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Abstract

The paper addresses probabilistic aspects of the KPZ equation and stochastic Burgers
equation by providing a solution theory that builds on the energy solution theory
[15, 19, 20, 23]. The perspective we adopt is to study the stochastic Burgers equation
by writing its solution as a probabilistic solution [22] plus a term that can be studied
with deterministic PDE considerations. One motivation is universality of KPZ and
stochastic Burgers equations for a certain class of stochastic PDE growth models, first
studied in [28]. For this, we prove universality for SPDEs with general nonlinearities,
thereby extending [28, 29], and for many non-stationary initial data, thereby extending
[21].

Our perspective lets us also prove explicit rates of convergence to white noise
invariant measure of stochastic Burgers for non-stationary initial data, in particular
extending the spectral gap result of [23] beyond stationary initial data, though for
non-stationary data our convergence will be measured in Wasserstein distance and
relative entropy, not via the spectral gap as in [23]. Actually, we extend the spectral
gap in [23] to a log-Sobolev inequality. Our methods can also analyze fractional
stochastic Burgers equations [23]; we discuss this briefly.

Lastly, we note our perspective on the KPZ and stochastic Burgers equations gives
a first intrinsic notion of solutions for general continuous initial data, in contrast to
Hölder regular data needed for regularity structures [26], paracontrolled distributions
[14], and Hölder-regular Brownian bridge data for energy solutions [19, 20].
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Universality in non-stationarity

1 Introduction

The Kardar-Parisi-Zhang (KPZ) equation is a conjecturally canonical model for inter-
face fluctuations derived in [30] via non-rigorous renormalization group heuristics. Such
“interface fluctuations” include flame propagation, infected individuals in an epidemic,
bacterial colony and tumor growth, and crack formations; see [8] and [30]. However,
rigorous proof of this so-called “weak KPZ universality” problem has posed a challenging
mathematical problem, primarily because the KPZ equation is a singular stochastic
PDE ; there are ultraviolet “UV” divergences whose rigorous analysis is highly nontrivial
and was ultimately resolved by Hairer [25] using a first version of what would be later
developed into a theory of regularity structures [26]. We explain this singular nature
of KPZ and related SPDEs in the context of weak universality. First, however, let us
introduce the KPZ equation below, which we pose on the space-time set R>0 ×T, where
T = R/Z is the unit one-dimensional torus, and introduce a Gaussian space-time white
noise on T, defined to be a Gaussian random field with covariance kernel formally given
by Eξt,xξs,y = 2δt=sδx=y:

∂th = ∆h + β|∇h|2 + ξ. (1.1)

The constant β is taken to be a non-negative number; its sign is not too important as we
can always take −h instead of h, and the noise is statistically invariant under sign change.
The β constant will eventually be a homogenized coefficient in our main universality
result. We will be mostly concerned with generalizations of (1.1) in which we replace
β|∇h|2 by a general function of ∇h. In particular, let us define gε as the solution to the
following SPDE, in which F is a general function and ε is a small positive parameter we
eventually take to zero in order to recover the KPZ equation:

∂tg
ε = ∆gε + ε−1F(ε1/2∇gε) + ξ. (1.2)

We eventually consider solutions to a slightly and technically modified version of (1.2), but
for transparency of illustration we consider formally (1.2). To illustrate weak universality
and singular behavior, one can Taylor expand the F nonlinearity on the RHS of (1.2)
about its value at 0. The first two terms, which are constant and linear in ∇gε, can be
removed when we insert them back into the SPDE (1.2) by global time-shift and linear
change-of-reference along a constant speed characteristic. We are left with the quadratic
term in ∇gε plus terms that are formally vanishing in the small ε limit, so we are led
to believe gε converges to (1.1) for β = 2−1F′′(0). The convergence to KPZ is true, but
the argument is wrong as the effective coefficient is global in F′′. We make precise the
correct effective coefficient later in this introduction, but we remark some version of
both claims in the previous sentence are proved in [21, 28, 29].

In [28, 29], the method of proving universality is based on the theory of regularity
structures in [26]. In [21], the method of proof is based on energy solution theory
[15, 20]. On the one hand, because regularity structures is based on pathwise and
analytic considerations, the notion of convergence in [28, 29] is much stronger than that
in [21]. Moreover, the nature of the smoothing of (1.1) is much more general than in
[21], as [21] strongly depends on both the Markovian structure of the smoothed SPDEs
(1.2) and the explicit nature of invariant measures. On the other hand, the paper [21]
treats a much larger set of nonlinearities than [28, 29]. For example, [21] can treat (1.2)
for F(x) = |x|, but [28, 29] are far from treating this non-smooth nonlinearity.

Currently, however, energy solution theory [21] is exclusively applicable to Brownian
initial data. One point of this paper is to extend [21] to arbitrary continuous initial
conditions for (1.1) and extend the energy solution theory from stationary Brownian
initial data to general continuous initial data; this would actually provide a first intrinsic
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Universality in non-stationarity

solution theory for singular SPDEs with arbitrary continuous initial data instead of
quantitatively Hölder initial data.

Before we proceed with a precise discussion of universality, however, we must
introduce the following stochastic Burgers equation (SBE), whose solution u is related
to h from (1.1) by taking a weak derivative u = ∇h:

∂tu = ∆u + β∇(u2) +∇ξ. (1.3)

Technically, results of [21] are stated at the level of (1.3), not (1.1), but as shown in [20]
the difference between (1.1) and (1.3), which is a constant eliminated via differentiation,
poses no problem. In particular, our aforementioned extension of energy solutions
[15, 20] will study (1.3) instead of (1.1), but it can treat (1.1) without much difficulty.

Having introduced the stochastic Burgers equation (1.3), let us now introduce exactly
what we mean by an “energy solution”. The following is taken verbatim from the
beginning of Section 2 of [22] instead of [20]. We explicitly mention the differences
between notions of energy solution in [22] and [20] below as well.

• Suppose u ∈ C (R>0,D(T)), where D(T) is the topological dual of C∞(T) (the latter
is equipped with the usual Frechet topology). Suppose there exists ρ ∈ C∞c (R)

such that
∫
R
ρ(x)dx = 1 and, for ρN (·) = Nρ(N ·), the limit∫ t

0

∇(us)
2ds(Φ) := lim

N→∞

∫ t

0

(us ∗ ρN )2(−∇Φ)ds (1.4)

exists for all Φ ∈ C∞(T) locally uniformly in t in probability. Above, the convolution
is convolution on the torus.

• Suppose in addition that for any Φ ∈ C∞(T), the process

B(t; Φ) := ut(Φ)− u0(Φ)−
∫ t

0

us(∆Φ)ds−
∫ t

0

∇(us)
2ds(Φ) (1.5)

is a martingale in t > 0 with quadratic variation 2t
∫
T
|∇Φ(x)|2dx. Lastly, suppose

the following energy estimate holds:

E|
∫ t

s

(ur ∗ ρN )2(−∇Φ)− (ur ∗ ρM )2(−∇Φ)dr|2 .
|t− s|
M ∧N

∫
T

|∇Φ(x)|2dx. (1.6)

• If the two bullet points above hold, we say u is an energy solution to (1.3).

In [20], a backwards representation of the u process is also required. However, this
backwards representation is used only for some technical estimates. As noted in [22]
(see Theorem 2.8, for example), this backwards representation can be dropped in cases
that we eventually specialize to without losing this technical benefit.

In turns out that our approach to universality (Theorem 1.5) will be intimately
connected to establishing explicit rates of convergence to the invariant measure for (1.3)
that were previously missing from the literature for general continuous initial conditions;
the paper [23] studied spectral gaps that only provide information, a priori, for initial
data very close to the white noise invariant measure, which turn out to be basically
obtainable via appropriate discretization of (1.3) by Ornstein-Uhlenbeck processes plus
an asymmetric interaction. Actually, we will enhance the spectral gap in [23] to a much
more powerful log-Sobolev inequality using basically the same discretization method via
Fourier smoothing.

We conclude this introduction by noting our work successfully treats general con-
tinuous data, going well beyond the usual class of Hölder regular initial data required
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Universality in non-stationarity

to analyze SPDEs like (1.1) and (1.3) via regularity structures [26] or paracontrolled
distributions [14]. In particular, this highlights the utility of our perspective for (1.1)
and (1.3), which ultimately agree with the same solutions obtained via other methods
[14, 19, 26]. It also even provides a first intrinsic solution theory to SPDEs like (1.1) and
(1.3) for general continuous initial data; although a to-be-introduced Cole-Hopf solution
theory also treats such initial data, this requires [4] appealing to an auxiliary SPDE.

1.1 Universality

We start with the following construction or ansatz that we clarify afterwards.

Definition 1.1. Let us first define a “UV projection” map ΠN : L 2(T)→ L 2(T), in which
N is a positive integer, via the basis-prescription ΠN (exp(2πikx)) = 1(|k| 6 N) exp(2πikx)

for all k ∈ Z. We now define hN,1 as the solution to the following SPDE on R>0 ×T with
regularized noise:

∂th
N,1 = ∆hN,1 + ε−1

N ΠNF(ε
1/2
N ∇h

N,1) + ΠNξ; (1.7)

In (1.7), εN = N−1π is a normalization factor used in [21]. The function F is general; we
specify conditions on it later in Assumption 1.3.

We additionally define hN,2 to be the solution to the following noise-free PDE on
R>0×T that is “controlled” by hN,1, in the sense that the following PDE has randomness
coming only from hN,1:

∂th
N,2 = ∆hN,2 + ε−1

N F(ε
1/2
N ∇(hN,1 + hN,2))− ε−1

N F(ε
1/2
N ∇h

N,1). (1.8)

Lastly, we define hN = hN,1 +hN,2, we define uN,1 = ∇hN,1, and we define uN = ∇hN =

∇hN,1 +∇hN,2. Let us emphasize that uN,1 satisfies the regularized SPDE given below
on R>0 ×T:

∂tu
N,1 = ∆uN,1 + ε−1

N ΠN∇F(ε
1/2
N uN,1) + ΠN∇ξ. (1.9)

Remark 1.2. Because (1.8) is a nonlinear PDE, let us must mention exactly what we
mean by “solution”. Precisely, we require hN,2(t, ·) ∈ C 1(T), where C 1(T) is the space
of continuously differentiable functions on T. Moreover, we require ‖hN,2(t, ·)‖C 1(T) is
continuous in t. We also require hN,2 to solve

hN,2(t, x) = (et∆hN,2(0, ·))(x)

+

∫ t

0

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds.

Existence and uniqueness of such mild solutions to (1.8) will be guaranteed under our
assumptions on F, as long as hN,2(0, ·) ∈ C 1(T); see Lemma A.3.

Let us now explain Definition 1.1, beginning with the hN,1 equation. Let us specialize
to (1.7) for F(x) = x2. In this case, in [19, 20] it is shown that (1.7) with this quadratic
nonlinearity F is an appropriate regularization of the continuum KPZ equation (1.1) that
agrees with the Cole-Hopf solution of [4] and regularity structures solution of [25], if
the initial data to (1.7) is a Brownian bridge on T (that is independent of the space-time
white noise ξ) or a random initial data whose law as a probability measure on C (T) has
relative entropy that is uniformly bounded with respect to Brownian bridge measure.
Actually, as noted in [13] the choice of ΠN regularization is not so important, and we can
actually use a much smoother cutoff (for example convolution by a time-1 heat kernel
with Fourier cutoff at level N ) for which the results of [19, 20] still hold.

We proceed to explain hN,2. Because the solution to (1.9) is supported on non-zero
Fourier modes |k| 6 N , we can replace uN,1 in (1.9) by Π−1

N uN,1. We can also replace
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ΠN∇ξ by Π2
N∇ξ. Then, applying Π−1

N to (1.9) formally gives the stochastic Burgers
equation with general F and smoothed noise (this is formal because ΠN is not invertible).
Moreover, in [21], convergence of uN,1 means convergence of fixed Fourier modes, and
applying Π−1

N to uN,1 does not affect this convergence. We point out that this formal
relation between (1.9) and stochastic Burgers with general F can be made somewhat
rigorous in the large-N limit. In particular, in the quadratic case F(x) = x2, the ΠN -
Fourier smoothing operator in front of F in the hN,1 equation (1.7) does not change
the large-N limit of the solution hN,1, as in either case one gets the same solution to
the KPZ equation; see [20, 25]. Thus, let us pretend (1.7) does not have ΠN in front of
F(x) = x2. Then if hN,2 solves (1.8), it is easy to see that hN = hN,1 + hN,2 solves the
same equation (1.7) as hN,1 without ΠN in front of F, though with different initial data.
So for the specific regularization ΠN in Definiiton 1.1, we formally write the solution to
a regularized stochastic Burgers equation with general nonlinearity into the two pieces
(1.7) and (1.8). We finish this explanation of Definition 1.1 by noting the decomposition
hN = hN,1 + hN,2 is by no means canonical, namely if we think of hN as a solution to
a regularized SPDE. In particular, we will specify an initial data for hN , and we have
a choice as to how to decompose this initial data into initial data for hN,1 and hN,2

equations. We clarify this in Theorem 1.5.

Let us now introduce the necessary assumptions for the nonlinearity F in Definition
1.1 and the initial data of consideration for hN , which we re-emphasize is, technically, a
pair of initial data for hN,1 and hN,2, respectively. We will provide explanation afterwards.

Assumption 1.3. The nonlinearity F : R → R in Definition 1.1 is uniformly Lipschitz.
Moreover, if PG is standard Gaussian measure N (0, 1) on R, then F,F′ ∈ L 2(R,PG).

Assumption 1.4. Assume hN (0, ·) = ΠNh(0, ·), where h(0, ·) is a continuous function
on T independent of ξ such that h(0, 0) = 0, where 0 ∈ T is interpreted by embedding
T = R/Z ' [0, 1), and hN (0, ·) = ΠNh(0, ·)→ h(0, ·) uniformly on T with probability 1.

Let us first explain Assumption 1.3. It is not difficult to see [19] that the Fourier
coordinates of uN,1 in (1.9) solves a finite-dimensional SDE. The Lipschitz assumption
guarantees this SDE has global solutions in time. In particular, we could assume a.e.
differentiability of F instead and prove results until blow-up times, but we choose to
take the Lipschitz assumption for convenience and clarity of presentation. The uniformly
Lipschitz assumption is also used for deriving global-in-time solutions to (1.8) for each
fixed N . Similarly, we could impose locally Lipschitz instead of uniformly Lipschitz
and work until a random blow-up time (for classical solutions) for (1.8). We choose
uniformly Lipschitz again for convenience and clarity. There are other assumptions
besides uniformly Lipschitz, however, that would ensure (classical) global solutions for
both (1.9) and (1.8). For example, establishing global solutions for (1.9) requires only
locally Lipschitz F, since the invariant measure for (1.9) extends local solutions to global
ones; see Lemma A.1. Global solutions for (1.8), which is a viscous Hamilton-Jacobi
equation with random Hamiltonian, can be obtained for continuously differentiable F

satisfying a polynomial bound for any arbitrary but fixed degree; see Theorem 3.1 in [3].
(We note [3] is not published, and the proof of Theorem 3.1 therein is quite complicated.
Also, in [29], the specific choice F(x) = |x| was mentioned as an interesting problem, and
this choice satisfies Assumption 1.3. For these reasons, we give details just for uniformly
Lipschitz F.) It also seems possible to remove the polynomial bound on F and upgrade
its regularity to C 1,α. In any case, all these choices for conditions on F would generalize
what is done in [29].

Moreover, the condition F,F′ ∈ L 2(R,PG) comes from the assumption on nonlineari-
ties in [21], which serves as a stationary model of what is considered herein. Technically,
it means that the Hermite polynomial expansions, or equivalently eigenfunction expan-
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sion in L 2(R,PG) with respect to the Ornstein-Uhlenbeck operator of Malliavin calculus,
converges in `2(Z) with both the standard constant weight and with the weight |k|. This
is similar to how a function and its derivative belong to L 2(T) given its Fourier series
converges in `2(Z) after we multiply its k-th Fourier coordinate by 1 + |k|. Let us make
this precise. By Gaussian integration-by-parts, we get 2−1EGF′′ = 2−1EGFH2, where
H2 is the second Hermite polynomial with respect to the Gaussian measure PG as in
[21]. In particular, we note EGF′′ = EGFH2 <∞. Indeed, the Hermite polynomial H2 is
a unit-length Hermite basis vector in L 2(R,PG), so EGFH2 6 (EGF2)1/2, and this last
second moment is finite by Assumption 1.3.

Let us now explain Assumption 1.4. We first note that it only requires almost sure
continuity of the initial data function h(0, ·), instead of quantitative Hölder regularity as
in [21, 28, 29], making Assumption 1.4 quite general. Observe that h(0, ·) is allowed to be
random; moreover, if h(0, ·) is a Brownian bridge on T, defined by independent Gaussian
random variables of variance 1 + |k|−2 for k 6= 0 Fourier coordinate and assumed to
be independent of ξ, then the convergence ΠNh(0, ·) → h(0, ·) is classical. We clarify
the k = 0 Fourier coefficient for Brownian bridge just has to be chosen independent of
the k 6= 0 coefficients and of ξ. We emphasize, again, that we can replace ΠN with a
smoother Fourier cutoff if desired; this would make Assumption 1.4 and the required
uniform convergence less strict; let us remark that some convergence is needed in
Assumption 1.4 [28, 29], as otherwise large-N limits of hN are out of the question. Lastly,
when we refer to Assumption 1.4 in Theorem 1.5, we will specify ways of decomposing
initial data hN into initial data for hN,1 and hN,2 equations of Definition 1.1.

We now present the first main theorem of this article. To this end, we must first
specify a theory of solutions to (1.1) and (1.3) without regularization; note Definition 1.1
addresses only Fourier regularized (S)PDEs. We will employ the following Cole-Hopf
solution theory, which agrees with regularity structures [26], paracontrolled distributions
[14], and energy solution theory [19, 20], at least for sufficiently Hölder continuous initial
data (and for energy solutions, only for initial data with uniformly bounded “relative
entropy” with respect to Brownian bridge initial data; see the definition of relative
entropy in Section C, though we will re-clarify this when more relevant). The Cole-Hopf
solution to (1.1) is defined (and explained) as follows.

• The Cole-Hopf solution is defined as h = β−1 log z, where ∂tz = ∆z+ βzξ is a linear
SPDE on R>0 ×T called the stochastic heat equation (SHE).

• In [32], an almost sure comparison principle was shown for SHE. Thus, the loga-
rithm is well-defined as long as we start z with positive (continuous) initial data.

• We define the Cole-Hopf solution to the stochastic Burgers equation (1.3) to be
u = ∇h = β−1 log z, where the derivative is interpreted in the weak sense.

We clarify that the Cole-Hopf solution agrees with the solution of KPZ via regularity
structures only if we include a divergent counter-term in (1.1). In particular, if we were
to claim the convergence of hN,1 in Definition 1.1 to the Cole-Hopf solution of (1.1), we
would need to introduce a term of the form −CN to (1.7), where CN is constant and
|CN | → ∞ as N →∞. However, our results are for the stochastic Burgers equation, for
which this constant CN plays no role because we take its spatial derivative. Lastly, we
note that the space C (R>0,D(T)) of continuous D(T)-valued paths is equipped with the
locally uniform (in R) topology. Here, D(T) is the space of generalized functions on T,
or equivalently the topological dual of C∞(T).

Theorem 1.5. Consider initial data h(0, ·) as in Assumption 1.4, and assume EGF′′ 6= 0.
There exists a one-parameter family of decompositions hN = hN,1,ε + hN,2,ε, as in
Definition 1.1, parameterized by ε > 0 such that:
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• For any ε > 0, the function hN,1,ε solves (1.7) with initial data given by ΠN acting
on Brownian bridge on T independent of ξ and conditioned to be within ε of
h(0, ·). Moreover, the gradient uN,1,ε = ∇hN,1,ε converges as N → ∞ to the
Cole-Hopf solution of (1.3) with β = 2−1EGF′′ and with initial data given by the
weak derivative of Brownian bridge independent of ξ and conditioned to be within
ε of h(0, ·). Here, EG is expectation with respect to Gaussian measure PG in
Assumption 1.3.

• For any ε > 0, hN,2,ε solves (1.8) with initial data given by the difference hN (0, ·)−
hN,1,ε(0, ·). Moreover, we have |hN,2,ε(t, x)| 6 ε + oN for all t > 0 and x ∈ T with
probability 1, where oN → 0 almost surely and uniformly in t > 0 and x ∈ T.

We deduce that the law of uN = ∇hN = ∇hN,1,ε +∇hN,2,ε, as a probability measure on
C (R>0,D(T)), converges to the Cole-Hopf solution of (1.3) with initial data given by the
weak derivative ∇h(0, ·).
Theorem 1.5 claims that we can approximate the regularization hN of the KPZ equation
uniformly in N by a solution hN,1,ε to (1.7), which we will ultimately analyze via the work
in [21]. The residual term hN,2,ε solves (1.8); we emphasize the nontrivial aspect of this
statement is two-fold. First, we must find suitable approximations to hN that can be
analyzed by using energy solution theory [19, 20, 21, 22]. Since energy solution theory
is mostly dependent on initial data and invariant measures, this approximation will be
made at the level of initial data. The problem we are left with is to globally propagate
this approximation uniformly in N . In particular, we must control hN,2,ε, which solves a
type of Hamilton-Jacobi equation with divergent Hamiltonian. Note that we must also
extend [21] to initial conditions that are not exactly Brownian bridge but relative entropy
perturbations as well, though this will not be difficult provided the work of [17, 22].
We clarify Theorem 1.5 gives a first application of the energy solution theory to a very
general class of non-stationary SPDE growth models; in particular, we only require the
modest requirements in [20] for the models of interest that are much more general than
the required conditions on the nonlinearity in [28, 29]. In particular, one can define
the large-N limit of uN = ∇hN in Theorem 1.5 as an intrinsic solution to (1.3) for such
general continuous initial data.

Note we have assumed EGF′′ 6= 0. It is certainly possible that this does not hold,
i.e. EGF′′ = 0. In this case, the limit SPDE is not the Cole-Hopf solution of (1.3) but
rather the solution to the linear SPDE given by (1.3) with β = 0. The proof of Theorem
1.5 given in this paper covers this case as well, since our method is by comparison
to very-close-to-stationary initial data, and the result for stationary initial data in [21]
includes the case β = 0.

1.2 Convergence to invariant measure

As a byproduct of our proof of Theorem 1.5, we will be able to show that the
stochastic Burgers equation (SBE), starting with the gradient of any continuous initial
data, converges to the Gaussian white noise measure on D(T) in a quantitative fashion.
Moreover, we provide an explicit rate of convergence; this is new as [27] gives only
uniqueness and ergodicity of white noise invariant measure for SBE, and [23] provides a
spectral gap estimate, which only provides quantitative bounds for initial data to SBE
that is very close to the white noise invariant measure.

We now state the main result of this subsection. In Theorem 1.6, the metric W
denotes Wasserstein distance in Appendix B, for which we take the Polish space X to
be the topological dual of the Sobolev space on T of bounded functions with bounded
derivative. The object H is the relative entropy of Appendix C, in which the state space
is S = D(T). We clarify the statement of the following result afterwards.
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Theorem 1.6. Take any deterministic function h(0, ·) ∈ C (T) and let u be the Cole-Hopf
solution to (1.3) with initial data u(0, ·) = ∇h(0, ·). If L(t) denotes the law of u(t, ·) as a
probability measure on D(T) and if η denotes Gaussian white noise invariant measure,
then for any positive ε, there exists a measure Lε(t) such that

W(L(t),Lε(t)) 6 ε and H(Lε(t)|η) 6 exp(−Ct)κ. (1.10)

The constant C is independent of all other parameters in this statement. The constant
κ = κ(ε,h) depends only on the modulus of continuity of h(0, ·) and ε. For example, if
h(0, ·) is Hölder continuous, then κ(ε,h) would depend only on the Hölder norm of h(0, ·)
and on ε.

We emphasize the upper bounds in (1.10) both vanish if we take t→∞ then ε→ 0.
Theorem 1.6 builds on the spectral gap of [23], first by improving to a log-Sobolev

inequality (LSI) via relatively straightforward considerations. Indeed, if ∇h(0, ·) has a
measure with an L 2-Radon-Nikodym derivative with respect to white noise measure,
then κ equals the L 2-norm of said Radon-Nikodym derivative and ε = 0 in (1.10) would
be okay. The point is that having an L 2-Radon-Nikodym derivative is an extremely strong
condition that, although is satisfied for a “dense” class of initial data, is not satisfied for
“generic” initial data to SBE. The Wasserstein bound in (1.10) says to first approximate
gradients of general continuous initial data by a member of the aforementioned dense
class. As with Theorem 1.5, we then globally propagate this comparison. This will give
the Wasserstein estimate in (1.10). Ultimately, Theorem 1.6 says that the law of the
Cole-Hopf solution to (1.3) with initial data given by the (weak) derivative of any general
continuous function is within ε of a solution that is statistically close to white noise after
long times via LSI, but the comparison with general data is in a different (Wasserstein)
topology.

1.3 Organization

We first prove Theorem 1.5; the proof of Theorem 1.6 will follow from steps in the
proof of Theorem 1.5 except for a log-Sobolev inequality for the stochastic Burgers equa-
tion and its ΠN -UV cutoffs. Lastly, before the appendix sections, which give definitions
and basic properties of key functionals we use for the reader’s convenience, we comment
on extensions of our methods to fractional stochastic Burgers equations.

2 Proof of Theorem 1.5

The main objectives of this section, which are the main ingredients to proving
Theorem 1.5, are listed below.

• We begin with a construction of hN,1,ε, in which ε is a fixed positive parameter.
In particular, we specify the initial condition for hN,1,ε, which then determines it
uniquely because it must then solve (1.7). Observe that hN,2,ε is automatically
determined once we construct hN,1,ε and its initial condition, because the ini-
tial condition for hN,2,ε is then given by the difference between the initial data
hN (0, ·) = ΠNh(0, ·) and the initial data hN,1,ε(0, ·). Again, once we specify initial
data of hN,2,ε, we specify hN,2,ε uniquely because it must solve the equation (1.8),
which has a unique solution because it is a classical parabolic Hamilton-Jacobi-type
equation [12].

• We then proceed to establish the two bullet points in Theorem 1.5; the last state-
ment therein will follow by a standard argument. For hN,2,ε, we employ a maximum
principle whereas for hN,1,ε, we employ the energy solution theory in [21] combined
with relative entropy estimates as with [17, 22]; for this, we must prove a relative
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entropy estimate for the law of hN,1,ε(0, ·) with respect to Brownian bridge initial
data.

• First assume Theorem 1.5 were true for deterministic continuous initial data h(0, ·)
for which ΠNh(0, ·) converges to h(0, ·) uniformly on T. We would be able to show
Theorem 1.5 for the allowed random continuous initial data in Assumption 1.4
by conditioning on said random initial data, tossing out probability zero events.
Indeed, convergence as measures is a deterministic statement, namely a statement
about convergence of expectations of test functions. Convergence almost surely
is also deterministic if we toss out all probability zero events. We will therefore
assume that h(0, ·) is deterministic and continuous, and that ΠNh(0, ·) converges
to h(0, ·) uniformly on T.

2.1 Construction of hN,1,ε

Let us recall the initial data hN (0, ·) = ΠNh(0, ·) converges uniformly to h(0, ·) with
probability 1. Thus, to approximate hN (0, ·) initial data within ε, which we emphasize is
deterministic, it suffices to approximate the limit h(0, ·) itself. We will do so in the sequel
for which we provide explanation afterwards.

Definition 2.1. Given any deterministic data h(0, ·), define the Fourier smoothing
hN,1,ε(0, ·) = ΠNh1,ε(0, ·), where h1,ε(0, ·) is the Brownian bridge b independent of ξ
conditioned to be within ε of h(0, ·) uniformly on T; observe that this construction im-
plicitly chooses the k = 0 Fourier coefficient for Brownian bridge so that this event on
which we condition has positive probability. Let Pε be the law of h1,ε as a measure on
C (T), and let P∞ be Brownian bridge measure on C (T).

Definition 2.1 can be viewed as constructing hN,1,ε to automatically satisfy the first
required bullet point in Theorem 1.5 at the level of initial data. We will show in this
section that this comparison from Theorem 1.5 propagates globally in time. However, to
clarify why we choose Brownian approximations, we appeal to the following result, which
shows that the associated probability measure Pε is uniformly “stable” with respect
to the law of Brownian bridge itself free of any conditioning. This stability is at the
level of relative entropy; see Definition C.1 for its definition and Lemma C.2 for the key
properties of relative entropy that we will use to study hN,1,ε.

Lemma 2.2. There exists a constant κ = κ(ε,h(0, ·)) depending only on ε and h(0, ·), in
particular independent of N , such that the relative entropy of Pε with respect to P∞ is
bounded by κ:

H(Pε|P∞) 6 κ. (2.1)

The same is true is we replace (Pε,P∞) by (T∗Pε,T∗P∞), where T∗ is the pushforward
on probability measures induced by differentiation ∇, Fourier smoothing ΠN , or com-
positions of these two. The same is also true if we replace (Pε,P∞) with path-space
measures induced by (1.9), when viewed as a finite-dimensional SDE parameterized by
the image of ΠN , with initial measures (T∗(ΠN )∗P

ε,T∗(ΠN )∗P
∞) for the same choices

of T∗.

Proof. It suffices to prove the relative entropy bound for Pε with respect to P∞, as the
other relative entropy estimates follow for free by Lemma C.2. To this end, observe
the function x log x is continuous on R>0. Because relative entropy in Definition C.1 is
controlled by the maximum of x log x for x equal to the Radon-Nikodym derivative of Pε

with respect to P∞, it then suffices to estimate this Radon-Nikodym derivative uniformly
in the randomness in the expectation defining relative entropy. Moreover, since Pε is
defined as conditioning P∞ on an event that we denote by E(ε), it suffices to estimate
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E(ε)-probability under P∞ from below by a ε,h(0, ·)-dependent constant. To make this
precise, we note:

H(Pε|P∞) 6 ‖Rε logRε‖ω;∞ 6 sup
06x6P∞(E(ε))−1

|x log x| .P∞(E(ε))−1 1. (2.2)

In (2.2), Rε is the Radon-Nikodym derivative of Pε with respect to P∞ where ‖‖ω;∞ is
the ∞-norm for functions on D(T). The last bound in (2.2) follows from the fact that
x log x restricted to [0, C] is uniformly controlled by a C-dependent constant; to clarify,
we note Rε 6 P∞(E(ε))−1 by construction via conditioning in Definition 2.1.

In particular, to control the far LHS of (2.2) in terms of ε,h(0, ·), it suffices to bound
P∞(E(ε))−1 from above in terms of ε,h(0, ·), and therefore P∞(E(ε)) from below in terms
of ε,h(0, ·). To this end, take a deterministic smooth function ψε that is uniformly within
ε/2 of h(0, ·); because h(0, ·) is uniformly continuous, we may take ψε whose derivatives
are controlled by ε,h(0, ·)-dependent constants. As E(ε) is the event on which a Brownian
bridge b is uniformly within ε of h(0, ·), we have containment E(ε) ⊇ E ′(ε) where E ′(ε)
is the event on which ψε and b are uniformly within ε/2 of each other, or equivalently
b − ψε is uniformly bounded by ε/2 in absolute value. As ψε is smooth with ε,h(0, ·)-
dependent derivatives, the Girsanov theorem tells us that the Radon-Nikodym derivative
of b− ψε with respect to Brownian bridge measure is L 2 as a function of C (T); here,
we think of both b− ψε and b as SDEs parameterized by x ∈ T. Thus, if R̃ε denotes this
last Radon-Nikodym derivative, the Cauchy-Schwarz inequality tells us the following
probability estimate in which ‖‖ω;2 denotes the L 2-norm for functions on D(T) with
respect to the law of b− ψε:

P∞ (supx∈T|b(x)| 6 ε/2) 6 ‖R̃ε‖ω;2 (P∞ (E ′(ε)))1/2
. (2.3)

The reflection principle for Brownian bridge implies the LHS of (2.3) is controlled by
an ε-dependent constant from below. An upper bound on ‖R̃ε‖ω;2 therefore bounds
P∞(E ′(ε)) from below by ε,h(0, ·)-dependent constants, which completes the proof via
(2.2) and the sentence immediately after (2.2).

2.2 Convergence of uN,1,ε

In this subsection, we prove that uN,1,ε = ∇hN,1,ε converges to the solution of (1.3)
with the initial data claimed in Theorem 1.5. Roughly speaking, this is done in [21] if the
initial data of hN,1,ε is a Brownian bridge independent of ξ and free of any conditioning.
This Brownian bridge initial data is ultimately used, however, to show that certain terms
vanish and that certain limits exist in the large-N limit. Therefore, the relative entropy
estimate in Lemma 2.2 allows us to inherit all these for hN,1,ε and uN,1,ε initial data in
Definition 2.1. We formally state this in the following.

Lemma 2.3. Given any fixed positive ε, the process uN,1,ε = ∇hN,1,ε converges weakly
in C (R>0,D(T)) to the Cole-Hopf solution of (1.3) with initial data given by the weak
derivative limit limN→∞∇hN,1,ε(0, ·) = ∇h1,ε(0, ·), which is the weak derivative of Brow-
nian bridge independent of ξ and conditioned to stay uniformly within ε on T of h(0, ·)
constructed in Definition 2.1.

Proof. Note that if the process uN,1,ε = ∇hN,1,ε converges weakly in C (R>0,D(T)), its
initial data must be given by the limit limN→∞∇hN,1,ε(0, ·) = ∇h1,ε(0, ·). We clarify this
limit is taken with respect to weak-∗ topology on D(T). It can be computed by first recall-
ing limN→∞ hN,1,ε(0, ·) = limN→∞∇ΠNh1,ε(0, ·). Because ∇ is continuous with respect
to weak-∗ topology on D(T), we know limN→∞∇ΠNhN,1,ε(0, ·) = ∇ limN→∞ΠNh1,ε(0, ·).
Because the law of h1,ε is absolutely continuous with respect to Brownian bridge b on
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T, and because ΠNb→ b uniformly on T with probability 1, we deduce ΠNh1,ε → h1,ε

uniformly on T with probability 1 as well. Since uniform topology is stronger than
weak-∗ topology, we deduce limN→∞ΠNh1,ε(0, ·) = h1,ε(0, ·). Ultimately, we obtain that
the initial data of u∞,1,ε, if it converges weakly in C (R>0,D(T)), is equal to (in law) h1,ε.

It suffices to prove convergence of uN,1,ε = ∇hN,1,ε to the Cole-Hopf solution of (1.3).
For this, we establish notation, setting 〈, 〉T as the integral pairing for functions on T
and 〈, 〉t;T =

∫ t

0
〈, 〉ds. To prove convergence, we first will show tightness of uN,1,ε and

then identify limit points. To this end, we have the proposed tightness for Brownian
bridge initial data in [21]. Lemma 2.2 gives O(1)-relative entropy for the path-space law
of uN,1,ε with respect to the path-space law with Brownian bridge initial data. The last
paragraph Lemma C.2 then lets us inherit the proposed tightness from that for Brownian
bridge initial data. Ultimately, we deduce tightness of uN,1,ε in C (R>0,D(T)).

To identify limit points, the first step here is to use the Itô formula to obtain the
following in which BN (t; Φ) is a Brownian motion of quadratic variation 2t‖∇ΠNΦ‖2x;2,
where ‖‖x;2 is the L 2(T)-norm:

〈uN,1,ε(t, ·),Φ〉T = 〈uN,1,ε(0, ·),Φ〉T + 〈uN,1,ε,∆Φ〉t;T (2.4)

− ε−1
N 〈ΠNF(ε

1/2
N uN,1,ε),∇Φ〉t;T + BN (t; Φ).

Observe that each term in (2.4) is a continuous functional of the D(T)-valued process
uN,1,ε. For example, the LHS of (2.4) and the first three terms on the RHS are given
by integrating space-time values of uN,1,ε against deterministic functions. The last
martingale term on the RHS, being determined by the remaining terms, is therefore
a functional of uN,1,ε. Therefore, because uN,1,ε converges along subsequences, any
continuous functional of uN,1,ε must also converge along subsequences. We choose the
continuous functional given by the joint process consisting of the terms in (2.4). We
deduce by taking large-N limits of (2.4) the following identity:

〈u∞,1,ε(t, ·),Φ〉T = 〈u∞,1,ε(0, ·),Φ〉T + 〈u∞,1,ε,∆Φ〉t;T
− lim

N→∞
ε−1
N 〈ΠNF(ε

1/2
N uN,1,ε),∇Φ〉t;T + lim

N→∞
BN (t; Φ).

Recall BN (t; Φ) is a Brownian motion with linear-in-time quadratic variation 2t‖∇ΠNΦ‖2x;2.
Because Φ ∈ C∞(T), we know 2t‖∇ΠNΦ‖2x;2 → 2t‖∇Φ‖2x;2 as N → ∞. Therefore,
BN (t; Φ) must converge weakly (as a process) to a Brownian motion of quadratic variation
2t‖∇Φ‖2x;2. (Technically, one needs uniform integrability of |BN (t; Φ)|2 as N → ∞ to
guarantee BN (t; Φ) converges to a martingale with the limit quadratic variation, but this
follows from fourth-moment estimates readily available for Brownian motion.) In [21],
it is shown that for Brownian bridge initial data hN,1,∞ (that is independent of ξ), the
remaining limit above converges to the process

lim
N→∞

ε−1
N 〈F(ε

1/2
N uN,1,∞),∇Φ〉t;T = 2−1EGF′′· lim

N→∞
ε−1
N 〈(u

N,1,∞)2,∇Φ〉t;T
•
= A(t; Φ).

(2.5)

Again, since ε−1
N 〈F(ε

1/2
N uN,1,∞),∇Φ〉t;T and 2−1EGF′′ε−1

N 〈(uN,1,∞)2,∇Φ〉t;T are continu-
ous functionals of the D(T)-valued process uN,1,ε, if they both converge (along sub-
sequences) and their difference converges to zero in probability for Brownian bridge
initial data hN,1,∞, then the same must be true for hN,1,ε initial data. This last claim
follows from the path-space relative entropy estimate in Lemma 2.2 and (C.2) (these
show that asymptotically probability-zero events for Brownian bridge initial data hN,1,∞

are also asymptotically probability-zero for hN,1,ε initial data). Thus, we deduce, for any
Φ ∈ C∞(T), that

〈u∞,1,ε(t, ·),Φ〉T = 〈u∞,1,ε(0, ·),Φ〉T + 〈u∞,1,ε,∆Φ〉t;T −A(t; Φ) + B(t; Φ). (2.6)
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By Theorem 2.8 in [22], in order to show that u∞,1,ε are Cole-Hopf solutions, it suffices
to show that:

• The limit point u∞,1,ε of the D(T)-valued processes uN,1,ε satisfies (1.6).

• We have E|e〈u∞,1,ε(t,·),Θx〉T|2 <∞ for t > 0, where Θx(y) = Θ(x−y) and Θ is defined
by its Fourier transform

∫
T

Θ(y)e−2πikydy = 1k 6=0.

For these two points, note that Lemma 2.2 actually shows the Radon-Nikodym derivative
of the path-space law of uN,1,ε with respect to the law of the solution uN,1,∞ to (1.9)
with stationary initial data is Oε(1) in L∞, not just in relative entropy. Thus, the same
is true by lower semicontinuity of L∞-norm for the Radon-Nikodym derivative of the
path-space law of u∞,1,ε with respect to the path-space law of u∞,1,∞ with white noise
initial data. In particular, we have the following two estimates, which reduce showing
the previous two bullet points to showing the same but for u∞,1,ε replaced by u∞,1,∞:

E|
∫ t

s

(u∞,1,ε ∗ ρN )2(−∇Φ)− (u∞,1,ε ∗ ρM )2(−∇Φ)dr|2 (2.7)

. E|
∫ t

s

(u∞,1,∞ ∗ ρN )2(−∇Φ)− (u∞,1,∞ ∗ ρM )2(−∇Φ)dr|2 (2.8)

E|e〈u
∞,1,ε(t,·),Θx〉T|2 (2.9)

.ε E|e〈u
∞,1,∞(t,·),Θx〉T|2 . (2.10)

The term (2.8) is bounded the RHS of (1.6); this is shown in Lemma 1 of [19]. The term
(2.10) is finite by Theorem 2.13 in [20] (see also Proposition 2.1 in [22]). This completes
the proof.

2.3 Estimate for hN,2,ε

The result of this subsection is confirmation of the second bullet point in Theorem 1.5
for our construction of hN,2,ε made in Definition 2.1. The proof follows by the parabolic
maximum principle [12].

Lemma 2.4. We first recall that hN,2,ε = hN − hN,1,ε is defined to solve (1.8) with initial
data hN (0, ·)−hN,1,ε(0, ·). We have |hN,2,ε(t, x)| 6 ε+ oN for all non-negative t and x ∈ T,
where oN → 0 uniformly in t, x with probability 1.

Proof. We first prove the inequality for t = 0. To this end, we have hN,2,ε(0, x) =

hN (0, x)− hN,1,ε(0, x), so

|hN,2,ε(0, x)| 6 |hN (0, x)− h(0, x)|+ |h(0, x)− h1,ε(0, x)|+ |h1,ε(0, x)− hN,1,ε(0, x)|.
(2.11)

The first term on the far RHS is oN by assumption. Moreover, by construction in
Definition 2.1, the second term on the far RHS is defined to be at most ε. The last term
is oN , which vanishes uniformly in T with probability 1 by classical Brownian motion
estimates. This gives the proposed estimate for the initial time. It now suffices to get the
following for all t > 0 and x ∈ T simultaneously with probability 1:

|hN,2,ε(t, x)| 6 supy∈T|hN,2,ε(0, y)|. (2.12)

Indeed, this bound would propagate the validity of the proposed inequality at t = 0

globally in time with probability 1. To prove this last bound, we first note that hN,1,ε

is smooth with probability 1 by Lemma A.1. We will only use this fact to guarantee
that all derivatives of hN,1,ε are defined pointwise with probability 1. Now consider the
following.
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• Fix χ ∈ C∞(R) such that its support is contained in [−1, 1], it is non-negative-valued,
and

∫
R
χ(x)dx = 1. For any υ > 0, define χυ(x) = υ−1χ(x/υ) for x ∈ R.

• Define Fυ = F ? χυ to be a smoothing of F. Define hN,2,ε,υ to be the solution to the
following PDE on R>0 ×T with the same initial data hN,2,ε,υ(0, x) = hN,2,ε(0, x):

∂th
N,2,ε,υ = ∆hN,2,ε,υ + ε−1

N Fυ(ε
1/2
N ∇(hN,1,ε + hN,2,ε,υ))− ε−1

N Fυ(ε
1/2
N ∇h

N,1,ε).

(2.13)

Let us comment briefly on the above construction; this will be key to our proof of Lemma
2.4.

• Note the support of χυ is contained in [−υ, υ].

• Because F : R→ R is uniformly Lipschitz and χυ is supported in [−υ, υ], we know

|F(x)− Fυ(x)| = |
∫
R

χυ(x− y)(F(x)− F(y))dy| .F υ; (2.14)

the dependence on F is through its Lipschitz constant. The bound above is inde-
pendent of x ∈ R.

• The Lipschitz norm of ∇kFυ is bounded by Ok,υ(1) times that of F for all υ > 0.
Indeed, for any x1, x2, we have

|∇kFυ(x1)−∇kFυ(x2)| = |
∫
R

(
∇kχυ(x1 − y)−∇kχυ(x2 − y)

)
F(y)dy| (2.15)

= |
∫
R

∇kχυ(y) (F(x1 − y)− F(x2 − y)) dy| (2.16)

.k,υ ‖F‖Lip|x1 − x2|, (2.17)

where ‖F‖Lip denotes the Lipschitz constant of F.

To prove (2.12), it suffices to prove two ingredients. The first is that hN,2,ε,υ →υ→0 hN,2,ε

locally uniformly in time and uniformly in space (with probability 1). The second is that
(2.12) holds if we replace hN,2,ε on both sides of the inequality by hN,2,ε,υ. Note that
the RHS does not change if we replace hN,2,ε therein by hN,2,ε,υ as these two have the
same initial data by construction. The second ingredient is almost immediate. Again, by
Lemma A.2, (2.13) admits a classical solution. Now, let us rewrite (2.13) as

∂th
N,2,ε,υ = ∆hN,2,ε,υ (2.18)

+ ε−1
N

(
Fυ(ε

1/2
N ∇(hN,1,ε + hN,2,ε,υ))− ε−1

N Fυ(ε
1/2
N ∇hN,1,ε)

∇hN,2,ε,υ

)
∇hN,2,ε,υ.

The coefficient for ∇hN,2,ε,υ on the RHS of (2.18) is uniformly bounded in x (for each N ):

|ε−1
N

Fυ(ε
1/2
N ∇(hN,1 + hN,2,ε,υ))− ε−1

N Fυ(ε
1/2
N ∇hN,1)

∇hN,2,ε,υ
| (2.19)

.N,F |
∇hN,1,ε +∇hN,2,ε,υ −∇hN,1,ε

∇hN,2,ε,υ
| = 1. (2.20)

We note the dependence of F above is through its Lipschitz constant. Thus, to (2.18),
we can apply the comparison principle to deduce (2.12) holds for hN,2,ε,υ in place of
hN,2,ε. (For the comparison principle, see Theorem 8 of Chapter 7.1.4 in [12] for n = 1

and a11 = 1 and b1 = ε−1
N

Fυ(ε
1/2
N ∇(hN,1+hN,2,ε,υ))−ε−1

N Fυ(ε
1/2
N ∇hN,1)

∇hN,2,ε,υ
and c = 0. (We note that

although Theorem 8 of Chapter 7.1.4 in [12] assumes continuity of coefficients, the proof
works for boundedness of the first-order coefficient.)
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It now remains to prove the convergence hN,2,ε,υ →υ→0 hN,2,ε locally uniformly in
time and uniformly in space (with probability 1). To this end, we start with their mild
representations. In particular, starting with the definition of hN,2,ε and Lemma A.2, we
have the following calculation:

hN,2,ε(t, x)− hN,2,ε,υ(t, x) (2.21)

=

∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε(s, ·)))−

)
(x)ds (2.22)

−
∫ t

0

e(t−s)∆
(
ε−1
N Fυ(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds (2.23)

=

∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε(s, ·)))−

)
(x)ds (2.24)

−
∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds (2.25)

+

∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds (2.26)

−
∫ t

0

e(t−s)∆
(
ε−1
N Fυ(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds. (2.27)

Let us first estimate the contribution of (2.24)-(2.25). Because F is uniformly Lipschitz,
we have

|
∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε(s, ·)))−

)
(x)ds (2.28)

−
∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)| (2.29)

.F,N

∫ t

0

e(t−s)∆
(
|∇hN,2,ε(s, ·)−∇hN,2,ε,υ(s, ·)|

)
(x)ds (2.30)

6 t sup
06s6t

sup
y∈T
|∇hN,2,ε(s, y)−∇hN,2,ε,υ(s, y)|. (2.31)

The last estimate follows by contractivity of convolution with the heat kernel on T (with
respect to the L∞-norm on T). As for (2.26)-(2.27), because |F− Fυ| . υ uniformly, we
have

|
∫ t

0

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds (2.32)

−
∫ t

0

e(t−s)∆
(
ε−1
N Fυ(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds| (2.33)

.N sup
y∈R
|F(y)− Fυ(y)| ×

∫ t

0

e(t−s)∆(1)ds (2.34)

. tυ. (2.35)

Combining the previous three displays gives the following estimate for any T > 0 fixed:

sup
06t6T

sup
x∈T
|hN,2,ε(t, x)− hN,2,ε,υ(t, x)| (2.36)

.N,F T sup
06s6t

sup
y∈T
|∇hN,2,ε(s, y)−∇hN,2,ε,υ(s, y)|+ Tυ.

Thus, it remains to estimate the double supremum on the RHS of (2.36). To this end, we
proceed in very similar fashion, namely estimating gradients of (2.24)-(2.27). First, let
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us denote by Gt(x) the heat kernel for et∆ on the torus. Taking gradients of (2.24)-(2.25)
(with respect to x), we have

|
∫ t

0

∇e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε(s, ·)))−

)
(x)ds (2.37)

−
∫ t

0

∇e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)| (2.38)

.F,N

∫ t

0

∫
T

|∇Gt−s(x− y)| · |∇hN,2,ε(s, y)−∇hN,2,ε,υ(s, y)|dyds (2.39)

.
∫ t

0

(1 + |t− s|− 1
2 ) sup

y∈T
|∇hN,2,ε(s, y)−∇hN,2,ε,υ(s, y)|ds, (2.40)

where the last estimate follows by
∫
T
|∇Gt−s(x− y)dy| . 1 + |t− s|−1/2; see Lemma A.2.

Taking gradients of (2.26)-(2.27), we have

|
∫ t

0

∇e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds (2.41)

−
∫ t

0

∇e(t−s)∆
(
ε−1
N Fυ(ε

1/2
N ∇(hN,1,ε(s, ·)− hN,2,ε,υ(s, ·)))−

)
(x)ds| (2.42)

.N sup
y∈R
|F(y)− Fυ(y)| ×

∫ t

0

∫
T

|∇Gt−s(x− y)|dyds (2.43)

. sup
y∈R
|F(y)− Fυ(y)| ×

∫ t

0

1 + |t− s|− 1
2 ds (2.44)

. (t + t
1
2 )υ. (2.45)

Combining the previous two displays, we deduce the following for any t > 0:

sup
x∈T
|∇hN,2,ε(t, x)−∇hN,2,ε,υ(t, x)| (2.46)

.N,F

∫ t

0

(1 + |t− s|− 1
2 ) sup

y∈T
|∇hN,2,ε(s, y)−∇hN,2,ε,υ(s, y)|ds + (t + t

1
2 )υ. (2.47)

We can now apply the Gronwall inequality to deduce

sup
x∈T
|∇hN,2,ε(t, x)−∇hN,2,ε,υ(t, x)| . (t + t

1
2 )υ × exp

(∫ t

0

1 + |t− s|− 1
2 ds

)
(2.48)

. (t + t
1
2 ) exp(t + t

1
2 )υ. (2.49)

Combining this last display with (2.36), we obtain

sup
06t6T

sup
x∈T
|hN,2,ε(t, x)− hN,2,ε,υ(t, x)| .N,F T (T

1
2 + T )eT

1/2+Tυ + Tυ, (2.50)

which shows, for each fixed N > 0, the convergence hN,2,ε,υ →υ→0 hN,2,ε locally uni-
formly in time and uniformly in space (with probability 1). This completes the proof.

2.4 Proof of Theorem 1.5

According to Lemma 2.3 and Lemma 2.4, the two bullet points in Theorem 1.5 are
satisfied for our particular choice of hN,1,ε and hN,2,ε given by choosing their initial data
via Definition 2.1 and requiring them to solve (1.7) and (1.8), respectively. To compute
the large-N limit of uN , similar to the proof of Lemma 2.3, it suffices to show that the
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one-dimensional process uN (t,Φ)
•
= 〈uN (t, ·),Φ〉T converges to the action of the solution

to (1.3) on Φ provided any generic smooth function Φ ∈ C∞(T); this convergence must
be in C (R>0,R) with the locally uniform topology, and it will be directly inherited from
convergence of uN,1,ε and estimates for uN,2,ε from Lemma 2.4. Let us clarify that
convergence in locally uniform topology on C (R>0,R) means convergence uniformly in
C ([0, t+],R) for every t+ > 0. By integration-by-parts, we have

uN (t,Φ) = 〈uN,1,ε(t, ·),Φ〉T − 〈hN,2,ε(t, ·),∇Φ〉T. (2.51)

The second term on the RHS of (2.51) is bounded by order ε times Φ-data; this follows
by the height function estimate in Lemma 2.4. Because this comparison holds uniformly
on finite time-horizons, for any t+ > 0, uniformly in t ∈ [0, t+], we have the following in
which u(t,Φ) denotes the action of the Cole-Hopf solution to (1.3) on Φ:

|uN (t,Φ)− u(t,Φ)| 6 |〈uN,1,ε(t, ·),Φ〉T − u(t,Φ)|+ κ(Φ)ε+ κ(Φ)oN . (2.52)

Above, the constant κ(Φ) depends only on its argument Φ. Observe the LHS of (2.52)
does not depend on ε. Therefore, if we can show the first term on the RHS is bounded by
κ(Φ)ε+ κ(Φ)oN , then because ε on the RHS of (2.52) is arbitrary, we would be able to
deduce uN (t,Φ) → u(t,Φ) uniformly on [0, t+] in probability provided any finite t+ > 0

and Φ. As noted prior to (2.51), this would complete the proof of convergence. We first
note that by Lemma 2.2, it suffices to replace uN,1,ε in (2.52) with the Cole-Hopf solution
u1,ε to (1.3) with initial data the weak derivative of Brownian bridge independent of
ξ and conditioned to be within ε of h(0, ·). It then suffices to employ the following
estimate that compares solutions to (1.3) with initial data whose antiderivatives are very
close uniformly on T; precisely, we choose α = ε for the result below, and we choose
h1(0, ·) = h1,ε(0, ·) from Definition 2.1 and h2(0, ·) = h(0, ·):
Lemma 2.5. Suppose u1 and u2 are Cole-Hopf solutions to (1.3) with initial data u1 =

∇h1(0, ·) and u2 = ∇h2(0, ·), in which h1(0, ·) and h2(0, ·) are continuous on T and satisfy
the following uniformly in x ∈ T with probability 1:

|h1(0, x)− h2(0, x)| 6 α. (2.53)

Provided any Φ ∈ C∞(T), we have the following uniformly in t > 0 with probability 1,
where κ(Φ) depends only on Φ:

|〈u1(t, ·),Φ〉T − 〈u2(t, ·),Φ〉T| 6 κ(Φ)α. (2.54)

Proof. We first rewrite the LHS of (2.54) by realizing ui = ∇hi, where hi is the Cole-Hopf
solution to (1.1). We then move the gradient onto Φ and write hi = β−1 logZi, where Zi

solves the SHE ∂tZ
i = ∆Zi + βZiξ. This gives

〈u1(t, ·),Φ〉T − 〈u2(t, ·),Φ〉T = −β−1
(
〈logZ1(t, ·),∇Φ〉T − 〈logZ2(t, ·),∇Φ〉T

)
. (2.55)

Because hi are continuous and satisfy an a priori global estimate for the initial data,
it suffices to compare the solutions SHE with globally close initial data. This follows
by the comparison principle for the SHE equations with initial data exp(β(h2(0, x) ±
α)) and exp(βh1(0, x)). In particular, we know exp(βh2(0, x) − βα) 6 exp(βh1(0, x)) 6
exp(βh2(0, x) + βα) given our initial data assumption since β is positive. If we run the
SHE with these three initial data, the comparison principle [32] for the SHE implies this
two-sided bound remains true not just for time 0 but for any positive time t > 0 because
exp(±βα) are constants and SHE is linear. Because exponential and logarithm functions
preserve order, we deduce h2(t, x) − α 6 h1(t, x) 6 h2(t, x) + α for all t > 0 and x ∈ T.
Therefore, the RHS of (2.55) is controlled by the supremum of |∇Φ| times α|T| = α as T
is unit-length, so we are done.
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3 Proof of Theorem 1.6

For the sake of clarity, we will establish all the notation to be used in this section
in the following list. In particular, we will not inherit any notation used in the previous
sections unless explicitly mentioned in order to reset notation and avoid any possible
confusion in presentation.

• Consider a deterministic continuous function h(0, ·) thought of as initial data in
Theorem 1.6. We define h(t, x) as the Cole-Hopf solution to (1.1) with initial data
h(0, ·) and u(t, ·) = ∇h(t, ·) the Cole-Hopf solution to (1.3).

• Provided any positive ε, we define hε(0, ·) to be Brownian bridge independent of
ξ and conditioned to be within ε of h(0, ·) uniformly on T. We define hε(t, x) as
the Cole-Hopf solution to (1.1) with initial data hε(0, ·) and uε(t, ·) = ∇hε(t, ·) the
Cole-Hopf solution to (1.3). The noise in this and the previous bullet points are the
same noise in a pathwise sense.

• Lastly, we define h̃ε to be difference h − hε. This is a non-regularized analog of
hN,2,ε from Theorem 1.5.

Theorem 1.6 will follow from the list of estimates provided below, as we illustrate
after we present these estimates. Let us first note that we will use some notation
not-yet-established, so as to match it soon with notation in Theorem 1.6.

Lemma 3.1. We have |h̃ε(t, x)| 6 ε for all t > 0 and x ∈ T with probability 1.

Lemma 3.2. Let Qε denote the law of hε as a probability measure on C (T). Recalling
P∞ as the law of Brownian bridge on C (T), we have the relative entropy estimate
H(Qε|P∞) 6 κ(ε,h) for all ε, where κ(ε,h) depends only on ε and the modulus of
continuity of the initial data h(0, ·). Therefore, by Lemma C.2, the same relative entropy
estimate holds if we replace (Qε,P∞) by their respective pushforward under any common
map.

Lemma 3.3. We first let ∇Qε(t) denote the law of uε(t, ·) = ∇hε(t, ·) as a probability
measure on D(T), assuming the initial measure is given by ∇Qε, the pushforward of
Qε from Lemma 3.2 under the gradient map C (T) → D(T). Recalling from Theorem
1.6 that η denotes the Gaussian white noise measure on D(T), then for any t > 0, we
have H(∇Qε(t)|η) 6 exp(−Ct)H(∇Qε|η), in which C is a positive constant that depends
on nothing.

Let us now prove Theorem 1.6. We will choose Lε(t) therein to be ∇Qε(t) constructed
in Lemma 3.3. By Lemma 3.1, the Wasserstein estimate needed in Theorem 1.6 follows
immediately; the coupling between L(t) and Lε(t) = ∇Qε(t) used in the Wasserstein
metric is the coupling of u(t, ·) and uε(t, ·) used in the bullet points prior to Lemma 3.1,
namely coupling the noises that define u(t, ·) and uε(t, ·). Indeed, Lemma 3.1 implies that
for this coupling, u(t, ·) and uε(t, ·) are within ε of each other with respect to the metric
used in the Wasserstein distance; below, we adopt the integration notation introduced
and used in the proof of Lemma 2.3:

|〈u(t, ·),Φ〉T − 〈uε(t, ·),Φ〉T| = |〈h(t, ·),∇Φ〉T − 〈hε(t, ·),∇Φ〉T|

6 〈|h̃ε(t, ·)|, |∇Φ|〉T 6 ε sup
x∈T
|∇Φ(x)|.

The relative entropy estimate in Theorem 1.6 follows from combining Lemma 3.2 and
Lemma 3.3 with the observation that η = ∇P∞ as probability measures, where ∇P∞
denotes the pushforward of the Brownian bridge measure P∞ on C (T) ⊆ D(T) under
the gradient map. This completes the proof.
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Proof of Lemma 3.1. This follows from the proof of Lemma 2.5 for h1 = h(0, ·) and
h2 = hε(0, ·) and α = ε.

Proof of Lemma 3.2. As in the proof of Lemma 2.2, it amounts to estimate from below
the probability that Brownian bridge is within ε of a deterministic continuous function
on T; said estimate can only depend on ε and properties of said deterministic continuous
function. But this was estimated in the proof of Lemma 2.2, so we are done.

Proof of Lemma 3.3. Define uN,ε,1 as the solution to (1.9) for F(x) = x2 with initial data
given by ΠNuε. We then have limN→∞ uN,ε,1 = uε as measures on C (R>0,D(T)) because
the relative entropy of uε with respect to white noise η measure is uniformly bounded in
N by Lemma 3.2; this convergence follows as in the proof of Lemma 2.3. Because the
relative entropy is lower semi-continuous in both of its arguments jointly (see Appendix
1.8 in [31]), we then deduce the following relative entropy estimate in which ∇Qε,N (t) is
the law of uN,ε,1(t, ·) and (ΠN )∗η is the Fourier smoothing of white noise measure η:

H (∇Qε(t)|η) 6 lim sup
N→∞

H
(
∇Qε,N (t)|(ΠN )∗η

)
. (3.1)

We are left with estimating the RHS of (3.1). To this end, we differentiate the RHS in t.
As (ΠN )∗η is an invariant Gaussian measure for (1.9) when viewed as a multi-dimensional
SDE (see Section 2 of [21]), we get the classical entropy production inequality below (see
[24] or Appendix 1.9 in [31], which extends to the continuous state-space case easily);
the RHS below is non-positive, namely the negative of a Dirichlet form, as Markov
generators are non-positive definite:

∂tH
(
∇Qε,N (t)|(ΠN )∗η

)
. E(ΠN )∗ηRε,N (t)LNRε,N (t), (3.2)

where Rε,N (t) is the square root of the Radon-Nikodym derivative of ∇Qε,N (t) with
respect to (ΠN )∗η and LN is the generator for the SDEs (1.9), again for F(x) = x2. Let
us now observe:

• As noted in [19, 21, 23], the symmetric part of the generator LN , with respect
to (ΠN )∗η, can be written as

∑
|k|6N 1k 6=0L

(k)
OU , where L

(k)
OU is the generator of a

one-dimensional Ornstein-Uhlenbeck process of speed & 1. Indeed, (1.9) without
the asymmetry F diagonalizes via Fourier transform into independent Ornstein-
Uhlenbeck processes as in [19, 21, 23].

• The measure (ΠN )∗η is a product measure on Fourier coordinates k ∈ Z such that
|k| 6 N and k 6= 0, since η is a mean-zero space-time white noise on T. Moreover,

its marginal on the k-th Fourier coordinate is the invariant measure for L
(k)
OU ; see

[19, 21, 23].

• Each L
(k)
OU satisfies a log-Sobolev inequality with respect to its invariant measure,

the k-th marginal of the product measure (ΠN )∗η, with constant O(1). That is, for
any probability density f with respect to the k-th marginal of (ΠN )∗η, we have

E(ΠN )∗ηf log f . −E(ΠN )∗η
√
fL

(k)
OU

√
f. (3.3)

Thus, the sum over all {|k| 6 N, k 6= 0}, which gives the symmetric part of LN ,
satisfies a log-Sobolev inequality with constant O(1) with respect to the product
measure (ΠN )∗η (so-called “tensorization” of log-Sobolev inequalities). For this,
see Corollary 4.2 in [18].

This resulting LSI from the above bullet points gives us the following from (3.2), where
C is some positive universal constant that depends on nothing except the constant 1 in
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front of the Laplacian in (1.9) and would otherwise scale with the constants in front of
the Laplacian and noise therein:

∂tH
(
∇Qε,N (t)|(ΠN )∗η

)
6 −CH

(
∇Qε,N (t)|(ΠN )∗η

)
. (3.4)

From the previous differential inequality, we straightforwardly deduce

H
(
∇Qε,N (t)|(ΠN )∗η

)
6 exp(−Ct) · H

(
∇Qε,N (0)|(ΠN )∗η

)
. (3.5)

The relative entropy factor on the RHS of (3.5) is bounded by itself without the N -
superscripts, again because the N -superscript means pushforward under ΠN projec-
tions, and relative entropy is contractive with respect to pushforwards; see Lemma C.2.
Combining this observation with (3.1) completes the proof.

4 Fractional stochastic Burgers equation

Instead of (1.3), one can study the following stochastic PDE, in which we take
α ∈ (1/2, 1]:

∂tuα = −(−∆)αuα + β∇(u2
α) + (−∆)α/2ξ. (4.1)

Equations of this type were studied in [19, 23] for stationary initial data, but for α > 3/4

well-posedness and fairly robust analytic properties of (4.1) should be derivable via
regularity structures [26] or paracontrolled distributions [14] ( α = 3/4 is “critical” for
these theories). We note, however, that the anti-derivative of (4.1) satisfies the same
type of comparison principle that (1.2) does that we have used throughout this paper.
Moreover, for α > 3/4, equations of the following type should converge to solutions
of (4.1), in the same sense as in Theorem 1.5 and with the same assumptions on the
nonlinearity F in Assumption 1.3 and the initial data in Assumption 1.4; in the following,
ξN is a smoothing of the noise, for example via Fourier smoothing ΠN , and like in
Definition 1.1, we may include ΠN in front of the nonlinearity F below as well:

∂tu
N
α = −(−∆)αuNα + ε−1

N ∇F(ε
1/2
N uNα ) + (−∆)α/2ξN . (4.2)

This last convergence claim can be checked for stationary white noise initial data by
following the arguments of [21]; only the assumption α > 1/2 is needed for the analysis
therein, but α > 3/4 is needed for uniqueness of limit points that was established in [23].
For the reader’s convenience, let us note that the only estimate that needs be checked
in [21] is the following, used in the proof of the Boltzmann-Gibbs principle (Proposition
11 of [21]): ∑

16|k1|,|k2|6N
(|k1|α + |k2|α)−2 � N where α > 1/2. (4.3)

Since we have a maximum principle for equations of the type (4.2) (the fractional
Laplacian in (4.2) is the generator for a Markov process), we may use our methods to
prove a fractional version of Theorem 1.5 if α > 3/4, and if α > 1/2 more generally if
we settle for tightness, not convergence and identification of limit points. This depends
on the invariant measure of (4.2) models to be Gaussian white noise. In the same
spirit, we can also prove convergence to white noise invariant measure for arbitrary
continuous initial data similar to Theorem 1.6 but for the fractional stochastic Burgers
equation (4.1). Indeed, if we take an approximation to (4.1) by Fourier smoothing in
the same way as we did for (1.3) in the proof of Theorem 1.6, the symmetric part of
the resulting finite-dimensional SDE is again given by independent Ornstein-Uhlenbeck
processes with uniformly bounded from below speed. We conclude by emphasizing our
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methods provide a first, intrinsic or extrinsic, notion of solutions to (4.1) with general
continuous initial data; again, regularity structures [26] and paracontrolled distributions
[14] and energy solutions [19, 23] address Hölder regularity initial data, and for α 6= 1

the Cole-Hopf transform does not apply to make sense of (4.1). On the other hand, our
method depends crucially on regularizing the fractional stochastic Burgers equation in a
Markovian fashion with an explicit invariant measure, unlike regularity structures or
paracontrolled distributions.

A PDE estimates

Lemma A.1. For any N > 0 and any initial data uN,1(0, ·) ∈ ΠNL 2(T), with probability
1 there exists a unique process uN,1 ∈ C (R>0,ΠNL 2(T)) such that

uN,1(t, x) = uN,1(0, x) +

∫ t

0

∆uN,1(s, x)ds +

∫ t

0

ε−1
N ΠN∇F(ε

1/2
N uN,1(s, x))ds (A.1)

+ ∇ΠNBN (t, x).

where for each x ∈ T, the process BN (t, x) is a continuous martingale with quadratic
variation 2t. In particular, uN,1(t, x) is smooth in x for all t > 0 with probability 1.

Proof. This follows from the argument at the beginning of Section 4 of [19], but F

is not necessarily quadratic as it was in [19]. However, all we need from F is that∫
T
uN,1(t, x)∇F(ε

1/2
N uN,1(t, x)dx = 0 in order to use said argument from [19]. This rela-

tion is proved in Lemma 5 of [21]. (Technically, Lemma 5 of [21] shows that we can
move ∇F(ε

1/2
N ·) onto the other copy of uN,1 if we add a sign to the T-integral, so that

∇F(ε
1/2
N ·) is “asymmetric” with respect to Lebesgue measure on T. This certainly implies∫

T
uN,1(t, x)∇F(ε

1/2
N uN,1(t, x)dx = 0.) This completes the proof.

Lemma A.2. Suppose ∂tGt(x) = ∆Gt(x) for t > 0 and x ∈ T, and suppose G0(x) = δx as
measures. Then for any Φ ∈ L∞(T) and for any t > 0, we have

|(et∆Φ(·))(x)| = |
∫
T

Gt(x− y)Φ(y)dy| 6 sup
y∈T
|Φ(y)| (A.2)∫

T

|∇Gt(x)|dx . 1 + t−
1
2 . (A.3)

Proof. Let H solve ∂tHt(x) = ∆Ht(x) and H0(x) = δx on R>0 × R. By the method of
images, we have the following representation of G in terms of the full-line heat kernel
H:

Gt(x) =
∑
k∈Z

Ht(x + k). (A.4)

Above, we identify T ' R/Z ' [0, 1). Indeed, the RHS is 1-periodic. It converges because
H is Gaussian and decays sub-exponentially in space. Moreover, it is a sum of terms
that vanish under ∂t −∆. Lastly, for x ∈ T ' [0, 1), we have x + k 6∈ T if k 6= 0, so every
k 6= 0-term on the RHS vanishes at t = 0 and we recover just H0(x) = δx. By uniqueness
of solutions to the heat equation on T (the proof is the same as in the full line case), we
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prove the above relation holds. Using this relation, let us first estimate

|
∫
T

Gt(x− y)Φ(y)dy| 6 sup
y∈T
|Φ(y)| ×

∫
T

|Gt(x− y)|dy (A.5)

6 sup
y∈T
|Φ(y)| ×

∫
T

∑
k∈Z

|Ht(x + k)|dx (A.6)

6 sup
y∈T
|Φ(y)|

∫
R

|Ht(x)|dx = sup
y∈T
|Φ(y)|. (A.7)

Indeed, the last line follows by writing R as a disjoint union (over k ∈ Z) of k +T and a
standard Gaussian integration. We also have∫

T

|∇Gt(x)|dx 6
∫
T

∑
k∈Z

|∇Ht(x + k)|dx 6
∫
R

|∇Ht(x)|dx . 1 + t−
1
2 , (A.8)

where the last bound is a standard Gaussian estimate. This finishes the proof.

Lemma A.3. Suppose hN,2(0, ·) ∈ C 1(T). With probability 1, there exists a unique
hN,2 ∈ C (R>0,C 1(T)) such that for all t > 0 and x ∈ T, we have

hN,2(t, x) = (et∆hN,2(0, ·))(x) (A.9)

+

∫ t

0

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·)))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds. (A.10)

Above, ∇hN,1 = uN,1 from Lemma A.1. If, in addition to Assumption 1.3, we know F is
smooth and satisfies |∇kF(x)| .k 1, then hN,2 ∈ C (R>0,C 2(T)) and, with probability 1,
satisfies the following PDE pointwise in (t, x):

∂th
N,2 = ∆hN,2 + ε−1

N F(ε
1/2
N ∇(hN,1 + hN,2))− ε−1

N F(ε
1/2
N ∇h

N,1). (A.11)

Proof. Let us first note that by Lemma A.1, all derivatives of hN,1 are defined pointwise
with probability 1. We now start with a contraction mapping argument. Let X be the set
of functions f ∈ C (R>0,C 1(T)) such that f(0, ·) = hN,2(0, ·). Define the nonlinear map S

acting on X by

Sf(t, x) = (et∆f(0, ·))(x) (A.12)

+

∫ t

0

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + f(s, ·))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds.

(A.13)

Given f1, f2 ∈X , because f1(0, ·) = f2(0, ·) by definition of X , we have

Sf1(t, x)−Sf2(t, x) (A.14)

= ε−1
N

∫ t

0

(
e(t−s)∆

(
F(ε

1/2
N ∇(hN,1(s, ·) + f1(s, ·)))− F(ε

1/2
N ∇(hN,1(s, ·) + f2(s, ·)))

))
(x)ds

(A.15)

∇Sf1(t, x)−Sf2(t, x) = (A.16)

ε−1
N

∫ t

0

(
∇e(t−s)∆

(
F(ε

1/2
N ∇(hN,1(s, ·) + f1(s, ·)))− F(ε

1/2
N ∇(hN,1(s, ·) + f2(s, ·)))

))
(x)ds.

(A.17)
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Because F is uniformly Lipschitz, by Lemma A.2 and elementary manipulations, we
have the following bounds in which the implied constant depends on F only through its
Lipschitz constant:

| (A.15)| .N,F
∫ t

0

∫
T

|Gt−s(x− y)| × |∇f1(s, y)−∇f2(s, y)|dyds (A.18)

6 t sup
06s6t

sup
y∈T
|∇f1(s, y)−∇f2(s, y)| (A.19)

| (A.17)| .N,F
∫ t

0

∫
T

|∇Gt−s(x− y)| × |∇f1(s, y)−∇f2(s, y)|dyds (A.20)

.
∫ t

0

(1 + |t− s|− 1
2 )ds sup

06s6t
sup
y∈T
|∇f1(s, y)−∇f2(s, y)| (A.21)

. (t + t
1
2 ) sup

06s6t
sup
y∈T
|∇f1(s, y)−∇f2(s, y)|. (A.22)

By the above two displays, there exists c = c(N,F) > 0 such that if T0 6 c, then S is a
contraction on the space of functions f in C ([0, T0],C 1(T)) such that f(0, ·) = hN,2(0, ·).
This is a closed subspace of a Banach space C ([0, T0],C 1(T)), so it itself is a Banach
space. Therefore, there is a unique fixed point of S. This gives mild solutions until time
T0 with probability 1. Because the life-time T0 does not depend on the initial data, we
can iterate and obtain mild solutions for infinite life-time with probability 1.

It remains to show that if F is smooth, then we have classical C 2(T)-valued solutions.
To this end, consider the same map S but acting on Y , where Y is the space of functions
f ∈ C (R>0,C 2(T)) such that f(0, ·) = hN,2(0, ·). For any f1, f2 ∈ Y , we have

∇2Sf1(t, x)−∇2Sf2(t, x) = ε−1
N × (A.23)∫ t

0

(
∇e(t−s)∆

(
∇F(ε

1/2
N ∇(hN,1(s, ·) + f1(s, ·)))−∇F(ε

1/2
N ∇(hN,1(s, ·) + f2(s, ·)))

))
(x)ds.

We now compute the ∇F-terms. By the chain rule, for i = 1, 2 we have

∇F(ε
1/2
N ∇(hN,1(s, ·) + fi(s, ·))) (A.24)

= ε
1/2
N F′(ε

1/2
N ∇(hN,1(s, ·) + fi(s, ·)))(∇2hN,1(s, ·)−∇2fi(s, ·)). (A.25)

Thus, because F has uniformly bounded derivatives by assumption, we deduce

|∇F(ε
1/2
N ∇(hN,1(s, ·) + f1(s, ·)))−∇F(ε

1/2
N ∇(hN,1(s, ·) + f2(s, ·)))| (A.26)

.N,F |∇f1(s, ·)−∇f2(s, ·)|+ |∇2f1(s, ·)−∇2f2(s, ·)|. (A.27)

Combining the previous three displays with Lemma A.2, we deduce

| (A.23)| (A.28)

.N,F

∫ t

0

∫
T

|∇Gt−s(x− y)| ×
(
|∇f1(s, y)−∇f2(s, y)|+ |∇2f1(s, y)−∇2f2(s, y)|

)
dyds

(A.29)

.
∫ t

0

(1 + |t− s|− 1
2 )ds× sup

06s6t
sup
y∈T

(
|∇f1(s, y)−∇f2(s, y)|+ |∇2f1(s, y)−∇2f2(s, y)|

)
(A.30)

. (t + t
1
2 ) sup

06s6t
sup
y∈T

(
|∇f1(s, y)−∇f2(s, y)|+ |∇2f1(s, y)−∇2f2(s, y)|

)
. (A.31)

In particular, there exists c′ = c′(N,F) > 0 such that if T0 6 c′, then S is a contraction
on Y , which is a closed subspace of the Banach space C (R>0,C 2(T)) is therefore a

EJP 28 (2023), paper 17.
Page 22/26

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP908
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universality in non-stationarity

Banach space itself. This gives a fixed point and thus classical C 2(T)-valued solutions
for life-time T0, which we can again bootstrap to infinite life-time, all with probability 1.
To show this solution hN,2 satisfies (A.11) pointwise with probability 1, we compute by
using ∂tet∆ = ∆et∆ and the fundamental theorem of calculus as follows:

∂th
N,2(t, x) = ∂t(e

t∆hN,2(0, ·))(x) (A.32)

+ ∂t

∫ t

0

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·)))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds

(A.33)

= ∆(et∆hN,2(0, ·))(x) (A.34)

+

∫ t

0

∂t

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·)))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds

(A.35)

+
(

e(t−s)∆
(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·)))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))
|s=t (A.36)

= ∆(et∆hN,2(0, ·))(x) (A.37)

+ ∆

∫ t

0

(
e(t−s)∆

(
ε−1
N F(ε

1/2
N ∇(hN,1(s, ·) + hN,2(s, ·)))− ε−1

N F(ε
1/2
N ∇h

N,1(s, ·))
))

ds

(A.38)

+ ε−1
N F(ε

1/2
N ∇(hN,1 + hN,2))− ε−1

N F(ε
1/2
N ∇h

N,1). (A.39)

We note that setting s = t in (A.36) is, rigorously, equal to removing e(t−s)∆ (because it
is a delta function at s = t) and evaluating the rest at s = t and · = x. This is because
what is inside e(t−s)∆ (and thus what is being integrated against an approximation to the
identity) is continuous in space-time with probability 1 (because of almost sure regularity
of F and ∇hN,1 and ∇hN,2). Now, note (A.37)-(A.38) is equal to ∆hN,2(t, x), and (A.39)
is the rest of (A.11). This completes the proof.

B Wasserstein distance

In this section, we specialize to the Polish space given by the space of differentiable
functions on T that are bounded and whose derivatives are bounded. We will let X
denote its Banach dual, equipped with the operator norm topology.

Definition B.1. Provided any probability measures P(1),P(2) on X , the Wasserstein
metric is given by the following in which the infimum is given over all couplings of P(1)

and P(2), namely all measures P(1, 2) on X ×X such that the projection onto the first
coordinate is P(1) and the projection onto the second coordinate is P(2):

W(P(1),P(2)) = inf
(u1,u2)∼P(1,2)

EP(1,2)‖u1 − u2‖X . (B.1)

C Relative entropy

Definition C.1. Provided any complete separable metric space S and any two prob-
ability measures P(1) and P(2), the relative entropy of P(1) with respect to P(2) is
equal to∞ if P(1) is not absolutely continuous with respect to P(2), and if it is (so that
P(1) � P(2)), it is the following in which R(1, 2) is the Radon-Nikodym derivative of
P(1) with respect to P(2) and in which the expectation below is with respect to P(2):

H(P(1)|P(2))
•
= EP(2)R(1, 2) logR(1, 2). (C.1)
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We now collect a set of standard relative entropy estimates that are used crucially in
this paper. These estimates are used in [17, 21], for example, and are rather standard,
so we only provide brief proofs.

Lemma C.2. Consider any complete separable metric space S with any two probability
measures P1 and P2 and any event E ⊆ S . We first have the following entropy inequality:

P1(E) 6
(
log 2 + H(P1|P2)

) (
log
(
1 + P2(E)−1

))−1
. (C.2)

Retain the context prior to (C.2). For another complete separable metric space S ′ and
continuous map Π : S → S ′, if Π∗ denotes the pushforward on probability measures on
S , we have the following contraction principle:

H(Π∗P
1|Π∗P2) 6 H(P1|P2). (C.3)

We now let P1,dyn and P2,dyn be path-space measures on C (R>0,S ) given by the same
Markov process valued in S but with initial law given by P1 and P2, respectively. Then
the relative entropy of P1,dyn with respect to P2,dyn is controlled by that of P1 with
respect to P2, so that we have the following inequality:

H(P1,dyn|P2,dyn) 6 H(P1|P2). (C.4)

Lastly, if a sequence of path-space measures {P2,dyn,N}N>0 on C (R>0,S ) is tight and
the relative entropies of another set of path-space measures {P1,dyn,N}N>0 with respect
to {P2,dyn,N}N>0 are uniformly bounded in N , then the sequence {P1,dyn,N}N>0 on
C (R>0,S ) is also tight.

Proof. The estimate (C.2) is (2.6) in [17]. Proving (C.3) starts with the duality formula
below for relative entropy, which itself follows by noting the convex conjugate of x log x

is ex (see Corollary 4.15 in [6]):

H(Π∗P
1|Π∗P2) = sup

ψ∈L∞(S ′)

(
EΠ∗P

1

ψ − logEΠ∗P
2

eψ
)
. (C.5)

For any ψ ∈ L∞(S ′), we have the following by definition of pushforward:

EΠ∗P
1

ψ − logEΠ∗P
2

eψ = EP1

ψ ◦Π− logEP2

ψ ◦Π. (C.6)

If ψ ∈ L∞(S ′), then ψ ◦Π ∈ L∞(S ). Thus,

sup
ψ∈L∞(S ′)

(
EΠ∗P

1

ψ − logEΠ∗P
2

eψ
)

= sup
ψ∈L∞(S ′)

(
EP1

ψ ◦Π− logEP2

ψ ◦Π
)

(C.7)

6 sup
ψ∈L∞(S )

(
EP1

ψ − logEP2

eψ
)
, (C.8)

which gives (C.3) when combined with (C.5). The estimate (C.4) follows from condi-
tioning the path-space measures Pi,dyn as the same path-space measure with initial
conditions sampled via Pi data, respectively, and then employing the chain rule for
relative entropy (see Section 4.2 in [6]), which cancels the contribution of the shared
path-space part of each Pi,dyn measure. In particular, by said chain rule for relative
entropy, we decompose H(P1,dyn|P2,dyn) into relative entropy of initial data laws plus
“worst-case relative entropy” of the dynamics themselves:

H(P1,dyn|P2,dyn) 6 H(P1|P2) + sup
s∈S

H(P1,dyn|s|P2,dyn|s), (C.9)
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where H(P1,dyn|s|P2,dyn|s) is the relative entropy of the path-space measure P1,dyn

conditioning on the initial data to be s ∈ S , with respect to P2,dyn conditioning on
the same initial data s ∈ S . But these two path-space measures are the same because
they have the same initial data and same dynamics, so the sup on the RHS above is
equal to zero. The last paragraph follows by (C.2), which estimates complements of
compact sets in C (R>0,S ) under P1,dyn,N by their probabilities under P2,dyn,N and
using tightness of P2,dyn,N .
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