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Transience and anchored isoperimetric dimension of
supercritical percolation clusters

Tom Hutchcroft*

Abstract

We establish several equivalent characterisations of the anchored isoperimetric di-
mension of supercritical clusters in Bernoulli bond percolation on transitive graphs.
We deduce from these characterisations together with a theorem of Duminil-Copin,
Goswami, Raoufi, Severo, and Yadin (Duke Math. J. 2020 ) that if G is a transient
transitive graph then the infinite clusters of Bernoulli percolation on G are transient
for p sufficiently close to 1. It remains open to extend this result down to the critical
probability. Along the way we establish two new cluster repulsion inequalities that
are of independent interest.
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1 Introduction

Let G = (V,E) be a connected, locally finite graph. In Bernoulli bond percolation,
the edges of G are each either deleted or retained independently at random, with
retention probability p ∈ [0, 1], to obtain a random subgraph Gp of G. Retained edges
are referred to as open and deleted edges are referred to as closed, with the connected
components of the open subgraph Gp referred to as clusters. We will be primarily
interested in the case that G is transitive, meaning that for any two vertices u and
v of G there exists an automorphism mapping u to v. When G is infinite, the critical
probability pc = pc(G) is defined by

pc = inf
{
p ∈ [0, 1] : Gp has an infinite cluster almost surely

}
,

which typically satisfies pc < 1 once obvious ‘one-dimensional’ counterexamples such as
the line graph Z are excluded [24, 45, 17, 34].

Many of the most interesting questions concerning percolation in the supercritical
phase pc < p < 1 can be phrased as follows: To what extent do the geometries of the
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Anchored isoperimetry in supercritical percolation

infinite clusters of Gp resemble the geometry of the ambient graph G? In particular, does
the random walk on the infinite clusters of Gp have similar behaviour to the random walk
on G? These questions are already interesting in the perturbative regime 1−p� 1 where
they are closely related to models in which the edges of G are assigned independent
random lengths [42]. In the classical case of the hypercubic lattice Zd, a rich and
detailed theory has been developed following the foundational works of Grimmett and
Marstrand [28] and Antal and Pisztora [5], with further significant works establishing
the transience of the infinite cluster for d ≥ 3 [27], the sharp isoperimetric inequalities
and heat kernel estimates [40, 7, 43, 16], and convergence of the random walk on the
infinite cluster to Brownian motion [14, 39]. See also [16, 15, 23, 49, 22, 8, 13] for
related results on long-range models. A systematic study of similar questions beyond
Zd was initiated in the seminal work of Benjamini, Lyons, and Schramm [10]. Despite
significant progress of many authors [32, 20, 9, 25, 19, 48], a comprehensive theory of
supercritical percolation on transitive graphs is still to be developed and several very
basic problems remain open.

In this paper we are interested primarily in the isoperimetry of the infinite clusters,
that is, the boundary/volume ratios of finite subsets of the cluster. Understanding the
isoperimetry of a graph is closely entwined with understanding the behaviour of random
walk on that graph, see e.g. [36, 38] for background. Let G be a connected, locally finite
graph and let d > 1. We say that G satisfies a uniform1 d-dimensional isoperimetric
inequality if there exists a positive constant c such that

|∂EW | ≥ c ·
(∑
w∈W

deg(w)
)(d−1)/d

for every finite set of vertices W ⊆ V , where ∂EW denotes the set of edges with one
endpoint in W and the other in V \W . The uniform isoperimetric dimension of G
is defined to be the supremal value of d for which G satisfies a uniform d-dimensional
isoperimetric inequality. It is a consequence of a theorem of Coulhon and Saloff-Coste
[21] that a transitive graph satisfies a uniform d-dimensional isoperimetric inequality if
and only if it has at least d-dimensional volume growth in the sense that its balls B(v, r)

satisfy |B(v, r)| ≥ crd for some c > 0. Moreover, the classification of transitive graphs
of polynomial volume growth due to Gromov [31] and Trofimov [47] implies that every
transitive graph satisfying |B(v, r)| ≤ CrC for some C <∞ and infinitely many r must
satisfy |B(v, r)| � rd for some integer d ≥ 0, where we write � for an equality holding to
within two positive constants. Thus, every transitive graph of polynomial growth has
a well-defined integer dimension d that describes both its volume growth and uniform
isoperimetric dimension, while transitive graphs of superpolynomial growth have infinite
uniform isoperimetric dimension.

Since for pc < p < 1 the infinite clusters of Gp always contains arbitrarily large ‘bad
zones’ whose induced subgraphs are isomorphic to paths, they cannot satisfy any non-
trivial uniform isoperimetric inequality. These considerations led Benjamini, Lyons, and
Schramm [10] to introduce the notion of anchored isoperimetric inequalities, which are
similar in spirit to uniform isoperimetric inequalities but weak enough to potentially hold
in non-trivial random examples. We say that a graph G = (V,E) satisfies an anchored
d-dimensional isoperimetric inequality if for some (and hence every) vertex v of G
there exists a positive constant c(v) such that

|∂EW | ≥ c(v) ·
(∑
w∈W

deg(w)
)(d−1)/d

1An inequality of this form is usually referred to simply as an isoperimetric inequality. We prepend the word
‘uniform’ to distinguish from the other kinds of isoperimetric inequalities we consider.
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Anchored isoperimetry in supercritical percolation

for every finite connected set of vertices W ⊆ V that contains v. As before, the anchored
isoperimetric dimension of G is defined to be the supremal value of d for which G

satisfies an anchored d-dimensional isoperimetric inequality. It follows from a theorem
of Thomassen [46] that graphs of anchored isoperimetric dimension strictly larger than
2 are transient for simple random walk.

Our main theorem establishes four equivalent characterisations of the anchored
isoperimetric dimension of supercritical percolation clusters on a transitive graph.
Before stating this theorem let us briefly introduce some relevant notation. Given a
set S ⊆ V and a vertex v /∈ S, we write {S ↔ ∞} for the event that S is connected to
infinity by an open path, write {S = ∞} for the complement of this event, and write
{v ↔ ∞ off S} for the event that v is connected to infinity by an open path that does
not visit any vertex of S. We write ∂→E S for the set of oriented edges e with e− ∈ S and
e+ /∈ S; although our graphs are unoriented it is convenient to think of each edge as
corresponding to a pair of oriented edges. We also fix an arbitrary ‘origin’ vertex o of V
and write K for the cluster of this vertex in Gp.

Theorem 1.1 (Characterisation of the isoperimetric dimension of percolation clusters).
Let G = (V,E) be a connected, locally finite, transitive graph, let pc ≤ p0 < 1 and let
d ∈ (1,∞]. The following are equivalent:

(i) For each p0 < p ≤ 1 and d′ < d there exists a positive constant c = c(p, d′) such that

Pp(S =∞) ≤ exp
[
−c|S|(d

′−1)/d′
]

(1.1)

for every finite, non-empty set S ⊆ V .

(ii) For each p0 < p ≤ 1 and d′ < d there exists a positive constant c = c(p, d′) such that∑
e∈∂→

E S

Pp
(
e+ ↔∞ off S

)
≥ c|S|(d

′−1)/d′ (1.2)

for every finite, non-empty set S ⊆ V .

(iii) For each p0 < p ≤ 1 and d′ < d there exists a positive constant c = c(p, d′) such that

Pp(n ≤ |K| <∞) ≤ exp
[
−cn(d

′−1)/d′
]

(1.3)

for every v ∈ V and n ≥ 1.

(iv) For each p0 < p ≤ 1, every infinite cluster of Gp has anchored isoperimetric
dimension at least d almost surely.

The equivalence (i)⇔ (ii) and the implications (ii)⇒ (iii)⇒ (iv) do not require transitivity
and hold for any bounded degree graph.

Remark 1.2. The freedom to reduce the dimension by an arbitrarily small amount is
needed in the proof of (iii)⇒ (iv) but not in any other step of the proof. Quantitatively,
the proof of (iii)⇒ (iv) yields that if the bound (1.3) holds for some specific pc < p < 1

and d′ > 1 then every infinite cluster of Gp satisfies an anchored (log t)−1t(d
′−1)/d′ -

isoperimetric inequality almost surely, see Proposition 3.1.

Remark 1.3. The proofs of the individual propositions making up the various impli-
cations of Theorem 1.1 all allow one to consider isoperimetric inequalities defined in
terms of a general function φ, which we take to be φ(t) = t(d−1)/d when applying these
propositions to prove Theorem 1.1.
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In the classical case of Zd, the tail bound (1.3) was proven to hold with d′ = d for
every pc < p < 1 by Kesten and Zhang [35] conditional on the then-conjectural Grimmett-
Marstrand theorem [28] (see [4] for a matching lower bound), and the infinite cluster
was proven to satisfy an anchored d-dimensional isoperimetric inequality by Pete [43]
(see also [40]); Theorem 1.1 shows that these two results are equivalent up to changing
the relevant exponents by an arbitrarily small amount. Beyond the Euclidean setting,
Contreras, Martineau, and Tassion [20] have recently shown that if G is a d-dimensional
transitive graph then (1.3) holds with d′ = d for every pc < p < 1. Thus, Theorem 1.1
allows us to conclude in this setting that the infinite clusters have anchored isoperimetric
dimension d almost surely for every pc < p < 1. This result is new outside the Euclidean
case.

Corollary 1.4. Let G = (V,E) be a connected, locally finite, transitive graph. If G has
polynomial volume growth of dimension d then the infinite cluster of Gp has anchored
isoperimetric dimension d almost surely for every pc < p ≤ 1.

As mentioned above, supercritical percolation remains very poorly understood on
general transitive graphs: while we expect that infinite supercritical percolation clusters
on a transitive graph of superpolynomial growth should have infinite isoperimetric
dimension almost surely, our current understanding is not even sufficient to prove that
this dimension is strictly greater than 1!

The one case where the problem is well-understood is the nonamenable case, in which
G satisfies an isoperimetric inequality of the form |∂EW | ≥ c|W |, where we established
in joint work with Hermon [32] that for each pc < p < 1 there exists cp > 0 such that
Pp(n ≤ |K| < ∞) ≤ e−cpn and hence that infinite clusters have anchored expansion
almost surely for every pc < p < 1. A key step in this proof [32, Proposition 2.4] was to
establish an inequality of the form∑

e∈∂→
E S

Pp
(
e+ ↔∞ off S

)
≥ c|S|,

the analogue of (1.2) in the nonamenable case. The methods of this paper yield a much
simpler method for concluding the rest of the proof given this estimate, see Section 2.

Although we currently lack tools to analyze the whole supercritical regime pc < p < 1

on amenable transitive graphs of superpolynomial growth, we are able to apply Theo-
rem 1.1 in conjunction with the results of Duminil-Copin, Goswami, Raoufi, Severo, and
Yadin [24] to prove that the infinite clusters have infinite isoperimetric dimension for p
sufficiently close to 1. Before stating their result, we recall that the capacity Cap(S) of
a finite set of vertices in a graph G is defined to be Cap(S) =

∑
v∈S deg(v)Pv(τ

+
S =∞),

where Pv(τ
+
S =∞) denotes the probability that a simple random walk started at v never

returns to S after time zero. It is a consequence of a theorem of Lyons, Morris, and
Schramm [37, Theorem 6.1] (see also [38, Theorem 6.41]) that if G satisfies a uniform d-
dimensional isoperimetric inequality for some d > 2 then there exists a positive constant
c such that Cap(S) ≥ c|S|(d−2)/d for every finite set of vertices S.

Theorem 1.5 (DGRSY). Let G = (V,E) be a bounded degree graph satisfying a uniform
d-dimensional isoperimetric inequality for some d > 4. Then there exist p0 < 1 and c > 0

such that

Pp(S =∞) ≤ exp

[
−1

2
Cap(S)

]
≤ exp

[
−c|S|(d−2)/d

]
(1.4)

for every p0 ≤ p ≤ 1 and every finite set S ⊆ V .

Note that for Cayley graphs of finitely presented groups, a significantly easier
argument is available due to Babson and Benjamini [6] that establishes sharp upper
bounds on Pp(S =∞) for p close to 1 via a Peierls-type argument.
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Since the implications (i)⇒ (ii)⇒ (iii)⇒ (iv) of Theorem 1.1 do not require transitivity,
and since the exponent (d − 2)/d = 1 − 2/d appearing in (1.4) can also be written as
((d/2)− 1)/(d/2), we obtain the following corollary.

Corollary 1.6. Let G = (V,E) be a connected, bounded degree graph with uniform
isoperimetric dimension d ∈ (4,∞]. Then there exists p0 = p0(G) < 1 such that if p > p0
then every infinite cluster of Gp is transient and has anchored isoperimetric dimension
at least d/2 almost surely.

In conjunction with Corollary 1.4, we deduce that if G is a transient transitive graph
then there exists p0 < 1 such that if p0 < p < 1 then every infinite cluster of Gp is
transient almost surely; this result was conjectured to hold for all p > pc by Benjamini,
Lyons, and Schramm [10, Conjecture 1.7]. As observed in [42], this is equivalent to the
statement that G remains transient a.s. when its edges are given i.i.d. finite resistances
regardless of what the law of these resistances are. Previously, the same conclusion
was established for graphs admitting an exponential intersection tail (EIT) measure on
paths in the work of Benjamini, Peres, and Pemantle [11] (see also [12]); it is currently
unclear whether every transitive transient graph admits such a measure, with the most
general criterion currently due to Raoufi and Yadin [44]. (On the other hand, the EIT
approach has recently been shown to be useful in the study of symmetry breaking in
continuous-symmetry spin systems [26, 1] in three and more dimensions, for which our
methods do not seem relevant.)

About the proof. The equivalence (i)⇔ (ii) is a consequence of standard facts about
increasing events. The implication (ii)⇒ (iii) is a consequence of the cluster repulsion
inequalities we develop in Section 2. Indeed, perhaps the most important insight of the
paper is that it is significantly easier to prove sprinkled cluster repulsion inequalities
than it is to prove the more usual forms of these inequalities, allowing us to sidestep the
more difficult steps of [32, 43]. Although it is not used in the proof of the main theorem,
we also show how a related cluster repulsion inequality without sprinkling can be proven
using martingale techniques inspired by the classical work of Aizenman, Kesten, and
Newman [2]. Finally, we show how the methods of Pete [19] yield the implication (iii)⇒
(iv) in Section 3 and complete the remaining steps of the proof in Section 4.

2 Cluster repulsion inequalities

A central contribution of this paper is the establishment of new cluster repulsion
inequalities stating that it is hard for a finite cluster to touch the infinite cluster in a
large number of places. The use of such inequalities was pioneered by Pete [43], who
proved a very strong cluster repulsion inequality for percolation on Zd and deduced that
the infinite supercritical cluster always satisfies an anchored d-dimensional isoperimetric
inequality. Letting τ(A,B) denote the number of edges with one endpoint in A and the
other in B and letting K∞ denote the union of infinite clusters in Gp, Pete proved that if
G = Zd and pc < p < 1 then there exists a positive constant c = c(p, d) such that

Pp(m ≤ |K| <∞ and τ(K,K∞) ≥ t) ≤ exp
[
−cmax{m(d−1)/d, t}

]
for every m ≥ 1 and t ≥ 0. Once this inequality is established, one can deduce the
anchored d-dimensional isoperimetric inequality for the infinite cluster by a simple
counting argument similar to that carried out in the proof of Proposition 3.1 below.
Pete’s proof uses a renormalization argument and is not applicable to transitive graphs
beyond the Euclidean setting.

The main proposition of this section establishes a simple sprinkled cluster repulsion
inequality that holds for any graph. Let 0 < p1 < p2 < 1 and consider the standard
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monotone coupling of Gp1 and Gp2 as described in [29, Chapter 2], where conditional
on Gp1 every open edge of Gp1 is open in Gp2 and the closed edges of Gp1 are open or
closed in Gp2 independently at random with probability (p2 − p1)/(1− p1) to be open. We
write Kv,p2 for the cluster of v in Gp2 and write K∞,p1 for the union of all infinite clusters
in Gp1 .

Proposition 2.1 (Cluster repulsion with sprinkling). Let G = (V,E) be a connected,
locally finite graph, and let 0 < p1 < p2 < 1. The inequality

P
(
|Kv,p2 | <∞ and τ

(
Kv,p2 ,K∞,p1

)
≥ n

)
≤
(

1− p2
1− p1

)n
holds for every v ∈ V and n ≥ 1.

The proof of Proposition 2.1 is not hard, and it is surprising that it has not been
observed before. As mentioned above, it allows us to significantly simplify the analysis of
[32]. It also easily leads us to the implication (ii)⇒ (iii) of Theorem 1.1 via the following
more general corollary. Given a set of vertices S in a graph G we write E(S) for the set
of edges that touch S, i.e., have at least one endpoint in S. By a slight abuse of notation,
we will also write E(Kv) for the set of edges that touch Kv (the set of edges that belong
to Kv as a subgraph is later denoted Eo(Kv)).

Corollary 2.2. Let G = (V,E) be a connected, locally finite graph and suppose that
pc ≤ p1 < 1, φ : (0,∞)→ (0,∞), and c > 0 are such that∑

e∈∂→
E S

Pp1
(
e+ ↔∞ off S

)
≥ c · φ(|E(S)|)

for every S ⊆ V finite. Then

Pp2(|E(Kv)| = n) ≤ 2n

cφ(n)

(
1− p2
1− p1

)cφ(n)/2
for every p1 < p2 ≤ 1 and n ≥ 1.

The proof of this corollary will use the fact that if X is a random variable taking
values in [0,M ] for some 0 < M <∞ then

P (X > θEX) = 1−P (M −X ≥M − θEX) ≥ 1− M − EX
M − θEX

=
(1− θ)EX
M − θEX

≥ (1− θ)EX
M

(2.1)
for every 0 < θ < 1, where we applied Markov’s inequality to M − X in the central
inequality.

Proof of Corollary 2.2 given Proposition 2.1. Fix p1 < p2 ≤ 1, φ, and c as in the state-
ment of the corollary. We couple Gp1 and Gp2 in the standard monotone way, let
K1 = Kv,p1 , let K2 = Kv,p2 , and let Z = τ(Kv,p2 ,K∞,p1). Conditional on K2, the restric-
tion of Gp1 to the subgraph induced by Kc

2 = V \K2 is distributed as Bernoulli-p1 bond
percolation on this subgraph. As such, we have by assumption that

E [Z | K2] ≥ min
{
Ep1

[
|{e ∈ ∂→E S : e+

p1←→∞ off S}|
]

: S ⊆ V, |E(S)| = |E(K2)|
}

≥ cφ(|E(K2)|)

almost surely when K2 is finite. Applying (2.1) to the conditional distribution of Z given
|E(K2)| = n with M = n and θ = 1/2, it follows that

P
(
Z ≥ c

2
φ(n) | |E(K2)| = n

)
≥ P

(
Z ≥ 1

2
E [Z | |E(K2)| = n] | |E(K2)| = n

)
≥ cφ(n)

2n
(2.2)
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for every n ≥ 1. On the other hand, we also have by Proposition 2.1 that

P
(
Z ≥ c

2
φ(n) | |E(K2)| = n

)
= P

(
|K2| <∞, Z ≥

c

2
φ(n) | |E(K2)| = n

)
≤ P

(
|K2| <∞, Z ≥

c

2
φ(n)

)
P(|E(K2)| = n)−1

≤
(

1− p2
1− p1

)cφ(n)/2
P(|E(K2)| = n)−1,

for every n ≥ 1, which yields the claimed inequality when compared with (2.2).

We now begin the proof of Proposition 2.1. We begin by making note of the following
fact.

Lemma 2.3. Let G = (V,E) be a connected, locally finite graph, let 0 < p1 < p2 < 1,
and consider the standard monotone coupling of Gp1 and Gp2 . Let K∞,p1 be the set of
vertices connected to infinity in Gp1 . Conditional on K∞,p1 , the edges of Gp2 that have
both endpoints in the complement Kc

∞,p1 = V \ K∞,p1 are distributed as Bernoulli-p2
bond percolation on the subgraph of G induced by Kc

∞,p1 .

Proof of Lemma 2.3. Let (Vn)n≥0 be an exhaustion of V by finite sets, and for each n ≥ 1

let Kn,p1 denote the set of vertices connected to V cn = V \ Vn in Gp1 . It is clear that if
we condition on Kn,p1 , the edges of Gp2 that have both endpoints in the complement
Kc
n,p1 = V \Kn,p1 are distributed as Bernoulli-p2 bond percolation on the subgraph of

G induced by Kc
n,p1 . The claim follows by taking the limit as n → ∞ and noting that

Kn,p1 → K∞,p1 as n→∞ since G is connected and locally finite.

Proof of Proposition 2.1. Let K ′v,p2 be the cluster of v in the subgraph of Gp2 induced
by Kc

∞,p1 . If Kv,p2 is finite and has m edges in its boundary touching K∞,p1 , the cluster
K ′v,p2 must be finite and have m edges in its boundary touching K∞,p1 , all of which are
closed in Gp2 . The conditional probability that all these edges are closed given K ′v,p2 and
K∞,p1 is (1− p2)m/(1− p1)m, so that

P
(
|Kv,p2 | <∞ and τ

(
Kv,p2 ,K∞,p1

)
≥ n

)
=
∑
m≥n

P
(
|K ′v,p2 | <∞ and τ

(
Kv,p2 ,K∞,p1

)
= m

)
=
∑
m≥n

(
1− p2
1− p1

)m
P
(
|K ′v,p2 | <∞ and τ

(
K ′v,p2 ,K∞,p1

)
= m

)
≤
(

1− p2
1− p1

)n
P
(
|K ′v,p2 |<∞ and τ

(
K ′v,p2 ,K∞,p1

)
≥ n

)
≤
(

1− p2
1− p1

)n
for every n ≥ 1 as claimed.

2.1 Cluster repulsion via martingales

In this section we prove another cluster repulsion inequality that replaces the need
to sprinkle with the condition that |Kv| is much smaller than τ(Kv,K∞)2. This inequality
is not needed for the proof of the main theorem but is included since it is of indepen-
dent interest. The proof is inspired by Aizenman, Kesten, and Newman’s proof of the
uniqueness of the infinite cluster in Zd [2] (see also [18]), and more specifically on the
martingale arguments we used to prove generalisations of this inequality in [33].
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Proposition 2.4 (Cluster repulsion via martingales). Let G = (V,E) be a connected,
locally finite graph, and let 0 < p < 1. The inequality

P (|E(Kv)| ≤ m and τ(Kv,K∞) ≥ n) ≤ 2 exp

[
−p

2n2

8m

]
holds for every v ∈ V and n,m ≥ 1.

Since this inequality is not needed for the proof of our main theorems we will be a
little sketchy in the details.

Sketch of proof. We will define two bounded-increment martingales, with respect to
different filtrations, such that at least one of the two martingales is atypically large if
τ(Kv,K∞)� |E(Kv)|1/2.

Let us first recall the usual method for producing a martingale by exploring a
percolation cluster, referring the reader to [33, Theorem 1.6] for further details. If H is
a locally finite graph and v is a vertex of H, we can algorithmically explore the cluster
of v in Hp in an edge-by-edge fashion by first fixing an enumeration of the edges of H
and, at each step, querying the status of the edge that is minimal with respect to this
enumeration among those edges that are adjacent to the revealed part of the cluster
and have not yet been queried. Moreover, if Ei denotes the ith edge queried by this
procedure and T denotes the first time that we have queried every edge touching Kv,
which is finite if and only if Kv is finite, then

Zn =

n∧T∑
i=1

[(1− p)1(Ei open)− p1(Ei closed)]

is a martingale with respect to its natural filtration and satisfies

ZT = (1− p)#{open edges of Kv} − p#{closed edges touching Kv}.

In particular, the final value of Z does not depend on the specific details of the exploration
procedure such as the choice of enumeration.

We now consider producing such a martingale in two different ways. Fix a graph
G, 0 < p < 1, and a vertex v of G. The first martingale, Z, is just the usual exploration
martingale computed when exploring the cluster of v in Gp as above, which is a martin-
gale with respect to its natural filtration Fn = σ〈Z1, . . . , Zn〉. For the second martingale,
Z̃, we first explore every infinite cluster of Gp and then explore the cluster of v in the
subgraph induced by G ∩Kc

∞, letting Ẽi be the ith edge touching the cluster of v in this
graph that is queried in the second step of this algorithm, and letting

Z̃n =

n∧T̃∑
i=1

[
(1− p)1(Ẽi open)− p1(Ẽi closed)

]
where T̃ denotes the first time that all edges touching the cluster of v have been queried.
In particular, if v belongs to K∞ then T̃ = Z̃T̃ = 0. Similarly to above, one readily verifies
that Z̃ is a martingale with respect to the filtration F̃n = σ〈K∞, Z̃1, . . . , Z̃n〉 and satisfies

Z̃T̃ =

[(1−p)#{open edges of Kv}−p#{closed edges touching Kv}+p ·τ(Kv,K∞)] 1(v =∞).

To see why this holds, note that the edges counted by τ(Kv,K∞) do not need to be
queried in the second step of the algorithm since they are already queried in the first
step (which does not contribute to the martingale by definition). Thus, we have that

1(v =∞)
(
Z̃T̃ − ZT

)
= p · τ(Kv,K∞)
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and since T̃ ≤ T = |E(Kv)| it follows that

P (|E(Kv)| ≤ m and τ(Kv,K∞) ≥ n)

≤ P
(

max
0≤n≤m

(−Zn) ≥ pn

2

)
+ P

(
max

0≤n≤m
Z̃n ≥

pn

2

)
≤ 2 exp

[
−p

2n2

8m

]
as claimed; in the final inequality we have used the maximal version of the Azuma-
Hoeffding inequality [41, Section 2] and the fact that Z and Z̃ are martingales with
increments bounded by 1.

3 Isoperimetry from tail estimates

In this section we prove the following proposition that converts upper bounds on the
tail of the volume of finite clusters into isoperimetric estimates in the infinite cluster.
The proof is a simple elaboration of an argument due to Pete [19, Theorem A.1] (see also
[43, Theorem 4.1]). We define ∂pW to be the edge boundary of W inside the random
graph Gp and recall that E(W ) denotes the set of edges that touch W .

Proposition 3.1. Let G be a bounded degree graph, let v be a vertex of G, let pc(G) ≤
p < 1, and let φ : (0,∞)→ (0,∞) be an increasing function with φ(t) ≤ t for every t > 0.
If there exists 0 < c ≤ 2 such that Pp(|E(Kv)| = n) ≤ exp [−cφ(n)] for every n ≥ 1 then
for each ε > 0 there exist a constant C = C(ε, c, φ) such that if p ≤ 1− ε then

Pp

∃W ⊆ Kv connected with v ∈W , |E(W )| = n, and |∂pW | ≤
c

4
· φ(|W |)

log 2|W |
φ(|W |)


≤ C exp

[
− c

2
φ(n)

]
for every n ≥ 1. In particular, if φ(t)/ log t → ∞ as t → ∞ and we define ψ : (0,∞) →
(0,∞) by ψ(t) = φ(t)/ log(2t/φ(t)) then Kv satisfies a ψ-anchored isoperimetric inequality
almost surely on the event that it is infinite.

Proof of Proposition 3.1. Fix ε > 0 and pc < p ≤ 1 − ε and let δ = c/4 ≤ 1/2. For each
n ≥ 1 let An be the event whose probability is being estimated and let H n

v be the set of
connected subgraphs of G containing v that touch exactly n edges and let Hv =

⋃
n H n

v

be the set of all finite connected subgraphs containing v. We have by a union bound that

Pp(An) ≤
bδψ(n)c∑
m=1

∑
H∈H n

v

Pp (H ⊆ Kv, |∂pH| = m) , (3.1)

where, since H is connected, H ⊆ Kv if and only if every edge of H is open. For each
H ∈Hv, let E(H) denote the set of edges that touch the vertex set of H, let Eo(H) be
the set of edges belonging to H, and let ∂H = E(H) \ Eo(H) be the set of edges that
touch but do not belong to H. Given H ∈Hv and S ⊆ ∂H, on the event that H ⊆ Kv and
∂pH = S each edge e ∈ E(H) is open if and only if e ∈ Eo(H) ∪ S, so that

Pp(H ⊆ Kv and ∂pH = S) ≤ p|Eo(H)|+|S|(1− p)|∂H|−|S| =

(
p

1− p

)|S|
Pp(Kv = H).

(3.2)

Using another union bound and summing over the possible choices of S with S ⊆ E(H)

and |S| = m, we deduce that

Pp(H ⊆ Kv and |∂pH| = m) ≤
(
|E(H)|
m

)(
p

1− p

)m
Pp(Kv = H)
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and hence that

Pp(An)≤
bδψ(n)c∑
m=1

∑
H∈H n

v

Pp
(
H ⊆ Kv, |∂pH| = m

)
≤Pp(|E(Kv)| = n)

bδψ(n)c∑
m=1

(
n

m

)(
p

1− p

)m
.

(3.3)

Since
(
n
m

)
is increasing in m for m ≤ n/2, it follows from the elementary bound

(
n
m

)
≤

em(n/m)m that there exist constants C1 = C1(c, φ, ε) and C2 = C2(c, φ, ε) such that

bδψ(n)c∑
m=1

(
n

m

)(
p

1− p

)m
≤δψ(n) exp

[
δψ(n)

(
log

2n

ψ(n)
+ log

1

2δ
+ log max

{
1,

p

1− p

}
+ 1

)]

≤ exp

[
δφ(n)

log 2n
φ(n)

(
log

2n

φ(n)
+ log log

2n

φ(n)
+ C1

)
+ log

δφ(n)

log 2n
φ(n)

]
≤ C2 exp [2δφ(n)] = C2 exp

[ c
2
φ(n)

]
, (3.4)

where in the final inequality we were able to absorb all lower order terms into the
constant by doubling the coefficient on the leading order term in the exponent. It follows
from (3.3) and (3.4) that

Pp(An) ≤ C2Pp(|E(Kv)| = n)e
c
2φ(n) ≤ C2e

−cφ(n)+ c
2φ(n) = C2e

− c
2φ(n)

as claimed.

4 Proof of the main theorem

Proof of Theorem 1.1. Fix G, p0, and d as in the statement of the theorem. We will prove
the implications (i)⇒ (ii), (ii)⇒ (i), (ii)⇒ (iii), (iii)⇒ (iv), and (iv)⇒ (ii). Only the proof
of (iv)⇒ (ii) will require transitivity.

(i) ⇒ (ii): Given an increasing event A and an integer r ≥ 1, let Ir(A) denote the event
that A holds in Gp \ F for every set of edges F of size at most r. An inequality due to
Aizenman, Chayes, Chayes, Fröhlich, and Russo [3] (see also [29, Theorem 2.45]) states
that

Pp2(Ir(A)) ≥ 1−
(

p2
p2 − p1

)r [
1− Pp1(A)

]
(4.1)

for every 0 < p1 < p2 < 1, every increasing event A, and every r ≥ 1. Note that
if S is a finite set of vertices in G then Ir({S ↔ ∞}) is equal by Menger’s theorem
(or max-flow min-cut) to the event that there are at least r + 1 edge-disjoint paths
connecting S to ∞. Fix p0 < p1 < p2 < 1 and d′ < d and let c1 > 0 be such that

Pp1(S =∞) ≤ exp
[
−c1|S|(d

′−1)/d′
]

for every finite set of vertices S. It follows from (4.1)

that there exist positive constants c2 = c2(p1, p2, c1) and c3 = 1 − e−c2/2 such that if
r = bc2|S|(d

′−1)/d′c then

Pp2(Ir({S ↔∞})) ≥ 1−
(

p2
p2 − p1

)r
exp

[
−c1|S|(d

′−1)/d′
]
≥ 1−exp

[
−c1

2
|S|(d

′−1)/d′
]
≥ c3.

Since
∑
e∈∂→

E S 1(e+ ↔ ∞ off S) is lower bounded by the maximum size of a collection
of edge-disjoint paths connecting S to infinity, we deduce that there exists a positive
constant c4 such that∑
e∈∂→

E S

Pp2(e+↔∞ off S)≥(r+1)Pp2(Ir({S ↔∞}))≥c3(1+bc2|S|(d
′−1)/d′c) ≥ c4|S|(d

′−1)/d′

EJP 28 (2023), paper 14.
Page 10/15

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP905
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anchored isoperimetry in supercritical percolation

as required.

(ii) ⇒ (i): For each finite set S ⊆ V and 0 < p < 1 let Ψp(S) =
∑
e∈∂→

E S Pp(e
+ ↔∞ off

S). Russo’s formula states that if A is an increasing event depending on at most finitely
many edges then

d

dp
Pp(A) =

1

1− p
∑
e∈E

Pp(e is closed pivotal for A),

where an edge e is said to be closed pivotal for A if Gp /∈ A but Gp ∪{e} ∈ A. Without the
assumption that A depends on at most finitely many edges, we still have the inequality(

d

dp

)
+

Pp(A) ≥ 1

1− p
∑
e∈E

Pp(e is closed pivotal for A), (4.2)

where
(
d
dp

)
+
Pp(A) = lim infε↓0

1
ε (Pp+ε(A)−Pp(A)) is the lower-right Dini derivative of

Pp(A). Let S be a finite set of vertices and let KS be the union of all clusters intersecting
S. When KS is finite, an edge e is a closed pivotal for the event {S ↔∞} if it has one
endpoint in KS and the other in an infinite cluster. Since conditional on KS the edges of
Gp that do not touch KS are distributed as Bernoulli-p percolation on the subgraph of G
induced by Kc

S , it follows that(
d

dp

)
+

Pp(S ↔∞) ≥ 1

1− p
Ep [Ψp(KS) | S =∞]Pp(S =∞)

≥ 1

1− p
min{Ψp(W ) : W ⊇ S finite}Pp(S =∞). (4.3)

Thus, if p0 < p1 < 1, d′ < d, and c = c(p1, d
′) > 0 are such that Ψp1(S) ≥ c|S|(d′−1)/d′ for

every finite set of vertices S, it follows from (4.3) and the fact that Ψp is increasing in p
that (

d

dp

)
+

log
1

Pp(S =∞)
≥ c

1− p
|S|(d

′−1)/d′

for every p1 ≤ p < 1. Integrating this inequality yields that

Pp2(S =∞) ≤ exp

[
−c(p2 − p1)

1− p1
|S|(d

′−1)/d′
]

for every p0 < p1 < p2 < 1 and every finite set S as required.

(ii) ⇒ (iii): This follows immediately from Corollary 2.2 applied with φ(t) = t(d
′−1)/d′ .

(iii) ⇒ (iv): This follows immediately from Proposition 3.1 applied with φ(t) = t(d
′−1)/d′ .

(iv) ⇒ (ii): Given a connected graph H, a vertex v of H, and d′ ≥ 1, let

Φ∗d′(H, v) = inf

{
|∂EW |

|W |(d′−1)/d′
: W a finite, connected set of vertices containing v

}
,

so that if H has bounded degrees then it satisfies an anchored d′-dimensional isoperi-
metric inequality if and only if Φ∗d′(H, v) > 0 for every vertex v of H. Let p0 < p1 and
d′ < d. Since G is transitive and the infinite clusters of Gp1 satisfy an anchored d′-
dimensional isoperimetric inequality almost surely, there exists ε = ε(p1, d

′) > 0 such
that Pp1(Φ∗d′(Kv, v) ≥ ε) ≥ ε for every vertex v of G. Fix such an ε > 0 and let A be the
random set of vertices v whose cluster in Gp1 is infinite and satisfies Φ∗d′(Kv, v) ≥ ε. Thus,
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if S is a finite set of vertices we have by linearity of expectation that Ep1 |S ∩ A| ≥ ε|S|
and hence by Markov’s inequality as in (2.1) that

Pp1

(
|S ∩A| ≥ ε

2
|S|
)
≥ ε

2
.

Thus, to complete the proof it suffices to prove that∑
e∈∂→

E S

1
(
e+ ↔∞ off S

)
≥ ε|A ∩ S|(d

′−1)/d′

for every finite set of vertices S. Fix one such set S and let the hull Γ(S ∩K∞) ⊇ S ∩K∞
be the set of vertices v such that Kv is infinite but any open path connecting v to infinity
must pass through S. This definition ensures that {e ∈ ∂→E S : e+ ↔∞ off S} is equal to
the oriented edge boundary of Γ(S∩K∞) in Gp, which we denote by ∂→p Γ(S∩K∞). (That
is, for a set of bertices A, ∂→p A is defined to be the set of oriented edges that are open
in Gp, emanate from a point of A, and have their other endpoint not in A.) Letting the
connected components of Γ(S ∩K∞) be enumerated C1, . . . , Cm, we have by definition
of A that

|∂→p Γ(S ∩K∞)| =
m∑
i=1

|∂→p Ci| ≥
m∑
i=1

ε|Ci|(d
′−1)/d′1(Ci ∩A 6= ∅)

≥
m∑
i=1

ε|Ci ∩A|(d
′−1)/d′ ≥ ε|A ∩ S|(d

′−1)/d′

as required.

Remark 4.1. Note that the proof of the implication (iv) ⇒ (ii) works for any bounded
degree graph in which the assumption that infinite p1-clusters satisfy an anchored d′-
dimensional inequality implies that there exists ε > 0 such that Pp1(Φ∗d′(Kv, v) ≥ ε) ≥ ε
for every vertex v of G. It is easily seen that this also holds for quasi-transitive graphs.

Let us end the paper with the following question that arose during this work.

Question 4.2. Does the infinite cluster of supercritical percolation onZd admit a positive
density subgraph with uniform isoperimetric dimension d? Does the analogous statement
hold for other transitive graphs?

Note that the analogous question in the nonamenable setting admits a positive
answer due to Benjamini, Lyons, and Schramm [10, Theorem 1.1] (see also [48]). Un-
fortunately however it is not true in general that a unimodular random rooted graph
with anchored isoperimetric dimension d always admits a positive density subgraph with
uniform isoperimetric dimension d. Indeed, by stretching the edges of Zd that lie on the
boundaries of large blocks in a uniform hierarchical decomposition of Zd one can obtain
a unimodular random graph that has anchored isoperimetric dimension d but does not
admit any infinite subgraphs satisfying any non-trivial uniform isoperimetric inequality.
Note also that Grimmett, Holroyd, and Kozma [30] have shown that the infinite cluster
in supercritical percolation on Zd never contains a quasi-isometric copy of Zd, ruling out
one strategy to answer Theorem 4.2.
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