uhlenbeck process with the infinitesimal generator acting in R by
the rule

LV = (α−βv)∂v + σ2

2 ∂vv (8.1)

where α ∈ R, β ∈ R\{0} and σ > 0 are given and fixed constants. The process V is
known to be a unique strong solution to

dVt = (α−βVt)dt+ σdBt (8.2)

with V0 = v in R. Setting Ṽt := Vt−α/β we see that Ṽ solves dṼt = −βṼtdt+σdBt so that
without loss of generality we may and do assume that α = 0 in the sequel (otherwise
replace V by Ṽ throughout).

Define the process Z by setting

Zt := V 2
t (8.3)

for t ≥ 0. By Itô’s formula one finds that Z solves

dZt = (−2βZt+σ
2)dt+ 2σ

√
Zt dB̃t (8.4)

with Z0 = v2 where B̃t :=
∫ t

0
sign(Vs)Bs is a standard Brownian motion for t ≥ 0 by

Lévy’s characterisation theorem. From (8.4) we see that Z is a Feller branching diffusion
process with the constants in (1.1) given by

a = 2σ2 , b = −2β , c = σ2 (8.5)

having 0 as an instantaneously reflecting boundary point. Note that the index of Z is
given by ν = c/a−1 = −1/2.

Define the process U by setting

Ut :=
√
Zt = |Vt| (8.6)

for t ≥ 0. By the Itô-Tanaka formula one finds that U solves

dUt = −βUtdt+ σdB̃t + 1
2L

0
t (U) (8.7)

with U0 = |v| where L0(U) is the semimartingale local time process of U at 0 given by

L0
t (U) = lim

ε↓0

1

ε

∫ t

0

I(0 ≤ Us ≤ ε) d〈U,U〉s (8.8)

for t ≥ 0 with the limit in (8.8) taking place in probability.
Considering then the time-changed process

Xt = ZTt (8.9)

defined as in (2.17) above for t ≥ 0, and proceeding like in the rest of the proof of
Theorem 1 above, we obtain a Feller branching diffusion process X having 0 as a
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slowly reflecting (sticky) boundary point with a stickiness parameter 1/µ ∈ (0,∞). The
process X can be characterised as a unique weak solution to the SDE system (2.1)+(2.2)
under (8.5) above. In parallel, recalling (8.6) and (8.9), we see that the root process

Rt :=
√
Xt =

√
ZTt = UTt = |VTt | (8.10)

for t ≥ 0 is a Vasicek process having 0 as a slowly reflecting (sticky) boundary point.
Moreover, using that R and V have the same speed measure off 0 whose density function
equals mR(x) = (2/σ2) e−(β/σ2)x2

for x > 0, and recalling from (2.6) that mX(x) =

(xν/a)e(b/a)x = (1/2σ2)e−(β/σ2)x/
√
x for x > 0, it can be easily verified that

`0t (X) = 2`0t (R) = L0
t (R) (8.11)

for t ≥ 0. As in the proof of Theorem 1 above it can be further verified from (8.7)
using (8.10) and (8.11) that R solves the SDE system

dRt = −βRtI(Rt>0)dt+ σI(Rt>0)dBt + d`0t (R) (8.12)

I(Rt=0) dt = 2
µ d`

0
t (R) (8.13)

with R0 = |v|. The arguments above also show that R can be characterised as a unique
weak solution to the SDE system (8.12)+(8.13). From (2.2) and (8.13) we see that the
stickiness of R equals twice the stickiness of X. The arguments from the proof of
Theorem 5 in [5] show that the SDE system (8.12)+(8.13) is equivalent to the single
equation

dRt = −βRtI(Rt>0)dt+ σI(Rt>0)dBt + µ
2 I(Rt=0)dt (8.14)

obtained by incorporating (8.13) into (8.12).
Denoting the transition density function of R with respect to its speed measure by

q and the transition density function of R with respect to Lebesque measure by g, and
recalling that R =

√
X, we find that

q(t;x, y) =
1

mR(y)
g(t;x, y) =

2y

mR(y)
f(t;x2, y2) (8.15)

= 2y
mX(y2)

mR(y)
p(t;x2, y2) =

1

2
p(t;x2, y2)

for t > 0 and x, y ∈ [0,∞) where the transition density function p of X with respect to
its speed measure can be expressed in the closed form by (7.7) above with a = 2σ2,
b = −2β 6= 0, c = σ2 and with x2 & y2 in place of x & y respectively.
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